当前位置:文档之家› 合成气的制备方法

合成气的制备方法

合成气的制备方法
合成气的制备方法

二甲醚原料----合成气

合成气的主要组分为CO和H2,可作为化学工业的基础原料,亦可作为制氢气和发电的原料。经过多年的发展,目前以天然气、煤为原料的合成气制备工艺已很成熟,以合成气为原料的合成氨、含氧化物、烃类及碳一化工生产技术均已投入商业运行。清洁高效的煤气化联合循环发电系统的成功开发,进一步促进了合成气制备技术的发展。合成气的用途广泛,廉价、清洁的合成气制备过程是实现绿色化工、合成液体燃料和优质冶金产品的基础。

1合成气的制备工艺

根据所用原料和设备的不同,合成气制备工艺可以分为不同的类型,目前大多数合成气制备工艺是以处理天然气和煤这2种原料的工艺为基础发展起来的。

以天然气为原料的合成气制备工艺

以天然气为原料制备合成气是一个复杂的反应过程,其主要的反应包括天然气的蒸汽转化反应(1)、部分氧化反应(2)、完全燃烧反应(3)、一氧化碳变换反应(4)和甲烷与二氧化碳重整反应(5)。

CH4+H2O CO+3H2+206 kJ/mol (1)

CH4+0·5O2CO+2H2-36 kJ/mol (2)

CH4+2O2CO2+2H2O -802 kJ/mol (3)

CO+H2O CO2+H2-41 kJ/mol (4)

CH4+CO22CO+2H2+247 kJ/mol (5)

这几个主要反应的不同组合、不同的实施方式和生产装置,形成了天然气转化制备合成气的多种工艺。从工艺特征上来讲,目前成熟的天然气转化制备合成气的工艺可分为管式炉蒸汽转化法、部分氧化法和两者的组合方法等三大类。

甲烷蒸汽转化

甲烷蒸汽转化的代表反应式为(1)。工业上使用以Ni为活性组分,载体可用硅铝酸钙、铝酸钙以及难熔的耐火氧化物为催化剂,生成的合成气中H2/CO体积比约为3:0,适合于制备合成氨和氢气为主产品的工艺。此工艺能耗高,燃料天然气约占天然气总用量的1/3,高温下催化剂易失活,设备庞大,投资和操作费用高。

甲烷非催化部分氧化

甲烷非催化部分氧化的代表反应式为(2)。CH4与O2的混合气体在1 000~1 500℃下反应,伴有燃烧反应进行,生产的合成气中H2/CO体积比约为2:0,适合于甲醇、F-T合成生产。此工

艺对反应器材质要求苛刻,耐高温金属管的投资高,需要复杂的热回收和除尘装置。

甲烷催化部分氧化

甲烷催化部分氧化的代表反应式为(2)。以活性组分Ni、Rh和Pt等为主的负载型催化剂在750~800℃下进行反应,转化率可达90%以上,且无伴生燃烧反应发生;生产的合成气中H2/CO体积比约为2:0,同样适合于甲醇、F-T合成生产。目前该工艺尚处于试验开发阶段,英国Amoco、美国TRW、英国DavyMckee等公司进行了中试研究。

甲烷自热转化

甲烷自热转化的代表反应式为(1)和(2)。反应温度一般在850~1 050℃,H2/CO体积比可在1:0~3:0的范围内调节;虽然尚未工业化,但其发展前景良好,其工艺特点是采用固定床反应器,结构简单,设备费用低,但由于反应温度高,对催化剂的热稳定性和反应器材质要求很高。

以天然气为原料制备合成气工艺,其主要特点是流程短、CO2排放量少,符合可持续发展的要求,是今后的发展方向。但天然气转化制备合成气工艺过程存在投资高,对天然气价格敏感、催化剂昂贵和高温易失活等缺点。当前技术开发的主要方向是节能降耗、高效催化剂的开发和灵活调节合成气的H2/CO体积比,以适应化工合成的需要。此外,以CO2为天然气转化原料的合成气制备工艺的研究开发也备受重视。

煤气化工艺

煤气化工艺反应可分为2种类型:非均相的气-固反应和均相的气-气反应,对于自热式的煤气化反应系统来说,一般考虑如下几个主要反应:

C+O2CO2-394 kJ/mol (6)

C+0·5O2CO -110·5 kJ/mol (7)

C+CO22CO +173 kJ/mol (8)

C+H2O CO+H2+124·5 kJ/mol (9)

C+2H2CH4-87 kJ/mol (10)

煤气化工艺经过200多年的开发实践形成了100余种技术,根据气化炉内气流和燃料床层的运动特点,煤气化技术可分为气流床、流化床、移动床和熔融床等4类,前3种煤气化工艺已工业化或已建成示范装置,熔融床煤气化则处于中试阶段。

流化床煤气化

流化床煤气化技术是碎煤气化的主要方法,其主要特点为:气化剂从底部鼓入炉内,炉内的煤粒被气化剂流化起来,在一定温度下发生煤的气化反应。流化床气化过程易于控制,有利于大规模生产,但由于流化床煤气化过程偏低的操作温度和较多的粉尘含量、灰渣含碳量,其

仅适用于活性高的褐煤、年轻的烟煤。另外,为了回收利用飞灰和灰渣,还需要建立辅助的沸腾燃烧炉,设备复杂。

气流床煤气化

气流床煤气化是指在固体燃料气化过程中,粉煤与气化剂均匀混合,通过特殊的喷嘴进入反应器,瞬间着火,直接发生燃烧反应,火焰区温度高达2 000℃,形成液态炉渣。粉煤和气化剂在火焰中作并流运动,粉煤急速通过高温区,来不及熔结而迅速气化,反应时间极短。在高温下,所有干馏产物都迅速分解,转变为水煤气反应的组分,因而生成的煤气中只含有很少的CH4。气流床气化的最大特点是消除了燃料的粘结性对气化过程的影响。与其他煤气化的工艺相比,气化床气化的工艺有如下特点:煤在气流床中的停留时间短,单台设备处理能力大;煤种适应性强,原则上各种煤均可使用;出炉煤气不含焦油、酚类及重烃化合物,无污染物的排放;缺点是飞灰带出量大,需采用循环回炉的方法提高碳转化率,出炉煤气温度高,显热损失大。

移动床煤气化

移动床煤气化工艺是一逆流反应过程,煤由气化炉顶部加入,气化剂由炉底送入。气化过程进行比较完全,灰渣中残炭少,气化效率高,是一种理想的气化方式。在燃烧区,尚未完全气化的碳在O2的作用下,发生燃烧反应生成CO2和CO,这些高温气体作为载体向上面各反应区提供热量并参与反应。气化过程中煤在气化炉中的运动、参与的反应以及作用与高炉炼铁的焦炭相似。

