当前位置:文档之家› 《单片机原理及应用》大作业——交通灯控制系统设计

《单片机原理及应用》大作业——交通灯控制系统设计

《单片机原理及应用》大作业——交通灯控制系统设计
《单片机原理及应用》大作业——交通灯控制系统设计

《单片机原理及应用》大作业

题目:交通灯控制系统设计

学习中心:

层次:

专业:

年级:

学号:

学生姓名:

摘要

随着现代社会对交通运输的日趋依赖,交通灯成为了人们生活中不可或缺的一部分。传统的交通灯控制系统虽然在一定程度上可以满足指挥路口交通的需要,但随着城市规模的不断扩大,原有的交通灯控制系统已经表现出明显的缺点:红绿灯时间相对固定,不能伴随车流量的改变而调整红绿灯的显示时间。

本设计以AT89S51单片机为核心,外接外围电路构成基本电路,使硬件电路能适应所完成的控制功能。在Keil软件中编写C语言程序,最后用Proteus软件进行仿真,基本实现了智能交通灯的模拟。该系统可控制红、绿、黄灯按时间依次变换,并有倒读秒功能。在此基础上,通过传感器对车流量的情况进行数据采集。将采集的数据传送给控制中心,进行分析比较。根据比较的结果,将具体的车流量转换成两相位车流量大小的比值。根据比值转换成对红绿灯时间的控制,使交通信号灯时间可根据车流量改变,提高了交叉口的通行效率。

关键词:单片机;交通灯;倒计时显示;传感检测

目录

题目............................................................. I I 摘要............................................. 错误!未定义书签。第1章绪论 (1)

1.1 课题背景 (1)

1.2 课题研究的意义 (2)

1.3 智能交通灯的研究背景 (2)

1.4 国内外研究现状 (3)

1.5 我国交通灯现状 (3)

1.6 论文结构 (4)

第2章智能交通灯控制系统方案设计 (5)

2.1 智能交通灯控制系统的通行方案设计 (5)

2.2 智能交通灯控制系统的功能要求 (6)

2.3 智能交通灯控制系统的基本构成及原理 (7)

2.4 本章小结 (7)

第3章系统硬件电路的设计 (8)

3.1 主要硬件的选型 (8)

3.1.1 单片机的选型 (8)

3.1.2 车流量检测传感器的选型 (8)

3.1.3 电源电路的选型 (10)

3.2 系统硬件总电路构成及原理 (10)

3.2.1 系统硬件电路构成 (10)

3.2.2 系统工作原理 (11)

3.3 AT89S51单片机简介 (12)

3.3.1 单片机的概述 (12)

3.3.2 AT89S51主要引脚功能 (12)

3.3.3 AT89S51芯片最小系统 (15)

3.4 车流量检测模块介绍 (16)

3.4.1 光电开关的工作原理 (17)

3.4.2 光电开关的分类 (17)

3.4.3 光电开关的应用 (18)

3.5 其它硬件介绍 (19)

3.5.1 发光二极管 (19)

3.5.2 七段LED 数码管 (19)

3.5.3 电源电路设计 (20)

3.5.4 蜂鸣器 (21)

3.6 本章小结 (21)

第4章软件设计 (23)

4.1 主程序设计 (23)

4.2 车流量采样程序设计 (23)

4.3 显示程序设计 (27)

4.4 理论基础知识 (27)

4.4.1 定时器原理 (27)

4.4.2 软件延时原理 (28)

4.5 本章小结 (28)

第5章智能交通灯的仿真 (29)

5.1 Proteus软件介绍 (29)

5.2 仿真过程介绍 (29)

5.2.1 用PROTEUS绘制原理图 (29)

5.2.2 PROTEUS对单片机内核的仿真 (30)

5.2.3 仿真结果与分析 (31)

5.3 本章小结 (37)

结束语 (38)

参考文献 (39)

谢辞 (40)

附录 (41)

第1章绪论

1.1课题背景

随着人口快速的增多,交通工具的爆炸性的发展,以及道路资源的有限性,交通控制就应运而生。在人类的生活、工作环境中,交通扮演着极其重要的角色,人们的出行都无时不刻与交通打着交道。当今,红绿灯安装在各个道口上,已经成为疏导交通车辆最常见和最有效的手段。但这一技术在19世纪就已出现了。

1858年,在英国伦敦主要街头安装了以燃煤气为光源的红,蓝两色的机械扳手式信号灯,用以指挥马车通行。这是世界上最早的交通信号灯。1868年,英国机械工程师纳伊特在伦敦威斯敏斯特区的议会大厦前的广场上,安装了世界上最早的煤气红绿灯。它由红绿两以旋转式方形玻璃提灯组成,红色表示“停止”,绿色表示“注意”。1869年1月2日,煤气灯爆炸,使警察受伤,遂被取消。电气启动的红绿灯出现在美国,这种红绿灯由红绿黄三色圆形的投光器组成,1914年始安装于纽约市5号大街的一座高塔上。红灯亮表示“停止”,绿灯亮表示“通行”。1918年,又出现了带控制的红绿灯和红外线红绿灯。带控制的红绿灯,一种是把压力探测器安在地下,车辆一接近红灯便变为绿灯;另一种是用扩音器来启动红绿灯,司机遇红灯时按一下嗽叭,就使红灯变为绿灯。红外线红绿灯当行人踏上对压力敏感的路面时,它就能察觉到有人要过马路。红外光束能把信号灯的红灯延长一段时间,推迟汽车放行,以免发生交通事故。

信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。1968年,联合国《道路交通和道路标志信号协定》对各种信号灯的含义作了规定。绿灯是通行信号,面对绿灯的车辆可以直行,左转弯和右转弯,除非另一种标志禁止某一种转向。左右转弯车辆都必须让合法地正在路口内行驶的车辆和过人行横道的行人优先通行。红灯是禁行信号,面对红灯的车辆必须在交叉路口的停车线后停车。黄灯是警告信号,面对黄灯的车辆不能越过停车线,但车辆已十分接近停车线而不能安全停车时可以进入交叉路口。

交通对于社会的工业经济和人们的生活生产中有着十分重要的意义。交通控制系统是近现代社会随着物流、出行等交通发展产生的一套独特的公共管理系统。要保证高效安全的交通秩序,除了制定一系列的交通规则,还必须通过一定的技术手段加以实现。随着单片机和传感技术的迅速发展,自动检测领域发生了巨大变化,智能交通灯控制系统方面的研究有了明显的进展,并且必将以其优异的性能价格比,逐步取代传统的交通灯控制措施。

1.2 课题研究的意义

科学技术的进步推动了交通工具的现代化,社会经济的发展则导致了交通量的急剧增长并进而加剧了交通拥挤与阻塞的严重程度,城市交通的规模与复杂特征、传统交通控制和交通拥挤一直是困扰世界各国的一大难题,目前美国每年由于交通拥挤造成的直接经济损失达2370亿美元以上,而我国国内百万人以上的大城市每年由交通阻塞造成的直接间接经济损失约计1600亿元以上,相当于国内生产总值的3.2%。解决城市交通问题的根本路径大致有两条:一是加快交通基础设施建设;二是加强交通管理。前者是发展城市交通,满足各种交通需求的物质基础,而后者则为合理使用现有交通设施。保证人车的安全,在良好的交通环境下,使现有设施的能力得以发挥。二者相比,由于在大城市新建和扩建道路的可能性受空间制约越来越小。当前城市交通管理的重点也侧重于加强交通管理,对平面交叉口的研究一般都是应用交通信号在时间上给车辆分配通行权,从而实现车辆在时间上的分离。

智能的交通信号灯指挥者人和车辆的安全运行,实现红、黄、绿灯的自动指挥是城乡交通管理现代化的重要课题。在城乡街道的十字交叉路口,为了保证交通秩序和行人安全,一般在每条道路上各有一组红、绿、黄交通信号灯。其中红灯亮,表示该条道路禁止通行;黄灯亮,则表示该条道路上未经过停车线的车辆停止通行,已过停车线的车辆继续通行;绿灯亮,则表示该条道路上允许通行。交通灯控制电路自动控制十字路口两组红、黄、绿交通灯的状态转换,指挥各种车辆和行人安全通行,从而实现十字路口城乡交通管理自动化。

