当前位置:文档之家› linux2.6 驱动开发系列教程

linux2.6 驱动开发系列教程

linux2.6 驱动开发系列教程
linux2.6 驱动开发系列教程

[置顶] linux2.6驱动开发系列教程

这段时间一直在做android下的驱动,android驱动底层跟linux如出一辙,所以这里准备做一个专题,把linux驱动做一个总结,为android接下来的驱动开发打好基础,大致的思想如下:

一、linux驱动基础开发

0、linux驱动基础开发0——linux 设备驱动概述

1、linux驱动基础开发1——linux 设备驱动基本概念

2、linux驱动基础开发2——linux 驱动开发前奏(模块编程)

3、linux驱动基础开发3——linux 内核配置机制(make menuconfig、Kconfig、makefile)讲解

4、linux驱动基础开发4——linux 字符驱动模型(memdriver内存读写)

5、linux驱动基础开发5——linux 设备文件注册(devfs、mdev、sys、proc)讲解

6、linux驱动基础开发6——linux gpio驱动实例分析(S3C2440/6410 io操作)

7、linux驱动基础开发7——linux 1*3 io键盘驱动实例分析

8、linux驱动基础开发8——linux 中断机制讲解与实例分析(S3C2440/6410 外部中断机制)

9、linux驱动基础开发9——linux 数据缓冲机制(Kfifo)讲解与实例分析

10、linux驱动基础开发10——linux 并发、同步、互斥机制(信号量、互斥锁、等待任务队列)讲解与实例分析

11、linux驱动基础开发11——linux 周期性事件(内核定时器)讲解

12、linux驱动基础开发12——Linux周期性事件(内核线程)讲解

13、linux驱动基础开发13——linux 任务阻塞(select\poll)机制讲解

14、linux驱动基础开发14——linux 异常处理(内核信号)讲解

15、linux驱动基础开发15——linux 基础开发综合运用(2*3矩阵键盘)讲解

二、linux驱动模型开发

1、linux驱动模型开发1——linux 杂项设备(misc)开发与实例分析

2、linux驱动模型开发2——linux platfoem总线机制讲解与实例开发

3、linux驱动模型开发3——linux input机制(键盘、触摸屏、鼠标等)讲解与实例分析

4、linux驱动模型开发4——linux framebuffer LCD显示机制讲解与实例分析

5、linux驱动模型开发5——linux IIC子系统机制讲解

6、linux驱动模型开发6——linux SPI子系统机制讲解

7、linux驱动模型开发7——linux RTC实时系统讲解

8、linux驱动模型开发8——linux 看门狗子系统讲解

linux驱动基础开发0——linux 设备驱动概述

分类:嵌入式linux内核及驱动开发2011-09-22 14:27 3274人阅读评论(14) 收藏举报目前,Linux软件工程师大致可分为两个层次:

(1)Linux应用软件工程师(Application Software Engineer):主要利用C库函数和Linux API进行应用软件的编写;

从事这方面的开发工作,主要需要学习:符合linux posix标准的API函数及系统调用,linux的多任务编程技巧:多进程、多线程、进程间通信、多任务之间的同步互斥等,嵌入式数据库的学习,UI编程:QT、miniGUI等。

(2)Linux固件工程师(Firmware Engineer):

主要进行Bootloader、Linux的移植及Linux设备驱动程序的设计工作。

一般而言,固件工程师的要求要高于应用软件工程师的层次,而其中的Linux

设备驱动编程又是Linux程序设计中比较复杂的部分,究其原因,主要包括如下几个方面:

1)设备驱动属于Linux内核的部分,编写Linux设备驱动需要有一定的Linux操作系统内核基础;需要了解部分linux内核的工作机制与系统组成

2)编写Linux设备驱动需要对硬件的原理有相当的了解,大多数情况下我们是针对一个特定的嵌入式硬件平台编写驱动的,例如:针对特定的主机平台:可能是三星的2410、2440,也可能是atmel的,或者飞思卡尔的等等

3)Linux设备驱动中广泛涉及到多进程并发的同步、互斥等控制,容易出现bug;因为linux本身是一个多任务的工作环境,不可避免的会出现在同一时刻对同一设备发生并发操作

4)由于属于内核的一部分,Linux设备驱动的调试也相当复杂。linux设备驱动没有一个很好的IDE环境进行单步、变量查看等调试辅助工具;linux驱动跟linux内核工作在同一层次,一旦发生问题,很容易造成内核的整体崩溃。

本系列文章我们将一步步、深入浅出的介绍linux设备驱动编程中设计的一些问题及学习方法,希望对大家学习linux设备驱动有所帮助。

在任何一个计算机系统中,大至服务器、PC机、小至手机、mp3/mp4播放器,无论是复杂的大型服务器系统还是一个简单的流水灯单片机系统,都离不开驱动程序的身影,没有硬件的软件是空中楼阁,没有软件的硬件只是一堆废铁,硬件

是底层的基础,是所有软件得以运行的平台,代码最终会落实到硬件上的逻辑组合。

但是硬件与软件之间存在一个驳论:为了快速、优质的完成软件功能设计,应用程序工程师不想也不愿关心硬件,而硬件工程师也很难有功夫去处理软件开发中的一些应用。例如软件工程师在调用printf的时候,不许也不用关心信息到底是通过什么样的处理,走过哪些通路显示在该显示的地方,硬件工程师在写完了一个4*4键盘驱动后,无需也不必管应用程序在获得键值后做哪些处理及操作。

也就是说软件工程师需要看到一个没有硬件的纯软件世界,硬件必须透明的提供给他,谁来实现这一任务?答案是驱动程序,驱动程序从字面解释就是:“驱使硬件设备行动”。驱动程序直接与硬件打交道,按照硬件设备的具体形式,驱动设备的寄存器,完成设备的轮询、中断处理、DMA通信,最终让通信设备可以收发数据,让显示设备能够显示文字和画面,让音频设备可以完成声音的存储和播放。