-合成氨原料气的制备方法

年产五十万吨合成氨的原料气制备工艺筛选 合成氨生产工艺流程简介 合成氨因采用的工艺不同其生产流程也有一定的差别,但基本的生产过程都大同小异,基本上由原料气的生产、原料气的净化、合成气的压缩以及氨合成四个部分组成。 ●原料气的合成 固体燃料生产原料气:焦炭、煤 液体燃料生产原料气:石脑油、重油 气体燃料生产原料气:天然气 ●原料气的净化 CO变换 ●合成气的压缩 ●氨的合成 工业上因所用原料制备与净化方法不同,而组成不同的工艺流程,各种原料制氨的典型流程如下: 1)以焦炭(无烟煤)为原料的流程 50年代以前,世界上大多数合成氨厂采用哈伯-博施法流程。以焦炭为原料的吨氨能耗为88GJ,比理论能耗高4倍多。 我国在哈伯-博施流程基础上于50年代末60年代初开发了碳化工艺和三催化剂净化流程: ◆碳化工艺流程将加压水洗改用氨水脱除CO2得到的碳酸氢铵经结晶,分离后作 为产品。所以,流程的特点是气体净化与氨加工结合起来。 ◆三催化剂净化流程采用脱硫、低温变换及甲烷化三种催化剂来净化气体,以替代 传统的铜氨液洗涤工艺。 2)以天然气为原料的流程 天然气先要经过钴钼加氢催化剂将有机硫化物转化成无机硫,再用脱硫剂将硫含量脱除到以下,这样不仅保护了转化催化剂的正常使用,也为易受硫毒害的低温变换催化剂应用提供了条件。 3)以重油为原料的流程 以重油作为制氨原料时,采用部分氧化法造气。从气化炉出来的原料气先清除炭黑,经CO耐硫变换,低温甲醇洗和氮洗,再压缩和合成而得氨。 二、合成氨原料气的制备方法简述 天然气、油田气、炼厂气、焦炉气、石脑油、重油、焦炭和煤,都是生产合成氨的原料。除焦炭成分用C表示外,其他原料均可用C n H m来表示。它们呢在高温下与蒸汽作用生成以H2和CO为主要组分的粗原料气, 这些反应都应在高温条件下发生,而且为强吸热反应,工业生产中必须供给热量才能使其进行。 按原料不同分为如下几种制备方法: ●以煤为原料的合成氨工艺 各种工艺流程的区别主要在煤气化过程。 典型的大型煤气化工艺主要包括固定床碎煤加压气化工艺、德士古水煤浆加压气化工艺以及壳牌干煤粉加压气化工艺。 ①固定床碎煤气化

煤制乙二醇工艺流程详细工艺

环氧乙烷水合制乙二醇 乙二醇是合成聚酯树脂的主要原料,大家熟知的涤纶纤维就是由乙二醇与对苯二甲酸合成的。乙二醇还可用作防冻液,w(乙二醇)=55%的水溶液的冰点为-36℃,可用作中国北方冬天汽车必需的冷却液。此外,乙二醇还可用作溶剂和用于化妆品、毛皮加工、烟叶润湿和纺织工业染整等。据预测,2000年乙二醇的世界产量将达到10Mt/a。中国1995年的产量为53×104 t/a,到2000年将达72×104 t/a。 1.乙二醇生产方法综述 现在,乙二醇有多种工业生产方法,但环氧乙烷水合制乙二醇法仍占主导地位。 (1)环氧乙烷法 可用酸作催化剂,但用得较多的是加压水合: 反应中生成约10%的二乙二醇醚(二甘醇)和三乙二醇醚(三甘醇),它们是有用的化工产品,故反应所得的有用产品总产率按环氧乙烷计接近100%,生成的二乙二醇醚用作纤维素、树胶、涂料、喷漆的溶剂或稀释剂。三乙二醇醚主要用来生产刹车液。它们的售价比乙二醇还高,因此可改善生产装置的经济效益。 环氧乙烷法因环氧乙烷售价高,生产总成本也比较高。 (2)乙烯乙酰氧基化法 乙烯乙酰氧基化法又称奥克西兰(Oxirane)法,它可由乙烯为原料生产乙二醇。工艺分二步进行,第一步乙烯与醋酸反应生成乙二醇-醋酸酯和乙二醇二醋酸酯: 反应条件:反应温度160℃,反应压力,催化剂TeO2/HBr[w(HBr)=48%的水溶液],还可用醋酸锰加碘化钾作催化剂,乙烯转化率60%,选择性95%~97%,产品分布:乙二醇二醋酸酯70%,乙二醇一醋酸酯25%,乙二醇5%。 第二步是醋酸酯水解生成乙二醇和醋酸:

反应条件为:反应温度107~130℃,压力,选择性95%。 该法的总反应式为: 2CH2=CH2+2H2O+O2→2HOCH2-CH2OH 以乙烯计的摩尔产率为94%,高于以环氧乙烷法生产乙二醇的产率。 该法虽然以廉价的乙烯作原料,但投资和能耗比环氧乙烷法高,经济上是否比环氧乙烷法好尚有争论,再加上醋酸对设备的腐蚀是一个头痛问题,催化剂的再生和回收问题也没有很好解决,致使已开工生产的a生产装置被迫停产关闭。 (3)乙烯氧氯化法 该法又称帝人(Teijin)法。由日本帝人公司开发成功,是对老式的氯乙醇法生产环氧乙烷的改进。采用TiCl3-CuCl2-HCl水溶液为催化剂。化学反应如下: CH2=CH2+TiCl3+H2O→ClCH2-CH2OH+TiCl+HCl ClCH2-CH2OH+H2O→HOCH2-CH2OH+HCl 催化剂再生: TiCl+2CuCl2→2CuCl2+H2O 2CuCl+2HCl+ 1/2 O2→2CuCl2+H2O 反应条件为:反应温度160℃,压力,pH<4,乙二醇选择性为89%,乙醛6%,其他(二氧杂环己烷和二乙二醇)5%,如果Cl-∶Ti3+的比例小于4∶1时,乙醛产率将显著增大,在反应温度大于120℃时,氯乙醇可在同一装置内水解。 乙烯的氧氯化亦可在另一个催化剂体系中进行: 催化剂再生: 2Cu+(或2Fe2+)+2H++1/2O2→2Cu2+(或2Fe3+)+H2O 反应条件:反应温度150~180℃,压力~,乙二醇选择性86%,该法的优点是乙烯消耗定额很低,仅 kg/kg乙二醇,但有强腐蚀性,产物与催化剂溶液的分离比较困难。 (4)由合成气制乙二醇 合成气是一氧化碳和氢气混合物的总称。现在工业上用煤、天然气和劣质重油为原料可廉价、大量的生产出来,目前主要用来生产甲醇、合成氨、羰基化产品等。由合成气制乙二醇已引