智能交通灯控制系统研究的发展,旨在解决人类交通因需求的增多而日益繁重带来的问题,局限于道路建设的暂时不足和交通工具的快速增长,就要使更多的车辆安全高效的利用有限的道路资源,避免因无序和抢行等无控制原因造成的不必要阻塞甚至瘫痪,另外,针对整个交通线路车辆的多少实时调整和转移多条线路的分流也十分必要。

交通网络是城市的动脉,象征着一个城市的工业文明水平。交通关系着人们对于财产,安全和时间相关的利益。具有优良科学的交通控制技术对资源物流和人们出行都是十分有价值的,保证交通线路的畅通安全,才能保证出行舒畅,物流准时到位,甚至是生命通道的延伸。

1.3 智能交通灯的研究背景

智能交通灯是智能交通领域的一个分支。智能交通系统,简称ITS(Intelligent Transport Systems),作为一个概念性名词出现于20世纪90年代初,但其思想早在

20世纪30年代已有萌芽,当时美国通用汽车公司和福特汽车公司倡导和推广过“现代化公路网”的构想,而20世纪60年代出现的静态路径诱导、计算机交通控制技术等都可谓是ITS的雏形,不过当时其重要性并不明显,没有受到人们足够的重视。因此,近几年来世界各国都竞相投资ITS的研发和应用。智能交通灯的应用是解决智能交通系统的关键之一。

1.4 国内外研究现状

目前国内外较为完善的交通信号控制系统主要有英国的TRANSYT(Traffic Net work Study Tool)和SCOOT(Split,Cycle and Of set Optimization Technique,绿信比、周期和相位差优化技术)系统和澳大利亚的SCATS(Sydney Coordinated Adaptive Traffic System),悉尼协调自适应交通系统,以及美国、日本等国家开发的一些系统,其中以英国的SCOOT系统和澳大利亚的SCATS系统相较为著名。它们在中国的城市(如:上海、杭州、宁波等用的是SCATS系统;成都、大连、北京等用的是SCOOT系统)也得到了较好的应用。但由于这些系统多为交通信号控制专用系统,因此开放性较差,难于同其它系统连接和协调控制,系统带有一定的局限性,并且价格比较昂贵,没有充分考虑我国现有的国情(如自行车交通流和行人的交通流等)。我国近几年经过深入研究,也开发出了一些适用于我国交通状况的交通控制系统,主要有上海交通大学的SUATS系统和南京、深圳等地研制的系统。这些系统在深入研究国外先进系统的基础上,融合了大量交警实际控制经验,以开放性为前提,增加了符合国情的特殊功能。但还不成熟,控制效果也不是非常好,没有得到广泛应用。因此,结合我国国民经济,建立一个相对廉价、获取信息多且准确、工作可靠、具有智能交通控制系统势在必行。

1.5我国交通灯现状

随着城市机动车增长速度的加快,1994年我国城市机动车保有量已接近500万辆。20世纪90年代以来,经济的发展加快,从1985年到1995年,机动车增长率达13%左右,近几年更是增多。

然而,在此同时,城市道路建设规模也在加大。我国城市普遍存在道路密度、道路面积率偏低的问题。我国城市道路的密度只有6.8km每平方千米,而在20世纪80年代,世界发达国家就已到达20km每平方千米。20世纪90年代,我国部分城市道路面积率,北京为5.9%,上海为6.4%,而国外东京为13.8%,巴黎为25%,普遍高于我国。近几年,国家虽不断加大城市道路建设的力度,但仍赶不上车辆的增长速度,且与世界其他国家相比,差距仍很大。

目前我国城市街道交叉路口的交通信号灯虽然是自动的,但是仔细观察就会发现红绿灯的交替转换是定时式的,即转换的间隔时间是固定不变的。定时式并不符合实际要求。因为,如果东西和南北两方向车流量相差很大,而信号灯还是平均分配导通时间,就会出现这样的问题:车多的方向导通时间不足,而车少的方向导通时间剩余,造成一方向车挤另一方向车松的不合理的局面,这就是机器自动控制不如人工现场指挥的差别。然而人工指挥劳动强度大,我们应充分发挥计算机的作用,用计算机模拟人的智能来控制交通灯,从而提高经济和社会效益。

1.6论文结构

基于整个交通控制系统的发展情况,本设计主要进行如下方面的研究:用智能,集成,且功能强大的单片机芯片为控制中心,设计出一套十字路口的交通控制系统,以指挥路口的实时通行状态。

在绪论部分讲述了本课题的研究背景与意义、国内外智能交通控制系统的研究现在以及我国交通灯的现状。

在第二章中,基于绪论部分对单片机智能交通灯控制系统的部分了解以及现实生活中的需要,根据设计要求提出总体设计方案论证与选择,介绍了智能交通灯控制系统的基本构成及原理。

在一、二章的基础上,第三章完成了硬件的选型以及硬件电路的设计。

第四章首先根据软件设计流程图简要介绍了软件设计,并介绍了各个程序模块的基本设计思想。

第五章简要介绍了proteus软件及电路绘制并且详细叙述了如何实现电路的

仿真。

最后是对本课题的总结与展望,概述了系统实现的功能,前景及致谢、附录、参考文献等关于本次毕业设计的后续工作。附录为系统的程序清单以及整体电路图供阅读参考。

第2章智能交通灯控制系统方案设计

2.1 智能交通灯控制系统的通行方案设计

设在十字路口,分为东西向和南北向,在任一时刻只有一个方向通行,另一方向禁行,持续一定时间,经过短暂的过渡时间,将通行禁行方向对换。其具体状态如下图所示。说明:黑色表示亮,白色表示灭。交通状态从状态1开始变换,直至状态4然后循环至状态1,周而复始,即如图2.1所示:

图2.1交通状态

通过具体的路口交通灯状态的演示分析我们可以把这四个状态归纳如下:(1)南北绿灯亮,东西红灯亮。此状态下,南北允许通行,东西禁止通行。

(2)南北黄灯亮,东西保持红灯亮。此状态下除了已经正在通行中的其他所以车辆都需等待状态转换。

(3)东西绿灯亮,南北红灯亮。此状态下,东西允许通行,南北禁止通行。

(4)东西黄灯亮,南北保持红灯亮。此状态下除了已经正在通行中的其他所以车辆都需等待状态转换。

下面用图表表示灯状态和行止状态的关系如下:

表2-1 交通状态及红绿灯状态

东西南北四个路口均有红绿黄3灯和数码显示管2个,在任一个路口,遇红灯禁止通行,转绿灯允许通行,之后黄灯亮警告行止状态将变换。状态及红绿灯状态如表2.1所示。说明:0表示灭,1表示亮。

2.2智能交通灯控制系统的功能要求

本设计能模拟基本的交通控制系统,用红绿黄灯表示禁行,通行和等待的信号发生,还能进行倒计时显示,车流量检测及调整,错误报警等功能。

(1)倒计时显示

倒计时显示可以提醒驾驶员在信号灯灯色发生改变的时间、在“停止”和“通过”两者间作出合适的选择。驾驶员和行人普遍都愿意选择有倒计时显示的信号控制方式,并且认为有倒计时显示的路口更安全。倒计时显示是用来减少驾驶员在信号灯色改变的关键时刻做出复杂判断的1种方法,它可以提醒驾驶员灯色发生改变的时间,帮助驾驶员在“停止”和“通过”两者间作出合适的选择(2)红绿灯显示

红绿灯显示可以直观的告诉驾驶员禁行,通行和等待的信号。本设计红绿灯有四种状态:首先南北绿灯亮,东西红灯亮。一定时间后,南北黄灯开始闪烁,持续5s,东西向保持红灯亮。接着南北向红灯亮,东西绿灯亮。一定时间后,东西黄灯闪烁,持续5s,南北向保持红灯亮。

(3)车流量检测及调整

随着我国经济建设的蓬勃发展,城市人口和机动车拥有量在急剧增长,交通

流量日益加大,交通拥挤堵塞现象日趋严重,交通事故时有发生。车辆检测器作为智能交通系统的基本组成部分,在智能交通系统中占有重要的地位。现阶段,车辆检测器检测方式有很多,各有其优缺点,如遥感微波检测器、磁感应车辆检测器、红外线车辆检测器等。通过比较南北向和东西向的车流量,调节红绿灯的间隔时间。