可见,设备驱动程序充当了硬件和软件之间的枢纽,因此驱动程序的表现形式可能就是一些标准的、事先协定好的API函数,驱动工程师只需要去完成相应函数的填充,应用工程师只需要调用相应的接口完成相应的功能。无论有没有操作系统,驱动程序都有其存在价值,只是在裸机情况下,工作环境比较简单、完成的工作较单一,驱动程序完成的功能也就比较简单,同时接口只要在小范围内符合统一的标准即可。但是在有操作系统的情况下,此问题就会被放大:硬件来自不同的公司、千变万化,全世界每天都会有大量的新芯片被生产,大量的电路板被设计出来,如果没有一个很好的统一标准去规范这一程序,操作系统就会被设计的非常冗余,效率会非常低。

所以无论任何操作系统都会制定一套标准的架构去管理这些驱动程序:linux作为嵌入式操作系统的典范,其驱动架构具有很高的规范性与聚合性,不但把不同的硬件设备分门别类、综合管理,并且针对不同硬件的共性进行了统一抽象,将其硬件相关性降到最低,大大简化了驱动程序的编写,形成了具有其特色的驱动组织架构。

下图反映了应用程序、linux内核、驱动程序、硬件的关系。

linux内核分为5大部分:多任务管理、内存管理、文件系统管理、设备管理、网络管理;

每一部分都有承上下的作用,对上提供API接口,提供给应用开发工程师使用;对下通过驱动程序屏蔽不同的硬件构成,完成硬件的具体操作。

linux驱动基础开发1——linux 设备驱动基本概念

分类:嵌入式linux内核及驱动开发2011-09-22 17:27 2034人阅读评论(10) 收藏举报学习linux设备驱动首先我们必须明确以下几个概念,为我们接下来学习linux 驱动打下坚实的基础:

?应用程序、库、内核、驱动程序的关系

?设备类型

?设备文件、主设备号与从设备号

?驱动程序与应用程序的区别

?用户态与内核态

?Linux驱动程序功能

一、应用程序、库、内核、驱动程序的关系

1)应用程序调用一系列函数库,通过对文件的操作完成一系列功能:

应用程序以文件形式访问各种硬件设备(linux特有的抽象方式,把所有的硬件访问抽象为对文件的读写、设置)

函数库:

部分函数无需内核的支持,由库函数内部通过代码实现,直接完成功能

部分函数涉及到硬件操作或内核的支持,由内核完成对应功能,我们称其为系统调用

2)内核处理系统调用,根据设备文件类型、主设备号、从设备号(后面会讲解),调用设备驱动程序;

3)设备驱动直接与硬件通信;

二、设备类型

硬件是千变万化的,没有八千也有一万了,就像世界上有三种人:男人、女人、女博士一样,linux做了一个很伟大也很艰难的分类:把所有的硬件设备分为三大类:字符设备、块设备、网络设备。

1)字符设备:字符(char)设备是个能够像字节流(类似文件)一样被访问的设备。

对字符设备发出读/写请求时,实际的硬件I/O操作一般紧接着发生;

字符设备驱动程序通常至少要实现open、close、read和write系统调用。

比如我们常见的lcd、触摸屏、键盘、led、串口等等,就像男人是用来干活的一样,他们一般对应具体的硬件都是进行出具的采集、处理、传输。

2)块设备:一个块设备驱动程序主要通过传输固定大小的数据(一般为512或

1k)来访问设备。

块设备通过buffer cache(内存缓冲区)访问,可以随机存取,即:任何块都可以读写,不必考虑它在设备的什么地方。

块设备可以通过它们的设备特殊文件访问,但是更常见的是通过文件系统进行访问。

只有一个块设备可以支持一个安装的文件系统。

比如我们常见的电脑硬盘、SD卡、U盘、光盘等,就像女人一样是用来存储信息的。

3)网络接口:任何网络事务都经过一个网络接口形成,即一个能够和其他主机交换数据的设备。

访问网络接口的方法仍然是给它们分配一个唯一的名字(比如eth0),但这个名字在文件系统中不存在对应的节点。

内核和网络设备驱动程序间的通信,完全不同于内核和字符以及块驱动程序之间的通信,内核调用一套和数据包传输相关的函数(socket函数)而不是read、write等。

比如我们常见的网卡设备、蓝牙设备,就像女博士一样,数量稀少但又不可或缺。

linux中所有的驱动程序最终都能归到这三种设备中,当然他们之间也没有非常严格的界限,这些都是程序中对他们的划分而已,比如一个sd卡,我们也可以把它封装成字符设备去操作也是没有问题的。就像。。。

三、设备文件、主设备号、从设备号

有了设备类型的划分,那么应用程序应该怎样访问具体的硬件设备呢?

或者说已经确定他是一个男人了,那么怎么从万千世界中区分他与他的不同呢?答案是:姓名,在linux驱动中也就是设备文件名。

那么重名怎么办?

答案是:身份证号,在linux驱动中也就是设备号(主、从)。

设备文件:

在linux

系统

中有一个约定俗成的说法:“一切皆文件”,

应用程序使用设备文件节点访问对应设备,

Linux下的各种硬件设备以文件的形式存放于/dev目录下,可以使用ls /dev 查看

Linux把对硬件的操作全部抽象成对文件的操作

(open,read,write,close,…)

每个设备文件都有其文件属性(c或者b),使用ls /dev -l 的命令查看,

表明其是字符设备或者块设备,网络设备没有在这个文件夹下,用来明其性别(男人、女人)

主设备号、从设备号

在设备管理中,除了设备类型外,内核还需要一对被称为主从设备号的参数,才能唯一标识一个设备,类似人的身份证号

主设备号:

用于标识驱动程序,相同的主设备号使用相同的驱动程序,例如:S3C2440 有串口、LCD、触摸屏三种设备,他们的主设备号各不相同;

从设备号:

用于标识同一驱动程序的不同硬件

例:PC的IDE设备,主设备号用于标识该硬盘,从设备号用于标识每个分区,2440有三个串口,每个串口的主设备号相同,从设备号用于区分具体属于那一个串口。

四、驱动程序与应用程序的区别

应用程序以main开始

驱动程序没有main,它以一个模块初始化函数作为入口

应用程序从头到尾执行一个任务

驱动程序完成初始化之后不再运行,等待系统调用

应用程序可以使用glibc等标准C函数库

驱动程序不能使用标准C库

五、用户态与内核态的区分

驱动程序是内核的一部分,工作在内核态

应用程序工作在用户态

数据空间访问问题

无法通过指针直接将二者的数据地址进行传递

系统提供一系列函数帮助完成数据空间转换

get_user

put_user

copy_from_user

copy_to_user

六、Linux驱动程序功能

对设备初始化和释放资源

把数据从内核传送到硬件和从硬件读取数据

读取应用程序传送给设备文件的数据和回送应用程序请求的数据

检测和处理设备出现的错误(底层协议)

用于区分具体设备的实例

linux驱动基础开发2——linux 驱动开发前奏(模块编程)

分类:嵌入式linux内核及驱动开发2011-09-29 09:10 559人阅读评论(6) 收藏举报一、linux内核模块简介

linux内核整体结构非常庞大,其包含的组件也非常多。我们怎么把需要的部分都包含在内核中呢?

一种办法是把所有的需要的功能都编译到内核中。这会导致两个问题,一是生成的内核会很大,二是如果我们要在现有的内核中新增或删除功能,不得不重新编译内核,工作效率会非常的低,同时如果编译的模块不是很完善,很有可能会造成内核崩溃。

linux提供了另一种机制来解决这个问题,这种集中被称为模块,可以实现编译出的内核本身并不含有所有功能,而在这些功能需要被使用的时候,其对应的代码可以被动态的加载到内核中。

二、模块特点:

1)模块本身并不被编译入内核,从而控制了内核的大小。

2)模块一旦被加载,他就和内核中的其他部分完全一样。

注意:模块并不是驱动的必要形式:即:驱动不一定必须是模块,有些驱动是直接编译进内核的;同时模块也不全是驱动,例如我们写的一些很小的算法可以作为模块编译进内核,但它并不是驱动。就像烧饼不一定是圆的,圆的也不都是烧饼一样。

三、最简单的模块分析

1)以下是一个最简单的模块例子

[c pp] view plainc opy

1.#include /* printk() */

2.#include /* __init __exit */

3.

4.static int __init hello_init(void) /*模块加载函数,通过insmod命令加载模

块时,被自动执行*/

5.{

6. printk(KERN_INFO " Hello World enter\n");

7.return 0;

8.}

9.static void __exit hello_exit(void) /*模块卸载函数,当通过rmmod命令卸载时,

会被自动执行*/

10.{

11. printk(KERN_INFO " Hello World exit\n ");

12.}

13.

14.module_init(hello_init);

15.module_exit(hello_exit);

16.

17.MODULE_AUTHOR("dengwei"); /*模块作者,可选*/

18.MODULE_LICENSE("Dual BSD/GPL"); /*模块许可证明,描述内核模块的许可权限,必须

*/

19.

20.MODULE_DESCRIPTION("A simple Hello World Module"); /*模块说明,可选*/

21.MODULE_ALIAS("a simplest module"); /*模块说明,可选

*/

22.

2) 以下是编译上述模块所需的编写的makefile

[c pp] view plainc opy

1.obj-m :=hello.o //目标文件

2.#module-objs := file1.o file.o //当模块有多个文件组成时,添加本句

3.KDIR :=/usr/src/linux //内核路径,根据实际情况换成自己的内核路径,

嵌入式的换成嵌入式,PC机的指定PC机路径

4.PWD := $(shell pwd) //模块源文件路径

5.all:

6. $(MAKE) -C $(KDIR) SUBDIRS=$(PWD) modules

7. @rm -rf *.mod.*

8. @rm -rf .*.cmd

9. @rm -rf *.o

10. @rm -rf Module.*

11.clean:

12. rm -rf *.ko

最终会编译得到:hello.ko文件

使用insmodhello.ko将模块插入内核,然后使用dmesg即可看到输出提示信息。

常用的几种模块操作:

insmod XXX.ko 加载指定模块

lsmod 列举当前系统中的所有模块

rmmod XXX 卸载指定模块(注意没有.ko后缀)

dmesg 当打印等级低于默认输出等级时,采用此命令查看系统日志

3)linux内核模块的程序结构

1.模块加载函数:

Linux内核模块一般以__init标示声明,典型的模块加载函数的形式如下:

[c pp] view plainc opy

1.static int __init myModule_init(void)

2.{

3./* Module init code */

4. PRINTK("myModule_init\n");

5.return 0;

6.}

7.module_init(myModule_init);

模块加载函数的名字可以随便取,但必须以“module_init(函数名)”的形式被指定;

执行insmod命令时被执行,用于初始化模块所必需资源,比如内存空间、硬件设备等;

它返回整形值,若初始化成功,应返回0,初始化失败返回负数。

2.模块卸载函数

典型的模块卸载函数形式如下:

[c pp] view plainc opy

1.static void __exit myModule_exit(void)

2.{

3./* Module exit code */

4. PRINTK("myModule_exit\n");

5.return;

6.}

7.module_exit(myModule_exit);

模块卸载函数在模块卸载的时候执行,不返回任何值,需用”module_exit(函数名)”的形式被指定。

卸载模块完成与加载函数相反的功能:

若加载函数注册了XXX,则卸载函数应当注销XXX

若加载函数申请了内存空间,则卸载函数应当释放相应的内存空间

若加载函数申请了某些硬件资源(中断、DMA、I/0端口、I/O内存等),则卸载函数应当释放相应的硬件资源

若加载函数开启了硬件,则卸载函数应当关闭硬件。

其中__init 、__exit 为系统提供的两种宏,表示其所修饰的函数在调用完成后会自动回收内存,即内核认为这种函数只会被执行1次,然后他所占用的资源就会被释放。