合成气制乙二醇项目建议书

项目建议书 合成气制乙二醇 第一章总论 1.1 项目概况 乙二醇在经济中有着极其重要的地位。用于生产聚酯纤维、薄膜、容器瓶类等系列产品和汽车防冻剂,还可用于除冰剂、表面涂料、表面活性剂、增塑剂等化工产品的原料。其生产的聚酯碳纤维强度高、耐腐化,是世界公认的无危害高新工程材料。因此,发展和技术改造乙二醇工艺设计对我国经济发展有着重要的意义。 本项目是为一综合化工企业设计一座采用清洁生产工艺制取乙二醇分厂。要求利用煤和水制取的CO和氢气,采用合成气间接法工艺合成乙二醇。 1.2 调研依据 1)《化工建设项目可行性研究报告内容和深度规定》2005 年10 月2)2015年三井杯大赛相关指导意见书 1.3 项目背景 乙二醇产业状况 目前,我国乙二醇生产技术主要为石油路线,即以乙烯为原料,

经环氧乙烷生产乙二醇,该技术全部为引进装置,主要集中在中石化、中石油及中海油等大型国有企业中,引进技术包括英荷壳牌公司(Shell)、美国科学设计公司(SD)以及美国DOW化学公司(原UCC公司)的技术。非石油路线是以合成气为原料,可采用多种方法合成乙二醇,在我国已经实现产业化的主要是我国自主研究开发的以煤或者天然气制备乙二醇的生产技术。 由煤制合成气(CO+H:)生产EG的新技术发展很快,而传统用石油基乙烯生产EG工艺受到以煤为原料的合成气路线挑战,尤其是最近几年国内已有多套以煤基合成气生产EG的工业装置实现运行,煤制EG新增产能远高于石油基乙烯路线EG,以合成气为基础的EG 生产新工艺引起业内普遍关注。 合成气制EG技术发展现状 合成气可来源于石油、煤、天然气等化石原料以及生物质资源,获取途径十分广泛,合成气生产工艺在国内已经十分成熟。合成气制EG 分为间接法和直接法2种,直接法是合成气通过高温高压和贵金属催化剂直接合成EG,目前此法仍处于研究阶段;间接法是利用合成气先合成出某些中间产品(例如草酸二甲酯),再通过催化加氢制得EG,这是目前及今后EG生产工艺发展的重点。 煤制乙二醇发展前景 传统的乙二醇生产方法是走石油化工路线,即由石油加工得到乙烯,乙烯氧化生成环氧乙烷,环氧乙烷进一步水合生产乙二醇,随着世界石油资源的日渐短缺,开辟新的工艺路线已成为当务之急,考

合成气制乙二醇工艺 化学

一、EG目前市场及存在的问题 我国聚酯产业的快速发展对EG 产品的需求十分旺盛,加之产品市场缺口量大,从而为EG 产能增长尤其是煤制EG 新增产能释放提供了可观的市场空间,总体市场前景是令人乐观的,但是还存在以下几个不容忽视的问题: 第一,我国EG 装置产能低,产品主要依赖进口,同时石油路线EG 成本高、缺乏市场竞争力。 第二,我国煤制EG 虽然发展较快,但仍处于起步阶段,其核心技术( 主要是草酸酯加氢催化剂) 仍有待长周期工业运行的验证,另外煤制EG还存在煤耗高、水耗高、碳排放量大等缺陷,大规模发展煤制EG 受到资源条件、环境容量等方面因素制约。 第三,国外主要采用乙烷裂解制乙烯,生产成本低,其EG 产品价廉质优,而且主要出口到中国市场,因此无论是国产石油路线EG 还是煤制EG,都仍将受到进口EG 产品的强烈冲击。我国乙二醇供需状况: 二、选择该工艺的理由 与环氧乙烷水化法比较,该新型路线从合成气出发,首先由CO气相催化偶联合成草酸酯,草酸酯再催化加氢制备乙二醇,符合我国煤多油少的国情,通过煤基合成气制乙二醇,对国家经济发展具有战略意义,而且相对于石油化工路线来说,经济效益也较好。该方法工艺流程简单、能耗小、乙二醇的选择性相对较高,成为最有工业应用前景的反应。 煤制乙二醇经济性分析: 名称规格单耗单价成本 原辅材料

一氧化碳≥98.2%800m30.5 400 氢气≥99.5%1600m30.8 1280 氧气≥99%260m30.1 26 亚硝酸甲酯 4.4kg 522 甲醇≥99%130kg 2260 公用工程 新鲜水5t 523 循环水440t 0.5 220 电1100kwh 0.6 660 蒸汽 1.7 MPa 3.2t 120 384 蒸汽 1.0 MPa 3.6t 110 396 蒸汽0.5MPa 1.64t 100 164 压缩空气50m3150 合计3887 三、合成的工艺路线及简要工艺流程 草酸酯加氢制乙二醇工艺 此路线为两个反应过程组成: 首先,CO 与亚硝酸酯发生偶联反应,生成草酸酯和一氧化氮,一氧化氮在醇和氧气条件下发生再生反应,生成亚硝酸酯;其次,生成的草酸酯在催化剂的存在下与氢气发生加氢还原。反应原理及方程式如下: CO 偶联:2CO+ 2RONO →( COOR) 2+2NO NO 再生:2NO +2ROH +1/2O2 →2RONO+ H 2O 反应过程中并不消耗NO 与RONO,由CO 制草酸酯的总反应如下: 2CO +2ROH+1/2 O2→ ( COOR) 2+H 2O 草酸酯加氢机理: 首先草酸酯酯跟氢气发生反应生成中间产物烷基醇酸酯,然后中间产物再加氢生成乙二醇。由于醇羟基活泼性较高,在氢气存在下乙二醇可以进一步加氢生成副产物乙醇。方程式如下: 主反应: ( COOR) 2+2H2 →CH2OHCOOR+ROH CH2OHCOOR+2H2→(CH2OH)2+ROH 总反应:(COOR)2 + 4H2→(CH2OH)2 + 2ROH 烷基R 可为甲基、乙基、丙基、丁基等,RONO可由甲醇、乙醇、丙醇、丁醇等为原料制得。 副反应:(CH2OH)2+H2→CH3CH2OH+H2O 工艺流程图:

合成气制乙二醇

工艺选择 目前,乙二醇制备技术路线有3种:石油路线、煤路线和生物路线。 1.石油路线生产乙二醇 石油路线法均以石油化工产品乙烯或其所制产品环氧乙烷为原料,再经不同反应过程制得乙二醇,国内工业生产实际应用的石油路线法为环氧乙烷直接水合法。 环氧乙烷直接水合法采用原料环氧乙烷与水在190~200 ℃、MPa 操作条件下,反应 h,生成乙二醇含量约 10%的乙二醇、二乙二醇、三乙二醇混合水溶液,再经分离制得乙二醇。 优点:技术成熟,应用面广,收率为90%。 缺点:依赖石油资源,水耗大,成本高,并且国内缺少自主产权技术,即工艺技术对外依赖程度高。 2.煤路线生产乙二醇 该工艺是以煤为原料,制得合成气后,通过直接合成法或间接合成法最终制成乙二醇。目前国内合成气路线法乙二醇生产装置均采用间接法。 实际工程应用的间接法为草酸酯法。即先制得合成气,然后再经催化反应生成草酸二甲酯(DMO),然后以 Cu/SiO2为催化剂,150 ℃条件下进行 DMO 的低压加氢制取乙二醇。该方法转化率达 %,乙二醇选择性 %。 优点:成本低,能耗低,水耗低,适合我国缺油、少气、煤炭资

源相对丰富的资源国情。 : 缺点:技术不成熟,目前催化剂寿命较短,聚合级产品质量不稳定,工程放大存在风险。 3.生物路线生产乙二醇 自然界中的碳水化合物,无论是淀粉基的多糖类作物(如玉米、小麦等),还是单糖或多糖类农作物(如甜高粱、菊芋等)均可以作为生物路线生产乙二醇的原料。中科院大连化学物理研究所研究人员首次尝试采用廉价的碳化钨催化剂应用于纤维素的催化转化,利用碳化钨 催化剂在涉氢反应中具有的类贵金属性质,可以替代价格昂贵的贵金属催化剂,将纤维素全部转化为多元醇,而且对乙二醇的生成表现出独特的选择性,尤其是在少量镍的促进作用下,乙二醇的收率可高达61%, 是一种极具工业应用前景的绿色工艺路线。 优点:不需要消耗大量的氧气,没有废气、废水排放,属于环境友好技术。 缺点:收率低,技术难度大,目前达不到工业化生产要求。 目前,国内外大型乙二醇的生产均为石油法,其主要原料为乙烯和氧气,用银催化剂,甲烷或氮气做致稳剂,乙烯直接氧化成环氧乙烷,然后再生成乙二醇。全球环氧乙烷生产技术大部分使用的是英荷Shell 化学公司、美国科学设计公司 ( SD)和美国 UCC 3 家公司的技术。

第讲合成氨原料气的制备方法

第讲合成氨原料气的制备 方法 This manuscript was revised on November 28, 2020

年产五十万吨合成氨的原料气制备工艺筛选 合成氨生产工艺流程简介 合成氨因采用的工艺不同其生产流程也有一定的差别,但基本的生产过程都大同小异,基本上由原料气的生产、原料气的净化、合成气的压缩以及氨合成四个部分组成。 原料气的合成 固体燃料生产原料气:焦炭、煤 液体燃料生产原料气:石脑油、重油 气体燃料生产原料气:天然气 原料气的净化 CO变换 合成气的压缩 氨的合成 工业上因所用原料制备与净化方法不同,而组成不同的工艺流程,各种原料制氨的典型流程如下: 1)以焦炭(无烟煤)为原料的流程 50年代以前,世界上大多数合成氨厂采用哈伯-博施法流程。以焦炭为原料的吨氨能耗为88GJ,比理论能耗高4倍多。 我国在哈伯-博施流程基础上于50年代末60年代初开发了碳化工艺和三催化剂净化流程: 碳化工艺流程将加压水洗改用氨水脱除CO2得到的碳酸氢铵经结晶,分离后作为产品。所以,流程的特点是气体净化与氨加工结合起来。 三催化剂净化流程采用脱硫、低温变换及甲烷化三种催化剂来净化气体,以替代传统的铜氨液洗涤工艺。 2)以天然气为原料的流程 天然气先要经过钴钼加氢催化剂将有机硫化物转化成无机硫,再用脱硫剂将硫含量脱除到以下,这样不仅保护了转化催化剂的正常使用,也为易受硫毒害的低温变换催化剂应用提供了条件。 3)以重油为原料的流程 以重油作为制氨原料时,采用部分氧化法造气。从气化炉出来的原料气先清除炭黑,经CO耐硫变换,低温甲醇洗和氮洗,再压缩和合成而得氨。 二、合成氨原料气的制备方法简述 天然气、油田气、炼厂气、焦炉气、石脑油、重油、焦炭和煤,都是生产合成氨的 原料。除焦炭成分用C表示外,其他原料均可用C n H m 来表示。它们呢在高温下与蒸汽作 用生成以H 2 和CO为主要组分的粗原料气, 这些反应都应在高温条件下发生,而且为强吸热反应,工业生产中必须供给热量才能使其进行。 按原料不同分为如下几种制备方法: 以煤为原料的合成氨工艺 各种工艺流程的区别主要在煤气化过程。 典型的大型煤气化工艺主要包括固定床碎煤加压气化工艺、德士古水煤浆加压气化工艺以及壳牌干煤粉加压气化工艺。 ①固定床碎煤气化

煤制乙二醇工艺流程详细工艺

[煤制甲醇]环氧乙烷水合制乙二醇 可用酸作催化剂,但用得较多的是加压水合 反应中生成约10%的二乙二醇醚(二甘醇)和三乙二醇醚(三甘醇),它们是有用的化工产品,故反应所得的有用产品总产率按环氧乙烷计接近100%,生成的二乙二醇醚用作纤维素、树胶、涂料、喷漆的溶剂或稀释剂。三乙二醇醚主要用来生产刹车液。它们的售价比乙二醇还高 , 因此可改善生产装置的经济效益。 环氧乙烷法因环氧乙烷售价高,生产总成本也比较高。 (2)乙烯乙酰氧基化法 乙烯乙酰氧基化法又称奥克西兰(Oxirane)法,它可由乙烯为原料生产乙二醇。工艺分二步进行,第一步乙烯与醋酸反应生成乙二醇-醋酸酯和乙二醇二醋酸酯: JCH J—CH S C-HJH * 6 —* CH C~ —CH3OI I + CH*—I—OCHi—屛般' 反应条件:反应温度160 C,反应压力2.8MPa,催化剂TeO 2 /HBr[w(HBr)=48% 的水溶液],还可用醋酸锰加碘化钾作催化剂,乙烯转化率60%,选择性95%?97%,产品分布:乙二醇二醋酸酯70%,乙二醇一醋酸酯25%,乙二醇5%。 第二步是醋酸酯水解生成乙二醇和醋酸: O O O “丨! I 匚冃$—匚OCHj—THiOK* CHj C—OCHg -diO-C CH, * ―r o CT^OHt 3CH,—C- 5们「蚀 反应条件为:反应温度107?130 C ,压力0.117MPa,选择性95%。 该法的总反应式为:

2CH2 = CH2 + 2H2O + O2^2HOCH2 - CH2OH 以乙烯计的摩尔产率为94%,高于以环氧乙烷法生产乙二醇的产率。 该法虽然以廉价的乙烯作原料,但投资和能耗比环氧乙烷法高,经济上是否比环氧乙烷法好 尚有争论,再加上醋酸对设备的腐蚀是一个头痛问题,催化剂的再生和回收问题也没有很好 解决,致使已开工生产的0.36Mt/a生产装置被迫停产关闭。 该法又称帝人(Teijin)法。由日本帝人公司开发成功,是对老式的氯乙醇法生产环氧乙烷的改 进。采用TiCl 3 -CuCI 2 -HCI水溶液为催化剂。化学反应如下: CH2 = CH2+T iCI3+H2O^ CICH 2-CH2OH+ TiCl + H Cl CICH 2—CH2OH + H2OTHOCH2—CH2OH+ HCI 催化剂再生: TiCI+2CuCI 2CuCI 2 +H 2O 2CuCI+2HCI+ 1/2 O 2CuCI 2+H2O 反应条件为:反应温度160 C ,压力7.3MPa,pH<4,乙二醇选择性为89%,乙醛6%,其他(二氧杂环己烷和二乙二醇)5%,如果CI-:Ti3+的比例小于 4 :1时,乙醛产率将显著增大,在反应温度大于120 C时,氯乙醇可在同一装置内水解。 乙烯的氧氯化亦可在另一个催化剂体系中进行: + 2Cu z+(^2Fe u)4 2H;O —- CH?OH+ 2Cu+ {S 2H* 催化剂再生: 2Cu + (或2Fe 2 + ) +2H + + 1 / 2 O2^ 2Cu 2 + (或2Fe 3 + ) + H2O 反应条件:反应温度150?180 C ,压力1.0?6.0MPa,乙二醇选择性86%,该法的优点是乙烯消耗定额很低,仅0.47 kg/kg乙二醇,但有强腐蚀性,产物与催化剂溶液的分离比较困难。 ⑷由合成气制乙二醇 合成气是一氧化碳和氢气混合物的总称。现在工业上用煤、天然气和劣质重油为原料可廉价、 大量的生产出来,目前主要用来生产甲醇、合成氨、羰基化产品等。由合成气制乙二醇已引起世界各国高度重视,期望用合成气代替乙烯能取得更大的经济效益。 以合成气为原料合成甲醇,继而制得甲醛已是成熟的工业技术,世界各工业发达国家从甲醛 出发合成乙二醇的研究正在积极开展。开发成功的有谢夫隆(Chevron)法和美国的甲醛在丝光沸石上的低温低压合成法。7 ①谢夫隆公司法 首先由甲醛与合成气反应生成羟基乙酸: 该法的优点是操作压力不高,采用价廉的非贵金属催化剂,缺点是工艺流程长,投资和操作费用均较大。 ②甲醛低温低压合成法

天然气制备合成气

天然气制备合成气 天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。制合成气是间接利用天然气的重要步骤,也是天然气制氢的基础,充分了解天然气制合成气 的工艺与催化剂对于我们进一步研究天然气的利用将有很大帮助。天然气中甲烷含量一般大于90%,其余为小量的乙烷、丙烷等气态烷烃,有些还含有少量氮和硫化物。其他含甲烷等气态烃的气体,如炼厂气、焦炉气、油田气和煤层气等均可用来制造合成气。 目前工业上有天然气制合成气的技术主要有蒸汽转化法和部分氧化法。本文主要对蒸汽转化法进行具体的描述,并具体介绍此工艺的发展趋势。 蒸气转化法 蒸气转化法是目前天然气制备合成气的主要途径。蒸汽转化法是在催化剂存在及高温条件下,使甲烷等烃类与水蒸气反应,生成CO H 、2等混合气,其主反应为: 2243H CO O H CH +=+,mol /206298KJ H =?Θ 该反应是强吸热的,需要外界供热。因为天然气中甲烷含量在90%以上,而甲烷在烷烃中热力学最稳定,其他烃类较易反应,因此在讨论天然气转化过程时,只需考虑甲烷与水蒸气的反应。 甲烷水蒸气转化反应和化学平衡 甲烷水蒸气转化过程的主要反应有: 2243H CO O H CH +?+,mol /206298KJ H =?Θ 222442H CO O H CH +?+,mol /165298KJ H =?Θ 222H CO O H CO +?+,mol /9.74298KJ H =?Θ 可能发生的副反应主要是析碳反应,它们是: 242H C CH +?,mol /9.74298KJ H =?Θ 22CO C CO +?,mol /5.172-298KJ H =?Θ O H C H CO 22+?+,mol /4.131-298KJ H =?Θ

合成气的生产

第五章合成气的生产 5.2由天然气制合成气 5.2.1概述 1.水蒸气转化法在高温和催化剂存在下,烷烃与水蒸气反应生产合成气的方法称为水蒸气转化法。当以天然气为原料时,又称甲烷蒸汽转化法,是目前工业生产应用最广泛的方法。 2.部分氧化法部分氧化法是指用氧气(或空气)将烷烃部分氧化制备合成气的方法。反应式表示为, 部分氧化法多用于以石脑油或重油为原料的合成气生产。 3. 自热式催化转化部分氧化法(ATR工艺) CH4的部分氧化和蒸汽转化组合在一个反应器进行。反应器上部为无催化剂的燃烧段,CH4的不完全燃烧,放出热量。 反应器下部为含催化剂的转化段,利用燃烧段反应放出的热量,进行吸热的水蒸气转化反应。 催化剂为:颗粒状镍催化剂,以含氧化锰和氧化铝的尖晶石为载体,具有很高的活性和耐高温性能,可采用较高空速进行反应。 4.甲烷-二氧化碳催化转化法(Sparg工艺) 催化剂上易结炭:改进镍基转化催化剂、开发新型抗积炭催化剂和优化反应条件等。

调节原料混合气的CO2/CH4H2O/CH4之比,转化后合成气中H2/CO在1.8—2.7之间变动 5.2.2天然气蒸汽转化的基本原理 一、主要反应 天然气中所含的多碳烃类与水蒸气发生类似反应 在—定条件下,转化过程可能发生成碳反应 二、催化剂和工艺条件: 1.催化剂 催化剂的基本条件:高活性、高强度、抗析碳。 活性组分:镍是目前天然气蒸汽转化催化剂的唯一活性组分。在制备好的催化剂中,镍以NiO形式存在,含量一般为10%一30%(质量)。 助催化剂:抑制熔结过程,使催化剂有较稳定的高活性,延长使用寿命并提

