当前位置:文档之家› 地形鞍部的提取

地形鞍部的提取

地形鞍部的提取
地形鞍部的提取

地形鞍部的提取

1.背景

相邻两山头之间呈马鞍形的低谷凹部分称为鞍部.鞍部点是重要

的地形控制点,它和山顶点,山谷点以及山脊线,山谷线等构成地形特征点,对地形具有很强的控制作用。因此,对这些地形特征点,线的分析研究在数字地形分析中具有很重要的意义。同时,由于鞍部点的特殊地貌形态,使得鞍部点的提取方法较山顶点和谷底点更难,目前还都存在一定的技术局限性。

2.目的:

利用水文分析的方法提取地形鞍部点,通过多种GIS空间分析方法的应用,提高对知识的综合运用能力。

3.要求:

利用水文分析模块和空间分析模块相应功能提取样区地形鞍部点。

4.数据:

25米分辨率的DEM数据,面积约为59平方公里。

5算法思想:

鞍部具有独特的形态特征,可被认为是原始地形中的山脊和反地形中的山脊会合的地方,因此可以通过提取正反地形的山脊线并求其交点,获取鞍部点。

6.操作步骤:

(1)正地形、等高线和晕渲图的提取:

同山脊线和山谷线的提取中一样,由于鞍部点的整体位置是处于

山脊上的,需要提取出地形以过滤那些在负地形上的错误的点。正地形的提取过程与第一个例子完全相同,提取过程分别是:利用11*11的窗口进行平均值的邻域分析,结果为meandem,原始DEM与meandem相减并以0为界进行重分类,大于0的属性值赋值为1,小于0的赋值为0,结果命名为zhengdixing。

利用SpatialAnalyst菜单下的SurfaceAnalysis菜单中的Contour和Hillshade工具分别提取样区等高距为40米的等高线数据ctour和样区晕渲图hillshade

(2)山脊线的提取

山脊线的提取与练习1(见“小傻帽吧”文库中的“山脊线、山谷线的提取”,就是用到Hydrology水文分析工具的那个word文档)中山脊线的提取过程完全相同。分别是进行洼地填充—水流方向提取—汇流累计量计算—汇流累积量等于0的提取。提取过程产生的各个数据分别为:filldem、flowdir、flowacc以及flowacc0

好吧,为了方便大家,我还是在重复下山脊线提取的过程吧O(∩_∩)O~ a洼地填充:使用Hydrology工具中的fill工具

b无洼地水流方向计算:Hdrology中的flow Dirfill

c:汇流累积量计算:Hdrology中的flowAccumulation工具

d汇流累积量为0的提取:spaitialAnalyst模块的下拉箭头,单击RasterCalculator,计算:

e邻域处理:

f重新分类:

g将二值化的neiborfacc00进行重分类为reneibor,将属性值接近1的那一类的属性值赋值为1,其余赋值为0

h用spatialAnalyst菜单下的RasterCalculator将重分类后的reneibor 数据与正地形数据zhengdixing相乘,消除那些存在于负地形区域中的错误山脊线,然后将计算结果进行重分类,所有值不为1的栅格赋值为nodata,记得到山脊线.

(3)反地形山脊的提取

反地形山脊的提取与练习1中山谷的提取过程完全相同,分别是基于原始DEM计算出反地形DEM数据(计算中是利用原始DEM减去常熟3000);基于反地形DEM数据提取水流方向数据;基于水流方向数据进行汇流累积量数据;提取汇流累积量数据等于0的栅格。提取过程中产生的数据分别为:fandem,flowdirfan,flawccfan以及fanfacc0

(4)鞍部点的提取

1)利用SpatialAnalyst菜单下的RasterCalculator的工具将山脊线数据

flowcc0和山谷线数据fanfacc0相乘,结果命名为anbuqu

2)利用同样的方法将上一步中提取出的数据anbuqu和正地形数据zhengdixing相乘就得到了鞍部点的栅格数据,命名为rasteranbu

3)重分类rasteranbu,所有0值赋为NO DATA数据,属性为1的值保持不变,重分类后的数据为rasteranbu2

4)将栅格数据rasteranbu2转换成矢量结构数据anbudian(Raster to Features)配合等高线数据和晕渲图对矢量形式的鞍部点数据进行编辑,剔除那些处于样区的边缘以及内部的伪鞍部点。最后得到的鞍部点数据如图。

ArcGIS实验_Ex12_地形指标提取

第九章三维分析 练习1:地形指标提取 一、背景 地形指标是最基本的自然地理要素,也是对人类的生产和生活影响最大的自然要素。地形特征制约着地表物质和能量的再分配,影响着土壤与植被的形成和发育过程,影响着土地利用的方式和水土流失的强度,也影响着城市规划中工农业生产布局的各个方面。地形指标的提取对水土流失、土地利用、土地资源评价、城市规划等方面的研究起着重要的作用。根据研究区域尺度的不同,地形指标有许多因子。基于ArcGIS的地形指标的提取,大多均是基于DEM数据完成。 二、目的 通过本实验,使读者加深对各基本地形指标的概念及其应用意义的理解。熟练掌握使用ArcGIS软件提取这些地形指标的方法和步骤。 三、要求 利用所提供DEM数据,提取得出该区域坡度变率、坡向变率、地形起伏度、地面粗糙度等四个基本地形指标的栅格图层。 四、数据 本实验采用某区域栅格DEM(..\Chp9\Ex1\),是一个区域的分辨率为5米的DEM数据,图例是按照其高程值采用渐变色来显示。下文中关于地形指标的提取都是以这个数据为基础。 五、操作步骤 1、坡度变率 地面坡度变率,是地面坡度在微分空间的变化率,是依据坡度的求算原理,在所提取的坡度值的基础上对地面每一点再求算一次坡度。即坡度之坡度(Slope of Slope, 简称SOS)。坡度是地面高程的变化率的求解,因此,坡度变率表征了地表面高程相对于水平面变化的二阶导数。 坡度变率在一定程度上可以很好反映剖面曲率信息,其提取方法如下: (1) 激活DEM主题,选择Spatial Analysis - Surface Analysis - Slope命令,提取DEM主题的坡度,得到主题Slope of DEM(图1),得到结果如图2所示; 图1 提取DEM主题的坡度