3.模块声明与描述

在linux内核模块中,我们可以用MODULE_AUTHOR、MODULE_DESCRIPTION、MODULE_VERSION、MODULE_TABLE、MODULE_ALIA,分别描述模块的作者、描述、版本、设备表号、别名等。

[c pp] view plainc opy

1.MODULE_AUTHOR("dengwei");

2.MODULE_LICENSE("Dual BSD/GPL");

3.MODULE_DESCRIPTION("A simple Hello World Module");

4.MODULE_ALIAS("a simplest module");

四、有关模块的其它特性

1)模块参数:

我们可以利用module_param(参数名、参数类型、参数读写属性) 为模块定义一个参数,例如:

[c pp] view plainc opy

1.static char *string_test = “this is a test”;

2.static num_test = 1000;

3.module_param (num_test,int,S_IRUGO);

4.module_param (steing_test,charp,S_ITUGO);

在装载模块时,用户可以给模块传递参数,形式为:”insmod 模块名参数名=参数值”,如果不传递,则参数使用默认的参数值

参数的类型可以是:byte,short,ushort,int,uint,long,ulong,charp,bool;

权限:定义在linux/stat.h中,控制存取权限,S_IRUGO表示所有用户只读;

模块被加载后,在sys/module/下会出现以此模块命名的目录,当读写权限为零时:表示此参数不存在sysfs文件系统下的文件节点,当读写权限不为零时:此模块的目录下会存在parameters目录,包含一系列以参数名命名的文件节点,这些文件节点的权限值就是传入module_param()的“参数读/写权限“,而该文件的内容为参数的值。

除此之外,模块也可以拥有参数数组,形式为:”module_param_array(数组名、数组类型、数组长、参数读写权限等)”,当不需要保存实际的输入的数组元素的个数时,可以设置“数组长“为0。

运行insmod时,使用逗号分隔输入的数组元素。

下面是一个实际的例子,来说明模块传参的过程。

[c pp] view plainc opy

1.#include /*module_init()*/

2.#include /* printk() */

3.#include /* __init __exit */

4.

5.#define DEBUG //open debug message

6.

7.#ifdef DEBUG

8.#define PRINTK(fmt, arg...) printk(KERN_WARNING fmt, ##arg)

9.#else

10.#define PRINTK(fmt, arg...) printk(KERN_DEBUG fmt, ##arg)

11.#endif

12.

13.static char *string_test="default paramater";

14.static int num_test=1000;

15.

16.static int __init hello_init(void)

17.{

18. PRINTK("\nthe string_test is : %s\n",string_test);

19. PRINTK("the num_test is : %d\n",num_test);

20.return 0;

21.}

22.

23.static void __exit hello_exit(void)

24.{

25. PRINTK(" input paramater module exit\n ");

26.}

27.

28.module_init(hello_init);

29.module_exit(hello_exit);

30.

31.module_param(num_test,int,S_IRUGO);

32.module_param(string_test,charp,S_IRUGO);

33.

34.MODULE_AUTHOR("dengwei");

35.MODULE_LICENSE("GPL");

当执行 insmod hello_param.ko时,执行dmesg 查看内核输出信息:

[c pp] view plainc opy

1.Hello World enter

2.the test string is:this is a test

3.the test num is :1000

当执行insmod hello_param.ko num_test=2000 string_test=“edit by dengwei”,执行dmesg查看内核输出信息:

[c pp] view plainc opy

1.Hello World enter

2.the test string is: edit by dengwei

3.the test num is :2000

2)导出模块及符号的相互引用

Linux2.6内核的“/proc/kallsyms“文件对应内核符号表,它记录了符号以及符号所在的内存地址,模块可以使用下列宏导到内核符号表中。

EXPORT_SYMBOL(符号名);任意模块均可

EXPORT_SYMBOL_GPL(符号名);只使用于包含GPL许可权的模块

导出的符号可以被其它模块使用,使用前声明一下即可。

下面给出一个简单的例子:将add sub符号导出到内核符号表中,这样其它的模块就可以利用其中的函数

[c pp] view plainc opy

1.#include /*module_init()*/

2.#include /* printk() */

3.#include /* __init __exit */

4.

5.int add_test(int a ,int b)

6.{

7.return a + b;

8.}

9.

10.int sub_test(int a,int b)

11.{

12.return a - b;

13.}

14.

15.EXPORT_SYMBOL(add_test);

16.EXPORT_SYMBOL(sub_test);

17.

18.MODULE_AUTHOR("dengwei");

19.MODULE_LICENSE("GPL");

执行 cat/proc/kallsyms | grep test 即可找到以下信息,表示模块确实被加载到内核表中。

[c pp] view plainc opy

1.f88c9008 r __ksymtab_sub_integar [export_symb]

2.f88c9020 r __kstrtab_sub_integar [export_symb]

3.f88c9018 r __kcrctab_sub_integar [export_symb]

4.f88c9010 r __ksymtab_add_integar [export_symb]

5.f88c902c r __kstrtab_add_integar [export_symb]

6.f88c901c r __kcrctab_add_integar [export_symb]

7.f88c9000 T add_tes [export_symb]

8.f88c9004 T sub_tes [export_symb]

9.13db98c9 a __crc_sub_integar [export_symb]

10.e1626dee a __crc_add_integar [export_symb]

在其它模块中可以引用此符号

[c pp] view plainc opy

1.#include /*module_init()*/

2.#include /* printk() */

3.#include /* __init __exit */

4.

5.#define DEBUG //open debug message

6.

7.#ifdef DEBUG

8.#define PRINTK(fmt, arg...) printk(KERN_WARNING fmt, ##arg)

9.#else

10.#define PRINTK(fmt, arg...) printk(KERN_DEBUG fmt, ##arg)

11.#endif

12.