2.3智能交通灯控制系统的基本构成及原理

单片机设计交通灯控制系统,可用单片机直接控制信号灯的状态变化,基本上可以指挥交通的具体通行,当然,接入LED数码管就可以显示倒计时以提醒行使者,更具人性化。本系统在此基础上,加入了车流量检测电路为单片机采集数据,单片机对此进行具体处理,及时调整控制指挥,为了超越视觉指挥的局限性,同时接上蜂鸣器,在听觉上加强了指挥提醒作用。

图2.2系统的总体框图

本设计系统以单片机为控制核心,由车流量检测模块产生输入,信号灯状态模块,LED倒计时模块和蜂鸣器状态模块接受输出。系统的总体框图如图2.2所示。

2.4 本章小结

本章主要对智能交通灯控制系统方案设计进行了介绍,概述了智能交通灯控制系统的功能要求以及系统的总体框架。

第3章系统硬件电路的设计

3.1 主要硬件的选型

实现本设计要求的具体功能,可以用单片机及外围器件构成最小控制系统,12个发光二极管分成4组红绿黄三色灯构成信号灯指示模块,8个LED东西南北各两个构成倒计时显示模块,车流量检测传感器采集流量数据,1个蜂鸣器进行报警。

3.1.1 单片机的选型

采用AT89S51单片机作为主控制器。AT89S51具有两个16位定时器/计数器,5个中断源,便于对车流量进行定时中断检测。32根I/O线,使其具有足够的I/O口驱动数码管及交通灯。外部存贮器寻址范围ROM、RAM64K,便于系统扩展。其T0,T1口可以对外部脉冲进行实时计数操作,故可以方便实现车流量检测信号的输入。选用AT89S51单片机跟其他单片机相比,经济实惠,满足设计要求,故选用AT89S51单片机作为主控制器。

3.1.2 车流量检测传感器的选型

车流量检测传感器有三种方案如下:

方案一:

采用遥感微波检测器(RTMS)。微波交通检测器是利用雷达线性调频技术原理,通过发射中心频率为10.525GHz或24.200GHz的连续频率调制微波(FMCW);在检测路面上,投映一个宽度为3-4米,长度为64米的微波带。每当车辆通过这个微波投映区时,都会向RTMS反射一个微波信号,RTMS接收反射的微波信号,并计算接收频率和时间的变化参数以得出车辆的速度及长度,提供车流量、道路占有率、速度和车型等实时信息。为了检测出车道上车的数量,RTMS在微波束的发射方向上以2M为一个层面分展探测物体,微波束在15度范围内投影形成一个分为32个十层面的椭圆形波束,(椭圆的宽度取决于仪器选择的工作方式),通过这种方式可检测出车量数RTMS具有两种基本的使用模式,分别是路边侧向模式和前方正向模式。路边侧向模式可以使用一台RTMS同时检测多至8条车道,并提供每条车道的交通信息。前方正向模式,用一台RTMS实时检测一条单一车道的交通情况。RTMS的检测精度高,且是一个全天候的车辆检测器。

方案二:

采用磁感应车辆检测器.这种环形线圈检测器是传统的交通检测器,是目前世界上用量最大的一种检测设备。这些埋设在道路表面下的线圈可以检测到车辆通过时的电磁变化进而精确地算出交通流量。交通流量是交通统计和交通规划的基本数据,通过这些检测结果可以用来计算占用率(表征交通密度), 在使用双线圈模式时还可以提供速度、车辆行驶方向、车型分类等数据,这些数据对于交通管理和统计是极为重要的。原理方框图如下:

图3.1 磁检测器方框图

该方案测量精度较好,且性能稳定。

方案三:

利用红外线车辆检测器。红外线车辆检测器是利用被检测物对光束的遮挡或反射,通过同步回路检测物体有无。物体不限于金属,所有能反射光线的物体均可被检测。光电开关将输入电流在发射器上转换为光信号射出,接收器再根据接收到的光线的强弱或有无对目标物体进行探测。如当汽车通过光扫描区域时,部分或全部光束被遮挡,从而实现对车辆数据的综合检测。常利用光电开关技术,具有高速响应,抗干扰性强,不受恶劣气象条件或物体颜色的影响的优点,而且安装简便。

方案一造价高,且易受环境影响,方案二需将检测器埋入地底下,对已建成道路使用不方便。方案三性价比高,且设计简单,权衡利弊,故选用方案三。

在本系统中,采用对射式红外线光电开关HJS18-M14DNK 检测车流量。该红外线光电开关工作电压为直流10-30V ,检测距离为10m ,响应时间小于3ms ,能在-25℃~55℃的温度条件下正常工作。当有车辆通过光电开关之间时,输出端将输出一个开关信号,送入单片机,单片机执行相应程序自动对输入信号进行计数,从而完成对车流量的统计。

3.1.3电源电路的选型

由于单片机工作时需要+5V电压,所以在设计电源电路时,需要一个三端稳压器能提供+5V电压。

三端稳压器,主要有两种:一种输出电压是固定的,称为固定输出三端稳压器;另一种输出电压是可调的,称为可调输出三端稳太器。其基本原理相同,均采用串联型稳压电路。在线性集成稳压器中,由于三端稳压器只有三个引出端子,具有外接元件少,使用方便,性能稳定,价格低廉等优点,因而得到广泛应用。

三端稳压器的通用产品有78系列(正电源)和79系列(负电源),输出电压由具体型号中的后面两个数字代表,有5V,6V,8V,9V,12V,15V,18V,24V等档次。

由于7805能够提供5V电压的三端稳压电源,在实际的电路控制中应用其作

为电源电路较为广泛,在普通的电子元器件商场都有销售易于购买,并且技术相

对成熟.7805一脚为电源输入端,二脚为公共接地端,三脚即为我们所需要的+5V 电压输出端.本文采用最典型的7805提供电压的电路,即在7805的1脚和公共接地端(即2脚)之间接入0.3μF的电容,在公共接地端和三脚+5V电压输出端之间接入0.1μF的电容。

3.2系统硬件总电路构成及原理

3.2.1系统硬件电路构成

本系统实现的是对城市十字路口交通的控制,它由三大部分组成:

(1)信息的采集部分;

(2)单片机自动控制部分;

(3)显示部分。

系统以单片机为核心,组成一个集车流量采集、处理、自动控制为一身的开环控制系统。系统硬件电路由车流量检测电路、单片机、状态灯、LED显示、蜂鸣器组成。其具体的硬件电路总图如图所示。

P0接上拉电阻与P2控制LED数码管,P1用于控制红绿黄发光二极管,INT1口接蜂鸣器,XTAL1和XTAL2接入晶振时钟电路,RESET引脚接上复位电路,T1口接车流量传感器。

P21

CC

图3.2总体设计电路图

3.2.2 系统工作原理

通过车流量传感器对东西和南北两条通道的车流量的测量,将车流量信息以脉冲电平的方式传给单片机。单片机能通过程序运算得到两条通道车流量的大小来控制路口各方向的红绿灯时长,并由LED显示。以一个周期向传感器取一次数据。

信息采集主要是对路口各方向的车流量进行采集。因为关系到哪个方向通行时间长,哪个方向通行时间短。目前大多采用光学或压力传感器,以确定每个路口在一定时间段车辆通过的次数。本设计采用比例的方法利用红外线传感器只计算出需比较两个相对路口车流量的比值即可。

设计车流量传感器,一个对准东西方向取样,另一个对南北方向取样,分别取得两个代表东西和南北方向车流量a和b。用单片机巡回检测,并将他们进行比较。若二者相等则按一定时间间隔交替导通。若a>b,进入a方向绿灯延时程序。反之,进入b方向绿灯延时程序。该控制程序又根据具体的比例做时长的变换。这些工作全部由单片机完成。单片机通过接口得到a和b相对应的电压信号量,然后对其进行处理、分析和判断,改变信号灯输出时长,直接控制信号灯驱动电路,实现单片机对信号灯的智能控制。

