当前位置:文档之家› (完整版)离散型随机变量及其分布范文

(完整版)离散型随机变量及其分布范文

(完整版)离散型随机变量及其分布范文
(完整版)离散型随机变量及其分布范文

离散型随机变量及其分布

知识点一:离散型随机变量的相关概念;

随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示

离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量

连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量

离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出

离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ??????、ξ取每一个值()1,2,i x i =???的概率为()i i P x p ξ==,则称表

为随机变量ξ的概率分布,简称ξ的分布列 知识点二:离散型随机变量分布列的两个性质;

任何随机事件发生的概率都满足:0()1P A ≤≤,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:

(1) 01,2,i p i ≥=???,;12(2) 1P P ++=L

特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的

概率的和即1()()()k k k P x P x P x ξξξ+≥==+=+L

知识点二:两点分布:

若随机变量X 的分布列: 则称

X 的分布列为两点分布列.

特别提醒:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1)

为成功率.

(2)两点分布又称为0-1分布或伯努利分布

(3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是

否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究.

知识点三:超几何分布:

一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则

(),0,1,,min{,},,,.k n k M N M

n

N

C C P X k k m m M n n N M N C --===???=≤≤其中称超几何分布列.

为超几何分布列,

知识点四:离散型随机变量的二项分布;

在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是

k

n k k n n q p C k P -==)(ξ,(0,1,2,3,k =…, p q -=1)

ξ由于k k n k

n

C p q -恰好是二项式展开式: 001110

()n n n k k n k n n n n n n p q C p q C p q C p q C p q --+=+++++L L 中的各项的值,所以称这样的随机变量ξ服从二项分布,记作(,)B n p ξ:,其中n ,p 为参数,并记(,,)k k n k

n

C p q b k n p -=L 知识点五:离散型随机变量的几何分布:

在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“k ξ=”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()k p A p =,(), (1)k p A q q p ==-,那么

112311231()()()()()()()k k k k k P k P A A A A A P A P A P A P A P

A q p ξ---====L L (0,1,2,k =…,

p q -=1)

于是得到随机变量ξ的概率分布如下:

称这样的随机变量ξ服从几何分布,

记作1(,),0,1,2,,1.k g k p q

p k q p -===-L 其中 知识点六:求离散型随机变量分布列的步骤;

(1)要确定随机变量ξ的可能取值有哪些.明确取每个值所表示的意义;

(2)分清概率类型,计算ξ取得每一个值时的概率(取球、抽取产品等问题还要注意是放回抽样还是不放回抽样;

(3)列表对应,给出分布列,并用分布列的性质验证.

龙文教育—您值得信赖的专业化、个性化辅导学校

3

几种常见的分布列的求法:

(1)取球、投骰子、抽取产品等问题的概率分布,关键是概率的计算.所用方法主要有划归法、数形结合法、对应法等对于取球、抽取产品等问题,还要注意是放回抽样还是不放回抽样.

(2)射击问题:若是一人连续射击,且限制在n 次射击中发生k 次,则往往与二项分布联系起来;若是首次命中所需射击的次数,则它服从几何分布,若是多人射击问题,一般利用相互独立事件同时发生的概率进行计算.

(3)对于有些问题,它的随机变量的选取与所问问题的关系不是很清楚,此时要仔细审题,明确题中的含义,恰当地选取随机变量,构造模型,进行求解. 知识点六:期望

数学期望: ξ x 1 x 2 … x n … P

p 1

p 2

p n

则称=ξE +11p x 22p x n n 数学期望的意义:数学期望离散型随机变量的一个特征数,它反映了离散型随机变量取值

的平均水平。

平均数与均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …

n p =,则有=1p =2p …1n

n p ==

,=ξE +1(x +2x …1)n n x +?,所以ξ的数学期望又称为

平均数、均值。

期望的一个性质:若b a +=ξη,则b aE b a E +=+ξξ)(

知识点七:方差;

方差:对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取

这些值的概率分别是1p ,2p ,…,n p ,…,那么,

ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…称为随机变量ξ

的均方差,简称为方差,式中的ξE 是随机变量ξ的期望. 标准差:ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ 方差的性质:①ξξD a b a D 2)(=+;②22)(ξξξE E D -= . 方差的意义:

(1)随机变量ξ的方差的定义与一组数据的方差的定义式是相同的;

(2)随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;

(3)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛. 二项分布的期望与方差:若(),B n p ξ:,则E np ξ= ,()1D np p ξ=- 几何分布的期望和方差:

若(),g k p 1k q p -=,其中0,1,2k =,…, p q -=1.则1E p ξ=

,21p D p

ξ-=.

知识点八:正态分布;

(1)频率分布:用样本估计总体,是研究统计问题的基本思想方法,样本中所有数据(或数据组)的频数和样本容量的比,就是该数据的频率.所有数据(或数据组)的频率的分布变化规律叫做样本的频率分布.可以用样本频率表、样本频率分布条形图或频率分布直方图来表示.

(2)总体分布:从总体中抽取一个个体,就是一次随机试验,从总体中抽取一个容量为n 的样本,就是进行了n 次试验,试验连同所出现的结果叫随机事件,所有这些事件的概率分布规律称为总体分布.

(3)总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.

①()f x ≥0 (x R ∈);②由曲线()y f x =与x 轴围成面积为1. (5)解决总体分布估计问题的一般程序如下:

①先确定分组的组数(最大数据与最小数据之差除以组距得组数); ②分别计算各组的频数及频率(频率=

总数

频数

); ③画出频率分布直方图,并作出相应的估计

.

(6)条形图是用其高度表示取各值的频率;直方图是用图形面积的大小表示在各区间内取值的频率;累积频率分布图是一条折线,利用任意两端值的累积频率之差表示样本数据在这两点值之间的频率. (7)正态分布密度函数:简称正态曲线

22

()2,(),(,),((0))x x x μσμσ?μσσ--

=

∈-∞+∞>函数式中的实数、是参数,

,()(),b x a

X P a X b x d X μσ?<≤=?随机变量满足:则称的分布为正态分布

其中π是圆周率;e 是自然对数的底;x 是随机变量的取值;μ为正态分布的均值;

σ是正态分布的标准差.正态分布一般记为),(2σμN 。即若()2,N ξμσ:,则E ξμ=,

2D ξσ=

(8)正态分布),(2σμN 是由均值μ和标准差σ唯一决定的分布

通过固定其中一个值,讨论均值与标准差对于正态曲线的影响 ,

例题

1.在事件A 发生的概率为p 的伯努利试验中,若以ξ记第r 次A 发生时的试验的次数,求ξ的分

布。

[解] {}

发生次试验次而第恰好出现了次试验中前A k r A k P k P 11-)(-==ξ

它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(),a b 内取值的概率等于该区间上总体密度曲线与x 轴、直线x a =、x b =所围成曲边梯形的面积.

