当前位置:文档之家› 广东花岗岩类岩石风化土的工程地质特征

广东花岗岩类岩石风化土的工程地质特征

广东花岗岩类岩石风化土的工程地质特征
广东花岗岩类岩石风化土的工程地质特征

工程地质学复习(论述题)

1、举例说明岩浆岩的成因与其矿物成分,结构、构造之间的关系。 侵入岩:如花岗岩、闪长岩、辉长岩颜色由深至浅,铁镁含量逐渐降低,长英质逐渐增加还含有石英、云母、角闪石,由于在地下缓慢固结,有较充分时间结晶而具粗粒结构,多为等粒状、斑状,常见构造有帯状构造、块状构造。 喷出岩:如流纹岩、安山岩、玄武岩颜色与浅至深,含长石、石英、云母、角闪石、辉石,由于在地表迅速冷凝固结,无充分时间结晶而形成细粒结构或未结晶而形成的玻璃质,典型构造有流纹构造、气孔构造、杏仁构造柱状节理构造 2.在手标本上如何区分三大岩类? 对于所给的任意一块岩石标本,首先要根据三大类岩石之间的结构、构造特征,首先鉴定属于哪一类岩石类型。然后在每—大类岩石中,根据其颜色的深浅、颗粒的大小、形态、矿物成分区分为哪一种岩石类型,例如岩浆岩可分为浅色的和深色的矿物,其结构有全晶质、半晶质、非晶质三类;沉积岩可分为碎屑岩、粘土岩、化学岩三大类,从宏观上讲沉积岩均具有层理状构造,碎屑岩的碎屑颗粒由于经过风化、搬运,故成分较单一,具较好的磨圆度,并由胶结物胶结;变质岩主要是根据其构造分为片理的或非片理的两大类,片理的又可分为片状的、片麻状,其结构均为变晶结构。最后,再准确定出岩石名称。 3.花岗岩,长石石英砂岩和花岗片麻岩各有什么特征?在手标本上如何区分它们? 花岗岩是深成岩,全晶质等粒结构,块状构造,多呈肉红、浅灰、灰白色,主要矿物有石英、正长石、斜长石; 长石石英砂岩是沉积岩,砂质结构,由50%以上的粒径介于2~0.05mm的沙砾胶结而成,粘土含量<25%,主要矿物为石英、长石; 花岗片麻岩是变质岩,由长石、石英组成,含少量黑云母、角闪石及石榴子石等一些变质矿物,矿物晶体粗大呈条带状结构,变晶结构或变余结构,具典型的片麻状构造。 二、水的地质作用 1从原理上说明为什么砂岩是透水层,页岩是隔水层. 主要是由于岩石的矿物颗粒的大小和胶结物的类型说决定的,页岩的矿物颗粒细小,胶结物为泥质胶结,胶结紧密,岩石的孔隙度低,封闭性强。砂岩的矿物颗粒比较大,胶结物一般为泥沙质胶结,岩石的孔隙度大,所以对于水的封闭性差,甚至是储水的地层。 2.第四纪地表流水沉积物的主要工程地质特征是什么? 坡积层松散、富水,作为建筑物地基强度较低,易出现滑坡; 洪积层上部以砾石、卵石为主要成分,强度高、压缩性小,是建筑物较良好的地基,但其孔隙度大,透水性强;中部以砂土为主,下部以粘性土为主,也是较好的地基,特别需注意泥石流; 冲积层作为地基,砂、卵石的承载力较高,可作为建筑材料,粘性土承载力较低。 三、岩石工程性质 1.根据岩石的地质特征评述沉积岩的工程性质. 碎屑岩:按硅质、钙质、铁质、石膏质、泥质依次降低;基底式胶结的岩石胶结紧密,强度较高,受胶结物成分控制;接触式胶结岩石孔隙度大,透水性强,强度低; 粘土岩:工程性质最差,强度低,抗水性差,亲水性强,若节理裂隙很少时是很好的隔水层; 化学岩和生物化学岩:一般情况下工程性质良好,具足够高的的强度和弹性模量,有一定韧性,是较好的建筑材料,需特别注意是否被溶蚀 2.岩石的成因,成份,结构,构造是如何影响岩石风化速度的? (1)岩石的成因反映了它生成时的环境和条件。如果岩石的生成环境和条件与目前地表接近,则岩石抗风化能力强,相反就容易风化。如岩浆岩中喷出岩、浅成岩、深成岩抗风化能力依次减弱,一般情况下沉积岩比岩浆岩和变质岩抗风化能力强。(2)岩石中的矿物成分不同,其结晶格架和化学活泼性也不同。常见造岩矿物的抗风化能力由强到弱的顺序是石英、正长石、酸性斜长石、角闪石、辉石、基性斜长石、黑云母、黄铁矿。从矿物颜色来看,深色矿物风化快,浅色矿物风化慢。对碎屑岩和粘土岩来说,抗风化能力主要还取决于胶结物,硅质胶结、钙质胶结、泥质胶结的抗风

风化程度划分教学内容

风化程度划分

岩石风化程度 学科:工程地质学 词目:岩石风化程度 英文:degree of rock weathering 释文:岩石风化程度是风化作用对岩体的破坏程度,它包括岩体的解体和变化程度及风化深度。 岩石的解体和变化程度一般划分成:全风化、强风化、弱风化、微风化等四级。 确定岩石风化程度主要依据的是矿物颜色变化、矿物成分改变、岩石破碎程度和岩石强度变化四个方面的特征变化情况;根据对上述4个方面的判断,可以将岩石风化程度划分为未风化、微风化、弱风化、强风化和全风化。 四个方面的特征变化情况;根据对上述4个方面的判断,可以将岩石风化程度划分为未风化、微风化、弱风化、强风化和全风化。 如何确定基岩的风化程度 请大家来谈谈基岩风化程度的划分依据 1 沿海花岗岩地区分带明显且厚度大,具备定量划分的条件,其他岩性不好说 2 用标贯可确定。

n<30残积土,30<=n=<50全风化,n>50强风化 楼上给出的老岩土规范的划分标准,而且不修正的,实践中看,n>50不修正作为强风化上限多数是土状的东西 用标贯是不准确的,有两个方面:1、标贯操作有误差,工作人员一般不热心打标贯。2, 是标贯超过20米(有的说是25米),标贯数据误差比较大,通过修正也不能完全反应地层情况。 3根据钻孔用肉眼判定岩层的风化程度,各个行业应该是一致的。 如果岩芯呈土状或土柱状,或者大部分呈土状或土柱状,手可搓碎,即可判定是全风化。 如果岩芯大部分呈块状、碎块状,手不可掰开,或者用力才能掰开,锤击声闷,即可判定为强风化。 若岩芯颜色新鲜,很少矿物质,多呈柱状,锤击声脆,即可判定是弱风化或微风化。 4我想各个地质区域的岩性其划分条件是不一样的,比如花岗岩就可以用力学指标去判定,其它的大多数还是以经验判定。主要还是根据各类岩石岩性,其风化后所表现出的各种特征来判定。我在江西南昌,以泥质粉砂岩为主,其强风化就表现出泥土状及碎片状,强度很低,手可折断;中风化,裂隙较发育,层面多见Fe、Me质,而且泥质成分肉眼就可感觉偏多;余下划分的基本就需靠岩石强度去调整了。 5岩体风化程度划分分级 颜色光泽 岩体组织结构的变化及破碎情况