本系统先显示状态灯及LED数码管,将状态码值送显P1口,将要显示的时间

值送显P0口和用P2口来选通LED数码管的显示导通,在此同时以50ms为周期,用软件方法计时1秒,到达1s就要将时间值减1,刷新LED数码管。

该智能交通灯控制系统以四个状态为一周期循环。每满一个状态循环周期,则须将检测到的车流量数据处理一次,判断两个方向的交通轻重缓急状况,再调整下次状态循环的红绿灯时间,以达到自动控制的目的。

3.3 AT89S51单片机简介

3.3.1 单片机的概述

单片微型计算机简称单片机,又称微控制器,嵌入式微控制器等,属于第四代电子计算机。它把中央处理器、存储器、输入/输出接口电路以及定时器/计数器集成在一块芯片上,从而具有体积小、功耗低、价格低廉、抗干扰能力强且可靠性高等特点,因此,适合应用于工业过程控制、智能仪器仪表和测控系统的前端装置。正是由于这一原因,国际上逐渐采用微控制器(MCU)代替单片微型计算机(SCM)这一名称。“微控制器”更能反映单片机的本质,但是由于单片机这个名称已经为国内大多数人所接受,所以仍沿用“单片机”这一名称。

单片机的主要特点有:

(1)具有优异的性能价格比。

(2)集成度高、体积小、可靠性高。

(3)控制功能强。

(4)低电压,低功耗。

AT89S51是美国ATMEL公司生产的低功耗,高性能CMOS8位单片机,片内含4k bytes的可系统编程的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准8051指令系统及引脚。它集Flash程序存储器既可在线编程(ISP)也可用传统方法进行编程及通用8位微处理器于单片芯中,ATMEL公司的功能强大,低价位AT89S51单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。

3.3.2AT89S51主要引脚功能

AT89S51引脚图如图3.3所示:

图3.3引脚图

VCC:电源电压

GND:地

P0口:P0口是一组8位漏极开路型双向I/0口,也即地址/数据总线复用口。作为输出口用时,每位能驱动8个TTL逻辑门电路,对端口写“l”可作为高阻抗输入端用。在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。

P1口:Pl口是一个带内部上拉电阻的8位双向I/O口,Pl的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“l”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。Flash编程和程序校验期间,Pl接收低8位地址。P1口除了作为一般的I/0口线外,更重要的用途是它

的第二功能,如表3-1所示:

表3-1具有第二功能的P1口引脚

P2口:P2是一个带有内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动(吸收或输出电流)4 个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVX@DPTR指令)时,P2口送出高8位地址数据。在访问8位地址的外部数据存储器(如执行MOVX@Ri指令)时,P2口线上的内容(也即特殊功能寄存器(SFR)区中P2寄存器的内容),在整个访问期间不改变。Flash编程或校验时,P2口亦接收高位地址和其它控制信号。

P3口:P3口是一组带有内部上拉电阻的8位双向I/0 口。P3口输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对P3口写入“l”时,它们被内部上拉电阻拉高并可作为输入端口。作输入端时,被外部拉低的P3口将用上拉电阻输出电流(IIL)。P3口除了作为一般的I/0口线外,更重要的用途是它的第二功能,如表3-2所示:

P3口还接收一些用于Flash闪速存储器编程和程序校验的控制信号。

RST:复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。WDT 溢出将使该引脚输出高电平,设置SFR AUXR的DISRT0位(地址8EH)可打开或关闭该功能。DISRT0位缺省为RESET输出高电平打开状态。

ALE/错误!未找到引用源。:当访问外部程序存储器或数据存储器时,ALE (地址锁存允许)输出脉冲用于锁存地址的低8位字节。即使不访问外部存储器,ALE仍以时钟振荡频率的1/6输出固定的正脉冲信号,因此它可对外输出时钟或

用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个ALE 脉冲。对F1ash 存储器编程期间,该引脚还用于输入编程脉冲(PROG )。如有必要,可通过对特殊功能寄存器(SFR )区中的8EH 单元的D0位置位,可禁止ALE 操作。该位置位后,只有一条M0VX 和M0VC 指令ALE 才会被激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE 无效。

错误!未找到引用源。:片外程序存储器读选通信号输出端,或称片外取指信号输出端。在向片外程序存储器读取指令或常数期间,每个机器周期该信号二次有效(低电平),以通过数据总线P0口读回指令或常数。

错误!未找到引用源。/错误!未找到引用源。:外部访问允许。欲使CPU 仅访问外部程序存储器(地址为0000H -FFFFH ),EA 端必须保持低电平(接地)。需注意的是:如果加密位LB1被编程,复位时内部会锁存EA 端状态。如EA 端为高电平(接VCC 端),CPU 则执行内部程序存储器中的指令。F1ash 存储器编程时,该引脚加上+12V 的编程电压错误!未找到引用源。。

XTAL1:片内反相放大器输入端。

XTAL2:片内反相放大器输出端。外接晶体时,XTAL1与XTAL2各接晶体的一端,借外接晶体与片内反相放大器构成振荡器。

3.3.3 AT89S51芯片最小系统

一个最简单的单片机系统包括晶振、复位、电源、系统的输入控制、输出显示,以及其他外围模块(如通信、数据采集等)。

(1)时钟电路

C 1

图3.4 晶振电路图

单片机的晶振电路,即时钟电路。单片机的工作流程,就是在系统时钟的作用下,一条一条地执行存储器中的程序。单片机的时钟电路由外接的一只晶振和两只起振电容,以及单片机内部的时钟电路组成,晶振的频率越高,单片机处理数据的速度越快,系统功耗也会相应增加,稳定性也会下降。单片机系统常用的晶振频率有6MHz 、11.0592MHz 、12MHz 、本系统采用11.0592MHz 晶振,电容选22pF 或30pF 均可。

(2)复位电路 R2

S1

SW SPST

R3

VCC C3EL ECT RO1

图3.5 复位电路图

系统刚上电时,单片机内部的程序还没有开始执行,需要一段准备时间,也就是复位时间。一个稳定的单片机系统必须设计复位电路。当程序跑飞或死机时,也需要进行系统复位。复位电路有很多种,有上电复位,手动复位等。复位电路的原理是单片机RST 引脚接收到2个机器周期以上的高电平信号,只要保证电容的充放电时间大于2个机器周期,即可实现复位。在单片机启动0.1S 后,电容C 两端的电压持续充电为5V ,这时候10K 电阻两端的电压接近于0V ,RST 处于低电平所以系统正常工作。当按键按下的时候,开关导通,这个时候电容两端形成了一个回路,电容被短路,所以在按键按下的这个过程中,电容开始释放之前充的电量。随着时间的推移,电容的电压在0.1S 内,从5V 释放到变为了

1.5V ,甚至更小。根据串联电路电压为各处之和,这个时候10K 电阻两端的电压为3.5V ,甚至更大,所以RST 引脚又接收到高电平。单片机系统自动复位。

(3) EA 脚的功能及接法

单片机的EA 脚控制程序从内部存储器还是从外部存储器读取程序。由于现在单片机内部的flash 容量都很大,因此基本都是从内部的存储器读取程序,即不需要外接ROM 来存储程序,因此,EA 脚必须接高电平。

3.4 车流量检测模块介绍

在本系统中,采用对射式红外线光电开关HJS18-M14DNK 检测车流量。该传感器工作电压为直流10-30V ,检测距离为10m ,响应时间小于3ms,能在-25℃~55℃的温度条件下正常工作。当有车辆通过光电开关之间时,输出端将输出一个开关信号,送入单片机,单片机执行相应程序自动对输入信号进行计数,从而完成对车流量的统计。

车流量检测传感器可对单片机控制系统提供实时数据,系统对所获数据进行处理。实现红绿灯控制必须解决对当前十字路口的交通状况的检测,

智能交通信号灯控制系统设计

编号: 毕业论文(设计) 题目智能交通信号灯控制系统设计 指导教师xxx 学生姓名杨红宇 学号201321501077 专业交通运输 教学单位德州学院汽车工程系(盖章) 二O一五年五月十日