龙文教育—您值得信赖的专业化、个性化辅导学校

5

)

,1,(,)

1()1(1

1

1

11Λ+=-=?-=-------r r k p p C

p p p

C r

k r r k r k r r k

小结 求离散型随机变量的分布律时,首先应该搞清随机变量取可能值时所表示的随机事件,然后确定其分布列。为验证所求分布是否正确,通常可计算一下所求得的“分布列”之和是否为1,若不是,则结果一定是错误的。

2.设随机变量X 的分布函数为

??

?

??>≤≤<=.1,1;10.0,1)(2x x Ax x x F

求(1)A 的值;(2)X 落在)2

1,1(-及)2,3

1(内的概率;(3)X 的概率密度函数。

[解] (1)有分布函数的右连续性, 在1=x 点处有1)01()1(=+==F A F ,即1=A

(2)由分布函数的性质知,4

1

)1()21())21,1((=--=-∈F F X P ;

98311)31()2())2,31((2

=??

?

??-=-=-∈F F X P ;

(3)由于)(x F 最多除1=x 和0点外处处可导,且在1,0=x 处连续,若取

?

??≤≤><=.10,2;

10,0)(x x x x x f 或

则0)(≥x f ,且对一切x 有?

-=

x

dt t f x F )()(,从而)(x f 为随机变量X 的密度函数。

3.设),2(~2

σN X ,且3.0)42(=<

?

??Φ=<<=σX P 所以 8.05.03.02=+=??

?

??Φσ 于是 2.0212202)0(=??

?

??Φ-=??? ??-Φ=??? ??-<-=<σσσσX P X P

4.一批鸡蛋,优良品种占三分之二,一般品种占三分之一,优良品种蛋重(单位:克))5,55(~2

1N X ,一般品种蛋重)5,45(~2

2N X 。

(1)从中任取一个,求其重量大于50克概率;(2)从中任取两个,求它们的重量都小于50克的概率。

[解] (1)设A :任取一蛋其重量大于50克。 1B :任取一蛋为优良品种

2B :任取一蛋为一般品种

则21,B B 互斥,且S B B =21Y ,3

1)(,32)(21==

B P B P 8413.0555501)50()(11=???

??-Φ-=>=X P B A P

1587.0545501)50()(22=??

?

??-Φ-=>=X P B A P

由全概率公式得

)()()()()(2211B A P B P B A P B P A P +=

6138.01587.03

1

8413.032=?+?=

(2)从中任取2个,每个蛋重大于50克的概率6138.0=p ,小于50克的概率6138.011-=-=p q 设任取2个,有Y 个大于50克,则),2(~p B Y

于是所求概率为

1492.0)6138.01()0(2

2

2=-===q p C Y P

练习与答案

1.一批产品,其中有9件正品,3件次品。现逐一取出使用,直到取出正品为止,求在取到正品以前已取出次品数的分布列、分布函数。

2.重复独立抛掷一枚硬币,每次出现正面的概率为)10(<

3.对目标进行5000次独立射击,设每次击中的概率为0.001,求至少有两次命中的概率。 4.已知某元件使用寿命T 服从参数10000

1

=

λ的指数分布(单位:小时)。(1)从这类元件中任取

一个,求其使用寿命超过5000小时的概率;(2)某系统独立地使用10个这种元件,求在5000小时之内这些元件不必更换的个数X 的分布律

5.某加工过程,若采用甲工艺条件,则完成时间)8,40(~2

N X ;若采用乙工艺条件,则完成时间

)4,50(~2N X 。(1)若要求在60 小时内完成,应选何种工艺条件?(2)若要求在50 小时内完

成,应选何种工艺条件?

6.设某批零件的长度服从),(~2

σμN X ,现从这批零件中任取5个,求正好有2个长度小于μ的概率。

7.设X 分别为服从???

??

?-

2,2ππU ,[]π,0U ,[]π2,0U 的随机变量,求X Y sin =的概率密度函数 8.设流入某水库的总水量(单位:百万立方米)服从上的均匀分布,但水库最大容量为7。,超过7

的水要溢出,求水库存水量Y 的分布函数 参考答案:

1.分布列 X 0 1 2 3

Y 75.0 204.0 041.0 05.0

2.)4,3,2(11

Λ=+--n qp pq

n n

3.956.0)1()0(1)2(==-=-=≥X P X P X P

4.(1)61.0;(2)10,,3,2,1,0,)

1()(1021

2

110

Λ=-==--

-

k e e

C k X P k

k

5.(1)两种工艺均可;(2)选甲为好

6.3125.02121)2(3

2

25=??

?

????

?? ??==C Y P 7.(1)1,11

)(21<-=

x x x f π;(2)10,12

)(2

2<<-=

x x

x f π;(3)1,11

)(2

3<-=

x x

x f π;

8.????

???≥<≤-<=.

7,1;74,44;4,0)(y y y y y F y

龙文教育—您值得信赖的专业化、个性化辅导学校

7

⒈连续型随机变量X 的密度函数是f x (), 则P a X b ()<<= 。

答案:

f x x

a

b ()d ?,

⒉设X 为随机变量,已知D x ()=2,

那么D X ()35-= 。

答案: 18

3、设随机变量X ~ 0

12060301?? ???

,则E X ()=( )。 A. 1; B. 1

3; C. 0 D. 05

. 答案: D

4、设随机变量X N ~(,)522

,求()8X P <<3。

解 ΘX N ~(,)522

-X N 5

201~(,)

)

25

825253()83(-<-<-=<

7745

.08413.019322.0=+-=

5. 设随机变量X 的密度函数是

??

?<<-

=03

)2(3)(2x a x x f

求 (1) 常数a ; (2)P (X <2.5)

解 (1) 根据密度函数的性质

1=??

-=+∞

-3

2d )2(3d )(a

x

x x x f =1-(a -2)3

所以a =2 ??