(新)花岗岩构造环境判别Pearce

从微量元素方面来对花岗岩构造背景进行判别 JULIAN A. PEARCE 摘要:花岗岩按照侵入位置可以分为四类-洋脊花岗岩(ORG),火山岛弧花岗岩(V AG),板内花岗岩(WPG)和碰撞花岗岩(COLG),并且这四种花岗岩根据具体产出形态和岩石学特征又可以进一步划分。我们已经建立了一个600个高质量花岗岩微量元素分析数据库,并且花岗岩产出位置已知,利用洋脊花岗岩标准地球化学数据和SiO2含量进行分析后,可以知道大部分花岗岩在微量元素特征方面存在很大差异。ORG,V AG,WPG,COLG这四种花岗岩的区分在Rb-Y-Nb and Rb-Yb-Ta方面上是比较有效的,尤其是Y-Nb, Yb-Ta, Rb-(Y + Nb) andRb—(Yb + Ta)的图解。尽管这些边界都是靠经验而来的,但是可以根据地球化学模型来建立不同花岗岩的一个理论基础。后碰撞花岗岩在大地构造分类上显示出一定的问题,因为他们的特点与碰撞事件时岩石圈的厚度和组成有关,也与之前岩浆活动的时期和位置有关。如果对后碰撞花岗岩的地球化学方面双倍的约束,花岗岩微量元素的特征都趋向于晚太古代的构造环境。 前言 微量元素分类图标很多时候都是用于玄武质火山岩的构造背景判别(e.g. Pearce & Cann, 1973; Floyd & Winchester, 1975; Pearce, 1975; Wood et al.,1979; Winchester & Floyd, 1977; Shervais, 1982).。然而,很多时候一些岩浆/构造事件在地表揭露的只是深层岩,尤其是花岗岩(sensu lato).。我们的目的就是把微量元素分类图标的应用范围推广到我们所命名的含有至少5%模式石英的深层岩。 为什么在判别个构造背景时玄武岩比花岗岩更受到重视呢,主要有两个原因。最主要是因为对于已知背景的花岗岩分类具有一定的难度,从他们出露在地表以来,就很难得到构造背景的明确的地球化学证据。第二个原因就是花岗岩复杂的形成过程,这使得他们的地球化学特征很难解释,例如晶体形态,地壳混染,挥发分对元素的带入和带出。玄武岩在判断构造背景方面要比花岗岩重要的多(e.g. Hanson, 1978).然而这些问题可以通过低蚀变的样品来平衡,所以对于他们的分类来说,活动元素要比稳定元素应用更多一些。当然,目前也已经有一些花岗岩分类的方案,对构造背景也有一定的指示意义。Peacock's (1931)的碱-灰质指数(alkali-lime index)和Shand's (1951)的进一步划分为过碱性、碱性和亚碱性来表示花岗岩 Streckeisen's (1976)的分类也对构造环境提供了一些信息,然而Debon & Le Fort (1982)基于La Roche(1978)早期成果公布了一个特征矿物表格,这里包含了构造背景化学和矿物的分类。他将花岗岩分为S型和I型(Chappell &White, 1974; White & Chappell, 1977)花岗岩,最初只是成因分类,目前已经可以用来预测构造背景。S型花岗岩是大陆碰撞产物,I型花岗岩是科迪勒拉山系和后造山抬升形成(e.g. Beckinsale, 1979; Pitcher, 1983)。为了强调区别,他又划分A 和M型花岗岩来分别区别非造山和洋弧背景。后者也可以包括Coleman & Peterman (1975)提出的大洋斜长花岗岩,主要是洋脊形成的蛇绿岩套中富钠的花岗岩。 尽管以上分类很有用处,但是他们范的最大缺点就是对过去构造背景的指示。这些矿物和主量元素的分类通常只是简单的分类,因为他们并不是主要用来判断构造背景。S、I、A、M型花岗岩分类很难应用,因为他们的边界并不清楚,还因为这些花岗岩类型和构造背景的单相关关系并不经常有效,后文我们会提到。所以我们利用相反的方向来分类,利用已知构造环境的花岗岩分析得到相应的地球化学和矿物特征。我们利用的600个样品,采自不

强风化花岗岩识别

强风化花岗岩识别 摘要:强风化花岗岩层往往是电力工程的目标层,本文在对花岗岩的风化过程、风化影响因素、风化地层分带特性进行分析的基础上,归纳了强风化花岗岩的识别方法。 关键词:花岗岩强风化识别方法 1 引言 在花岗岩地区修建电力工程,强风化层往往是目标层位。在上部土层无法满足天然地基条件的情况下,强风化层具有高承载力和低压缩性,对于电厂的重要建筑物和特高压输电线路而言,使其成为较好的桩端持力层。本文首先对花岗岩的风化特定进行了研究,在此基础上归纳总结了花岗岩强风化层识别方法 2花岗岩风化的特点 2.1 花岗岩风化过程 岩石风化首先经过崩解阶段(即物理风化),使矿物颗粒的比表面积逐步增大,加强了与水、氧、二氧化碳和生物的接触,经历溶解、水化、水解、碳酸化、氧化作用及生物风化等作用,由于不同深度风化条件的差异,使花岗岩不同深度的风化方式与程度有所不同,形成具有不同组分与结构特性的风化层,构成具有垂直分带性(即多层结构)的风化剖面,但这种风化剖面是在原地风化逐渐形成的,是一个有次序、连续的地质建造,在风化剖面上一般没有阶坎式的突变和跳跃式的风化,每层均具各自特性,层间是逐渐过渡的,故层间界面一般很难准确确定[1]。 2.2 花岗岩风化的影响因素: (1)矿物成分与结构 受地质构造条件、岩浆成分和围岩物质成分的控制和影响,不同时期的不同地区的花岗岩类在岩石矿物、成分、结构构造等方面存在着差异。总体而言,酸性矿物比碱性矿物抗风化能力强,细粒结构比粗粒结构抗风化能力强。对于花岗岩而言,石英稳定性最高,长石类风化稳定性由高到低的顺序是:钾长石、多钠的酸性斜长石、中性斜长石、多钙的基性斜长石,次之为黑云母、角闪石等。在花岗岩类岩石中最先发生水化作用的是黑色矿物及普通角闪石。偏中性的花岗闪长岩、二长花岗岩的黑色矿物大大超过酸性花岗岩,因此在同等条件下花岗闪长岩等偏中性岩的风化程度和风化土厚度大于酸性花岗岩,由于其