13.extern int add_test(int a ,int b);

14.extern int sub_test(int a,int b);

15.

16.static int __init hello_init(void)

17.{

18.int a,b;

19.

20. a = add_test(10,20);

21. b = sub_test(30,20);

22. PRINTK("the add test result is %d",a);

23. PRINTK("the sub test result is %d\n",b);

24.return 0;

25.}

26.

27.static void __exit hello_exit(void)

28.{

29. PRINTK(" Hello World exit\n ");

30.}

31.

32.module_init(hello_init);

33.module_exit(hello_exit);

34.

35.MODULE_AUTHOR("dengwei");

36.MODULE_LICENSE("GPL");

linux驱动基础开发3——linux 内核配置机制(make menuconfig、Kconfig、makefile)讲解

分类:嵌入式linux内核及驱动开发2011-09-29 16:41 1895人阅读评论(7) 收藏举报

前面我们介绍模块编程的时候介绍了驱动进入内核有两种方式:模块和直接编译进内核,并介绍了模块的一种编译方式——在一个独立的文件夹通过makefile配合内核源码路径完成

那么如何将驱动直接编译进内核呢?

在我们实际内核的移植配置过程中经常听说的内核裁剪又是怎么麽回事呢?

我们在进行linux内核配置的时候经常会执行make menuconfig这个命令,然后屏幕上会出现以下界面:

这个界面是怎么生成的呢?

跟我们经常说的内核配置与与编译又有什么关系呢?

linux驱动开发的经典书籍

linux驱动开发的经典书籍 结构、操作系统、体系结构、编译原理、计算机网络你全修过 我想大概可以分为4个阶段,水平从低到高 从安装使用=>linux常用命令=>linux系统编程=>内核开发阅读内核源码 其中学习linux常用命令时就要学会自己编译内核,优化系统,调整参数 安装和常用命令书太多了,找本稍微详细点的就ok,其间需要学会正则表达式 系统编程推荐《高级unix环境编程》,黑话叫APUE 还有《unix网络编程》 这时候大概还需要看资料理解elf文件格式,连接器和加载器,cmu的一本教材中文名为《深入理解计算机系统》比较好 内核开发阅读内核源码阶段,从写驱动入手逐渐深入linux内核开发 参考书如下《linux device drivers》,黑话叫ldd 《linux kernel development》,黑话叫lkd 《understading the linux kernel》,黑话叫utlk 《linux源码情景分析》 这四本书为搞内核的必读书籍 最后,第三阶段和第四阶段最重动手,空言无益,光看书也不罩,不动手那些东西理解不了 学习linux/unix编程方法的建议 建议学习路径: 首先先学学编辑器,vim, emacs什么的都行。 然后学make file文件,只要知道一点就行,这样就可以准备编程序了。 然后看看《C程序设计语言》K&R,这样呢,基本上就可以进行一般的编程了,顺便找本数据结构的书来看。 如果想学习UNIX/LINUX的编程,《APUE》绝对经典的教材,加深一下功底,学习《UNP》的第二卷。这样基本上系统方面的就可以掌握了。 然后再看Douglus E. Comer的《用TCP/IP进行网际互连》第一卷,学习一下网络的知识,再看《UNP》的第一卷,不仅学习网络编程,而且对系统编程的一些常用的技巧就很熟悉了,如果继续网络编程,建议看《TCP/IP进行网际互连》的第三卷,里面有很多关于应用

Android驱动开发实例(控制LED灯)(精)

Android驱动例子(LED灯控制) 本例子,讲述在Android2.1上完全自已开发一个驱动去控制硬件口并写应用测试该驱动,通过这样一个例子,解析android下的驱动开发流程的应用调用流程,可以说是很好的入门引导 要达到的效果:通过Android的应用,调用驱动程序,在开发板上控制4个LED的亮灭。 一、硬件原理 如上图,通过4个IO口控制这LED,低电平LED亮, 这4个IO口分别是GPM1, GPM2, GPM3, GPM4, 二、驱动程序 1、在kernel文件夹下的driver目录,新键驱动文件夹 # cd kernel_Android_2.6.28.6/drivers 进到开发板的kernel目录,建驱动文件夹 #mkdir ledtest

2、在/driver/ledtest目录下,新建leddriver.c ,leddriver.h , Kconfig, Makefile 等4个文件leddriver.c leddriver.c 1. #include 2. #include 3. #include 4. #include/* For __init/__exit/... */ 5. #include 6. #include 7. #include 8. #include 9. #include 10. #include 11. #include 12. #include 13. #include 14. #include 15. #include 16. #include 17. #include//for register_chrdev( 18. #include 19. #include 20. #include"leddriver.h" 21. #include/* For MODULE_ALIAS_MISCDEV 22. (WATCHDOG_MINOR */ 23. #include/* For the watchdog specific items */ 24. #include/* For file operations */ 25. #define Viberator_MAJOR 97 //?÷éè±?o? 26. #define SCULL_NR_DEVS 4 27. #define SCULL_QUANTUM 4000 28. #define SCULL_QSET 1000 29. //---do as the GIO driver