?<<-=

∴03

2)2(3)(2x x x f

(2)P (X <2.5)=?

-5.22

2d )2(3x

x

=

125

.05.0)2(35

.22

3==-x

6.设随机变量X 的分布函数为

??

?

??>≤≤<=.1,1;

10.0,0)(2x x Ax x x F

求(1)A 的值;(2)X 落在

)21,1(-及)

2,31(内的概率; (3)X 的概率密度函数。

[解] (1)有分布函数的右连续性, 在1=x 点处有

1)01()1(=+==F A F ,即1=A

(2)由分布函数的性质知,

41

)1()21())21,1((=

--=-∈F F X P ;

98311)31()2())2,31((2

=

??

?

??-=-=-∈F F X P ; (3)由于)(x F 最多除1=x 和0点外处处可导,

且在1,0=x 处连续,若取

??

?≤≤><=.10,2;10,0)(x x x x x f 或

7.设

),2(~2

σN X ,且3.0)42(=<

)0(2)2

42

2

2(

)42(3.0Φ-???

??Φ=---=<<=σσσ

σ

π

π

x P X P

所以 8

.05.03.02=+=???

??Φσ

于是

2

.0212202)0(=??? ??Φ-=??? ??-Φ=??? ??-<-=<σσσσX P X P

8.设随机变量X 的密度函数为

f x x x ()()=-≤≤??

?311202其它,

求:⑴ P X (..)15

25<<; ⑵ E X ().

解 ⑴ P X (..)1525<<=?5

.21.5d )(x x f =?-2

1.52d )1(3x x

=

2

5.13

)1(-x = 0.875

⑵ E X ()=?+∞

∞-d )(x x xf =?-2

12d )1(3x x x

龙文教育—您值得信赖的专业化、个性化辅导学校

9

X 2 3 4 5 p 110 102 103 104 =2

1234)23

24

3(x x x +-=7

4 9.盒中装有分别标12345,,,,数字的球,从中任取2个,

用X 表示所取2球中最大的数字. 求X 的概率分布.

.解 )2(=X P =101251111=C C C ,)3(=X P =

102

2

51211=C C C , )4(=X P =103251311=C C C ,)5(=X P =104

2

51411=C C C ,

所以X 的概率分布为:

二)、例题分析

1、 (1)“C B A ,,三个事件中至少两个发生”,这一事件可以表示为 。 答案:AC BC AB ++。

(2)事件B A ,满足

,8.0)(,6.0)(,5.0)(===A B P B P A P 则________)(=+B A P 。

答案:分析 根据概率的加法公式与乘法公式,我们有 )()()()(AB P B P A P B A P -+=+

)()()()(A B P A P B P A P -+=

=7.08.05.06.05.0=?-+

(3)对于任意事件C B A ,,,则________)(=++C B A P 。

答案:)()()()()()()(ABC P AC P BC P AB P C P B P A P +---++ 分析))(()(C B A P C B A P ++=++

])[()()(C B A P C P B A P +-++=

)()()()()(BC AC P C P AB P B P A P +-+-+=

=)()()()()()()(ABC P AC P BC P AB P C P B P A P +---++ 2 、事件B A ,若满足1)()(>+B P A P ,则A 与B 一定( ) (A )不相互独立; (B )互不相容; (C )相互独立; (D )不互斥 答案:D

分析 由加法公式,有

1)()()()(≤-+=+AB P B P A P B A P

而且1)()(>+B P A P 时,只有0)(≠AB P 时,才能保证上式成立,即≠AB φ, 故选择D 正确。

3、袋中有5个球(3个新球,2个旧球),每次取一个,有放回地取两回地取两次,

则第二次取到新球的概率是( )

(A )53; (B )43; (C )21; (D )103

答案:A

分析 设A 表示“第一次取到新球”的事件,B 表示“第二次取到新球”的事件。

)()()()()()()()(A B P A P A B P A P A B P BA P A B BA P B P ?+?=+=+= 5353525353=

?+?=

4、 某种产品有80%是正品,有某种仪器检查时,正品被误定为次品的概率是3%,次品被误定为正品的概率是2%,设A 表示一产品经检查被定为正品,B 表示产品确为正品,求

)()3();(),()2();(),()1(A P B A P AB P B P B P 。

解(1)2.0)(,8.0)(==B P B P (2)776.097.08.0)()()(=?=?=B A P B P AB P

004.002.02.0)()()(=?=?=B A P B P B A P

(3)78.0004.0776.0)()()()(=+=+=+=B A P AB P B A AB P A P

几个重要的离散型随机变量的分布列

几个重要的离散型随机变量的分布列 井 潇(鄂尔多斯市东胜区东联现代中学017000) 随着高中新课程标准在全国各地的逐步推行,新课标教材越来越受到人们的关注,新教材加强了对学生数学能力和数学应用意识的培养,而概率知识是现代公民应该具有的最基本的数学知识,掌握几种常见的离散型随机变量的分布列是新课标教材中对理科学生的最基本的要求,也是高考必考的内容,先结合新教材,具体谈一谈几个重要的离散型随机变量分布列及其简单的应用。 下面先了解几个概念: 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量就叫随机变量.随机变量常用希腊字母,ξη等表示. 离散型随机变量:对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量就叫离散型随机变量. 离散型随机变量的分布列:一般地设离散型随机变量ξ可能取得值为 123,,,...,,...,i x x x x ξ取每一个值()1,2,3,...i x i =的概率()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都有以下两个性质 (1)0,1,2,3,...i P i ≥= (2)123...1P P P +++= 离散型随机变量在某个范围内取值的概率等于它取这个范围内各个值的概率的和. 一、 几何分布 在独立重复试验中,某事件第一次发生时所做试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示第k 次独立重复试验时事件第一次发生。如果把第k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()() ,k k P A p P A q ==,那么 ()()1231...k k P k P A A A A A ξ-==,根据相互独立事件的概率的乘法公式得 ()()()()()()1231...k k P k P A P A P A P A P A ξ-==()11,2,3,...k q p k -==。 于是得到随机变量ξ的概率分布