德州学院毕业论文(设计)中期检查表

目 录 1 绪论............................................................................................................................ 1 1.1交通信号灯简介...................................................................................................... 1 1.1.1 交通信号灯概述.................................................................................................. 1 1.1. 2 交通信号灯的发展现状...................................................................................... 1 1.2 本课题研究的背景、目的和意义 ......................................................................... 1 1. 3 国内外的研究现状 ................................................................................................. 1 2 智能交通信号灯系统总设计.................................................................................... 2 2.1 单片机智能交通信号灯通行方案设计 ................................................................. 2 2.2 功能要求 ............................................................................... 错误!未定义书签。 3 系统硬件组成............................................................................................................ 4 4 系统软件程序设计.................................................................................................... 5 5 结论和展望................................................................................................................ 6 参考文献...................................................................................... 错误!未定义书签。 杨红宇 要: 但是传统的交通信号灯不已经不能满足于现代日益增长的交通压力,这些缺点体现在:红绿 以及车流量检测装置来实现交通信号灯的自控制,随着车流量来改变红绿灯1 绪论 1.1 1.1.1 为现代生活中必不可少的一部分。

基于PLC的智能交通灯控制系统设计 开题报告

南京师范大学中北学院
毕业设计(论文)开题报告
( 10 届)
题 目: 基于 PLC 智能交通灯控制系统设计
专 业: 电气工程及其自动化
姓 名: xxx 学 号: xxx
指导教师: xxx 职 称:
填写日期:
2014 年 2 月 20 日
南京师范大学中北学院教务处 制
开题报告填写要求
1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格

审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业 设计(论文)工作前期内完成,经指导教师签署意见及院、系审查 后生效;
2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计 的电子文档标准格式(可从教务处网址上下载)打印,禁止打印在 其它纸上后剪贴,完成后应及时交给指导教师签署意见;
3.有关年月日等日期的填写,应当按照国标 GB/T 7408—94《数 据元和交换格式、信息交换、日期和时间表示法》规定的要求,一 律用阿拉伯数字书写。如“2011 年 4 月 26 日”或“2011-04-26”。
4.院系审查意见栏签章:自办专业盖中北学院教学院长签名章、 中北学院公章,非自办专业盖联办二级学院教学院长签名章、联办 二级学院公章。

毕 业 设 计(论 文)开 题 报 告
1.本课题的目的及研究意义:
随着我国交通事业的迅速发展,各种公交、运输汽车、私家车等车的急速增加,使 得城市道路交通日益堵塞,交通在许多城市已经成为“瓶颈”问题。因此,提高城市路 网的通行能力、实现道路交通的科学化管理迫在眉睫。
虽然各城市已在十字路口设置了交通灯,对交通进行了有效的疏通,但是随着社会、 经济的快速发展,原先的交通灯控制系统已经不能适应现在日益繁忙的交通状况。如何 改善交通灯控制系统,使其适应现在的交通状况,成为研究的课题。
传统的十字路口交通控制灯,通常的做法是:事先进行车流量的调查,运用统计的 方法将两个方向红绿灯的延时预先设置好。然而,实际上车辆流量的变化往往是不确定 的,有的路口在不同的时段甚至可能产生很大的差异。即使是经过长期运行、较适用的 方案,仍然会发生这样的现象:绿灯方向几乎没有什么车辆,而红灯方向却排着长队等 候通过。可见,统计的方法已不能适应迅猛发展的交通现状,更为现实的需要是:能有 一种能够根据车流量变化适时调节的交通灯控制系统。
我所要研究的就是基于 PLC 的智能交通灯控制系统。智能交通系统(ITS—— Intelligent Transport Systems)ITS 是一个跨学科、信息化、系统化的综合研究体系, 其主要内容是:将先进的人工智能技术、自动控制技术、计算机技术、信息与通讯技术 及电子传感技术等有效的集成,并应用于整个地面交通管理系统而建立的一种在大范围 内、全方位发挥作用的,实时、准确、高效的综合交通运输管理系统。由于交通系统具 有较强的非线性、模糊性和不确定性,是一个典型的分布式非线性系统,而且具有多种 信息来源、多传感器的特点,用传统的理论与方法很难对其进行有效的控制。把先进的 智能控制技术、信息融合技术、智能信息处理技术与交通管理技术结合起来,代表着城 市交通信号控制系统发展的方向。
智能交通的发展是现代社会经济发展的客观要求,交通运输是国民经济和现代社会 发展的基础。由于现代社会城市化速度越来越快、国民经济的高速增长、全球经济的一 体化进程加快、个人旅行与休闲时间的不断增加以及人们对交通需求越来越高,智能交 通便成为现代社会经济发展的客观要求。

川大2020《计算机控制系统》第二次作业答案

首页 - 我的作业列表 - 《计算机控制系统》第二次作业答案 完成日期:2020年06月08日 14点48分 说明:每道小题选项旁的标识是标准答案。 一、单项选择题。本大题共16个小题,每小题 3.0 分,共48.0分。在每小题给出的选项中,只有一项是符合题目要求的。 1.()是将生产过程工艺参数转换为电参数的装置。 A.传感器 B.A/D转换器 C.D/A转换器 D.互感器 2.在计算机和生产过程之间设置的信息传送和转换的连接通道是()。 A.接口 B.过程通道 C.模拟量输入通道 D.开关量输入通道 3.所谓量化,就是采用一组数码来逼近离散模拟信号的幅值,将其转换为 ()。 A.模拟信号 B.数字信号 C.程序代码 D.量化代码 4.数控系统一般由输入装置、输出装置、控制器和插补器等四大部分组成, 这些功能都由()来完成。 A.人 B.生产过程 C.计算机 D.实时计算 5.外界干扰的扰动频率越低,进行信号采集的采样周期应该越()。 A.长 B.短

C.简单 D.复杂 6.数字PID控制器是控制系统中应用最为广泛的一种控制规律,其中能迅速 反应误差,从而减小误差,但不能消除稳态误差的是()。 A.微分控制 B.积分控制 C.比例控制 D.差分控制 7.在计算机控制系统中,PID控制规律的实现必须采用数值逼近的方法。当 采样周期短时,用求和代替积分、用后向差分代替微分,使模拟PID离散化变为()。 A.微分方程 B.差分方程 C.积分方程 D.离散方程 8.香农采样定理给出了采样周期的上限,采样周期的下限为计算机执行控制 程序和()所耗费的时间,系统的采样周期只能在Tmin和Tmax之间选择。 A.输入输出 B.A/D采样时间 C.D/A转换时间 D.计算时间 9.在有交互作用的多参数控制系统中,振铃现象有可能影响到系统的()。 A.可靠性 B.稳定性 C.经济性 D.通用性 10.在实际生产过程中,因为前馈控制是一个(),因此,很少只采用前馈 控制的方案,常常采用前馈-反馈控制相结合的方案。 A.开环系统

大迟延和复杂控制系统

现代工程控制理论实验报告学生姓名:任课老师: 学号:班级:

实验十二大迟延和复杂控制系统 摘要 本次试验主要研究了大迟延系统和串级双回路系统,每个部分所包含的内容如下。 基于大迟延系统主要研究对其的各种控制方法,使系统品质能够满足要求,具体内容于下: (1)研究大迟延系统PID控制器参数的选择方法; (2)研究基于微分先行的大迟延控制方法; (3)分析基于smith预估的控制策略,并与PI控制作对比。 其次要分析复杂控制系统。主要分析以下中系统的特性: (1)分析串级控制系统的各种特点并与单回路系统作对比; (2)研究基于多输入多输出系统的解耦方法; (3)研究机跟炉,炉跟机两种协调方式

目录 实验十二大迟延和复杂控制系统 (2) 摘要 (2) 1、大迟延控制系统 (4) 1.1大迟延环节 (4) 1.2对大迟延系统的几种控制策略 (4) 2、串级控制系统 (18) 2.1串级控制系统的组成 (18) 2.2串级控制系统的特点 (18) 2.3串级控制系统各种特点的实验验证与分析 (19) 3、多输入多输出系统的解耦 (24) 3.1解耦原理 (24) 3.2仿真实例 (26) 4、协调控制系统 (39) 4.1协调控制方式介绍 (39) 4.2协调控制方式的仿真 (39)