岩石风化

岩石风化工程地质研究 第一节概述 一、定义 风化:地表岩石和矿物在温度、大气、水溶液和生物等营力作用下,发生的物理和化学变化过程。 风化壳:表层不同深度的岩石,遭受风化程度的不同,形成不同成分和结构的多层残积物,由其构成的复杂剖面称为风化壳。不同岩石,不同地区,风化壳有很大差别。其厚度很大差别,大则几百米。地壳表层保留的主要为现代时期形成的风化壳。当风化壳形成后,被后来的堆积物掩埋,被保留下来成为古风化壳。 二、风化类型 物理风化:由于温度变化、水的冻融、盐类结晶、植物根劈等力的作用下,引起岩石的机械破碎,而不伴随有化学成分和矿物成分明显变化的现象。主要发生在干旱寒冷的地区,风化深度相对较小。 生物风化:生物新陈代谢产生有机质或机械破坏,如释放大量有机物酸及CO2 ,加强水溶液溶解能力。 化学风化:岩石在水、氧及有机体等作用下所发生的一系列化学变化过程,引起岩石结构构造、矿物成分和化学成分的变化。主要风化作用:氧化、溶解、水、水解、碳酸化和硫酸化等作用。多发生于温暖潮湿的地方,风化深度可达百米以上。 三、风化结果及工程意义 岩体结构构造发生变化岩体完整性遭受破坏,结构性丧失,空隙性增大,矿碎成块石、碎石或土体。 岩石的矿物成分和化学成分发生变化可溶矿物溶解流失,耐风化矿物残留下来,形成稳定性好的次生矿物:如绿泥石、绢云母、高岭石、蒙脱石等。 岩体的工程地质性质发生变化如:力学强度的降低,压缩性变增大(由基岩→粘土),渗透性增强。次生矿物的抗水性降低、亲水性增强,易崩解、膨胀、软化。 总体上:恶化了岩石的工程性质在工程选址、岩土体稳定、地基处理、灾害防治、工程造价等方面都有重要意义。基础建基面处置、确定矿坑边坡角、洞室围岩支护、基坑开挖层支护、抗滑工程设置等都要考虑到风化问题。 第二节影响岩石风化的因素

土木工程地质习题部分答案

1工程地质学工程地质学是地质学的一个分支,是研究与工程建筑活动有关的地质问题的学科 一、矿物矿物是在地壳中天然形成的,具有一定化学成分和物理性质的自然元 素或化合物,通常是无机作用形成的均匀固体 岩石岩石是天然产出的具有一定结构构造的矿物集何体。 层理层理是指岩层中物质的成分、颗粒大小、形状和颜色在垂直方向发生变化时产生的纹理,每一个单元层理构造代表一个沉积动态的改变片理岩石中矿物呈定向平行排列的构造称为片理构造 岩层岩层是沉积地层的基本单位,它是物质成分、结构、内部构造和颜色等特征上与相邻层不同的沉积层称为岩层 岩石结构岩石结构是指岩石中矿物的结晶程度、晶粒的大小、形状及它们之间的相互关系 二、地质构造构造运动引起地壳岩石变形和变位,这种变形、变位被保留下来 的形态被称为地质构造。 岩层产状岩层在空间分布状态的要素称岩层产状要素。一般用岩层面在空间的水平延伸方向、倾斜方向和倾斜程度进行描述。分别称为岩层 的走向、倾向和倾角。 褶曲褶皱构造中任何一个单独的弯曲称为褶曲,褶曲是组成褶皱的基本单元。 节理节理是指岩层受力断开后,裂面两侧岩层沿断裂面没有明显相对位移时的断裂构造。 断层断层是指岩层受力断开后,断裂面两侧岩层沿断裂面有明显相对位移

时的断裂构造。 地层地史学中,将各个地质历史时期形成的岩石称为该时期的地层 地质图地质图是把一个地区的各种地质现象,如地层岩性、地质构造等,按一定比例缩小,用规定的符号、颜色、花纹、线条表示在地形 图上的一种图件 三-河流(谷)阶地河谷内河流侵蚀或沉积作用形成的阶梯状地形称阶地或台地。隔水层隔水层是不能透过并给出水,或透过和给出水的数量微不足道的岩层。含水层能透水且含有重力水的岩土层 残基层经淋滤作用后残留在原地的松散破碎物质称残积层。 水的硬度地下水的硬度是指水中所含钙、镁离子的数量。 淋滤作用大气降水渗入地下的过程中,渗流水不仅能把地表附近细小破碎物质带走,还能把周围岩石中易溶成分溶解带走。经过渗流水的 这些物理和化学作用后,地表附近岩石逐渐失去其完整性、致密 性,残留在原地的则为未被冲走,又不易溶解的松散物质,这个 过程称淋滤作用 四、岩石吸水率是指在常压下岩石的吸水能力,以岩石所吸水分的重力与干燥岩 石重力之比的百分数表示。 弹性模量是应力与弹性应变的比值。 热胀冷缩作用岩石是热的不良导体,白天阳光强烈照射,岩石表层首先受热膨胀,内部未变热,体积不变;晚上,由于气温下降,岩石表层开始收缩,这时岩石内部可能还在升温膨胀。这种表里不一致的膨胀、收缩长期反复作用,岩石就会逐渐开裂,导致完全破坏。