离散型随机变量及其分布律

5.离散型随机变量及其分布律 【教学内容】:高等教育出版社浙江大学盛骤,谢式千,潘承毅编的《概率论与数理统计》第二章第§2离散型随机变量及其分布律 【教材分析】:概率论考察的是与各种随机现象有关的问题,并通过随机试验从数量的侧面来研究随机现象的统计规律性,由此,就把随机试验的每一个可能的结果与一个实数联系起来。随机变量正是为了适应这种需要而引进的,随机变量的引入有助于我们应用微积分等数学工具,把研究深入,一维离散型随机变量是随机变量中最简单最基本的一种。 【学情分析】: 1、知识经验分析 学生已经学习了概率的意义及概率的公理化定义,学习了事件的关系及运算,掌握了概率的基本计算方法。 2、学习能力分析 学生虽然具备一定的基础的知识和理论基础,但概念理解不透彻,解决问题的能力不高,方法应用不熟练,知识没有融会贯通。 【教学目标】: 1、知识与技能: 了解离散型随机变量的分布律,会求某些简单的离散型随机变量的分布律列;掌握伯努利试验及两点分布, 2、过程与方法 由本节内容的特点,教学中采用启发式教学法,通过教学渗透由特殊到一般的数学思想,发展学生的抽象、概括能力。 3、情感态度与价值观 通过引导学生对解决问题的过程的参与,使学生进一步感受到生活与数学“零距离”,从而激发学生学习数学的热情。 【教学重点、难点】: 重点:掌握离散型随机变量的概念及其分布律、性质,理解伯努利试验,两点分布。 难点:伯努利试验,两点分布。 【教学方法】:讲授法启发式教学法 【教学课时】:1个课时 【教学过程】:

一、问题引入(离散型随机变量的概念) 例1:观察掷一个骰子出现的点数。 随机变量 X 的可能值是 : 1, 2, 3, 4, 5, 6。 例2若随机变量 X 记为 “连续射击, 直至命中时的射击次数”, 则 X 的可能值是: 1,2,3,. 例3 设某射手每次射击打中目标的概率是0.8,现该射手射了30次,则随 机变量 X 记为“击中目标的次数”, 则 X 的所有可能取值为: 0,1,2,3,,30. 定义 有些随机变量的取值是有有限个或可列无限多个,称此随机变量为离散型随机变量。 【设计意图】:让学生感受到数学与生活“零距离”,从而激发学生学习数学的兴趣,使学生获得良好的价值观和情感态度。 二、离散型随机变量的分布律 定义 设离散型随机变量X 的所有可能取值为),2,1( =k x k , X 取各个可能值得概率,即事件称}{k x X =的概率,为 ,2,1,}{===k p x X P k k 由概率的定义,k p 满足如下两个条件: 1))21(0 ,,=≥k p k ; 2) ∑∞ ==1 1k k p (分布列的性质) 称(2.1)式为离散型随机变量为X 的概率分布或分布律, 也称概率函数。 常用表格形式来表示X 的概率分布: n i n p p p p x x x X 2121 【设计意图】:给出分布律的概念和性质,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。 例1:()()1,2,,C k P X k k N X N ?=== 若为随机变量的分布律,是确 定常数C 。 解:由分布律特征性质 1 知 C ≥ 0 , 由其特征性质 2 知 1 ()1N k P X k == =∑ 1 N k C k N =?=∑ )(12C N N ++=+ ()12 C N += 21C N ∴= + 【设计意图】:通过这个例子,让学生掌握离散型随机变量的分布律的性质。

离散型随机变量及其分布列教案

离散型随机变量及其分布列第一课时 2.1.1离散型随机变量 教学目标:1、引导学生通过实例初步了解随机变量的作用,理解随机变量、离散型随机变量的概念.初步学会在实际问题中如何恰当地定义随机变量. 2、让学生体会用函数的观点研究随机现象的问题,体会用离散型随机变量思想 描述和分析某些随机现象的方法,树立用随机观念观察、分析问题的意识. 3、发展数学应用意识,提高数学学习的兴趣,树立学好数学的信心,逐步认识 数学的科学价值和应用价值. 教学重点:随机变量、离散型随机变量的概念,以及在实际问题中如何恰当的定义随机变量.教学难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究. 教学方法:启发讲授式与问题探究式. 教学手段:多媒体 教学过程: 一、创设情境,引出随机变量 提出思考问题1:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示? 启发学生:掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但可以将结果于数字建立对应关系. 在让学生体会到掷骰子的结果与出现的点数有对应关系后,也能创造性地提出用数字表示掷一枚硬币的结果.比如可以用1表示正面向上的结果,用0表示反面向上的结果.也可以分别用1、2表示正面向上与反面向上的结果. 再提出思考问题2:一位篮球运动员3次罚球的得分结果可以用数字表示吗? 让学生思考得出结论:投进零个球——— 0分 投进一个球——— 1分 投进两个球——— 2分 投进三个球——— 3分 得分结果可以用数字0、1、2、3表示. 二、探究发现 1、随机变量 问题1.1:任何随机试验的所有结果都可以用数字表示吗? 引导学生从前面的例子归纳出:如果将实验结果与实数建立了对应关系,那么随机试验的结果就可以用数字表示.由于这个数字随着随机试验的不同结果而取不同的值,因此是个变量. 问题1.2:如果我们将上述变量称之为随机变量,你能否归纳出随机变量的概念? 引导学生归纳随机变量的定义:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量. 随机变量常用字母X、Y、ξ、η来表示. 问题1.3:随机变量与函数有类似的地方吗? 引导学生回顾函数的理解: 函数 实数实数 在引导学生类比函数的概念,提出对随机变量的理解:

高考数学-随机变量及其分布-1-离散型随机变量及其分布

专项-离散型随机变量及其分布列 知识点 1.随机变量的有关概念 (1)随机变量:随着试验结果变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量分布列的概念及性质 (1)概念:若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下: 此表称为离散型随机变量P ( X =x i )=p i ,i =1,2,…,n 表示X 的分布列. (2)分布列的性质:① p i ≥0,i =1,2,3,…,n ;① 11 =∑=n i i p 3.常见的离散型随机变量的分布列 (1)两点分布 若随机变量X 的分布列具有上表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率. (2)超几何分布 在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n - k N -M C n N ,k =0,1,2,…,m , 其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ①N *. 如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.