1、大迟延控制系统 1.1大迟延环节 控制领域中称传递函数为s eτ-的环节为纯迟延环节。当对象的传递函数中含有纯迟延项时,我们称这样的对象为迟延对象。 纯迟延环节虽然不会改变系统的增益,但会改变系统的时间特性和稳定性。 由于纯迟延环节的存在,系统的输出会滞后sτ,不仅会降低系统的反应时间,而且会导致反馈量不能表示当前系统的状态,直接影响控制器的控制效果,甚至导致破坏整个系统的稳定性。 设某一迟延对象的传递函数为 (1) s n k e Ts τ- +,当0.3 T τ >时我们称这 样的对象为大迟延对象。对于含有大迟延对象的系统,上述问题尤为严重。 因此针对大迟延对象,需要新的控制策略。常见的针对大迟延系统的控制方法有PI控制、微分先行、smith预估。 1.2对大迟延系统的几种控制策略 1.2.1PI控制与PID控制 1.2.1.1控制原理及方法 针对大迟延环节选择控制器时,以往的经验公式不能直接使用了,需要用到大迟延环节特有的整定方法。

智能照明控制系统方案设计

灯光控制系统方案

一、系统概述 系统原理概述 系统所有的单元器件(除电源外)均内置微处理器和存储单元,由一对信号线(UTP5)连接成网络。每个单元均设置唯一的单元地址并用软件设定其功能,通过输出单元控制各回路负载。输入单元通过群组地址和输出组件建立对应联系。当有输入时,输入单元将其转变为数字信号在系统总线上广播,所有的输出单元接收并做出判断,控制相应回路输出。 系统通过两根总线连接成网络。总线上不仅为每个组件提供24伏直流电源,还加载了控制信号。通过系统编程使控制开关与输出回路建立逻辑对应关系。 系统元件采用 模块化结构、并已 经有系统化产品、 系统扩展方便。同 时,通过专用接口 元件及软件,可能 直截接入电脑进行实时监控,或接入以太网进行远程实时监控。因此在设计时更加简单、灵活。 系统为分布式控制,模块化结构,可靠性高。任何控制模块均内置CPU,每个输入模块(场景开关、多键开关、红外传感器等)都可直接与输出模块(调光器、输出继电器)通讯(发送指令→接受指令→执行指令),避免了集中式结构中央CPU一旦出现故障造成整个系统瘫痪的弱点。 与BA系统的集成

诺雅照明控制系统是一个开放的系统,通过专用接口软件,可方便地与其他系统连接,如楼宇自控系统、门禁系统、保安监控系统、消防系统等。

系统结构图

二、系统功能和优点 智能照明控制系统在学校应用的功能和优点: 1、实现照明控制智能化 可用手动控制面板,根据一天中的不同时间,不同用途精心地进行灯光的场景预设置,使用时只需调用预先设置好的最佳灯光场景,使人产生新颖的视觉效果。随意改变各区域的光照度。 2、美化环境以达到吸引学生的注意力 好的灯光设计,能营造出一种温馨、舒适的环境,增添其艺术的魅力。良好的环境可以培养学生对其产生更大的兴趣,从而得到更好的学习效果。 利用灯光的颜色、投射方式和不同明暗亮度可创造出立体感、层次感,不同色彩的环境气氛,不仅使学生有个很好的学习环境,而且还可以产生一种艺术欣赏感,对课程产生强烈的研究精神。 3、可观的节能效果 由于智能照明控制系统能够通过合理的管理,根据不同日期、不同时间按照各个功能区域的运行情况预先进行光照度的设置,不需要照明的时候,保证将灯关掉;在大多数情况下很多区域其实不需要把灯全部打开或开到最亮,智能照明控制系统能用最经济的能耗提供最舒适的照明;系统能保证只有当必需的时候才把灯点亮,或达到所要求的亮度,从而大大降低了学校的能耗。 4、延长灯具寿命 灯具损坏的致命原因是电压过高。灯具的工作电压越高,其寿命则成倍降低。反之,灯具工作电压降低则寿命成倍增长。因此,适当降低灯具工作电压是延长灯具寿命的有

单片机设计方案——交通灯控制系统设计方案

单片机课程设计报告交通灯控制系统设计

摘要 本设计是针对交通灯系统的设计,由单片机AT89C51(实物用AT89S52)、键盘、LED显示、交通灯演示系统组成。单片机是把微型计算机的各功能部件集成在一块芯片中,构成的一个完整的微型计算机。AT89C51单片机是MC-51中的子系列,是一组高性能兼容型单片机,AT89C51是一个低功耗高性能的CMOS 8位单片机,40个引脚,片内含4KB Flash ROM和128B RAM,它是一个全双工的串行通行口,既可以用常规编程,又可以在线编程。 本设计中的数码管的选通采用的方法是动态显示,对每一位数码分时轮流通电显示,复位电路采用上电+按钮电平复位,时钟电路采用内部时钟产生方式。对特殊情况的处理采用中断处理方式,在中断处理程序中采用对管脚的状态查询扫描,已采取相应情况的处理。 对设计方案进行电路硬件设计,并将已编程的程序载入调试,可以得到理想的实验效果。系统包括人行道、左转、右转、以及基本的交通灯的功能.具体功能是假如 A 道和B道上均有车辆要求通过时,A、B道轮流放行。A道放行 25秒,B道放行20秒。一道有车而另一道无车,交通灯控制系统能立即让有车道放行。有紧急车辆要求通过时,系统要能禁止普通车辆通行,A、B道均为红灯,紧急车由K2 开关模拟。绿灯转换为红灯时黄灯亮 1秒钟。系统除基本交通灯功能外,还具有倒计时、时间设置、紧急情况处理、分时段调整信号灯的点亮时间以及根据具体情况手动控制等功能。

目录 1引言.......................................................................................................................................... - 1 - 1.1交通灯的重要作用........................................................................................................... - 1 -1.2该交通灯系统的特点....................................................................................................... - 1 -2系统总体方案及硬件设计 ......................................................................................................... - 2 - 2.1原理框图........................................................................................................................... - 2 -2.2设计功能........................................................................................................................... - 2 - 2.3交通灯控制系统各部分硬件组成................................................................................... - 2 - 2.3.1复位部分.................................................................................................................... - 2 - 2.3.2时钟电路部分............................................................................................................ - 3 - 2.3.3路口指示灯部分........................................................................................................ - 3 - 2.3.4显示部分.................................................................................................................... - 3 -2.4元器件清单....................................................................................................................... - 4 -3软件设计..................................................................................................................................... - 5 - 3.1交通灯控制系统软件流程图及程序分析....................................................................... - 5 - 3.1.1主程序流程图及程序模设计.................................................................................... - 5 - 3.1.2INT0中断服务程序流程图及程序模设计.............................................................. - 6 -3.2路口指示灯部分............................................................................................................... - 7 - 3.3显示部分........................................................................................................................... - 7 - 4. Proteus软件仿真 ..................................................................................................................... - 8 - 5 课程设计体会......................................................................................................................... - 10 -参考文献....................................................................................................................................... - 10 -附1:源程序代码 (13) 附2:系统原理图 (20)

单元机组协调控制系统设计

单元机组协调控制系统设计 摘要 在单元制机组的不断发展,协调控制系统作为单元制机组的控制核心,已然成为电厂自动化系统中最为关键的组成单元。随着机组类型的不同,各个机组的参数也越来越高,容量也在逐渐增进,机组的动态特征和控制难度也随机组型号的不同而改动,因此不同机组的协调控制系统也是不同的。所以在设计协调控制系统时,应该综合考虑所研究机组的动态特征和生产流程,针对不同类型机组的进行相应的方略。在火电厂现场中,单元机组协调控制系统是一个具有强耦合、大时滞、大迟延、非线性等特征的一个多变量系统。所以,这些复杂的动态特征,使得创建单元机组的非线性动态模型成为一个难点,而且使协调控制及其参数整定变得复杂起来,往往使调节品质下降,不能得到令人中意的控制品质。 本文首先阐述了单元机组协调控制系统的结构和功能,并对机组的动态特征和负荷指令管理系统进行了描述。然后以一个300MW机组为研究对象,由分析得出该机组的模型结构,再对辨识出的协调系统的对象进行静态解耦控制,用工程正定法对解耦控制器参数进行整定,并用Matlab软件做了系统仿真。仿真结果表明,解耦后的协调控制系统可以达到令人满意的控制品质和效果。 关键词:协调控制;解耦控制;Matlab仿真;PID整定;300MW机组