工程地质课后习题整理

1 绪论 1、工程地质学的主要研究任务是什么? 2、什么是工程地质条件? 3、什么是工程地质问题? 4、工程地质学的研究方法有哪些? 参考答案 1、工程地质学的主要任务是: ①阐明建筑地区的工程地质条件,并指出对建筑物有利的和不利的因素;②论证建筑物所存在的工程地质问题,进行定性和定量的评价,作出确切的结论;③选择地质条件优良的建筑场址,并根据场址的地质条件合理配置各个建筑物;④研究工程建筑物兴建后对地质环境的影响,预测其发展演化趋势,并提出对地质环境合理利用和保护的建议;⑤根据建筑场址的具体地质条件,提出有关建筑物类型、规模、结构和施工方法的合理建议,以及保证建筑物正常使用所应注意的地质要求;⑥为拟定改善和防治不良地质作用的措施方案提供地质依据。 2、工程地质条件指的是工程建筑有关的地质因素的综合。地质因素包括岩土类型及其工程性质、地质结构、地貌、水文地质、工程动力地质作用和天然建筑材料等方面。 3、工程地质问题指的是工程地质条件与建筑物之间所存在的矛盾或问题。 4、工程地质学的研究方与它的研究内容相适应的,主要有自然历史分析法、数学力学分析法、模型模拟试验法和工程地质类比法。四种研究方法各有特点,应互为补充,综合应用。其中自然历史分析法是最重要和最根本的研究方法,是其它研究方法的基础。 2活断层 1、活断层的定义 2、活断层的特征及分类 3、活断层的识别标志有哪些? 4、活断层区的建筑原则有哪些? 参考答案 1、活断层指目前正在活动着的断层或近期有过活动且不久的将来可能会重新发生活动的断层(即潜在活断层)。 美国原子能委员会(USNRC): (1)在3.5万年内有过一次或多次活动的断层 (2)与其他活动断层有联系的断层 (3)沿该断裂发生过蠕动或微震活动 2、 (1)活断层是深大断裂复活的产物 (2)活断层具有继承性和反复性 3)活断层按活动方式可以分为地震断层(粘滑型活断层)和蠕变断层(蠕滑型活断层)3、 ■ 地质方面 ● 最新沉积物的错断 ● 活断层带物质结构松散 ● 伴有地震现象的活断层,地表出现断层陡坎和地裂缝 ■ 地貌方面 ● 断崖:活断层两侧往往是截然不同的地貌单元直接相接的部位 ● 水系:对于走滑型断层 (1)一系列的水系河谷向同一方向同步移错 (2)主干断裂控制主干河道的走向 ● 山脊、山谷、阶地和洪积扇错开:走滑型活断层

土木工程地质_白志勇_第四章岩石及特殊土的工程性质

第四章 岩石及特殊土的工程性质 第一节 岩石的物理性质 一、密度和重度: 密度:单位体积的质量(ρ)。(g/cm 3) ? ?? ??饱和密度 干密度/天然密度Ms/V V M 重度:单位体积的重量(γ)。(N/cm 3) 2 m /s 1kg 1N ?=?=g ργ 二、颗粒密度和比重(相对密度) 颗粒密度:单位体积固位颗粒的质量(s ρ)。(g/cm 3) V M s s = ρ 比重(相对密度):单位体积固体颗粒的重力与4℃时同体积水的重力之比 (d s )。 w s s d ρρ= 三、孔隙度和孔隙比: 孔隙度:孔隙体积与岩石总体积之比(n )。% 1 00?= V V n n 孔隙比:孔隙体积与岩石中固体颗粒体积之比(e )。s n V V e = 第二节 岩石的水理性质 一、吸水性:指岩石吸收水的性能。其吸水程度用吸水率表示。 吸水率:(常压条件下)吸入水量与干燥岩石质量之比。% 10011?= s w G G w 饱水率:(150个大气压下或真空)吸入水量与干燥岩石质量之比。 % 10022?= s w G G W

饱水系数:岩石吸水率与饱水率之比。 2 1W W K w = (9.0~5.0=w K ) 二、透水性:指岩石能透过水的能力。用渗透系数K 表示。(m/s ) 达西层流定律:F I K F dl dh K Q ??=?? = 渗透系数: I V F I Q K =?= 三、软化性:指岩石浸水后强度降低的性质。用软化系数K R 表示。 软化系数:干燥单轴抗压强度。 饱和单轴抗压强度。→→= R R K c R 一般软化系数75.0<R K 的岩石具软化性。 四、抗冻性:指岩石抵抗冻融破坏的能力。 强度损失率: 冻融前的强度冻融前后强度差= l R 不抗冻的岩石 R L >25% 重量损失率: 冻融前的重量 冻融前后重量差= L G G L >2% K W >0.7 五、可溶性:指岩石被水溶解的性能。 六、膨胀性:指岩石吸水后体积增大的性能。 七、崩解性:岩石(干燥)泡水后,因内部结构破坏而崩解的性能。 第三节 岩石的力学性质 一、变形:岩石受力后发生形状改变的现象。主要变形模量和泊松比表示。 ??? ??? ? ??? ?? ? ===50 505001εσεσεσε σ= 割线模量塑性模量弹性模量变形模量、变形:E E E E s s t T 2、泊松比:指横向应变⊥ε与纵向应变11ε之比。

岩石级别 分类

岩石级别坚固程度代表性岩石 Ⅰ 最坚固最坚固、致密、有韧性的石英岩、玄武岩和其他各种特别坚固的岩石。(f=20) Ⅱ 很坚固很坚固的花岗岩、石英斑岩、硅质片岩,较坚固的石英岩,最坚固的砂岩和石灰岩.(f=15) Ⅲ坚固致密的花岗岩,很坚固的砂岩和石灰岩,石英矿脉,坚固的砾岩,很坚固的铁矿石.(f=10) Ⅲa 坚固坚固的砂岩、石灰岩、大理岩、白云岩、黄铁矿,不坚固的花岗岩。(f=8) Ⅳ比较坚固一般的砂岩、铁矿石(f=6) Ⅳa 比较坚固砂质页岩,页岩质砂岩。(f=5) Ⅴ中等坚固坚固的泥质页岩,不坚固的砂岩和石灰岩,软砾石。(f=4) Ⅴa 中等坚固各种不坚固的页岩,致密的泥灰岩.(f=3) Ⅵ比较软软弱页岩,很软的石灰岩,白垩,盐岩,石膏,无烟煤,破碎的砂岩和石质土壤.(f=2)

Ⅵa 比较软碎石质土壤,破碎的页岩,粘结成块的砾石、碎石,坚固的煤,硬化的粘土。(f=1.5) Ⅶ软软致密粘土,较软的烟煤,坚固的冲击土层,粘土质土壤。(f=1) Ⅶa 软软砂质粘土、砾石,黄土。(f=0.8) Ⅷ土状腐殖土,泥煤,软砂质土壤,湿砂。(f=0.6) Ⅸ松散状砂,山砾堆积,细砾石,松土,开采下来的煤(f=0.5) Ⅹ流沙状流沙,沼泽土壤,含水黄土及其他含水土壤. (f=0.3) A表示矿岩的坚固性的量化指标. 人们在长期的实践中认识到,有些岩石不容易破坏,有一些则难于破碎。难于破碎的岩石一般也难于凿岩,难于爆破,则它们的硬度也比较大,概括的说就是比较坚固。因此,人们就用岩石的坚固性这个概念来表示岩石在破碎时的难易程度。 坚固性的大小用坚固性系数来表示又叫硬度系数,也叫普氏硬度系数f 值)。 坚固性系数f=R/100 (R单位kg/cm2) 式中R——为岩石标准试样的单向极限抗压强度值。 通常用