题型一离散型随机变量的理解 【例1】下列随机变量中,不是离散型随机变量的是( ) A .某个路口一天中经过的车辆数X B .把一杯开水置于空气中,让它自然冷却,每一时刻它的温度X C .某超市一天中来购物的顾客数X D .小马登录QQ 找小胡聊天,设X =? ???? 1,小胡在线 0,小胡不在线 【例2】写出下列各随机变量的可能取值,并说明随机变量所取的值表示的随机试验的结果. (1)抛掷甲、乙两枚骰子,所得点数之和X ; (2)某汽车在开往目的地的道路上需经过5盏信号灯,Y 表示汽车首次停下时已通过的信号灯的盏数. 【例3】袋中装有10个红球、5个黑球.每次随机抽取1个球,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示事件“放回5个红球”的是( ) A .ξ=4 B .ξ=5 C .ξ=6 D .ξ≤5 【例4】袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,在有放回取出的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是 ( ) A .5 B .9 C .10 D .25 【过关练习】 1.指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由. ①掷一枚质地均匀的硬币5次,出现正面向上的次数; ②掷一枚质地均匀的骰子,向上一面出现的点数; ③某个人的属相随年龄的变化; ④在标准状态下,水结冰的温度. 2.某人射击的命中率为p (0

常用离散型和连续型随机变量

常用离散型随机变量的分布函数 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概 率()i i P X x p ==(12)i =、……称为X 的概率分 布或分布律,表格表示形式如下: [2] 性质: ? 0i p ≥ ?11n i i p ==∑ ?分布函数()i i x x F x p == ∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有: ()()x F x f x dx -∞= ? 则称X 为连续型随机变量,()f x 称为概率密度函 数或者密度函数。

[2] 连续型随机变量的密度函数的性质 ?()0f x ≥ ? ()1f x dx +∞ -∞=? ?{}()()()P a X b F b F a f x dx +∞ -∞<≤=-= ? ?若()f x 在x 点连续,则()()F x f x '= (3) 连续型随机变量和离散型随机变量的区别: [1] 由连续型随机变量的定义,连续型随机变量的定义域是 (),-∞+∞,对于任何x ,000 {}()()0P X x F x F x ==--=;而对于离散型随机变量的分布函数有有限个或可列个间 断点,其图形呈阶梯形。 [2] 概率密度()f x 一定非负,但是可以大于1,而离散型随 机变量的概率分布i p 不仅非负,而且一定不大于1. [3] 连续型随机变量的分布函数是连续函数,因此X 取任何 给定值的概率都为0. [4] 对任意两个实数a b <,连续型随机变量X 在a 与b 之间 取值的概率与区间端点无关,即:

随机变量及其分布-离散型随机变量及其分布

离散型随机变量及其分布列 知识点 1随机变量的有关概念 (1) 随机变量:随着试验结果变化而变化的变量,常用字母 X , Y , E, n …表示. (2) 离散型随机变量:所有取值可以一- 变量. 2. 离散型随机变量分布列的概念及性质 (1)概念:若离散型随机变量 X 可能取的不同值为 X 1, X 2,…,X i ,…,x n , X 取每一个值X i (i = 1,2,…,n) 的概率P(X = X i )= P i ,以表格的形式表示如下: 此表称为离散型随机变量 P(X = X i )= p i , = 1,2,…, n 表示X 的分布列. (2)分布列的性质: n ① p i >0 i = 1,2,3,…,n ;① P i 1 i 1 3. 常见的离散型随机变量的分布列 (1)两点分布 若随机变量X 的分布列具有上表的形式,则称 X 服从两点分布,并称 p = P(X = 1)为成功概率. (2)超几何分布 其中 m = min{ M , n},且 n 汆, M 哥,n , M , N ①N *. 如果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布. 题型一离散型随机变量的理解 【例 1】 下列随机变量中,不是离散型随机变量的是 ( ) A .某个路口一天中经过的车辆数 X B .把一杯开水置于空气中,让它自然冷却,每一时刻它的温度 X C .某超市一天中来购物的顾客数 X 在含有M 件次品的N 件产品中,任取 n 件,其中恰有X 件次品,则 P(X = k)= c M c N —M c N ,k = 0,1,2, m ,

离散型随机变量的分布列综合题精选(附答案)

离散型随机变量的分布列综合题精选(附答案) 1.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖,盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖。卡片用后入回盒子,下一位参加者继续重复进行。 (Ⅰ)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从 盒中抽取两张都是“世博会会徽”卡的概率是 18 5 ,求抽奖者获奖的概率; (Ⅱ)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及ξξ,D E 的值。 解:(I )设“世博会会徽”卡有n 张, 由,18 5292 =C C n 得n=5, 故“海宝”卡有4张,抽奖者获奖的概率为6 1 2924=C C …………5分 (II )) 1 ,4(~B ξ的分布列为)4,3,2,1,0()5()1()(44===-k C k P k k k ξ 0.9 )61(4,364=-?==? =∴ξξD E …………12分 2.某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K 和D 两个动作。比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。 假设每个运动员完成每个系列中的K 和D 两个动作的得分是相互独立的。根据赛前训练的统计数据,某运动员完成甲系列和乙系列中的K 和D 两个动作的情况如下表: 表1:甲系列 表2:乙系列 动作 K 动作 D 动作 得分 90 50 20 0 概率 10 910 110910 1 动作 K 动作 D 动作 得分 100 80 40 10 概率 4 3 4 1 4 341

离散型随机变量及其分布范文

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ??????、ξ取每一个值()1,2,i x i =???的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0()1P A ≤≤,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) 01,2,i p i ≥=???,;12(2) 1P P ++ = 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即1()()()k k k P x P x P x ξξξ+≥==+=+ 知识点二:两点分布: 若随机变量X 的分布列: 则称 X 的分布列为两点分布列. 特别提醒:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1) 为成功率. (2)两点分布又称为0-1分布或伯努利分布 (3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究. 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则

选修2-3离散型随机变量及其分布知识点

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机 变量随机变量常用希腊字母、等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随 机变量叫做离散型随机变量。若 是随机变量, a b ,其中a 、b 是常数,则 也 是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的 变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变 量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列 出,而连续性随机变量的结果不可以 --------------------- 列出 离散型随机变量的分布列:设离散型随机变量可能取的值为X i 、X 2 X i 取每一 个值X i i 1,2, 的概率为P( X ) p ,贝U 称表 为随机变量的概率分布,简称的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0 P(A) 1,并且不可能事件的概率为0,必然事 件的概率为 1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) P i 0, i 1,2, ; (2) RP.L 1 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即P( 知识点二:两点分布: 若随机变量X 的分布列: 特别提醒:(1) 若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1为成 功 率? (2) 两点分布又称为0-1分布或伯努利分布 ⑶两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正 品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列 来研究? 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 C k C n k X k ) P( X k ) P( X k 1) L 则称X 的分布列为两点分布列