高抗硫抗析碳能力。金属氧化物,如Cr2O3、A12O3、MgO、TiO等。助催化剂用量一般为镍含量的10%(质量)以下。 载体:使镍的晶粒尽量分散,较大比表面。催化剂的载体是熔点在2000℃以上的金属氧化物,它们能耐高温,且有很强的机械强度。常用的载体有A12O3、MgO、CaO、K2O等。 2.工艺条件 甲烷蒸汽转化过程中控制的主要工艺条件是温度、压力、水碳比、空气加入量等。同时还要考虑到炉型、原料、炉管材料、催化剂等对这些参数的影响。参数的确定,不仅要考虑对本工序的影响,也要考虑对压缩、合成等工序的影响,合理的工艺条件最终应在总能耗和投资上体现出来。 (1)温度:甲烷蒸汽转化为可逆吸热反应。从化学平衡和反应速率考虑,提高温度对转化反应有利,可以降低残余甲烷含量。但温度的升高,受催化剂耐热程度和炉管材质等条件的限制。HK40材料制成的合金钢管,炉壁最高温度不超过930℃,所以炉管出口气体温度应维持在830℃以下。 (2)压力:甲烷蒸汽转化反应是摩尔数增加的反应。从化学平衡来看,增加压力对反应不利。目前工业生产都采用加压操作。 A加压下转化可以大大地节省动力:甲烷转化后气体体积增加4—5倍,从节省动力的角度看是有利的。与常压相比,操作压力采用 1.06lMPa,可节省动力约38%;当在6.0MPa下操作时,甚至可以省去原料气压缩机。 B加压操作可以提高后部工序的设备生产能力。随着压力的升高,能量消耗减少的程度也逐渐下降。

合成氨原料气的生产

合成氨原料气的生产 一.煤气化 (1)气化原理 煤在煤气发生炉中由于受热分解放出低分子量的碳氢化合物,而煤本身逐渐焦化,此时可将煤近似看作碳。 ①反应速率 以空气为气化剂 C+O2→CO2 △H=-393.770kJ/mol C+1/2O2→CO △H=-110.595kJ/mol C+CO2→2CO △H=172.284kJ/mol CO+1/2O2→CO2 △H=-283.183kJ/mol 在同时存在多个反应的平衡系统,系统的独立反应数应等于系统中的物质数减去构成这些物质的元素数。 以水蒸气为气化剂 C+H2O→CO+H2 △H=131.39kJ/mol C+2H2O→CO2+2H2△H=90.20kJ/mol CO+H2O→CO2+H2△H=-41.19kJ/mol C+2H2→CH4△H=-74.90kJ/mol ②反应速率 气化剂和碳在煤气发生炉中的反应属于气固相非催化剂反应。随着反应的进行,碳的粒度逐渐减小,不断生成气体产物。反过程一般由气化剂的外扩散、吸附、与碳的化学反应及产物的吸附,外扩散等组成。反应步骤分为: A. C+O2→CO2 的反应速率研究表明,当温度在775O C以下时,其反应速率大致表示为: R=ky o2 式中 r-碳与氧生成二氧化碳的反应速率 k-反应速率常数 y o2- 氧气的速率 B.C+CO2→2CO的反应速率此反应的反应速率比碳的燃烧反应慢得多, 的一级反应。 在2000O C以下属于化学反应控制,反应速率大致是CO 2

C.CO+H2O→CO2+H2的反应速率碳与水蒸气之间的反应,在400-1000O C 的温度范围内,速度仍较慢,因此为动力学控制,在此范围内,提高温度是提高反应速率的有效措施。 二.制取半水煤气的工业方法 由以上可知,空气与水蒸气同时进行气化反应时,如不提供外部热源,则气+CO)的含量大大低于合成氨原料气的要求。为解决气体成分与热量化产物中(H 2 平衡这一矛循,可采用下列方法: (1)外热法如利用原子能反应堆余热或其他廉价高温热源,用熔融盐、熔融铁等介质为热载体直接加热反应系统,或预热气化剂,以提供气化过程所需的热能。这种方法目前尚处于研究阶段。 50%左右)和水蒸气作为气化剂同 (2)富氧空气气化法用富氧空气(含O 2 时进行气化反应。由于富氧空气中含氮量较少,故在保证系统自热运行的同时,半水煤气的组成也可满足合成氨原料气的要求。此法的关键是要有较廉价的富氧空气来源。 (3)蓄热法空气和水蒸气分别送入燃料层,也称间歇气化法。其过程大致为:先送入空气以提高燃料层温度,生成的气体(吹风气)大部分放空;再送入水蒸气进行气化反应,此时燃料层温度逐渐下降。所得水煤气配入部分吹风气即成半水煤气。如此间歇地送空气和送蒸汽重复进行,是目前用得比较普遍的补充热量的方法,也是我国多数中、小型合成氨厂的重要气化方法。 三.间歇式生产半水煤气 工业上间歇式气化过程,是在固定层煤气发生炉中进行的,如图3-3。块状燃料由顶部间歇加入,气化剂通过燃料层进行气化反应,灰渣落入灰箱后排出炉外。

上海浦景合成气制乙二醇技术简介out

煤基合成气制乙二醇技术
华东理工大学 上海浦景化工技术有限公司 安徽淮化股份有限公司

公司基本情况简介
?公司名称:上海浦景化工技术有限公司 ?公司网址:https://www.doczj.com/doc/b1837241.html, ? 成立于2005年5月 ? 中国浦发机械工业股份有限公司控股子公司 ,国资委三级 企业(隶属中国机械工业集团,https://www.doczj.com/doc/b1837241.html,) ? 主营业务: 化工技术投资 研发 以及市场推广 化工技术投资,研发,以及市场推广 化工设备成套


项目背景
Fiber, resin, PET bottles, 86%
乙二醇 (EG) Ethylene Glycol
EG dinitrate-based explosive
Solvents in medicine
Organic immediate Water-based adhesives
Antifreeze, 7%

项目背景
z 国内对乙二醇(EG)需求巨大;而自给率低
年份 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 国内产量/万吨 70.7 75 0 75.0 84.8 84.9 85.0 89.2 96.9 106.3 120.0 151.8 174.0 214.0 217.2 254.0 278.0 进口量/万吨 19.9 32 8 32.8 56.7 105.0 159.7 214.6 251.6 339.1 400.0 406.1 480.0 521.6 582.8 664.0 710.0 出口量/万吨 2.4 05 0.5 0.0 0.01 0.2 3.2 2.3 2.6 1.2 0.091 0.2 2.94 0.0 0.0 表观需求量/万吨 88.2 107 3 107.3 141.5 189.9 244.5 300.6 346.2 442.8 518.8 557.8 653.9 732.7 840.0 918.0 988.0 自给率/% 80.2 69 9 69.9 59.9 44.7 34.8 29.7 28.0 24.0 23.1 27.2 26.6 29.2 25.6 27.7 28.14