地形因子计算详解

第七章1、本章主题编号 2、本章内容概述 (1)概述 ●坡面因子的分类及提取方法 ●确定坡面因子提取的算法基础 ●提取坡面因子的常用分析窗口 (2)坡度、坡向 ●坡度的提取 ●坡向的提取

(3)坡形 ●宏观坡形因子 ●地面曲率因子 ●地面变率因子 (4)坡长 (5)坡位 (6)坡面复杂度因子 3、本章内容 3.1 概述 (1)坡面因子的分类及提取方法 ●坡面因子的分类 按照坡面因子所描述的空间区域范围,可以将坡面因子划分为微观坡面因子与宏观坡面因子两种基本类型。常用的微观坡面因子主要有:坡度、坡向、坡长、坡度变率、坡向变率、平面曲率、剖面曲率等。常用的宏观坡面因子主要有:地形粗糙度、地形起伏度、高程变异系数、地表切割深度,以及宏观坡形因子(直线形斜坡、凸形斜坡、凹形斜坡、台阶形斜坡)等。

按照提取坡面因子差分计算的阶数,可以将坡面因子分为一阶坡面因子、二阶坡面因子和高阶坡面因子。一阶坡面地形因子主要有坡度和坡向因子。二阶坡面因子主要有坡度变率、坡向变率、平面曲率、剖面曲率等因子。复合坡面因子有坡长、坡形因子、地形粗糙度、地形起伏度、高程变异系数和地表切割深度等。 按照坡面的形态特征,可将坡面因子进一步划分为:坡面姿态因子,坡形因子,坡位因子,坡长因子以及坡面复杂度因子五大类。 ●提取坡面因子的基本方法 首先将坡面的形态特征或各个坡面因子进行定量化描述,完成求导的数学模型,在此基础上,建立其以DEM为基本信息源进行提取的技术路线,并通过软件实现形成一套易于计算机操作的方法。 (2)确定坡面因子提取的算法基础 ●DEM格网数据的空间矢量表达(如图7.1) 图7.1 DEM格网数据的空间矢量模型

数字地面模型地形指标和地形特征信息的提取

地理教学实验中心 专业实训实习报告 备注:根据实际要求可加附页。电子文本与此等效。

1.坡度和坡向的提取 1)坡向的提取:打开ArcGis里面的ArcToolbox,在工具箱中选择3D分析—栅格表面—双击坡向—输入栅格dem2-输出栅格aspect2 图1.1.1 图1.1.2 2)坡度的提取:同上打开坡度对话框输入栅格dem2—输出slope2 图1.2.1

图1.2.3 2.坡度变率的提取 1)对生成的坡度再求坡度,打开坡度对话框—输入上一步生成的坡度slpoe2-输出sos2 图2.1.1 图2.1.2

3.坡向变率的提取 1)先求反地形--Spatial Analyst工具—地图代数--栅格计算器—输入公式为2375-dem2输出fan-保存OK。 2)将反地形加载到窗口中求反地形的坡向,命名为aspect2 fan 3)求原地形的坡向的坡度soa1,求反地形坡向的坡度命名为soa2 4)打开栅格计算器—输入公式为soa =soa (soa1+soa2-Abs(soa1-soa2))/2。输出结果为soa即为坡向变率. 4.地形起伏度的提取 1)提取最大值:将dem2加载到ArcMap中,启动ArcToolbox—Spatial Analyst工具—邻域分析—焦点统计-输入dem2-输出max,采用矩形窗口大小为11*11,打开统计类型,选中最大值—OK,生成的新的dem与原始dem最小海拔不同,发生了变化, 图4.1.1 2)最小值:邻域分析—矩形邻域大小为为11*11,选中最小值,点击确定生成最小值 3)地图代数--栅格计算器—最大值dem- 最小值dem—选择存储位置,命名为地形起伏度—OK,地形起伏度提取完成。 5.地面粗糙度的提取 1)求取坡度,启动栅格计算器最小值为1,最大值为2.4739

地形因子

第七章 1、本章主题编号 2、本章内容概述 (1)概述 ● 坡面因子的分类及提取方法 ● 确定坡面因子提取的算法基础 ● 提取坡面因子的常用分析窗口 (2)坡度、坡向 ● 坡度的提取 ● 坡向的提取 (3)坡形 ● 宏观坡形因子 ● 地面曲率因子 ● 地面变率因子 (4)坡长 (5)坡位 (6)坡面复杂度因子 3、本章内容 3.1 概述 (1)坡面因子的分类及提取方法 ● 坡面因子的分类 按照坡面因子所描述的空间区域范围,可以将坡面因子划分为微观坡面因子与宏观坡面因子两种基本类型。常用的微观坡面因子主要有:坡度、坡向、坡长、坡度变率、坡向变率、平面曲率、剖面曲率等。常用的宏观坡面因子主要有:地形粗糙度、地形起伏度、高程变异系数、地表切割深度,以及宏观坡形因子(直线形斜坡、凸形斜坡、凹形斜坡、台阶形斜坡)等。 按照提取坡面因子差分计算的阶数,可以将坡面因子分为一阶坡面因子、二

阶坡面因子和高阶坡面因子。一阶坡面地形因子主要有坡度和坡向因子。二阶坡面因子主要有坡度变率、坡向变率、平面曲率、剖面曲率等因子。复合坡面因子有坡长、坡形因子、地形粗糙度、地形起伏度、高程变异系数和地表切割深度等。 按照坡面的形态特征,可将坡面因子进一步划分为:坡面姿态因子,坡形因子,坡位因子,坡长因子以及坡面复杂度因子五大类。 ● 提取坡面因子的基本方法 首先将坡面的形态特征或各个坡面因子进行定量化描述,完成求导的数学模型,在此基础上,建立其以DEM为基本信息源进行提取的技术路线,并通过软件实现形成一套易于计算机操作的方法。 (2)确定坡面因子提取的算法基础 ● DEM格网数据的空间矢量表达(如图7.1) 图7.1 DEM格网数据的空间矢量模型 ● 基于空间矢量模型的差分计算 算法主要有数值分析方法、局部曲面拟合算法、空间矢量法、快速傅立叶变换等。其中数值分析方法包含有简单差分算法、二阶差分、三阶差分(带权或不带权)和Frame差分;局部曲面拟合又有线性回归平面、二次曲面和不完全四次曲面(据刘学军,2002)。 (3)提取坡面因子的常用分析窗口 ● 窗口分析(领域分析)的基本原理是:对栅格数据系统中的一个、多个栅格点或全部数据,开辟一个有固定分析半径的分析窗口,并在该窗口内进行诸如极值、均值、标准差等一系列统计计算,或进行差分及与其它层面信息的复合分析等,实现栅格数据有效的水平方向扩展分析。 ● 在坡面信息提取中,按照分析窗口的形状,可以将分析窗口划分为以下几类: 矩形窗口:以目标栅格为中心,分别向周围八个方向扩展一层或多层栅格。 圆形窗口:以目标栅格为中心,向周围作一等距离搜索区,构成一圆形分析窗口。