2.1.2 离散型随机变量的分布列

2.1.2 离散型随机变量的分布列 1.离散型随机变量的分布列 (1)定义:一般地,若离散型随机变量X 可能取的不同值为x 1、x 2、…、x i 、…、x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下: (2)表示:离散型随机变量可以用表格法、解析法、图象法表示. (3)性质:离散型随机变量的分布列具有如下性质: ①p i ≥0,i =1,2,…,n ; ② 11 =∑=n i i p 2.两个特殊分布列 (1)两点分布列 如果随机变量X 的分布列是 P (X =1)为成功概率. (2)超几何分布列 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为 P (X =k )=n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n 、M 、N ∈N *,称分布 列 如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布. (3)公式P (X =k )=C k M C n - k N -M C n N 的推导 由于事件{X =k }表示从含有M 件次品的N 件产品中,任取n 件,其中恰有k 件次品这一随机事件,因此它的基本事件为从N 件产品中任取n 件.由于任一个基本事件是等可能出现的,并且它有n N C 个基本事件,而其中恰有k 件次品,则必有(n -k )件正品,因此事件{X =k }中含有k n M N k M C C --个基本事件,由古典概 型的概率公式可知P (X =k )=C k M C n - k N -M C n N . [知识点拨]1.离散型随机变量分布列表格形式的结构特征 分布列的结构为两行,第一行为随机变量的所有可能取得的值;第二行为对应于随机变量取值的事件发生的概率.看每一列,实际上是:上为“事件”,下为事件发生的概率. 2.两点分布的特点 (1)两点分布中只有两个对应结果,且两个结果是对立的. (2)由对立事件的概率求法可知:P(X =0)+P(X =1)=1.

离散型随机变量及其分布列练习题和答案

高二理科数学测试题(9-28) 1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( ) ()A 33710(1)C p p - ()B 33 310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概 率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0.432 (C )0.36 (D )0.312 3.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( ) ()A 23332()55C ? ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 4.某地区气象台统计,该地区下雨的概率是 15 4,刮三级以上风的概率为152,既 刮风又下雨的概率为10 1,则在下雨天里,刮风的概率为( ) A. 225 8 B.2 1 C.8 3 D.4 3 5.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)等于( ). A.15 B.25 C.35 D.45 6.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则==)12(ξP ( ) A.2101012)85()83(?C B.83)85()83(29911?C C.29911)83()85(?C D. 29911)85()83(?C

图解常用离散型随机变量

第 22卷第1期2019年1月 高等数学研究 STUDIES IN COLLEGE MATHEMATICS Vol.22,No. 1Jan. , 2019 doi : 10. 3969/j. issn. 1008-1399. 2019. 01. 033 图解常用离散型随机变量 杨夜茜 (同济大学数学科学学院,上海200092) 摘要在 概 率论的学习中,一个重要章节就是常用的离散型随机变量的学习.离 散 型随机变量包括伯努利分布, 二项分布,泊松分布,几何分布,超几何分布和负二项 分布等等.在本文中,首先借 助时间流的图形表达,从伯努利 试验次数和成功次数角度 区分其中的一些常用变量;其次通过一个流程图的方式柢理这些常用的离散型随 机 变量 的定义.本文的目的在于,基于常规的离散型随机变量的分布律等介绍之余,首次尝试从不同的比较汇总角度,借 助图表方法对常用的离散型 随 机 变量进行梳理和总结 ,起 到 区 分 变 量 的 差 异 ,加 强对常用离散型随机变量概念 的 理 解 . 关键词 常 用 离 散 型 随 机 变 量 ;伯 努 利 试 验 次 数 ;成 功 次 数 ;时 间 流 ;流 程 图 中图分类号 0211 文献标识码 A 文章编号 1008-1399(2019)01 -0118-03 Explanation of Discrete Random Variable by Diagrams Y A N G Xiaohan (School of Mathematics Science, Tongji University, Shanghai 200092, China) Abstract This paper uses time flows and flow charts to describe discrete random variables , such as Ber - n o u lli , Binom ial , Poisson , Geometric , and Negative Binomial variables , based on two key points : number of tria ls , and number of successes . Keywords discrete random variable,num ber of tria ls , number of successes,time flo w , flo w chart i 引言 关于常用的离散型随机变量,它们的定义、分 布律、概率、期望和方差等,在教科书或者是文献 中,已经有非常明确的定义[1_3].在笔者多年的教学 中发现,学生在学习这些随机变量的时候,通常会 出现计算题准确率很高,但涉及定义的问题回答模 糊.因此在本文中,不重复介绍离散型随机变量的 分布律等,尝试从不同的比较和汇总的角度借助图 表方法对这些常用的离散型随机变量进行梳理.在 文献[4]中,George C asella 给出了随机变量间的关 系图,描述了大部分的离散型和连续型随机变量两 两变量之间的联系.与他的关系图侧重点不同,在 本文中,首次设计了两种图形表述方式:时间流和 收稿日期: 2017-12-19 修改日期=2018 -03 -13 作者简介:杨筱菡(1977 —),女,江苏,博士,副教授,概率统计, Email :xiaohyang @tongji . edu . cn 流程图.时间流的图形很具象,简单明了切中随机 变量定义的关键点.而在自上而下的流程图中,通 过回答每一个是与否的简单问题而找到变量的归 属.这两种图形方式,能快速理清每个常用的离散 型随机变量的定义,区分不同变量概念上的差异, 加强对概念的理解. 注这里要特别说明的是,本文中提及的常用的 随机变量仅是在本科公共基础课程“概率论与数理 统计”中提及的常用离散型随机变量,它们只是常 用离散型随机变量中的一部分,并非全部,例如二 项分布的推广一多项分布等就不在此文讨论的范 围内. 2时间流区分法 通常常用的离散型随机变量总是从讲述伯努 利试验开始,伯努利试验是一类可重复、独立的试 验,且一次试验的样本空间只有两个样本点,6卩{成 功,失败},有时把样本点“成功”描述为“事件A 发