android系统开发--HAL层开发基础

android系统开发--HAL层开发基础 Android HAL层,即硬件抽象层,是Google响应厂家“希望不公开源码”的要求推出的新概念 1,源代码和目标位置 源代码:/hardware/libhardware目录,该目录的目录结构如下: /hardware/libhardware/hardware.c编译成libhardware.so,目标位置为/system/lib目录 /hardware/libhardware/include/hardware目录下包含如下头文件: hardware.h 通用硬件模块头文件 copybit.h copybit模块头文件 gralloc.h gralloc模块头文件 lights.h 背光模块头文件 overlay.h overlay模块头文件 qemud.h qemud模块头文件 sensors.h 传感器模块头文件 /hardware/libhardware/modules目录下定义了很多硬件模块 这些硬件模块都编译成xxx.xxx.so,目标位置为/system/lib/hw目录 2,HAL层的实现方式 JNI->通用硬件模块->硬件模块->内核驱动接口 具体一点:JNI->libhardware.so->xxx.xxx.so->kernel 具体来说:android frameworks中JNI调用/hardware/libhardware/hardware.c中定义的hw_get_module函数来获取硬件模块, 然后调用硬件模块中的方法,硬件模块中的方法直接调用内核接口完成相关功能 3,通用硬件模块(libhardware.so) (1)头文件为:/hardware/libhardware/include/hardware/hardware.h 头文件中主要定义了通用硬件模块结构体hw_module_t,声明了JNI调用的接口函数 hw_get_module hw_module_t定义如下: typedef struct hw_module_t { /** tag must be initialized to HARDWARE_MODULE_TAG */ uint32_t tag; /** major version number for the module */ uint16_t version_major; /** minor version number of the module */ uint16_t version_minor; /** Identifier of module */ const char *id; /** Name of this module */ const char *name;

linux驱动程序的编写

linux驱动程序的编写 一、实验目的 1.掌握linux驱动程序的编写方法 2.掌握驱动程序动态模块的调试方法 3.掌握驱动程序填加到内核的方法 二、实验内容 1. 学习linux驱动程序的编写流程 2. 学习驱动程序动态模块的调试方法 3. 学习驱动程序填加到内核的流程 三、实验设备 PentiumII以上的PC机,LINUX操作系统,EL-ARM860实验箱 四、linux的驱动程序的编写 嵌入式应用对成本和实时性比较敏感,而对linux的应用主要体现在对硬件的驱动程序的编写和上层应用程序的开发上。 嵌入式linux驱动程序的基本结构和标准Linux的结构基本一致,也支持模块化模式,所以,大部分驱动程序编成模块化形式,而且,要求可以在不同的体系结构上安装。linux是可以支持模块化模式的,但由于嵌入式应用是针对具体的应用,所以,一般不采用该模式,而是把驱动程序直接编译进内核之中。但是这种模式是调试驱动模块的极佳方法。 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以像操作普通文件一样对硬件设备进行操作。同时,设备驱动程序是内核的一部分,它完成以下的功能:对设备初始化和释放;把数据从内核传送到硬件和从硬件读取数据;读取应用程序传送给设备文件的数据和回送应用程序请求的数据;检测和处理设备出现的错误。在linux操作系统下有字符设备和块设备,网络设备三类主要的设备文件类型。 字符设备和块设备的主要区别是:在对字符设备发出读写请求时,实际的硬件I/O一般就紧接着发生了;块设备利用一块系统内存作为缓冲区,当用户进程对设备请求满足用户要求时,就返回请求的数据。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待。 1 字符设备驱动结构 Linux字符设备驱动的关键数据结构是cdev和file_operations结构体。

Linux驱动工程师成长之路

本人此刻还不是什么驱动工程师,连入门都谈不上,但我坚信在未来的3-5年我肯定能成为我想像中的人,因为我马上就要进入这一行工作了。写下这个日志来记录我是怎么最后成为我想像中的人才的,呵呵。 《Linux驱动工程师》这个东西是我在大二的时候看到有一篇讲如何学习嵌入式的,点击这里下载PDF,里面讲到嵌入式分为四层:硬件,驱动,系统,应用程序;还说linux驱动最难然后工资也最高就冲着他这句话我就决定我大学毕业的时候要去做这个linux驱动工程师,随后我就先后买了51单片机,ARM7,ARM9还有一大堆的视频教程准备来进行学习。我还跟我旁边那个哈工大哥们说:“我们学校像我这样的人很少,你们学校呢?”他说:“太少了,不过我们学校都是做这种板子卖的人比较多!”。行,你们牛!即使是买了这些东西,从大二到现在都快毕业了但感觉还是没有入门。回想一下我都学过什么啊:1:自己在ARM9上写bootloader(主要锻炼了三方面的知识:C语言应该写了有近万行的代码,ARM9的外设的基本操作方法如UART,LCD,TOUCH,SD,USB,ETHERNET...,makefile);2:移植和学习linux驱动。下面我说一下我学习Linux驱动的一个思路这也是我在面试的时候自我介绍中最重要的部分;1:硬件知识学习Linux驱动首先得了解这个驱动对应的硬件的一些基本原理和操作方法比如LCD你得了解它的场同步,行同步,像素时钟,一个像素的表示模式,还有就是这个LCD是怎么把图像显示在屏幕上的。如果是USB,SD卡就得了解相关协议。可以通过spec(协议)、datasheet来了解,这就是传说中的Linux驱动开发三件宝之二,还有一个就是linux相关源码。2:了解linux驱动框架linux下的每一类驱动差不多都是一个比较完善的子系统,比如FLASH的驱动它就属于MTD子系统从上到下分为四层:设备节点层,设备层,原始设备层,最下面的与具体硬件相关的硬件驱动层,通常要我们自己来实现就是最下面这个与具体硬件相关那部分代码。3:了解这个驱动的数据流。这个过程与第二个过程紧密相关,如果了解了驱动的框架差不多这个过程也算了解了。比如flash.在/dev/目录下有对应flash的字符设备文件和块设备文件,用户对这些文件进行读、写、ioctl操作,其间通过层层的函数调用最终将调用到最下面的硬件驱动层对硬件进行操作。了解这个过程我相信在调试驱动的时候是很有帮助。3:分析与硬件相关通常需要我们实现的那部分源代码。4:三板子上将驱动调试出来。每次调试都会出问题,但我买的板子提供的资料比较全调试过程中遇到的问题都比较浅显,即使是浅显的问题也要把它记录下来。(这个是我上次在华为面试的时候,那个人问我你调试驱动遇到过什么问题吗?你是如何解决的。当时我学习还没有到调试驱动这一步,所以那次面试也惨败收场)。 好像说了这么多,还没有进入正题《工作的选择》。在年前去了龙芯,实习2.8K,转正3.5k,环境还是不错,经理很好,头儿也很帅都是中科院的硕士。不过去了两周我就没去了身边的人都不太理解,我也一度有过后悔的时候,从龙芯出来应该是1月6号,也就是从那个时候开始我就没有再找工作,转而学习linux驱动。一直到上周日。上周日的晚上我就开始投简历一开始要找linux驱动,在智联里面输入linux驱动出来500来个职位,点开一看没有一个自己符合要求的,差不多都要3-5年经验本科,有时候好不容易有个实习的关键字在里面,一看要求硕士,严重打击了我的信心,哎不管了随便投,最后又投了一下嵌入式关键字的职位。最后就瞎申请,看看职位要求差不多就申请。周一来了,这周一共来了6个面试,创下了我求职以来的历史新高。周一下午面了一家感觉还不错不过到现在也没有给我一个通知,估计当时我要了4500把他给要跑了,这家是做测量的不是Linux驱动,差不多是把ARM当单片机用。周二上午一家也是要招linux驱动面了估计不到二分钟,他