分解提取部门绩效指标

分解提取部门绩效指标 ——基于KPI的部门绩效指标选取 一.什么是KPI? KPI(Key Performance Indicators)译为关键绩效指标,是指企业宏观战略目标决策经过层层分解产生的可操作性的战术目标,是宏观战略决策执行效果的监测指针。KPI是衡量企业战略实施效果的关键指标,其目的是建立一种机制,将企业战略转化为内部过程和活动,以不断增强企业的核心竞争力,并持续取得高效益。在具体的企业管理实践中,KPI指标体系的价值则是根据企业或部门战略,逐步分解与承接战略要项,并在此过程中帮助企业战略落地,同时确定部门和个人的责任和绩效标准。 目前在国内外,大量公司采用KPI作为提取各个主体考核的基本指标来源。在进行绩效指标提取时,指标提取有四个维度:时间、成本、数量和质量。由此引出KPI绩效指标制定的SMART五原则: ?明确性(Specific):是指绩效考核要切中特定目标,不能笼统; ?衡量性(Measurable):是指绩效指标是数量化或者行为化的,验证这些绩效指标的数据或者信息是可以获得的; ?可接受性(Attainable):是指绩效指标在付出努力的情况下是可以实现的; ?实际性(Realistic):是指实实在在的,可以证明和观察; ?时限性(Time-bound):是指要注重完成绩效指标的特定期限。 企业在提取KPI指标时,必须符合SMART原则,同时,在指标中还至少应当包含两种类型的KPI指标——常规KPI指标与改进KPI指标。常规KPI指标是面向阶段性战略目标的,反映战略实现状况;改进KPI指标是面向年度计划的,属战术性指标,反映年内经营管理中影响常规KPI指标达成的障碍因素改善情况。改进KPI指标的改善有利于常规KPI指标的达成,改进KPI指标随管理重点的变化而变化。常规KPI指标和改进KPI指标可以同时确保企业当前的战略目标顺利实现,同时改进KPI指标则保证了未来组织的弹性。企业的KPI 指标库也可以根据企业战略、外部市场等的变化而更新,这样就可以让KPI指标恰当地起到衡量、考核、牵引的作用。 二.KPI指标的来源

9.6.1地形指标提取

地形指标提取 1.背景: 地形指标是最基本的自然地理要素,也是对人类的生产和生活影响最大的自然要素,地形特征广泛应用于诸多研究领域和应用领域。地形指标的提取对水土流失、土地利用、土地资源评价、城市规划等方面的研究起着重要的作用。根据研究区域尺度的不同,地形指标有许多因子。基于ArcGIS的地形指标的提取,大多均是基于DEM数据完成的。 2.目的: 通过本实验,使读者加深对各基本地形指标的概念及其应用意义的理解,熟练掌握使用ArcGIS软件提取这些地形指标的方法和步骤。 3.要求: 利用所提供的DEM数据,提取该区域坡度变率、坡向变率、地形起伏度、地面粗糙度等四个基本地形指标的栅格图层。 4.实验步骤: (1)坡度变率 地面坡度变率,是地面坡度在微分空间的变化率,是依据坡度的求算原则,在所提取的坡度值的基础上对地面每一点再求算一次坡度。即坡度之坡度。坡度是地面高程的变化率的求解,因此,坡度变率表征了地面高程相对于水平面变化的二阶导数。 坡度变率在一定程度上可以很好的反映剖面曲率信息,其提取方法如下: 1)选中DEM图层数据,选择表面分析中的坡度工具,提取坡度,得到坡度数据层,命名为Slope

2)选中坡度数据层Slope,对其再用上述的方法提取坡度,得到坡度变率数据,命名为SOS

坡度变率 (2)坡向变率 地面坡向变率,是指在提取坡向基础上,提取坡向的变化率,亦即坡向之坡度(SOA),它可以很好的反应等高线弯曲程度。 地面坡向变率在所提取的地表坡向矩阵的基础上沿袭坡度的求算原理,提取地表局部微小范围内的最大变化情况。需要注意:SOA在提取过程中在背面坡将会有误差产生。北面坡

基本ArcGIS的地形数据提取与分析

基于ArcGIS10地形数据提取与分析 舒城县林业局汪自胜 摘要:本文以森林资源调查工作实践为例,详细总结了如何利 用ArcGIS10软件对纸质地形图,通过扫描、矢量化生成高程栅格数据;利用高程栅格数据进行等高线加密、高程统计、坡向和坡度分析;以及利用坡向、坡度等地形因子实现自动区划图斑的方法和过程。 关键词:森林资源调查 ArcGIS 地形分析 地形因子是划分森林资源调查图斑的重要因子,在条件有限的 情况下,我们经常是利用纸质地形图,通过人工判定,来确定工作 图斑的海拔、坡向和坡度。准确度受判定人员的业务水平影响较大。利用ArcGIS10的矢量化工具和地形数据分析工具,可以实现对图斑 地形因子的自动判读,甚至可以自动区划图斑。 一、地形图矢量化 要想利用计算机来进行地形分析,首先应对纸质地形图进行扫 描矢量化,将其转化成计算机可以识别的数据格式(见图1)。 图1 地形图灰度栅格图像 地形图矢量化前,需要将纸质图扫描成灰度栅格图像,并对栅 格图像进行二值化处理。 1、在ArcMap中对栅格图像进行符号化处理。分类方法:手动;类别数:2;调整中断值,直到满意为止,记录下中断值; 2、重分类。利用ArcToolbox工具箱中的“空间分析-重分类” 工具,根据记录的中断值,对图像进行重分类,生成二值图(见图2)。