花岗岩的特征

花岗岩的特征 发布时间:2011-12-10 00:53:53 | 阅读次数:920次 花岗岩的特征 你知道什么样的岩石是花岗岩吗? 岩石是固体地球的主要构成,它本身又是由矿物组成的,而矿物则是由元素组成的,这样的概念已经成为地质界的共识。根据形成岩石的地质作用过程的特点,岩石被划分成火成岩、沉积岩和变质岩三大类。地球上的火成岩(由岩浆固结形成的岩石)按其产状可以划分为火山岩(主要由喷出地表的岩浆固结而成)和深成岩(由侵入于地下深处的岩浆固结形成)。按岩石中SiO2含量不同,岩石学家一般将火成岩划分为超基性岩(SiO263%)。出露最广的火山岩是基性的玄武岩,主要分布在大洋地区;出露面积最大的深成岩是酸性的花岗岩,主要分布在大陆地区。因此,花岗岩是与我们朝夕相处的地质体,被认为与大陆的生长密切相关。什么是花岗岩呢?按照地质辞典的解释,花岗岩“是一种分布很广的深成酸性火成岩,SiO2含量多在70%以上,颜色较浅,以灰白色、肉红色较为常见。主要由石英、长石及少量暗色矿物组成,其中石英含量在20%以上,碱性长石常多于斜长石”。对于这样的解释,非专业人员一般不会感到满意,因为它引入了更多的、人们不熟悉的专业术语,多少有点以词解词的嫌疑。最普通的理解,花岗岩就是石英含量(体积百分比,下同)大于或等于20%、斜长石/(斜长石+碱性长石)=10~65%的深成岩。由此可见,花岗岩的定义和分类命名与其组成矿物的种类及其相对含量有关。由于矿物百分含量界限是人为确定的,而自然界岩石的矿物组成是逐渐变化的,即使专业人员也难于将花岗岩与其类似岩石严格区分开来。由此出现了广义花岗岩(花岗岩类或花岗质岩石)与狭义花岗岩的称谓。广义花岗岩类岩石一般指花岗岩及与花岗岩具密切共生关系、矿物成分以含石英(>5%)和长石为主的中酸性侵入岩(钙碱性岩类及部分钙碱性-碱性岩类的岩石)。 一、花岗岩的特征及成因 天然花岗岩是火成岩,也叫酸性结晶深成岩,属于硬石材。由长石、石英及少量云母组成。花岗岩构造致密,呈整体的均粒状结构。常按其结晶颗粒大小分为“伟晶”、“粗晶”、“细晶”三种。其颜色主要是由长石的颜色和少量云母及深色矿物的分布情况而定,通常为灰色、红色、蔷薇色或灰、红相间的颜色,在加工磨光后,便形成色泽深浅不同的美丽斑点状花纹,花纹的特点是晶粒细小均匀,并分布着繁星般的云母亮点与闪闪发光的石英结晶。而大理石结晶程度差,表面很少细小晶粒,而是圆圈形,枝条形或脉状的花纹,所以可以据此来区别这两种石材。

第四章 岩体工程地质性质

第四章岩体的工程地质性质及岩体工程分类 §1 岩体的基本概念及研究意义 岩体:(rock mass)通常指地质体中与工程建设有关的那一部分岩石,它处于一定的应力状态、被各种结构面所分割。岩体是岩石结构体与结构面的组合。 岩体的结构特征:岩体中岩石结构体与所包含的不同类型的结构面在空间的分布和组合状况的特征。 结构面:系指岩体中具有一定方向、力学强度相对较低、两向延伸(或具一定厚度)的地质界面 (或带),例如岩层层面、软弱夹层、各种成因的断裂、裂隙等。由于这种界面中断了岩体的连续性,故又称为不连续面(discontinulties)。结构面在空间的分布和组合可将岩体切割成不同形状的结构体(如下图)。

岩体的结构特征是在漫长的地质历史发展过程中形成的。它以特定的建造(如沉积岩建造,火成岩建造和变质岩建造)为其物质基础。建造确定了岩体的原生结构特征,而岩体所经历的不同时期、不同程度的构造作用改造以及浅、表生作用(epigene—action,如卸荷,风化,地下水作用等,主要出现在地壳浅部或表部岩体中)改造,使岩体结构趋于复杂化。岩体的结构正是建造与改造两者综合作用的产物。 “岩体”这一术语在工程地质学中广泛出现、并成为一个重要的研究课题,也不过只有二、三十年的历史,但它标志着这门学科的一个极为重要的发展阶段。在这以前,人们习惯用岩石材料的力学性质来评价岩体稳定性,对岩体中的软弱面在岩体稳定性中的重大意义认识不足。近百年来世界大坝失事的统计资料表明,在重力坝失事原因中,因软弱面引起坝基失稳而酿成的事故竟占45%以上。本世纪50年代末和60年代初,世界上又发生两起重大岩体失稳事件,其一是法国的60m高的马尔帕塞(Malpasset)薄拱坝,因左坝头沿片麻岩中的绢云母页岩发生滑动,导致坝体破裂而于1959年(蓄水后5年)失事,这是世界拱坝建筑史上第一次巨大破坏事件,另一起发生在意大科的瓦伊昂(Vajont)水库,这个当时世界上最高(267m)的薄拱坝建成蓄水后,于1963年大坝附近约2亿多m3岩体迅速下滑,填满水库,造成严重事故,全部工程报废。这两起重大事件在工程地质和岩石力学界引起极大震动,此后对岩体结构特征、岩体的力学属性,岩体的变形破坏机制与过程的研究愈来愈受到各界的重视。 岩体的结构特征的研究意义: (1)岩体中的结构面是岩体中力学强度相对薄弱的部位,它导致岩体力

岩体风化程度的判断

岩体风化程度的判别 1.岩体风化的基本特征 在各种风化营力作用下,岩石所发生的物理和化学变化过程称为岩石风化。其中影响岩石风化的风化营力主要是太阳热能、水溶液(地表、地下及空气中的水)、空气(氧气及二氧化碳等)及生物有机体等。同时按照风化营力的类型及引起岩石变化的方式,风化作用可以分为物理风化、化学风化和生物风化三种。 与原岩相比,风化使岩石发生了一系列的变化,从工程地质的角度出发,这些变化主要有以下几点:岩体结构构造发生变化,即其完整性遭到削弱和破坏;岩石矿物成分和化学成分发生变化;岩石工程地质性质恶化。 风化后的岩石在工程建筑上的优良性质削弱了,不良性质则增加了,使工程地质条件大为恶化。 2.岩石风化的判别 岩石风化程度的划分及工程特性研究,对于大型水利水电工程、高层建筑、道路桥梁等工程建基面的选择以及地基基础设计施工方案的确定起着关键性作用,对评价围岩的稳定和边坡工程亦具有重要意义。 影响岩石风化的因素有很多,其中最主要的有气候、岩性、地质构造、地形地貌和一些其他的因素。岩石的风化往往不是单因子作用的结果,而是由多种因素所共同控制的。 目前,岩石风化程度划分多采用工程地质定性评价方法,从岩石颜色、次生矿物的发生、节理裂隙发育情况、机械破碎程度、风化深度、以及岩石的物理、力学和水理性质变化等方面综合分析确定。关于岩石风化程度的定量评价,目前常采用的是对岩体工程地质性质比较敏感的一些物理力学性质指标,通过室内或现场测试岩石物理力学性质单项或综合指标进行风化程度分带。由于岩石类型的千差万别,影响岩石风化因素复杂,各种岩石风化速度和风化后形态的变化也各异。因此,很难建立岩石风化程度划分的统一、定量的标准。岩石风化程度划分应当采用定性描述和定量指标相结合的方法,两者互为印证以积累利用定量指标划分岩石风化程度的经验。