Design of Coordinated Control System for Unit Abstract In the continuous development of unit system, coordinated control system as a unit system control core, has become the power plant automation system, the most critical component. With the different types of units, the parameters of each unit are getting higher and higher, the capacity is gradually increasing, the dynamic characteristics of the unit and the difficulty of control are also different types of change, so different units of the coordinated control system is different. Therefore, in the design of coordinated control system, should consider the selected units of the dynamic characteristics and process, for different types of units for the corresponding design. In the field of thermal power plant, the unit control system is a multivariable system with strong coupling, time variability, large delay and non-linearity. Therefore, these complex dynamic characteristics make the nonlinear dynamic model of the unit unit become a difficult point, and make the coordination control and its parameter setting become complicated, and the adjustment quality is often reduced, and the satisfactory control effect can not be obtained. In this paper, the structure and function of the unit control system are described, and the dynamic characteristics and load command management system of the unit are described. Then, a 300MW unit is taken as the object of study, and the model structure of the unit is obtained. The decoupling control of the identified coordinate system is carried out. The parameters of the decoupling controller are set by engineering positive definite method. Software to do the system simulation. The simulation results show that the coordinated control system can achieve satisfactory control quality and effect. Keywords:Coordination control system;Decoupling control;Matlab simulation;PID tuning ;300MW unit

交通灯控制系统课程设计

2011年至2012年第1学期《单片机原理与应用》课程设计 班级1006402 指导教师涂立旎 学生人数___ _3__ ___ 设计份数 1 2011年12月23日

城市交通灯控制系统设计报告 1006402-42 流溪 1006402-24钱升 1006402-06毛运鹏 一.设计时间 2012年12月19日——2011年12月23日 二.设计地点 一实验楼401机房 三.设计小组及成员分工 1006402-42 流溪(组长,编写及调试程序) 1006402-24 钱升(负责设计报告的书写及资料整理) 1006402-06 毛运鹏(原理图、流程图设计) 四.指导老师 涂立老师,旎老师 五.设计题目 基于51型单片机的城市交通灯控制系统 六.设计容及目标 1.该交通灯系统的设计容 本设计是基于AT89S51单片机的十字路口交通灯控制系统,利用6个发光二极管模拟交通灯。按照时间控制原则,利用并行接口和定时器,采用时间中断方式设计一套十字路口的交通灯管理系统,通行时间(或禁止时间)30秒,准备时间3秒,在准备时间里黄灯闪烁3次,闪烁频率为0.5秒,周而复始。 2.该交通灯系统的设计目标 本系统结构简单,操作方便;可实现自动控制,具有一定的智能性;对优化城市交通具有一定的意义。本设计将各任务进行细分包装,使各任务保持相对独立;能有效改善程序结构,便于模块化处理,使程序的可读性、可维护性和可移植性都得到进一步的提高。

七.流程图与原理图及部分说明 1.程序流程图如图1所示: 图1. 程序流程图 2.主程序流程图步骤说明: (1)东西方向车道红灯亮,南北方向车道绿灯亮。表示东西方向车道上的车辆禁止通行,南北方向车道允许通行。绿灯亮足规定的时间隔时,控制器发出状态信号,转到下一工作状态。

控制系统设计学长总结

《控制系统设计》 重点 一 1. 频谱概念 傅里叶级数的系数表示了各次谐波的幅值和相位,这些系数的集合成为频谱。 2. 线状谱,连续谱 周期信号对其求傅里叶级数,可得到其频谱,周期信号的频谱是离散的; 非周期信号一般可视为T →∞的周期信号,对其取傅氏变换得到频谱,一般来说,其频谱是连续的。非周期信号可以进行周期延拓,这时它的频谱就是对应周期信号的频谱的包络线,但幅值有可能不同。 3. 典型频谱特性(阶跃谱,常值谱,脉冲谱,余弦谱) 脉冲信号的频谱是一常值A 且包含所有的频率,频谱丰富。 余弦谱若输入为t A 1cos ω,则其线谱为 -1δ处的两个f f ±=函数(脉冲函数) 构成,脉冲函数的面积为2A ,即幅值是2A 。 常值谱在所有的频段上均为零,仅在零频率(直流)上有一个-δ函数。 阶跃谱有一个连续变化的部分和一个-δ函数,-δ函数代表直流分量,其他各次谐波构成以连续谱,连续谱随频率增加很快衰减。(P18) 4. 离散,快速傅里叶变换的区别 ①DFT 为离散傅里叶变换,是用数值计算的方法求信号的频谱。其一般公式为: ()()1 -1,0,/2-1 -0 * N k e n f k F N jnk p N n ?==∑=π 对一段给定的信号,在一个周期内取N 个采样点,求其离散傅里叶变换,再除以N 就可得对应的线谱。 求频谱 :将其乘上?t就可以得到所求频谱的值 求线谱 :在一个周期内取N 个采样值,求其离散傅立叶变换,再除以N ②FFT 为快速傅里叶变换,它是为了提高DFT 的计算效率而提出的。对FFT 而言,一般要求时间点数为2的整数次方,即r N 2=。

控制系统cad形考作业(新)

目录 控制系统CAD作业1 (1) 第1章 (1) 第2章 (3) 控制系统CAD作业2 (7) 第3章 (7) 第4章 (9) 控制系统CAD作业3 (16) 第5章 (16) 第6章 (20) 控制系统CAD作业4 (25) 第7章 (25) 第8章 (30)

第1章 一、填空题 1.按控制信号传递的路径不同,可将控制系统划分为:按给定值操纵的开环控制、按偏差调节的闭环(反馈)控制和带补偿调节的复合控制三种控制方式,其中控制精度最高的是带补偿调节的复合控制控制方式。 2.对自动控制系统性能的基本要求可以归纳为“稳、快、准”三个方面,一个系统要能正常工作,其首先必须满足稳定的最基本要求。 3.控制系统的设计包含分析和设计两方面内容。 4.控制系统的仿真依据模型的种类不同,可分为物理仿真、数学仿真和混合仿真三种形式。 二、简答题 1.简述控制系统CAD的发展历程,并简单分析控制系统CAD 和机械CAD或建筑CAD 的相同点和区别。 早期的控制系统设计可以由纸笔等工具容易地计算出来,如Ziegler 与Nichols 于1942 年提出的PID 经验公式就可以十分容易地设计出来。随着控制理论的迅速发展,光利用纸

笔以及计算器等简单的运算工具难以达到预期的效果,加之在计算机领域取得了迅速的发展,于是20世纪70年代出现了控制系统的计算机辅助设计(computer-aided control system design , CACSD)方法。近三十年来,随着计算机技术的飞速发展,各类CACSD 软件频繁出现且种类繁多,其中MATLAB已成为国际控制界的标准分析和辅助设计软件。 控制系统CAD 和机械CAD或建筑CAD的相同点是均是借助计算机软件进行设计;不同的是设计对象不同,其中控制系统CAD是借助计算机对控制系统进行仿真和设计,机械CAD 是借助计算机对机械结构进行设计和计算,建筑CAD借助计算机辅助设计建筑结构,设计对象的不同决定了其各自使用的软件也不尽不同。 2.什么是控制系统的计算机仿真? 控制系统的计算机仿真是利用计算机对控制系统进行数学仿真。数学仿真就是根据实际系统中各个变化量之间的关系,构建出系统的数学模型,并利用此模型进行分析研究。数学仿真的关键在于数学模型的构建和求解。 数学仿真具有经济、方便和灵活的优点,它的主要工具是计算机,故又称计算机仿真。而控制系统的计算机仿真就是以控制系统的数学模型为基础,借助计算机对控制系统的特性进行实验研究。

智能控制系统课程设计

目录 有害气体的检测、报警、抽排.................. . (2) 1 意义与要求 (2) 1.1 意义 (2) 1.2 设计要求 (2) 2 设计总体方案 (2) 2.1 设计思路 (2) 2.2 总体设计方框图 2.3 完整原理图 (4) 2.4 PCB制图 (5) 3设计原理分析 (6) 3.1 气敏传感器工作原理 (7) 3.2 声光报警控制电路 (7) 3.3 排气电路工作原理 (8) 3.4 整体工作原理说明 (9) 4 所用芯片及其他器件说明 (10) 4.1 IC555定时器构成多谐振荡电路图 (11) 5 附表一:有害气体的检测、报警、抽排电路所用元件 (12) 6.设计体会和小结 (13)