图2 重分类工具设置和二值图 3、矢量化。加载用来保存矢量化成果的点、线要素类文件,在 编辑状态下,运用ArcScan工具开始矢量化。 (1)根据矢量化点、线的栅格宽度,在矢量化设置中设置理想 的最大线宽等参数。可以在完成设置后,运用“显示预览”功能来 查看参数设置是否合理(见图3)。 图3 矢量化设置和效果预览 (2)运用“在区域内部生成要素”工具选择要矢量化的区域, 在弹出的模板对话框中,对点、线要素的模板采用默认设置,完成 自动矢量化。 (3)运用编辑工具清理掉错误短线和噪点,对断开的地方等进 行修补。 (4)将等高线、道路和水系地物进行分层,分别保存到等高线、道路、水系要素类中。

ENVI提取地形特征要素

ENVI 实验六基本地形因子提取 一、实验目的 1熟悉ENVI软件能够从DEM 中提取地形特征。 2掌握DEM提取地形特征的方法。 二、实验要求 完成运用ENVI 进行从DEM 中提取地形特征,包括山顶、山脊、平原、水平面、山沟和凹谷。 三、实验仪器 每人计算机一台。 四、实验内容 1在Toolbox中,启动/Terrain/Topographic Features,在Topographic Feature Input DEM 对话框中,选择DEM.tif 文件,点击OK,打开Topographic Features Parameters 对话框,需要设置一些参数。 (1)坡度容差:1。以度为单位;(2)曲率容差:0.1;(3)地形核大小:7。 2在Select Feature to Classify 列表中选择所有的地形特征。 3选择输出路径及文件名,单击OK 执行地形特征提取。

4通视域分析:使用Viewshed Analysis Workflow 工具,设置点、线、面作为观测源进行可视域分析。 将通视分析结果输出为矢量和图像结果有三种方法: (1)点观测源 a. 在Toolbox 中,启动/Terrain/Viewshed Analysis Workflow,打开文件选择面板 File Selection; b. 分别选择对应的文件DEM File:DEM.tif;Image File:Orthoimagery.tif,单击Next 进入Viewshed Analysis 面板; c.在Viewshed Analysis 面板中,设置以下几个参数: 可视距离Default View Range:1000 可视高度Default View Height:100 d.默认鼠标的状态是绘制“点注记”,在正射影像上绘制几个观测点。如果鼠标当前 状态是其他,可在工具栏中选择对应的工具绘制:,绘制4 个点; e.选择Any Source (四个观测点的并集),勾选Preview预览结果,红色表示可 视区域,黑色表示不可视区域; f.分别选择All Sources(四个观测点的交集),预览结果; g.单击Next进入Viewshed Export面板,可以将通视分析结果输出为矢量和图像结果。

分解提取KPI指标的若干方法

纵横分解提取部门绩效指标 ——基于KPI的部门绩效指标选取 一.什么是KPI? KPI(Key Performance Indicators)译为关键绩效指标,是指企业宏观战略目标决策经过层层分解产生的可操作性的战术目标,是宏观战略决策执行效果的监测指针。KPI是衡量企业战略实施效果的关键指标,其目的是建立一种机制,将企业战略转化为内部过程和活动,以不断增强企业的核心竞争力,并持续取得高效益。在具体的企业管理实践中,KPI指标体系的价值则是根据企业或部门战略,逐步分解与承接战略要项,并在此过程中帮助企业战略落地,同时确定部门和个人的责任和绩效标准。 目前在国内外,大量公司采用KPI作为提取各个主体考核的基本指标来源。在进行绩效指标提取时,指标提取有四个维度:时间、成本、数量和质量。由此引出KPI绩效指标制定的SMART 五原则: ?明确性(Specific):是指绩效考核要切中特定目标,不能笼统; ?衡量性(Measurable):是指绩效指标是数量化或者行为化的,验证这些绩效指标的数据或者信息是可以获得的; ?可接受性(Attainable):是指绩效指标在付出努力的情况下是可以实现的; ?实际性(Realistic):是指实实在在的,可以证明和观察; ?时限性(Time-bound):是指要注重完成绩效指标的特定期限。 企业在提取KPI指标时,必须符合SMART原则,同时,在指标中还至少应当包含两种类型的KPI指标——常规KPI指标与改进KPI指标。常规KPI指标是面向阶段性战略目标的,反映战略实现状况;改进KPI指标是面向年度计划的,属战术性指标,反映年内经营管理中影响常规KPI 指标达成的障碍因素改善情况。改进KPI指标的改善有利于常规KPI指标的达成,改进KPI指标随管理重点的变化而变化。常规KPI指标和改进KPI指标可以同时确保企业当前的战略目标顺利实现,同时改进KPI指标则保证了未来组织的弹性。企业的KPI指标库也可以根据企业战略、外部市场等的变化而更新,这样就可以让KPI指标恰当地起到衡量、考核、牵引的作用。 二.KPI指标的来源

地形特征信息提取

地形特征提取 1.背景 特征地形要素,主要指对地形在地表的空间分布特征具有控制作用的点、线或面状要素。特征地形要素构成地表与起伏变化的基本框架。与地形指标的提取主要采用小范围的邻域分析不同的是,特征地形要素的提取更多地应用较为复杂的技术方法,如山脊线、山谷线、沟沿线等的提取采用了全局分析法,成为栅格数据地学分析中很具特色的数据处理内容。 特征地形要素从表示的内容上可分为地形特征点和特征线两大类。地形特征点主要包括山顶点、凹陷点、脊点、谷点、鞍点、平地点等。基于DEM提取地形特征点,可利用3*3或更大的栅格窗口,通过中心格网点与8个邻域格网点的高程关系来进行判断获取。 山脊线和山谷线构成了地形起伏变化的分界线(骨架线),因此它对于地形地貌研究具有重要意义。另一方面,对于水文物理过程研究而言,由于山脊、山谷分别代表示分水性与汇水性,山脊线和山谷线的提取实质上也是分水线与汇水线的提取。 自动提取山脊线和山谷线的主要方法都是基于规则格网DEM数据的,从算法设计原理上来分,大致可以分为以下五种: (1)基于图像处理技术的方法 (2)基于地形表面几何形态分析的方法 (3)基于地形表面流水物理模拟分析方法 (4)基于地形表面几何形态分析和流水物理模拟分析相结合的方法 (5)平面曲率与坡形组合法 其中,平面曲率与坡形组合法提取的山脊线、山谷的宽度可由选取平面曲率的大小来调节,方法简便,效果好。该方法基本处理过程为:首先利用DEM数据提取地面的平面曲率及地面的正负地形,取正地形上平面曲率的大值即为山脊线,负地形上平面曲率的大值即为山谷。实际应用中,由于平面曲率的提取比较复杂繁琐,而坡向变率(SOA)在一定程度上可以很好地表示平面曲率,因此,下面的提取过程以SOA代替平面曲率。 2.目的 通过本实例,使读者掌握山脊线和山谷线这两个基本地形特征信息的理论及其基于DEM的提取方法与原理。同时,熟练掌握利用ArcGIS软件对这两个地形特征信息的提取方法。 3.要求: 利用所给区域DEM数据,提取该区域山脊线、山谷线栅格数据层。 具体提取过程: 1)点击DEM数据,使用表面分析中的坡向(Aspect)工具,提取DEM的坡向数据层,命名为A。