天然气制备合成气

天然气制备合成气 天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。制合成气是间接利用天然气的重要步骤,也是天然气制氢的基础,充分了解天然气制合成气的工艺与催化剂对于我们进一步研究天然气的利用将有很大帮助。天然气中甲烷含量一般大于90%,其余为小量的乙烷、丙烷等气态烷烃,有些还含有少量氮和硫化物。其他含甲烷等气态烃的气体,如炼厂气、焦炉气、油田气和煤层气等均可用来制造合成气。 目前工业上有天然气制合成气的技术主要有蒸汽转化法和部分氧化法。本文主要对蒸汽转化法进行具体的描述,并具体介绍此工艺的发展趋势。 蒸气转化法 蒸气转化法是目前天然气制备合成气的主要途径。蒸汽转化法是在催化剂存在及高温条件下,使甲烷等烃类与水蒸气反应,生成 H2、CO等混合气,其主反应为: CH4 + 出0 =C0+3战,人H% =206KJ/mol 该反应是强吸热的,需要外界供热。因为天然气中甲烷含量在 90%以上,而甲烷在烷烃中热力学最稳定,其他烃类较易反应,因此在讨论天然气转化过程时,只需考虑甲烷与水蒸气的反应。 甲烷水蒸气转化反应和化学平衡 甲烷水蒸气转化过程的主要反应有: CH4 +日2。= CO+3H2,A^29^206KJ/mol CH4+2H2O= CO2+4H2,AH % =165KJ/mol CO + H 2O u CO2+ H2,△H % = 74.9KJ / mol 可能发生的副反应主要是析碳反应,它们是: CH4=C+2H2,也Hd98 =74.9KJ/mol 2CO U C+CO2,心Hd98 =-172.5KJ/mol CO + H2U C + H2O,心H 色98 =-131.4KJ /mol

合成氨工艺原理

合成氨工艺原理 合成氨不论采用什么原料与生产方法,大体上包括三个工艺过程:(1)原料气的制造;(2)原料气的净化(包括脱硫、变换脱除CO,碳化、脱碳脱除CO 2 ,精炼脱 除微量的CO、CO 2、H 2 S、O 2 等);(3)氨的合成与为了满足气体净化及合成各工序 工艺条件提供能量补偿的压缩工序。生产出氨以后再根据需要加工成碳铵、尿素、硝铵等。其详细原理如下(以煤为原料): 一、造气工段 合成氨生产所用的半水煤气,要求气体中(CO+H 2)与N 2 的比例为3:1左右。因 此生产上采用间歇地送入空气与蒸汽进行气化,将所得的水煤气配入部分吹风气制成半水煤气。即以石灰碳化煤球、无烟块煤为原料,在高温下交替与空气与过 热蒸汽进行气化反应(C+O点燃CO 2+Q 、2C+O点燃2CO+Q 、2CO+ O点燃2CO 2 + Q 2H 2O(气)+C△CO+2H 2 -Q制得半水煤气,半水煤气经过除尘,余热回收,水洗降温制 得合格的半水煤气,供后工段使用。 二、脱硫工段 从造气工段的半水煤气中,除氢气与氮气外,还含有27%左右CO、9%左右的CO 2 以及少量的硫化物,这些硫化物对合成氨生产就是有害的。它会腐蚀设备、管道,会引起催化剂中毒,会损坏铜液成份。因此,必须除去少量硫化物,其原理:用 稀氨水(10—15tt)与硫化氢反应(NH 3+H 2 S=NH 4 HS)将H 2 S脱除至0、07g/m3(标)以下, 使半水煤气净化,以满足合成氨生产工艺要求。 三、变换工段 将脱S后的半水煤气(含CO25%—28%)由压缩工段加压后经增温、加热,在一定的温度与压力下,在变换炉内借助催化剂的催化作用,使半水煤气中CO与H 2 O(气) 进行化学反应,转变为CO 2与H 2 (CO+H 2 O(气)催化剂高温CO 2 +H 2 +Q),制得合格的变 换气,以满足后工段的工艺要求。其次,系统中设有饱与热水塔、甲交、一水加、二水加、冷却塔等换热设备,以便合理利用反应热与充分回收余热,降低能耗,同时降低变换气温度。 四、碳化与脱碳工段 1、碳化

合成氨工艺

合成氨工艺 合成氨的介绍 基本简介: 生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。 ①天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。 ②重质油制氨。重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。 ③煤(焦炭)制氨。随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。 用途氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。液氨常用作制冷剂。

贮运商品氨中有一部分是以液态由制造厂运往外地。此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运。直接合成氨。于1908年申请专利,即“循环法”,在此基础上,他继续研究,于1909年改进了合成,氨的含量达到6%以上。这是目前工业普遍采用的直接合成法。反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。 合成氨反应式如下:N2+3H2≒2NH3(该反应为可逆反应,等号上反应条件为:“高温高压”,下为:“催化剂”) 合成氨的主要原料可分为固体原料、液体原料和气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。 氨是重要的无机化工产品之一,在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1 亿吨以上,其中约有80%的氨用来生产