嵌入式linux android驱动工程师 面试题总汇

嵌入式linux android驱动工程师面试题总汇 1. 嵌入式系统中断服务子程序(ISR) 收藏中断是嵌入式系统中重要的组成 部分,这导致了很多编译开发商提供一种扩展—让标准C支持中断。具代表事实是,产生了一个新的关键字__interrupt。下面的代码就使用了__interrupt 关键字去定义了一个中断服务子程序(ISR),请评论一下这段代码的。 __interrupt double compute_area (double radius) { double area = PI * radius * radius; printf(" Area = %f", area); return area; } 1). ISR 不能返回一个值。2). ISR 不能传递参数。3). 在许多的处理器/编译器中,浮点一般都是不可重入的。有些处理器/编译器需要让额处的寄存器入栈,有些处理器/编译器就是不允许在ISR中做浮点运算。此外,ISR应该是短而有效率的,在ISR中做浮点运算是不明智的。4). 与第三点一脉相承,printf()经常有重入和性能上的问题。 2.C语言中对位的操作,比如对a的第三位清0,第四位置1.本来应该会的,一犯晕写反了,以后注意! #define BIT3 (1<<3) #define BIT4 (1<<4) a &= ~BIT3; a |= BIT4; 3.考到volatile含义并举例:理解出错,举了很具体的例子,连程序都搬上去了,有些理解不深的没举出来…… volatile表示这个变量会被意想不到的改变,每次用他的时候都会小心的重新读取一遍,不适用寄存器保存的副本。 volatile表示直接存取原始地址 例: 并行设备的硬件寄存器(状态寄存器) 在多线程运行的时候共享变量也要时时更新 一个中断服务子程序中访问到的的非自动变量(不太清楚,正在查找资料ing……) 4.要求设置一绝对地址为0x67a9 的整型变量的值为0xaa66 当时我的写法:#define AA *(volatile unsigned long *)0xaa66 AA = 0x67a9; 答案:

从零开始搭建Linux驱动开发环境

参考: 韦东山视频第10课第一节内核启动流程分析之编译体验 第11课第三节构建根文件系统之busybox 第11课第四节构建根文件系统之构建根文件系统韦东山书籍《嵌入式linux应用开发完全手册》 其他《linux设备驱动程序》第三版 平台: JZ2440、mini2440或TQ2440 交叉网线和miniUSB PC机(windows系统和Vmware下的ubuntu12.04) 一、交叉编译环境的选型 具体的安装交叉编译工具,网上很多资料都有,我的那篇《arm-linux- gcc交叉环境相关知识》也有介绍,这里我只是想提示大家:构建跟文件系统中所用到的lib库一定要是本系统Ubuntu中的交叉编译环境arm-linux- gcc中的。即如果电脑ubuntu中的交叉编译环境为arm-linux-

二、主机、开发板和虚拟机要三者互通 w IP v2.0》一文中有详细的操作步骤,不再赘述。 linux 2.6.22.6_jz2440.patch组合而来,具体操作: 1. 解压缩内核和其补丁包 tar xjvf linux-2.6.22.6.tar.bz2 # 解压内核 tar xjvf linux-2.6.22.6_jz2440.tar.bz2 # 解压补丁

cd linux_2.6.22.6 patch –p1 < ../linux-2.6.22.6_jz2440.patch 3. 配置 在内核目录下执行make 2410_defconfig生成配置菜单,至于怎么配置,《嵌入式linux应用开发完全手册》有详细介绍。 4. 生成uImage make uImage 四、移植busybox 在我们的根文件系统中的/bin和/sbin目录下有各种命令的应用程序,而这些程序在嵌入式系统中都是通过busybox来构建的,每一个命令实际上都是一个指向bu sybox的链接,busybox通过传入的参数来决定进行何种命令操作。 1)配置busybox 解压busybox-1.7.0,然后进入该目录,使用make menuconfig进行配置。这里我们这配置两项 一是在编译选项选择动态库编译,当然你也可以选择静态,不过那样构建的根文件系统会比动态编译的的大。 ->Busybox Settings ->Build Options

Android移动应用开发习题答案

Android移动应用开发习题答案 单元1 Android开发环境搭建与模拟器创建 1.填空题 (1) 2008 (2) Linux、操作系统 (3) 应用程序层、应用程序框架层、核心类库、Linux内核 (4) Java C++/C (5) 应用框架 (6) 应用程序 (7) 模拟器、Android模拟器 (8) IntelliJ IDEA Android 2.选择题 (1)创建程序的过程中,填写Application Name表示()。 正确答案:A (2)Android操作系统的手机可以有以下几个方法进行软件安装()。(多选题)ABCD (3)Android操作系统主要的特点是:()。(多选题) 正确答案:ABC (4)以下对Android操作系统描述正确的是:()。(多选题) 正确答案:ABCD (5)以下哪些是Android Stuido的优势()。(多选题) 正确答案:ABCD (6)以下哪些是Genymotion模拟器的优势()。(多选题) 正确答案:ABCD 3.简答题 (1)Android的四层架构分别包括哪几层?分别起到什么作用? 参考答案: Linux内核层(Linux Kernel):基于Linux内核,内核为上层系统提供了系统服务。 核心类库层(Libraries):系统库基于C/C++语言实现,通过接口向应用程序框架层提