地形测量名词解释

名词解释选择题(12题) 1.请给下列名词找到相应的解释:( C ) 水准面、大地水准面、参考椭球体面、绝对高程、相对高程。 ①经过定位定向的旋转椭球体面,是建立坐标系的基准面。 ②地面点到大地水准面的铅垂距离。 ③地面点到假定高程起算面(任意水准面)的铅垂距离。 ④代替海水静止时水面的平均海水面,是一个特定的重力等位的水准面(面上处处与重力方向线正交)。 ⑤重力位相等的点连成的封闭曲面叫重力等位面。 A.大地水准面:① 参考椭球体面:② 绝对高程:③ 相对高程:④ 水准面:⑤ B.大地水准面:⑤ 参考椭球体面:① 绝对高程:② 相对高程:③ 水准面:④ C.大地水准面:④ 参考椭球体面:① 绝对高程:② 相对高程:③ 水准面:⑤ D.大地水准面:④ 参考椭球体面:① 绝对高程:③ 相对高程:② 水准面:⑤ 2.请给下列名词找到相应的解释:( A ) 水平角、竖直角、天顶距。 ①测站与两个观测目标所组成的二面角。 ②是瞄准目标的方向线与在同一竖面内水平方向线的夹角。 ③同一铅垂面内,某方向的视线与竖直方向的夹角。

A.水平角:① 竖直角:② 天顶距:③ B.水平角:③ 竖直角:① 天顶距:② C.水平角:② 竖直角:① 天顶距:③ D.水平角:① 竖直角:③ 天顶距:② 3.请给下列名词找到相应的解释:( B ) 象限角、子午线收敛角、坐标方位角。 ①在平面直角坐标系中,以平行于X轴的方向为基准方向,从基准方向的北端顺时针旋转至某边的水平角。 ②以直线端点的子午线北端或南端起算,量至直线的锐角。 ③地面上两点真子午线间的夹角。 A.象限角:① 子午线收敛角:③ 坐标方位角:② B.象限角:② 子午线收敛角:③ 坐标方位角:① C.象限角:③ 子午线收敛角:② 坐标方位角:① D.象限角:① 子午线收敛角:② 坐标方位角:③ 4.请给下列名词找到相应的解释:( C ) 水准测量、水准路线、水准点、转点、图根控制点。 ①在水准点之间进行水准测量所经过的路线,是所经路线上各高程点的连线。 ②是水准测量中,用来传递高程的临时点。

考核指标的提取方法

企业岗位指标的提取方法 在咨询中,一家客户的人力资源部部长跟笔者聊起绩效考核指标的确定时,用了一个非常生动的词语“三拍”来陈述有关绩效考核指标的困惑:该公司每年年初进行一次中干岗位竞聘,竞聘前各个中干岗位的指标,基本上都已由主管领导“拍脑袋”确定下来了,竞聘者看到相关指标的时候,尽管心里觉得那些指标有些别扭,认为那些考核指标跟自己要竞聘的岗位关联度并不大,而且很多指标的评价标准也很模糊,自己也不是很清楚竞聘上那个岗位后,如何通过自己的努力才能得到较好的考核结果,但是为了竞聘成功,还是“拍着胸脯”保证,自己没问题,结果到了年底有关部门拿着那些指标对中干进行评价的时候,发现很多中干指标完成情况非常不理想,这个时候,主管领导又后悔的开始“拍大腿了”。 从上面的案例可以看出,该企业在制定岗位考核指标时,缺乏规范的绩效管理思路,体现在指标制定上,就是缺少严谨科学的方法,来进行绩效考核指标以及绩效评价标准的制定,那么如何进行绩效指标,尤其是岗位绩效指标制定呢?结合多次绩效管理项目咨询的经验,笔者根据绩效管理的核心作用,总结出系统确定岗位考核指标的三种路径:从岗位职责、所承担上级指标及绩效面谈三个方面,系统扫描各个岗位,确定岗位绩效指标。 方面一:紧紧围绕岗位职责,提取岗位绩效指标,对于管理不够规范的企业,一般要分三步走,才能完成相关指标和评价标准的设计。 第一步:首先要明确岗位的职责。绩效管理最常见的作用就是评价岗位任职者的工作绩效,并根据任职者的工作绩效来进行岗位绩效工资的发放和岗位调整以及员工的职业生涯规划。因此,设计岗位考核指标时,要与岗位的职责紧密关联,否则容易出现岗位不可控的指标,而失去指标对员工工作的牵引作用,更无法真实的反应岗位任职者的实际工作表现,这就要求企业必须要明确各个岗位的职责。但是目前很多企业基础管理薄弱,岗位甚至部门职责混乱,各岗位的具体工作内容和目标都来自于直接上级的临时性安排,员工无法根据既定的职责进行工作计划的安排,有些企业即使已经明确了部门的职责,也在此基础上进行了岗位职责的梳理,但是由于公司领导的不重视,岗位说明书往往束之高阁、形同虚设。 为了规范企业的管理秩序,明确各级岗位的具体职责,有效的实现企业总体职责的层层分解、落实,企业应根据自身的战略需要,在明确未来发展方向的基础上,结合企业的现状,搭建支撑未来战略实现的组织结构、清晰各职能部门和业务部门的职责,并在此基础上,借