宁波中科远东合成气制乙二醇技术获重大突破

ResearchProgressonPolymerGraftingReactioninSolution WangHao (SchoolofMaterialScienceandEngineeringTechnology,SouthwestPetroleumUniversity, Chengdu,Sichuan610500) ABSTRACT Generally,whengraftingreactionoccurred,newfunctionalpolymerhasbeenformed.Chemicalbondingeffectofgraftingmodificationisbeneficialtothecompatibilityofgraftingcomponents,whichisinaprioritytoblendingreaction.Specifically,graftingreactioninsolution,especiallyATRP(AtomTransferRadicalPolymerization)graftingreaction,shouldbeofimportantexperimentalvalue.Solution,asageneraladoptedenvironmentforgraftingreaction,isofsignificanceforexpandingpolymervarietiesandimprovingapplicationperformanceofordinarypolymers,suchasorganic-inorganichybridpolymerandpolymerbrush.Inthispaper,withsummaryonsolutiongraftingpolymerizationtypes,keyproblemsandpresentgraftingreactiontechnology,anoutlookfordevelopmentandinnovationofgraftingreactioninsolutionhasbeenmade.Keywords:solution,graftingreaction, 櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵櫵 graftingpolymer 宁波中科远东合成气制乙二醇技术获重大突破 由宁波中科远东催化工程技术有限公司开发,应用于山东华鲁恒升化工股份有限公司的单套规模最大500kt/a合成气制乙二醇技术工业装置已平稳运行近2个月,生产负荷达到100%,产量达1490t/d(设计值1500t/d),且优等品率达100%。 据称,该装置以低温甲醇洗装置的净化气为原料,采用先进的合成气间接生产乙二醇工艺技术。该装置的成功开车创造了多项记录:乙二醇装置开车时间最短;产品达到100%优等品;真正意义上实现了乙二醇装置大型化;设备全部实现国产化;装置单位投资最低。该装置在一个半月内迅速达到100%满负荷,装置运行稳定,产品质量全优,证明该技术成熟可靠,性能良好。该装置在50kt/a装置的运行基础上进行了一系列优化,并采用了DMC分离、硝酸还原、精馏采用热耦合等技术,在能耗物耗方面均处于同行业领先水平,成本优势明显。 据悉,宁波中科远东催化工程技术有限公司自2009年开始进行一氧化碳催化偶联合成乙酸酯及乙酸酯加氢制乙二醇的研究工作。2011年与中国科学院宁波材料所合作研发合成气制乙二醇技术。历经近10年的持续研究,取得具有自主知识产权的多项新型煤化工技术,2013年成功研制出合成气制乙二醇关键催化剂。 与传统的乙酸酯法相比,该技术在偶联催化剂、加氢催化剂、反应器和副产物生成方面都表现出独特的优势。研发团队通过设计蛋壳型分布催化剂,活性组分钯均匀分布在催化剂颗粒表面,一方面有效降低了反应物在催化剂孔道内扩散距离,增加了反应活性,另一方面提高了贵金属的利用率,有效降低了贵金属的用量。 对于加氢催化剂,利用层状硅酸铜材料为催化剂,还原后可形成可控的亚铜/零价铜比例,并具备良好的化学稳定性和热稳定性。在工艺包开发中,通过开发高效催化剂提高产品时空收率;设计新型反应器气体分配器,改善反应气体分布;设计优化反应器传质传热形式,提高传热效率;从而实现反应器的大型化,提高单台设备产能,降低装置投资。为了提高优等品乙二醇的产率,通过开发高选择性加氢催化剂减少副产物生成,设计利用化学反应将难分离的杂质进行转化分离,开发乙二醇精馏专用塔内件和填料,设计合理精馏顺序避免乙二醇聚合等技术方案降低精馏能耗,提高优等品乙二醇的收率。 (中国石化有机原料科技情报中心站供稿) · 5 5 ·  第1期(2019) 王浩 聚合物溶液接枝反应研究进展

合成气的生产过程

第五章合成气的生产过程 5.1 概述 合成气是指一氧化碳和氢气的混和气,英文缩写是Syngas。其H2/ CO (摩尔比)由1/2 到3/1。合成气在化学工业中有着重要作用。 5.1.1 合成气的生产方法 (1) 以煤为原料的生产方法:有间歇和连续两种操作方式。煤制合成气中H2/ CO 比值较低,适于合成有机化合物。 (2) 以天然气为原料的生产方法:主要有转化法和部分氧化法。目前工业上多采用水蒸气转化法( steam reforming ),该法制得的合成气中H2/ CO 比值理论上是3,有利于用来制造合成氨或氢气。 (3) 以重油或渣油为原料的生产方法:主要采用部分氧化法( partial oxidation )。 5.1.2.1 工业化的主要产品 (1) 合成氨 (2) 合成甲醇 (3) 合成醋酸 (4) 烯烃的氢甲酰化产品 (5) 合成天然气、汽油和柴油 5.1.2.2 合成气应用新途径 (1) 直接合成乙烯等低碳烯烃 (2) 合成气经甲醇再转化为烃类 (3) 甲醇同系化制乙烯 (4) 合成低碳醇 (5) 合成乙二醇 (6) 合成气与烯烃衍生物羰基化产物

5.2由煤制合成气 以煤或焦炭为原料,以氧气(空气、富氧或纯氧) 、水蒸气等为气化剂,在高温条件下 通过化学反应把煤或焦炭中的可燃部分转化为气体的过程, 其有效成分包括一氧化碳、氢气 和甲烷等。 5.2.1.1煤气化的基本反应 煤气化过程的主要反应有: 原反应也是重要的气化反应。气化生成的混合气称为水煤气。总过程为强吸热的。 提高反应温度对煤气化有利 ,但不利于甲烷的生成。 当温度高于900C 时,CH 4和CO 2 的平衡浓度接近于零。低压有利于 CO 和H 2生成,反之,增大压力有利于 CH 4生成。 5.2.1.2煤气化的反应条件 (1) 温度 一般操作温度在1100 C 以上。 (2) 压力 一般为2.5?3.2MPa 。 (3) 水蒸气和氧气的比例 H 2O/O 2比值要视采用的煤气化生产方法来定。 5.2.2煤气化的生产方法及主要设备 气化过程按操作方式来分, 有间歇式和连续式。目前最通用的分类方法是按反应器分类, 分为固定床(移动床)、流化床、气流床和熔融床。至今熔融床还处于中试阶段,而固定床 (移动床)、流化床和气流床是工业化或建立示范装置的方法。 5.2.2.1固定床间歇式气化制水煤气法 该法的操作育式为燃烧2制气分阶段进行,在实厢生产中,为了防止空气在高温下接 触水煤气而发生爆炸,同时保证煤吒质量?一个工作睛环由以下六个阶段粗成’ P 吹区 亠 恚寬吹净 亠一】忠上唏瓯 亠T 吹制耳 亠 二次上吹帛帆 亠 空耳吹浄d (空气自下而上M 蒸汽目下而上) (黄汽自上而下)〔轰汽自下而上H 自下而上川 屮f I 5.2.2.2固定床连续式气化制水煤气法 此法由德国鲁奇公司开发。目前鲁奇炉已发展到 MarkV 型,炉径5m ,每台炉煤气(标 准状态)的生产能力达 100000m3/h 。鲁奇法制的水煤气中甲烷和二氧化碳含量较高,而一 氧化碳含量 较低,在 C1 化工中的应用受到一定限制,适合于做城市煤气 。 C +丄0之QCO 2丄 o+q =co 3 C + H.OttCO+H. C + 2H a O?CC 2+2H a c+cq SCO c+込 ? CH 4 上眼-12%J7翻加 入弧-40弘7 F 用刃 第 90 3V/^/ 劈 Y72&J 皿J 此反应为强吸热过程。碳与二氧化碳的还

相关主题
文本预览
相关文档 最新文档