有害气体的检测、报警、抽排 1 意义与要求 1.1.1 意义 日常生活中经常发生煤气或者其他有毒气体泄漏的事故,给人们的生命财产安全带来了极大的危害。因此,及时检测出人们生活环境中存在的有害气体并将其排除是保障人们正常生活的关键。本人运用所学的电子技术知识,联系实际,设计出一套有毒气体的检测电路,可以在有毒气体超标时及时抽排出有害气体,使人们的生命健康有一个保障。 1.2 设计要求 当检测到有毒气体意外排时,发出警笛报警声和灯光间歇闪烁的光报警提示。当有毒气体浓度超标时能自行启动抽排系统,排出有毒气体,更换空气以保障人们的生命财产安全。抽排完毕后,系统自动回到实时检测状态。 2 设计总体方案 2.1 设计思路 利用QM—N5气敏传感器检测有毒气体,根据其工作原理构成一种气敏控制自动排气电路。电路由气体检测电路、电子开关电路、报警电路、和气体排放电路构成。当有害气体达到一定浓度时,QM—N5检测到有毒气体,元件两极电阻变的很小,继电器开关闭合,使得555芯片组成的多谐电路产生方波信号,驱动发光二极管间歇发光;同时LC179工作,驱使蜂鸣器间断发出声音;此时排气系统会开始抽排有毒气体。当气体被排出,浓度低于气敏传感器所能感应的范围时,电路回复到自动检测状态。

集散控制系统工程设计

合肥学院HEFEI UNIVERSITY 集散控制系统的工程设计 班级: 10 姓名: 学号: 10 指导教师: 完成时间:

集散控制系统的工程设计 现代科学技术领域中,计算机技术和自动化技术被认为是发展较快的两个分支,工业自动化根据生产过程的特点可分为过程控制和制造工业自动化及自动化测量系统。过程控制自动化是以流程工业为对象,流程工业自动化控制一般采用集散控制系统(DCS)。 一、DCS控制系统介绍 集散控制系统(Distributed control system)是以微处理器为基础的对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统,简称DCS系统。该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。DCS系统在现代化生产过程控制中起着重要的作用。 DCS的工程设计主要有12项内容,按先后顺序排列如下:方案论证,DCS 评估,DCS询价,技术谈判,合同签订,开工会议,系统设计,组态编程,安装调试,现场投运,整理文件,工程验收。 1.1集散控制系统的组成 1、现场控制级 又称数据采集装置,主要是将过程非控变量进行数据采集和预处理,而且对实时数据进一步加工处理,供CRT操作站显示和打印,从而实现开环监视,并将采集到的数据传输到监控计算机。输出装置在有上位机的情况下,能以开关量或者模拟量信号的方式,向终端元件输出计算机控制命令。 在DCS系统中,这一级别的功能就是服从上位机发来的命令,同时向上位机反馈执行的情况。至于它与上位机交流,就是通过模拟信号或者现场总线的数字信号。由于模拟信号在传递的过程或多或少存在一些失真或者受到干扰,所以目前流行的是通过现场总线来进行DCS信号的传递。

交通灯控制系统的设计

《微型计算机技术》 课程设计报告 题目交通灯控制系统的设计作者xx 班级xx 学号xx 指导教师xx 2005 年6月20日

《微型计算机技术》 课程设计报告 题目交通灯控制系统的设计作者xx 班级xx 学号xx 指导教师xx 2005 年6月20日

目录 第一部分: 微机硬件结构组成及原理知识---------------------------------------------------- 2第二部分: 微型计算机应用的系统设计------------------------------------------------------- 5 一、要求-------------------------------------------------------------------------------- 5 二、目的--------------------------------------------------------------------- 5 三、内容设计与步骤------------------------------------------------------ 5 四、设计结果与分析------------------------------------------------------ 10 五、设计体会--------------------------------------------------------------- 10 六、感谢--------------------------------------------------------------------- 10

热工系统纯迟延过程的控制策略研究

毕业设计说明书(论文) 作者:张继超学号:0807240636 学院:自动化工程学院班级:自动086 专业:□∨自动化□测控技术与仪器 ∨控制科学与工程□仪器科学与技术 所在系:□ 题目:热工系统纯迟延过程的控制策略研究 指导者:顾大可副教授签字: 评阅者: 2012 年6 月吉林

摘要 摘要 工业生产过程中的大多数被控对象都具有较大的纯滞后性质。被控对象的这种纯滞后性质经常引起超调和持续的振荡。在20世纪50年代,国外就对工业生产过程中纯滞后现象进行了深入的研究,史密斯提出了一种纯滞后补偿模型,由于当时模拟仪表不能实现这种补偿,致使这种方法在工业实际中无法实现。随着计算机技术的飞速发展,现在人们可以利用计算机方便地实现纯滞后补偿。这些系统由于能量或物料在介质中的传输,使被控参数惯性大,不能及时反映扰动量或控制量的变化。在应用于某些时滞大的对象时,还可能出现系统闭环稳定性降低、动态过程变差、调节品质恶化的现象。所以,大惯性的纯迟延过程在传统控制领域是公认的控制难题。针对工业过程中广泛存在的大时滞过程,这样的过程必然会产生较明显的超调量,使控制系统的稳定性变差,调节时间延长,本文叙述了双闭环控制器和先进的控制策略。文中具体研究了双控制器设计方案,文中将两个控制器设计为比例加积分(PI)类型,给出了具体的参数整定方法。该方案含两个独立的控制器,即跟踪控制器和扰动控制器,使设定值响应得以与扰动响应分离,从而可同时获得良好的设定值跟踪性能和抗干扰能力,同时系统的鲁棒性也比现有控制方案大为增加,进一步显示了双控制器优越的性能。 关键词:时滞;过程控制;双控制器;鲁棒稳定性

智能家居控制系统设计

智能生活智慧人生智能家居控制系统解决方案 广东领航者科技有限公司

一、概述 本方案设计采用witlife智能家居控制系统。 维德莱夫品牌源自澳大利亚,始创于1989年, Witlife维德莱夫—智能生活·智慧人生,系智能化酒店,智能化家居的领航者,在大洋洲和大中华地区设有研发和业务机构。在全球40多个国家和地区设有经销商和代表处。为智能化生活的进一步发展奠定了厚实的基础,为智能化领航起到了决定性作用。公司自创立以来始终不变的核心理念:为智能生活,提供人性化、专业化的全程智能服务,实现超乎客户满意的惊喜。 Witlife维德莱夫大中华地区总部成立于2010年,Wit life维德莱夫是一家专业从事家庭智能化控制产品与解决方案的研发、生产、销售和服务的全球知名企业,是全球知名的智能家居公司。 Witlife维德莱夫智能家居系统,是采用自动化控制系统、计算机网络系统、网络通讯技术、无线射频(RF)技术于一体的智能控制系统。具有实时显示、即时控制、预设控制、远程控制等功能,可以用家用电脑、手机、平板电脑、RF遥控器、触控面板等多种方式进行控制。通过网络可以完全掌控家庭、酒店所有的灯光、空调、电视、音响、热水器、饮水机、电饭煲、房门、窗帘、供养、浇花等。 Witlife维德莱夫,智能生活,智慧人生,一切尽在掌握之中。 推出的世界上最先进的网络家居控制系统,广泛应用于现代住宅中的安防监控、灯光窗帘、温度湿度、音乐影院等智能控制,并能无

缝接入小区网络对讲、家庭物联网。 二、网络家居控制系统的设计标准 本设计方案主要参照以下设计标准: 1、JGJ/T16-92 (民用建筑电气设计规范) 2、EN50090 (欧洲电工标准) 三、智能家居系统结构原理 智能家居控制系统采用目前最先进的网络架构,分散控制各个子系统,最适合现代家居的应用,其结构如下: 智能家居控制系统结构 智能家居控制系统的基本构成是网络点,网络点通过网络线接入路由器构成的家庭局域网。可以高速双向传输控制、信息、视频、音频等。 由上图可看出,智能家居控制系统平台能够搭载各种控制子系统,除了继电器控制信号,它能控制任何控制协议,传输任何音频、视频、信息数据,并能双向反馈。 智能家居控制系统具有: ?居家安防控制 ?居家监控系统 ?灯光智能控制

相关主题
文本预览
相关文档 最新文档