1:10000矢量核心地形要素数据(DLG)生产技术规定

1:10000基础地理信息更新与建库技术设计暂行规定 1:10000矢量核心地形要素生产技术规定Technical specifications for producing 1:10000 digital line graphics (DLG) of fundamental topographic features ( 征求意见稿) 国家测绘局 二○○一年一月

目次 前言 ........................................................................................................................................ I 1范围 (1) 2引用标准 (1) 3术语 (1) 4基本要求及技术指标 (2) 5作业方法与工艺流程 (3) 6数据采集技术要求 (7) 7操作规程 (10) 8质量控制 (14) 9数据更新 (15) 10文件命名和数据组织形式 (16) 11产品归档 (17)

前言 本规程是应1:10000数字化测绘和基础地理信息数据库中对1:10000核心地形要素生产技术规定的需要,根据目前技术水平制定的。 本规程由国家测绘局提出并归口。 本规程起草单位:陕西测绘局 山西省测绘局 本规程主要起草人:曹建成李建平

1:10000基础地理信息更新与建库技术设计暂行规定 1:10000矢量核心地形要素生产技术规定 Technical specifications for producing 1:10000 digital line graphics (DLG) of fundamental topographic features 1 范围 本规程规定了1:10000核心地形要素生产的技术要求、质量控制、工艺流程。适用于1:10000矢量核心地形要素的采集、更新与建库。其它专题矢量要素及相关复合产品的制作也可参照其执行。 2 引用标准 下列标准所包含的条文,通过在本规程中引用而构成为本标准的条文。在本规程出版时,所示版本均为有效。所有标准都会被修订,使用本规程的各方应探讨使用下列标准的最新版本的可能性。 GB/T 13990-92 1:5000、1:10000航空摄影测量内业规范 ZBCH02-85 1:5000、1:10000地形图航片综合判调作业规程 GB/T 5791-93 1:5000、1:10000地形图图式 GB/T 13923-92 国土基础信息数据分类与代码 GB/T17798-1999地球空间数据交换格式 GB/T××××1:10000矢量地形要素内容与分类 GB/T××××基础地理信息数字产品数据文件命名规定 GB/T××××基础地理信息数字产品元数据 GB/T 13989-92 国家基本比例尺地形图分幅与编号 GB 2260-95 中华人民共和国行政区划代码 GB 917.2-89 国家干线公路路线名称和编号 GB 1945-87 中华人民共和国铁路路线名称代号 SL213-98 水利工程基础信息代码编制规定 3 术语 3.1要素 真实世界现象的抽象。 3.2属性 各要素的相关信息。 3.3矢量数据 由几何元素点、线及多边形所表示的数据。 3.4栅格数据 与特定参照系相对应的空间的规则化棋盘状布置的数据。 3.5节点 零维拓扑元素。

实验09 基于DEM坡面坡向提取与分析 技术文档

实验九基于DEM坡面坡向提取与分析 1.背景 作为地形特征线的山脊线、山谷线对地形、地貌具有一定的控制作用。它们与山顶点、谷底点以及鞍部点等一起构成了地形及其起伏变化的骨架结构。同时由于山脊线具有分水性,山谷线具有合水性特征使得它们在工程应用方面具有特殊的意义。因此在数字地形分析中,山脊线和山谷线的提取和分析是具有很大应用价值的。 2.目的 了解基于DEM坡面地形因子提取的原理;掌握坡度、坡向、坡面曲率因子的提取方法及坡度分级图的制作;能够利用坡面地形因子与其它空间分析方法相结合以解决实际应用问题。 3.要求 (1)技术流程正确,可视化准确、直观、形象; (2)画出实现的技术流程图,对构建关键技术点的目的和意义给出简要说明。 4.数据 一幅25m分辨率的黄土地貌DEM数据,区域面积大约有140 km2。 5.实验内容 (1)坡度 a.添加Dem数据并激活它,打开spatial analyst工具。 b.从【Surface Analysis】菜单中选择【Slope】命令。 c.生成新的坡度主题slope of dem。 d.双击左边的图例,重新调整坡度分级。 (2)坡向 a.在视图目录表中添加DEM并激活它,打开spatial analyst工具。 b.从【Surface Analysis】菜单中选择【Aspect】命令。 c.显示并激活生成的坡向主题Aspect of dem。 (3)坡面曲率因子 平面曲率: a.激活坡向数据。 b.从【Surface Analysis】菜单中选择【Slope】命令。 c.生成平面曲率层面Slope of Aspect。 剖面曲率: a.激活坡度数据。 b.从【Surface Analysis】菜单中选择【Slope】命令。 c.显示并激活生成的剖面曲率层面Slope of Slope。 6.关键技术:提取平面曲率中消除北坡的误差

基于ArcGIS的地形特征提取

基于ArcGIS的地形特征提取 刘小庆 辽宁工程技术大学,辽宁阜新 (123000) E-mail: Lxq_0805@https://www.doczj.com/doc/b214183302.html, 摘要:特征地形要素是构成地表地形与起伏变化的基本框架,ArcGIS具有一个能为三维可视化、三维分析以及表面生成提供高级分析功能的扩展模块3D analyst,基于ArcGIS进行地形特征提取可以更好地实现对地形地貌空间数据的可视化和分析处理。 关键词:ArcGIS;特征地形要素;山脊线;山谷线 1.引言 随着信息社会的到来,人类社会进入了信息大爆炸的时代。面对海量信息,人们对于信息的要求发生了巨大变化,对信息的广泛性、精确性、快速性及综合性要求越来越高。随着计算机技术的出现及其快速发展,对空间位置信息和其他属性类信息进行统一管理的地理信息系统也随之快速发展起来,在此基础上进行空间信息挖掘和知识发现是当前亟待解决的问题。 在常见的GIS系统中,美国ESRI公司的ArcGIS以其强大的分析能力得到用户的青睐,成为主流的GIS系统。ArcGIS9是美国环境系统研究所(Environment System Research Institute)开发的新一代GIS软件,是世界上最广泛的GIS软件之一。自从1978年以来,ESRI相继推出了多个版本系列的GIS软件,其产品不断更新扩展,构成适用各种用户和机型的系列产品。ArcGIS是ESRI在全面整合了GIS与数据库、软件工程、人工智能、网络技术及其他多方面的计算机主流技术之后,成功地推出了代表GIS最高技术水平的全系列GIS产品。ArcGIS是一个全面的,可伸缩的GIS平台,为用户构建一个完整的GIS系统提供完整的解决方案。ArcGIS9的软件特色主要为: 1)主图编辑的高度一体化; 2)便捷的元数据管理; 3)灵活的定制与开发; 4)ArcGIS9的新功能:增加了两个基于ArcObject的产品:面向开发的嵌入式ArcGIS Engine和面向企业用户居于服务器的ArcGIS Server。3D Analyst 是ArcGIS8的扩展 模块,主要提供空间数据的三维显示功能。在ArcGIS9中,该模块在3D Analyst的基 础上第一次推出全球3D可视化功能。该模块具有与ArcScene相似的地图交互工具,可以与任何在三维地球表面有地理坐标的空间数据进行叠加显示[1]。 2.背景和原理 特征地形要素,主要是指对地形在地表的空间分析与分布特征具有控制作用的点、线或面状要素。特征地形要素构成地表地形与起伏变化的基本框架。与地形指标的提取主要采用小范围的邻域分析不同的是,特征要素的提取更多地应用较为复杂的技术方法,如山谷线、山脊线、沟沿线等的提取采用了全局分析法(global process)(算法如图1)[2],成为栅格数据地学分析中很有特色的数据处理内容。