常见离散型随机变量的分布列

4.常见离散型随机变量的分布列 (1>两点分布像 这样的分布列叫做两点分布列. 如果随机变量X的分布列为两点分布列,就称X服从分布,而称p=P(X=1> 为成功概率. (2>超几何分布列 一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件{X=k}发生的概率为 P(X=k>=错误!,k=0,1,2,…,m, 其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.称分布列为超几何分布列.如果随机变量X的分布列为超几何分布列,则称随机变量X服从超几何分布. 1设离散型随机变量X 求:(1>2X+1的分布列; (2>|X-1|的分布列. 【思路启迪】利用p i≥0,且所有概率之和为1,求m;求2X+1的值及其分布列;求|X-1|的值及其分布列. 【解】由分布列的性质知: 0.2+0.1+0.1+0.3+m=1,∴m=0.3. 首先列表为: 4 9 3 则常数c=________,P(X=1>=________.X的所有可能取值x i(i=1,2,…,>; (2>求出取各值x i的概率P(X=x i>;(3>列表,求出分布列后要注意应用性质检验所求的结果是否准确.常用类型有:(1>由统计数据求离散型随机变量的分布列,关键是由统计数据利用事件发生的频率近似表示该事件的概率,由统计数据得到的分布列可以帮助我们更好地理解分布列的作用和意义.(2>由古典概型来求随机变量的分布列,这时需利用排列、组合求概率.(3>由相互独立事件同时发生的概率求分布列无

论是何种类型,都需要深刻理解随机变量的含义及概率分布.3.(2018年福建>受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下: (1>从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率; (2>若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X 1,生产一辆乙品牌轿车的利润为X 2,分别求X 1,X 2的分布列;(3>该厂预计今后这两种品牌轿车销量相当,因为资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.【解】(1>设“甲品牌轿车首次出现故障发生在保修期内”为事件A ,则P (A >=错误!=错误!.(2>依题意得,X 1的分布列为 X 2的分布列为 (3>由(2>得,E (X 1>=1×错误!+2× 错误!+3×错误!=2.86(万元>, E (X 2>=1.8×错误!+2.9×错误!=2.79(万元>.因为E (X 1>>E (X 2>,所以应生产甲品牌轿车. 4.(2018年湖南>某商店试销某种商品20天,获得如下数据: 试销结束后(2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1>求当天商店不进货的概率; (2>记X 为第二天开始营业时该商品的件数,求X 的分布列和数学期望. 解:(1>P (“当天商店不进货”>=P (“当天商品销售量为0件”>+P (“当天商品销售量为1件”> =错误!+错误!=错误!. (2>由题意知,X 的可能取值为2,3. P (X =2>=P (“当天商品销售量为1件”>=错误!=错误!;P (X =3>=P (“当天商品销售量为0件”>+P (“当天商品销售量为2件”>+P (“当天商品销售量为3件”>=错误!+错误!+错误!=错误!.故X 的分布列为

数学百大经典例题——离散型随机变量分布列(新课标)

耗用子弹数的分布列 例 某射手有5发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列. 分析:确定ξ取哪些值以及各值所代表的随机事件概率,分布列即获得. 解:本题要求我们给出耗用子弹数ξ的概率分布列.我们知道只有5发子弹,所以ξ的取值只有1,2,3,4,5.当1=ξ时,即9.0)1(==ξP ;当2=ξ时,要求第一次没射中,第二次射中,故09.09.01.0)2(=?==ξP ;同理,3=ξ时,要求前两次没有射中,第三次射中,009.09.01.0)3(2=?==ξP ;类似地,0009.09.01.0)4(3=?==ξP ;第5次射击不同,只要前四次射不中,都要射第5发子弹,也不考虑是否射中,所以41.0)5(==ξP ,所以耗用子弹数ξ的分布列为: 说明:搞清5=ξ的含义,防止这步出错.5=ξ时,可分两种情况:一是前4发都没射中,恰第5发射中,概率为0.14×0.9;二是这5发都没射中,概率为0.15,所以, 5 41.09.01.0)5(+?==ξP .当然, 5 =ξ还有一种算法:即 0001.0)0009.0009.009.09.0(1)5(=+++-==ξP . 独立重复试验某事件发生偶数次的概率 例 如果在一次试验中,某事件A 发生的概率为p ,那么在n 次独立重复试验中,这件事A 发生偶数次的概率为________. 分 析 : 发 生 事 件 A 的 次 数 () p n B ,~ξ,所以, ),,2,1,0,1(,)(n k p q q p C k p k n k k n =-===-ξ其中的k 取偶数0,2,4,…时,为二项式 n q p )(+ 展开式的奇数项的和,由此入手,可获结论. 解:由题,因为 ()p n B ,~ξ且ξ取不同值时事件互斥,所以,

常见离散型随机变量分布列示例

常见随机事件的概率与分布列示例 1、耗用子弹数的分布列 例 某射手有5发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列. 分析:确定ξ取哪些值以及各值所代表的随机事件概率,分布列即获得. 解:本题要求我们给出耗用子弹数ξ的概率分布列.我们知道只有5发子弹,所以ξ的取值只有1,2,3,4,5.当1=ξ时,即9.0)1(==ξP ;当2=ξ时,要求第一次没射中,第二次射中,故09.09.01.0)2(=?==ξP ;同理,3=ξ时,要求前两次没有射中,第三次射中,009.09.01.0)3(2=?==ξP ;类似地,0009.09.01.0)4(3=?==ξP ;第5次射击不同,只要前四次射不中,都要射第5发子弹,也不考虑是否射中,所以41.0)5(==ξP ,所以耗用子弹数ξ的分布列为: 说明:搞清5=ξ的含义,防止这步出错.5=ξ时,可分两种情况:一是前4发都没射中,恰第5发射中,概率为0.14×0.9;二是这5发都没射中,概率为0.15,所以, 5 41.09.01.0)5(+?==ξP .当然, 5 =ξ还有一种算法:即 0001.0)0009.0009.009.09.0(1)5(=+++-==ξP . 2、独立重复试验某事件发生偶数次的概率 例 如果在一次试验中,某事件A 发生的概率为p ,那么在n 次独立重复试验中,这件事A 发生偶数次的概率为________. 分 析 : 发 生 事 件 A 的 次 数 () p n B ,~ξ,所以, ),,2,1,0,1(,)(n k p q q p C k p k n k k n =-===-ξ其中的k 取偶数0,2,4,…时,为二项式 n q p )(+ 展开式的奇数项的和,由此入手,可获结论.