主要岩石肉眼鉴定特征

1 主要变质岩的肉眼鉴定特征主要变质岩的肉眼鉴定特征主要变质岩的肉眼鉴定特征 (1)板岩(slate):灰至黑色,多具变余结构、变余构造及板状构造板状构造 板状构造。它主要由页岩、粉砂岩及凝灰岩经非常低级的变质作用而成,矿物成分只有部分重结晶,极极细粒细粒,,肉眼难以鉴别肉眼难以鉴别。岩石具完好的平面面理具完好的平面面理 具完好的平面面理,面理主要由极细粒绿泥石,或云母等片状矿物平行排列而成的,几乎无光泽几乎无光泽几乎无光泽, 与页岩比较具有明显的 “粗糙粗糙””感和“坚硬坚硬” ”特征特征。。 (2)千枚岩(phyllite):区域变质岩,黄、绿或蓝灰色,具细粒鳞片变晶结构鳞片变晶结构鳞片变晶结构,千枚千枚 状构造状构造,主要矿物为石英石英石英、、绿泥石绿泥石、绢云母,与板岩相比与板岩相比与板岩相比,,千枚岩中矿物如云母和绿泥石等颗粒云母和绿泥石等颗粒加粗加粗加粗,片理面上显示丝绢光泽丝绢光泽 丝绢光泽,呈灰色或绿色。主要由细小的绢云母、绿泥石、黑云母、钠长石及石英组成。 (3)片岩(schist):区域变质岩,黑、灰绿或绿色,主要矿物为云母云母云母、、绿泥石 绿泥石、角闪石,变晶结构,片状构造片状构造 片状构造,岩石中片柱状矿物含量较多,片柱状矿物定向排列组成显著面理。片岩中片状和柱状矿物之和一般大于15%,而长石含量一般小于25%。且岩石中常常发育有线理发育有线理发育有线理,粒度比板岩粒度比板岩粒度比板岩、、千枚岩粗千枚岩粗,,因此单个矿物颗粒能用肉眼鉴定与千枚岩相区别矿物颗粒能用肉眼鉴定与千枚岩相区别((千枚岩中矿物不能用肉眼鉴定千枚岩中矿物不能用肉眼鉴定))。 (4)片麻岩(gneiss):区域变质岩,灰或灰或浅灰色,是一种长英质变质岩,粒状变 晶结构,长石和石英形成浅色层,铁镁矿物构成的深色层呈片麻状构造片麻状构造片麻状构造,特特点是具不连续的明暗交替层点是具不连续的明暗交替层,,颗粒较粗颗粒较粗((一般大于1mm 1mm)) ,长石含量>25%,含片状、柱状矿物较少,片状、柱状矿物定向排列。 (5)大理岩(marble):区域变质岩,岩石一般为无色无色无色,粒柱状变晶结构,块状构造块状构造 块状构造,主要由方解石方解石方解石、、 白云石 白云石等矿物组成,含量大于50%,岩石可以用小刀刻动小刀刻动小刀刻动,并且并且遇稀盐酸强烈起泡遇稀盐酸强烈起泡遇稀盐酸强烈起泡,,与石英岩用小刀刻不动及遇稀盐酸不起泡相区别。 (6)石英岩(quartzite):白色或灰白色白色或灰白色 白色或灰白色,粒状变晶结构,块状构造块状构造块状构造。是石英砂岩或燧石重结晶的产物, 主要由石英石英 石英所组成,含量大于85%。 (7)构造角砾岩(tectonic breccia):又称断层角砾岩,由脆性破裂形成的、角砾状 的初碎裂岩。角砾为棱角状棱角状 棱角状、次棱角状、次圆状;角砾成分来自两盘岩石。角砾为碎基和次生充填物所包围共同组成角砾结构角砾结构 角砾结构。 2 主要沉积岩的肉眼鉴定特征主要沉积岩的肉眼鉴定特征主要沉积岩的肉眼鉴定特征 (1)砾岩:粒径粒径粒径>>2mm 2mm。 (2)砂岩:主要由石英颗粒石英颗粒石英颗粒组成,粒径粒径2~0.05mm 0.05mm,颗粒分选良好,中粒,砂质结构砂质结构砂质结构,

全风化花岗岩的结构性及压缩性试验研究

全风化花岗岩的结构性及压缩性试验研究 摘要:全风化花岗岩作为一种独特的花岗岩材质,已逐渐深入到现代化建设的各个领域。本文对全风化花岗岩受扰动的结构特性、取样的方法及扰动性进行细致的分析,并对取样试验及原位试验压缩性指标进行一系列深入的对比探究。 关键词:全风化花岗岩;结构性;压缩性 花岗岩类岩石是大陆上分布最广泛的岩石之一,是构成陆壳的基础。在陆壳形成过程中,花岗岩占十分重要的地位,花岗岩在我国东部沿海、东南部、海南省分布十分广泛,其地表出露面积约占这些地区总面积的五分之一。全风化花岗岩天然孔隙比差异性较大,此类土具有灰黄色、褐黄色、灰褐色夹灰白色物斑点,风化呈硬塑~坚硬土状、砂土状,有些呈硬塑偏软塑土状,结构松散,含水量较高,呈现黏土状,土样的粗细颗粒的差异比较大。地下孔隙水位埋藏较浅,在沟槽地段一般在0.5~3.0 m,主要受大气降水和地表水补给,水位随季节动态变化较明显。全风化岩“似土非岩”,其性质与原岩完全不同,但与一般沉积土体亦有很大差别。为能够准确把握其压缩特性及分析这些特性物理量间的关系,对深圳地铁5号线全风化花岗岩饱和地基土进行一维固结压缩试验,研究其应力与孔隙比减少量和应力—应变—时间之间关系。 1、全风化花岗岩研究现状 全风化花岗岩是花岗岩体在物理化学及生物等风化营力作用下,使其结构、成分性质等产生了不同程度变异的岩石。其矿物成分与原岩相比虽有本质的改变,但多保留在原位并具有它的原始性状,其原生矿物主要有石英、长石、云母等,原体矿物的晶体形状、硬度和力学强度不同,构成的砂粒形状有明显差别,不同大小、不同形状砂粒组成的砂土含有的孔隙大小和孔隙率显然也不相同。风化花岗岩的工程特性不仅与其母岩花岗岩而且与其受到的风化作用有关,因此,不同地区的风化花岗岩的工程性质存在较大差异,其土体的均一性差、结构性强(包括抗剪强度、压缩性、透水性、毛细性等的差异)。全风化花岗岩具有“似土非岩”的性质,其性质与原岩完全不同,但与一般沉积土体亦有很大差别。以往及当前对花岗岩全风化的研究主要集中在以下几个方面:全风化花岗岩的分类研究;全风化花岗岩的物理力学特性研究;作为建筑物持力层的研究;全风化花岗岩边坡治理方面的研究;全风化花岗岩作为填料的试验研究。 2、全风化花岗岩受扰动的结构特性 在静荷载作用下,全风化花岗岩石结构各层的应力、变形和基层底面的拉应变与荷载呈线性关系,且全风化花岗岩石和基层的回弹模量越小,应力和变形越大。在动荷载作用下,全风化花岗岩石结构各层的最大动应力、回弹变形以及基层底面的拉应变与荷载值呈线性关系,且全风化花岗岩石和基层的回弹模量越小,动应力越大。当静荷载与动荷载的峰值相同时,动荷载作用下全风化花岗岩石结构各层的应力、变形与底基层底面的拉应变均大于静荷载作用下的应力、变形和