DEM地形信息提取对比研究_以坡度为例

第33卷第5期 2008年9月 测绘科学 Science of Surveying and M app ing Vol .33No .5 Sep. 作者简介:姜栋(19792),女,山东青岛人,在读硕士,地图制图与地理信息系统专业,研究方向:GI S 与遥感应用。E 2mail:dandili on1017@1631com 收稿日期:2007204228 基金项目:北京市教委科技重点项目(编号:05531830);北京自然科学基金资助项目(基金号:6032003);北京市属市管高等学校人才强教计划资助项目,PHR (I HLB ) D E M 地形信息提取对比研究 ———以坡度为例 姜 栋① ,赵文吉① ,朱红春② ,张有全 ① (①首都师范大学三维信息获取与应用教育部共建实验室,北京 100037;②山东科技大学地科学院,山东青岛 266510) 【摘 要】由于DE M 数据本身多尺度因素,加之地形、地貌特征具有宏观性与区域分异性的特点,直接的信息提 取往往很难达到预期的目的。利用DE M 制作坡度图高效、省力,但其精度有很大的不确定性,同时DE M 制作过程中的误差传播、转移对坡度信息的影响缺少系统的判断依据。选取位于陕北黄土高原上的两个不同地区作为实验样区,在不同DE M 生产的基础上,以高精度的1∶10000DE M 为准值,通过对1∶5万和1∶1万DE M 提取定量地形要素的叠合、比较与统计分析,探讨具有不同地貌类型的区域1∶5万DE M 提取地形信息的精度及其统计意义上的数量百分比关系。【关键词】数字高程模型;坡度;精度【中图分类号】P282 【文献标识码】A 【文章编号】1009-2307(2008)05-0177-03DO I:1013771/j 1issn 1100922307120081051063 1 引言 近年来,DE M 数据生产和分析方法方面取得了巨大进步,但是从不同地形复杂度、不同空间分辨率及不同比例尺的DE M 提取地形信息,特别是地面坡度的精度研究几乎与坡度及DE M 在各领域的广泛应用严重脱节。1∶5万地形图因自身的制图综合和DE M 生产过程中产生的误差,使得基于1∶5万地形图的DE M 对实际地面的描述和模拟产生了极大的误差,利用此DE M 提取的地面坡度势必会使栅格单元内的实际地形复杂度及坡度组成均一化,由此提取的坡度无法真实反映实地地形地貌。研究DE M 提取地面坡度的精度,探求不同空间尺度坡度提取结果的精度对比,并能够得到由低分辨率到高分辨率提取结果的转换关系,实现误差纠正,为广大用户提供基于DE M 提取地面坡度的应用适宜性与结果可信性的基本判别标准、换算标准,十分必要,且相当紧迫。 前人在DE M 的建立、地形信息的提取及地形信息精度方面的研究取得了显著成果。111 地形信息提取及提取精度分析研究方面 一些地形因子可以基于DE M 求取。前人从不同角度进行地形因子方面的研究表明:地形因子的求取可以有多种算法、方法。 坡度和坡向是进行地形特征分析和可视化的基本因子,也是研究集水单元的重要因子。结合其他因子,坡度和坡向可以在各个领域得到广泛应用。Fl orinsky (1998)不仅对坡度、坡向的算法精度作了系统分析,而且进行了平面曲率和剖面曲率方面的分析。提取坡度、坡向的精度依赖于DE M 数据精度、计算方法和DE M 分辨率及地形复杂度。前人研究成果表明:高精度的DE M 能提取精度相对高的坡 度、坡向数据。坡度、坡向数据精度随DE M 分辨率的增大而降低;坡度、坡向与DE M 高程值的标准偏差和平均高程之间呈线性相关。在其他条件相同情况下,坡度的减小在地形复杂地区较单一地形快。汤国安基于不同比例尺的DE M 地形因子精度方面研究表明,1∶50000比例尺DE M 所提取的坡度、地面曲率及沟壑密度均比1∶10000DE M 小,通过对不同比例尺DE M 提取地面坡度精度的研究还建立了 黄土丘陵区1∶50000与1:10000DE M 的坡度转换对比[1,13] 。112 D E M 建立与D E M 精度分析研究方面 DE M 的建立,一般利用同比例尺地形图数字化获取高程与平面数据,然后选择合适的内插方法构建TI N ,再内插 TI N 得到不同栅格分辨率的规则格网DE M [2] 。前人在DE M 建立方面的研究表明:数字化获取的数据与野外实测数据有较大的误差,地形图数字化过程中产生的误差影响DE M 的精度,不同的数据模型、不同的内插算法、不同的空间采样方法及不同的栅格分辨率均对DE M 及其应用精度有不同程度的影响[2]。Suhut (1972)很有深度地揭示了在DE M 建立过程中不同内插技术和数字化过程中可能产生的误差。王光霞等人近来在DE M 精度评估方法的研究与实践方面做出了创新性的成果[3,4]。 2 研究区概况 本次研究在实验样区的选择上,遵循科学性、典型性、数据的可获取性和完整性以及实用性的原则,选取位于陕北的黄土高原上的两个不同区域作为实验样区,它们分别属于典型的黄土丘陵沟壑区和黄土丘陵地形区。 样区一位于陕西省无定河中游左岸,属于典型的黄土丘陵沟壑区代表流域。样区内土壤侵蚀极为剧烈,土地类型复杂,自分水岭至沟底可分为梁峁坡、沟谷坡和沟谷底三部分。梁峁坡坡面较完整,顶部较平坦,坡度多在5°以下,坡长10m 220m;梁峁坡上部,坡度多在20°以下,坡长20m 230m;梁峁坡中下部地形比较复杂,坡度在20°230°之间,坡长15m 220m 。 样区二位于咸阳地区西北角,泾河上游右岸,地形属黄土高原沟壑区,是陕北高原的一部分。样区自然特点是:塬高、沟深、坡陡,水土流失以塬面周边的重力侵蚀为主。按其地形分为:塬面、沟坡、沟谷、河谷(川道)四种类型。其中塬面宽阔平坦,一般在5°以下,是农业生产基地;沟坡多为旧式台田,部分为耕地或牧草地,坡度为10°230°;河谷均呈“V ”字型,坡度为40°270°,陡峭破碎,侵蚀剧烈;河谷分布在泾、黑、南三河沿岸,坡度平缓,水