常用离散型和连续型随机变量

常用离散型随机变量的分布函数 一、离散型随机变量: (1)概念:设X 是一个随机变量,如果X 的取值是有限个或者无穷可列个,则称X 为离散型随机变量。 其相应的概率()i i P X x p ==(12)i =、……称为X 的概率分布或分布列,表格表示形式如下: (2)性质:?0i p ≥ ?1 1n i i p ==∑ ?分布函数()i i x x F x p == ∑ ?1{}()()i i i P X x F x F x -==- 二、连续型随机变量: (1)概念:如果对于随机变量的分布函数()F x ,存在非负的函数()f x ,使得对于任意实数x ,均有: ()()x F x f x dx -∞ = ? 则称X 为连续型随机变量,()f x 称为概率密度函数或者密度函数。 (2)连续型随机变量的密度函数的性质:?()0f x ≥ ? ()1f x dx +∞ -∞ =? ?{}()()()P a X b F b F a f x dx +∞ -∞ <≤=-= ? ?若()f x 在x 点连续,则()()F x f x '= 三、连续型随机变量和离散型随机变量的区别: (1)由连续型随机变量的定义,连续型随机变量的定义域是(),-∞+∞,对于任何x ,000{}()()0P X x F x F x ==--=; 而对于离散型随机变量的分布函数有有限个或可列个间断点,其图形呈阶梯形。 (2)概率密度()f x 一定非负,但是可以大于1,而离散型随机变量的概率分布i p 不仅非负,而且一定不大于1. (3)连续型随机变量的分布函数是连续函数,因此X 取任何给定值的概率都为0. (4)对任意两个实数a b <,连续型随机变量X 在a 与b 之间取值的概率与区间端点无关,即: {}{}{}{}()() ()b a P a X b P a X b P a X b P a X b F b F a f x dx <<=≤≤=<≤=≤<=-= ? 即:{}{}()P X b P X b F x <=≤= 四、常用的离散型随机变量的分布函数: (1)0-1分布:如果离散型随机变量X 的概率分布为:

常见离散型随机变量的分布 (1)

新乡医学院教案首页单位:计算机教研室 课程名称医药数理统计方法 授课题目 2.1 常见离散型随机变量的分布授课对象05级药学专业 时间分配超几何分布15分钟二项分布35分钟泊松分布30分钟 课时目标理解掌握常见离散型随机变量的分布函数 掌握两点分布、二项分布、泊松分布之间的联系与区别授课重点伯努利试验、二项分布、泊松分布 授课难点两点分布、二项分布、泊松分布之间的联系与区别 授课形式小班理论课 授课方法启发讲解 参考文献医药数理统计方法刘定远主编人民卫生出版社概率论与数理统计刘卫江主编清华大学出版社北京交通大学出版社 高等数学(第五版)同济大学编高等教育出版社 思考题二项分布和超几何分布有何联系? 教研室主任及课程负责人签字教研室主任(签字)课程负责人(签字)年月日年月日

基 本 内 容 备 注 常见离散型随机变量的分布 一、超几何分布 例1 带活动门的小盒子里有采自同一巢的20只工蜂和10只雄蜂,现随机地放出5只作实验,表示X 放出的蜂中工蜂的只数,求X 的分布列。 解 X 1 2 3 4 5 P 052010530C C C 142010530C C C 232010530C C C 322010530C C C 412010530C C C 502010 5 30 C C C 定义 1 若随机变量X 的概率函数为 {} 0,1,2,,k n k M N M n N C C P X k k l C --?=== 其中N≥M>0,n≤N -M,l=min(M,n),则称X 服从参数为N,M,n 的超几何分布,记作X~H(N,M,n). 超几何分布的分布函数为()k n k M N M n k x N C C F x C --≤?=∑ 二、二项分布 1. Bernoulli 试验 只有两个可能结果的试验称为Bernoulli 试验。 例2 已知某药有效率为0.7,今用该药试治某病3例,X 表示治疗无效的人数,求X 的分布列。 解:X 可取0,1,2,3。 用A i 表示事件“第i 例治疗无效”,i=1,2,3.则()0.7i P A p == P{X=0}=33 123123()()()()(1)0.343P A A A P A P A P A p q ==-== P{X=1}=231312123()P A A A A A A A A A ++ 2231312123()()()30.441P A A A P A A A P A A A pq =++== P{X=2}=321121323()P A A A A A A A A A ++ 2321121323()()()30.189P A A A P A A A P A A A p q =++==

第7讲离散型随机变量及其分布列

第7讲 离散型随机变量及其分布列 一、选择题 1.某射手射击所得环数X 的分布列为 X 4 5 6 7 8 9 10 P 0.02 0.04 0.06 0.09 0.28 0.29 0.22 解析 P (X >7)=P (X =8)+P (X =9)+P (X =10) =0.28+0.29+0.22=0.79. 答案 C 2.设X 是一个离散型随机变量,其分布列为: X -1 0 1 P 2-3q q 2 则q 的值为( ) A.1 B.32±336 C.32-336 D.32+336 解析 由分布列的性质知?????2-3q ≥0,q 2 ≥0, 13+2-3q +q 2 =1, 解得q =32-33 6. 答案 C 3.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( ) A.0 B.12 C.13 D.23 解析 由已知得X 的所有可能取值为0,1, 且P (X =1)=2P (X =0),由P (X =1)+P (X =0)=1,

得P(X=0)=1 3. 答案 C 4.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是() A.ξ=4 B.ξ=5 C.ξ=6 D.ξ≤5 解析“放回五个红球”表示前五次摸到黑球,第六次摸到红球,故ξ=6. 答案 C 5.从装有3个白球、4个红球的箱子中,随机取出了3个球,恰好是2个白球、1个红球的概率是() A.4 35 B. 6 35 C. 12 35 D. 36 343 解析如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布问 题,故所求概率为P=C23C14 C37=12 35. 答案 C 二、填空题 6.设离散型随机变量X的分布列为 X 0123 4 P 0.20.10.10.3M 若随机变量Y=|X 解析由分布列的性质,知 0.2+0.1+0.1+0.3+m=1,∴m=0.3. 由Y=2,即|X-2|=2,得X=4或X=0, ∴P(Y=2)=P(X=4或X=0) =P(X=4)+P(X=0) =0.3+0.2=0.5.

相关主题
文本预览
相关文档 最新文档