工程地质(选择题)

一、选择题 1.下列不属于工程地质条件的是(C基础形式)。 2.概括地讲,工程地质所研究的两方面问题主要体现在(A区域稳定和地质稳定)。 3.相比较来讲,下列各学科宇工程地质学联系不大的是(D材料力学)。 4.下列关于工程地质学及其研究内容说法有误的一项是(D工程地质学是一门理论性雨实践性都很强的学科。) 5.陆地的总面积大约占地球表面面积的(A29.2%). 6.地球以地表为界分为外圈和内圈,以下各项属于外圈的是(A大气圈)。 7.地球以地表为界分为外圈和内圈,以下各项属于内圈的是(C地幔)。 8.海洋的总面积大约占地球表面面积的(A70%)。 9.地球的内部圈层构造包括地壳、地幔、地核三部分,其中最外的圈层是(A地壳)。 10.地球的内部圈层构造包括地壳、地幔、地核三部分,其中最里面的圈层是(B地核)。 11. 地球的内部圈层构造包括地壳、地幔、地核三部分,其中处于中间的圈层是(C地幔)。 12. 地球的内部圈层构造包括地壳、地幔、地核三部分,其中厚度最小的圈层是(A地壳)。 13.下列各地质作用属于内力作用的是(B变质作用)。 14.些列各项地质作用属于外力作用的是(D沉积作用)。 15.岩石按成成原因可以分为(B岩浆岩、沉积岩、变质岩)。 16.矿物抵抗刻划、研磨的能力成为(A硬度)。 17.由岩浆冷凝固结而形成的岩石是(D岩浆岩)。 18.岩浆岩构造不包括(A层面构造)。 19.碎屑物质被胶结物质胶结以后所形成的构造成为(A碎屑结构)。 20.沉积岩特有的构造形式时(B层理构造)。 21.岩石在饱水状态下的极限抗压强度与岩石在干燥状态下的极限抗压强度的比值成为岩石的(D软化系数)。 22.压应力等于零时,岩石抵抗剪断强度成为岩石的(C抗切强度)。 23.在垂直压力作用下,岩石抵抗剪切破坏的最大能力称为ieyanshi的(D抗剪强度)。 24.在真空条件下,岩石吸入水德重量与干燥岩石重量之比成为岩石的(D饱水率)。 25.岩石在常压下吸入水的重量与干燥岩石重量之比,成为岩石的(A吸水率)。 26.可以用来表示岩石抗冻性能指标的是(A强度损失率)。 27.岩石在水德作用下,强度降低的性质是指(C岩石的软化性)。28.岩石在轴向压力作用下,除产生纵向压缩外,还会产生横向膨胀,这种横向应变与纵向应变的比值称为(A泊松比)。 29.沿岩石已有的破裂面剪切滑动的最大剪应力称为(A抗剪强度)。 30.岩石抵抗外荷载作用面不破坏的能力称为(A岩石的强度)。 31.岩石允许水通过的能力称为(A岩石的透水性)。 32.岩石抵抗冰冻作用的能力称为(B岩石的抗冻性)。 33.岩石溶解于水的性质称为(C岩石的溶解性)。 34.岩石在一定试验条件下的吸水性能称为(D岩石的吸水性)。 35.根据岩土的水理特性,砂土层与黏土层相比,其隔水性(A差)。 36.岩石的力学性质指岩石在各种静力、动力作用下所呈现的性质,主要包括(A变形和强度)。 37.下列不属于地质年代单位的是(B统)。 38.下列不属于地层年代单位的是(D代)。 39.沉积岩与岩浆岩之间的接触关系可能是(A沉积接触)。 40.沉积岩之间的接触关系主要有(D整合接触、平行不整合接触、角度不整合接触)。 41.沉积岩的不整合接触面商常常形成底砾岩,与底砾岩岩性一直的岩层形成时间(A较早)。 42.沉积岩与岩浆岩之间的接触关系有(D沉积接触和侵入接触)。 43.下列有关平行不整合接触正确的一项是(B与不整合面上的底砾岩岩性一直的岩层形成时间性对较早)。 44.下列有关角度不整合接触不正确的一项是(C上、下两套岩层之间无沉积间断)。 45.下列有关侵入接触的叙述不正确的一项是(D侵入接触是沉积岩与岩浆岩之间的一种接触关系)。 46.下列有关岩层倾向说法正确的一项是(D岩层的倾向只有一个数值)。 47.下列有关岩层走向的叙述不正确的一项是(B岩层的走向只有一个数值)。 48.岩层走向与坡面走向一致,岩层倾向于坡面倾向相反对,岩层分界线与地形等高线关系是(D弯曲方向一致,但岩层界线的弯曲度小于地形等高线的弯曲度)。 49.水平岩层的岩层分界线与地形等高线的关系是(A平行)。 50.未经构造变形影响的沉积岩,其原始产状当是(D无法确定)。 51.可以确定岩层在空间位置的因素是(D走向、倾向、倾角)。 52.背斜表现为(B核部位老地层,两翼对称出现新地层)。 53.逆断层即(A上盘相对上升,下盘相对下降的断层)。 54.一幅完整的地质图应包括(D地质平面图、地质剖面图和地质柱状图)。 55.组成地壳的岩层,受构造应力的强烈作用,使岩层形成一系列波状弯曲而未失去其连续性的构造,称为(A褶皱)。