地形指标的提取

地形指标的提取 地形指标是最基本的一些地理自然要素信息,地形指标的提取有利于对水土流失、土地利用、土地资源评价等进行分析。 本篇主要包括坡度变率、坡向变率、地形起伏度、地面粗糙度四个基本地形指标的提取操作介绍。 1.坡度变率: 坡度变率是地面坡度的变化率,也就是坡度的坡度(SOS),坡度变率在一定程度上反映了坡面曲率的信息。 提取操作如下: 选择【系统工具箱→Spatial Analyst Tools→表面分析→坡度】工具,得到坡度数据层Slope。 选择【系统工具箱→Spatial Analyst Tools→表面分析→坡度】工具,对坡度数据层Slope提取坡度,得到坡度变化率数据层SOS。

2.坡向变率: 坡向变率是指在提取坡向数据的基础上提取坡向的变化率,也就是坡向之坡度(SOA),坡向变率可以很好地反映等高线的弯曲程度。 SOA在提取过程中在背面坡将会有误差产生(北面坡坡向值范围是0°90°和270°360°,在正北方向附近如15°~345°两个坡向差值只有30°,而计算结果却是330°),因此需要将北坡向的坡向变率进行误差纠正处理。

选择【系统工具箱→3D Analyst Tools→栅格表面→坡向】工具,提取原始DEM的坡向数据。 选择【系统工具箱→3D Analyst Tools→栅格表面→坡度】工具,提取上一步得到的坡向数据层的坡度数据,得到坡向变率数据层SOA1。

使用原始DEM中的最大值减去原始栅格,得到反地形DEM栅格图像。 然后依次选择【系统工具箱→3D Analyst Tools→栅格表面→坡向】工具和选择【系统工具箱→3D Analyst Tools→栅格表面→坡度】工具, 得到坡向变率数据层SOA2。

基于三角网DEM的地形特征提取算法

文章编号:100520930(2009)S020037212 中图分类号:P343.1 文献标识码:A doi:10.3969/j .issn .100520930.2009.z1.005  收稿日期:2009204217;修订日期:2009209221 基金项目:国家自然基金项目(40801011)资助;微软(中国)有限公司E 2Pr oject 资助 作者简介:苏丹阳(1983—),男,博士研究生.E 2mail:zjusdy@zju .edu .cn 通讯作者:冉启华(1973—),男,博士,副教授.E 2mail:ranqihua@zju .edu .cn 基于三角网DEM 的地形特征提取算法 苏丹阳, 富 强, 楼章华, 冉启华 (浙江大学水利与海洋工程系,浙江杭州310058) 摘要:基于不规则三角网DE M ,提出一种新的单流向地形特征自动提取算法.算 法主要有三个过程:(1)计算每个三角形的最大坡度和各边的过水面积来确定 三角形上水流流向;(2)同时考虑三角形边汇流和面汇流作为河道的组成部分, 进行河网追踪;(3)洼地作为局部小流域进行提取,并根据需要将洼地合并到其 出口流域或保持洼地独立性.与已有的地形特征提取算法相比,本文算法无需进 行洼地预处理,所提取的流域具有与良好的结构性,保持了原有三角网的拓扑属 性,并具有较高的效率.对浙江东阳流域地形特征提取进行了算法测试,并对比 了官方水系图和A rcGI S 软件提取结果,表明该算法适用于地形特征快速提取, 同时适用于基于不规则三角网格离散的分布式水文模型并行计算求解时网格的 高效剖分与重组. 关键词:地形特征提取;流域提取;三角网D E M;分布式水文模型;并行计算 数字高程模型(D igital Elevati on Model,DE M )及计算机技术的发展,使得地形特征自动提取成为现实,促进了分布式水文模型的发展与应用.根据数据结构的不同,DE M 可分为规则格网(Grid )DE M ,等高线(Cont our )DE M 和不规则三角网(Triangulated Irregular Net w orks,TI N s )DE M. 格网DE M 以矩阵形式表达地形高程,借助于矩阵技术,使得基于格网DE M 的模型在程序处理上更简单易行.格网DE M 是当前地理信息系统(GI S )应用领域和数字高程模型中的主要数据结构,基于格网DE M 的地形特征自动提取技术发展迅速,并集成到A rcGI S 等专业水文分析软件中.基于格网DE M 的地形特征提取算法主要可分为两大类:单流向算法如D8算法 [122]和多流向算法[325]如D inf 算法.此外,闾国年等[324]提出了基于地貌形态学和水文学特征的流域地貌提取技术.基于等高线DE M 的地形特征提取也被不少学者研究[527],但所提取的流域路径并不一定沿坡度最大方向[8].与格网DE M 和等高线DE M 相比,不规则三角网(以下简称三角网)DE M 以其灵活的分辨率,更适合于表达复杂、大尺度的地貌特征.三角网DE M 的应用,同时促进了基于不规则三角网格离散的水文第17卷增刊 2009年11月应用基础与工程科学学报JOURNAL OF BASI C SC I E NCE AND ENGI N EER I N G Vol .17,Supp le ment Nove mber 2009

相关主题
文本预览
相关文档 最新文档