岩石风化程度判断

岩石风化程度判断 1.岩石风化 岩石在各种风化营力作用下,发生的物理和化学变化的过程称为岩石风化。岩石风化是岩石在太阳辐射、大气、水和生物作用下出现破碎、疏松及矿物成分次生变化的现象。 常用分带标志主要有:颜色、岩体破碎程度、矿物成分的变化、水理性质及物理力学性质的变化、钻探掘进及开挖中的技术特性。 具体原则包括: (1)要充分反映各风化带岩石变化的客观规律,反映各带岩石因风化程度不同所具有的不同特性; (2)分带标志视具体条件选择,应既有代表性,又明确,便于掌握,尽量避免人为因素的影响; (3)将定性与定量研究、宏观与微观研究结合起来,综合各种标志进行分带; (4)分带数目要考虑工程建筑的实际需要,既不要过于繁琐,分级过多;也不要过于简略,致使同一带内的岩石特性差异过大。 2.岩石风化程度和各种性质变化 岩石风化程度的划分及工程特性研究,对于大型水利水电工程、高层建筑、道路桥梁等工程建基面的选择以及地基基础设计施工方案的确定起着关键性作用,对评价围岩的稳定和边坡工程亦具有重要意义。 影响岩石风化的因素有很多,其中最主要的有气候、岩性、地质构造、地形地貌和一些其他的因素。岩石的风化往往不是单因子作用的结果,而是由多种因素所共同控制的。 目前,岩石风化程度划分多采用工程地质定性评价方法,从岩石颜色、次生矿物的发生、节理裂隙发育情况、机械破碎程度、风化深度、以及岩石的物理、力学和水理性质变化等方面综合分析确定。关于岩石风化程度的定量评价,目前常采用的是对岩体工程地质性质比较敏感的一些物理力学性质指标,通过室内或现场测试岩石物理力学性质单项或综合指标进行风化程度分带。由于岩石类型的千差万别,影响岩石风化因素复杂,各种岩石风化速度和风化后形态的变化也各异。因此,很难建立岩石风化程度划分的统一、定量的标准。岩石风化程度划分应当采用定性描述和定量指标相结合的方法,两者互为印证以积累利用定量指标划分岩石风化程度的经验。 2.1颜色的改变 风化前岩石断面颜色鲜艳,有光泽。而经过风化后的岩石。微风化,仅沿裂隙面颜色略

风化岩地层描述

花岗岩 2(3)): 全风化花岗岩(γ T 灰白、灰黄色,矿物结构已破坏,花岗结构较清晰,主要矿物成分为长石、石英,部分云母及少量暗色矿物。长石、云母等易风化矿物已完全风化成土,岩芯呈坚硬土状。该岩石为极软岩,岩体极破碎,岩体基本质量等级属Ⅴ级。该岩石遇水易软化崩解。 2(3)): 砂砾状强风化花岗岩(γ t 灰黄、褐黄色,主要成分为长石、石英,部分云母及少量暗色矿物,花岗结构清晰,原岩矿物已强烈风化,部分长石、云母已粘土化,残留少量长石硬核,矿物颗粒间联结力已基本丧失,网状裂隙极发育,岩芯呈砂砾状,手捏可散碎。该岩石为极软岩,岩体极破碎,岩体基本质量等级为V级。该岩层浸水扰动易软化 2(3)): 碎块状强风化花岗岩(γ T 灰白、褐黄色,花岗结构清晰,主要成分为长石、石英,部分云母及少量暗色矿物。原岩矿物强烈风化,矿物颗粒间具有一定的结构联结力,网状裂隙发育,岩芯呈碎块状、碎块夹砂砾状,手折或轻击可碎。该岩石为软岩,岩体极破碎,岩体基本质量等级为V级。 中风化花岗岩: 灰白、灰黄色,中粒~细粒花岗结构,块状构造,矿物成份以长石、石英为主,部分云母及少量暗色矿物。裂隙较不发育,沿裂隙面长石已风化变色,见铁锰质浸染。岩芯呈短柱状,少量长柱状、块状,锤击声较脆。该岩石为较硬岩、岩体较完整~较破碎,岩体质量等级为Ⅲ~Ⅳ级。其岩石质量指标RQD为50~78,平均为65,其等级属“较差的”。 微风化花岗岩: 灰白、灰黄色,中粒~细粒花岗结构,块状构造,矿物成份以长石、石英为主,部分云母及少量暗色矿物。裂隙不发育。岩芯呈长柱状,少量短柱状,锤击

声脆。该岩石为坚硬岩、岩体较完整,岩体质量等级为Ⅱ级。其岩石质量指标RQD为78~90,平均为85,其等级属“较好的”。 风化岩夹层、特性综合描述(选择一种方式即可) 1、场地基岩主要为花岗岩,属于硅酸盐类火成岩,不存在岩溶现象,勘察时孤石或硬夹层揭露情况见下表2-1,此外在全~强风化花岗岩岩体内钻探未发空洞、临空面,以及相对软(硬)夹层。 2、场地基岩主要为花岗岩,属于硅酸盐类火成岩,不存在岩溶现象,勘察时部分孔段揭露孤石或硬夹层,不排除在钻孔间的残积土~砂砾状强风化岩层中,存在中微风化花岗岩孤石的可能性。此外在全~强风化花岗岩岩体内钻探未发空洞、临空面,以及相对软(硬)夹层。钻探中仅在个别钻孔(yk5)有揭露辉绿岩岩脉,未揭穿,揭露风化带厚度 2.3m。其力学性质接近花岗岩,且不存在岩溶现象。 凝灰熔岩 全风化流纹质晶屑凝灰熔岩: 该风化岩呈灰白、褐黄、青灰色,晶屑凝灰结构较清晰,已完全风化,主要成分为晶屑、熔岩物质,晶屑含量约30~35%,主要成分为石英、碱性长石、斜长石及黑云母,长石等矿物已粘土化,岩芯呈坚硬土状,该岩石为极软岩,岩体极破碎,岩体基本质量等级为Ⅴ级。该岩具浸水软化,力学强度降低的工程特性。 土状强风化流纹质晶屑凝灰熔岩: 该岩石呈浅灰、灰黄色,晶屑凝灰结构清晰,但岩石矿物组织结构已基本破坏。主要成分为晶屑、熔岩物质,晶屑含量约30~35%,主要成分为石英、碱性长石、斜长石及黑云母,长石晶屑等易风化矿物已大部分粘土化,仅残留少量长石小硬核及石英晶屑。岩芯呈坚硬土状,偶见小碎块,碎块手折可断,该岩石为极软岩,岩体极破碎,岩体基本质量等级为Ⅴ级。该岩具浸水软化、强度降低的工程特性。 碎块状强风化流纹质晶屑凝灰熔岩:

相关主题
文本预览
相关文档 最新文档