基于Android Studio的移动应用开发任务驱动教程 供编程接口。 应用框架层(Application Framework):为开发者提供了一系列的Java API,包括图形用户界面组件View、SQLite数据库相关的API、Service组件等。 应用程序层(Applications):包含了Android平台中各式各样的应用程序。 (2)简述Android开发环境安装的步骤。 参考答案: 下载并安装JDK,配置JDK的环境变量; 从Anroid官网上下载Android开发组件(包含Eclipse和Android SDK、ADT); 安装Android开发环境(包括配置Android SDK的环境变量、打开Eclipse通过菜单设定Android SDK路径)。 (3)简述Android Studio的优势。 参考答案:略。 (4)简述Genymotion模拟器的优势。 参考答案:略。 (5)简述Android应用程序创建和运行的步骤。 参考答案: 通过菜单创建Android应用程序,设置应用程序名、Android版本等基本信息。 单击菜单中的运行按钮可以直接运行Android项目(也可以通过菜单配置运行参数, 指定运行的模拟器)。 单元2 Android Studio的组成结构与基本操作 1.填空题 (1) res/layout (2) Activity、Bundle (3) XML (4) java代码文件 (5) AndroidManifest.xml (6) 打包成.apk文件 2.选择题 (1)如果需要创建一个字符串资源,需要将字符串放在res\values的哪个文件中?()B (2)新建的Android程序默认的布局方式是相对布局(RelativeLayout),该布局中包含一个()控件。 B (3)要让布局文件或者控件能够显示在界面上,必须要设置RelativeLayout和控件的

51CTO学院-Android驱动与HAL开发实战视频课程

Android驱动与HAL开发实战视频课程 课程目标 本教程主要讲解了如何开发Android底层的驱动程序(Linux驱动),以及Android HAL的开发。并使用蜂鸣器等demo来讲解。 适用人群 了解Android的基本知识,想从事Android底层开发的学员。 课程简介 课程目标: 本教程主要讲解了如何开发Android底层的驱动程序(Linux驱动),以及Android HAL的开发。并使用蜂鸣器等demo来讲解。 适合对象: 了解Android的基本知识,想从事Android底层开发的学员。 学习条件: 熟悉Linux的基本操作和C语言 1 Android底层开发概述 [免费观看] 47分钟 本讲主要介绍了Android底层开发概况、Android底层架构、Linux驱动程序的基本结构等内容。 2 搭建开发环境 [免费观看] 44分钟 本讲主要介绍了如何搭建用于开发Android底层的开发环境。 3 源代码下载和编译 45分钟 本讲主要介绍了如何编译Android源代码和Linux内核源代码。并且如何下载这些系统的源代码。 4

搭建S3C6410开发板的测试环境 40分钟 本讲主要介绍了如何搭建S3C6410开发板(Android系统)的开发测试环境。本教程后面的蜂鸣器、LED驱动开发都会使用这个开发板进行开发和测试,其他类似的开发板也同样适用。不过需要向厂家或销售商索要相应的驱动。其余的例子也可以在手机和平板电脑上测试。 5 第一个Linux驱动_读写设备文件(1) [免费观看] 45分钟 本讲主要介绍了如何开发第一个有读写功能的Linux驱动程序(第一部分) 6 第一个Linux驱动_读写设备文件(2) [免费观看] 47分钟 本讲主要介绍了实现第一个Linux驱动的第二部分。 7 实现LED驱动(1) 42分钟 本讲主要介绍了实现LED驱动的基本方法,并实现了这个LED驱动(第一部分)。 8 实现LED驱动(2) 42分钟 本讲主要介绍了实现LED驱动的基本方法,并实现了这个LED驱动(第二部分)。 9 实现LED驱动(3) 47分钟 本讲主要介绍了实现LED驱动的基本方法,并实现了这个LED驱动(第三部分)。 10

《基于Linux的驱动开发》PDF课件

远见品质
Linux内核与C代码
v Linux内核庞大,结构复杂
? 对Linux 2.4内核的统计:1万个文件,4百万行代码 ? 对Linux 2.6内核的统计:1.5万个文件,6百万行代码
v Linux内核的主体使用GNU C,在ANSI C
上进行了扩充
? Linux内核必须由gcc编译编译 ? gcc和Linux内核版本并行发展,对于版本的依赖性强 ? Linux 2.6内核建议使用gcc 3.3以上版本,C99编程风格
v 内核代码中使用的一些编程技巧,在通常
的应用程序中很少遇到
v 学好Linux、首先要学好C语言
《基于Linux的驱动开发》PDF课件

远见品质
linux 2.4 的内核目录结构
/arch /arch /drivers /drivers /kernel /kernel /lib /lib /boot /boot
/arm /arm
/alpha /alpha
/m68k /m68k /kernel /kernel /lib /mm /lib /mm
/mach-s3c2410 /mach-s3c2410
/Documentation /Documentation /ipc /ipc /fs /fs Linux2.4.x Linux2.4.x /include /include /mm /mm /init /init /net /net /scripts /scripts /asm-arm /asm-arm /arch-s3c2410 /arch-s3c2410 /linux /linux /proc-armv /proc-armv /net /net
《基于Linux的驱动开发》PDF课件

Android驱动---LED驱动的编写汇总

Android驱动---LED驱动的编写 1.编写Android驱动时,首先先要完成Linux驱动,因为android驱动其实是在linux驱动基础之上完成了HAL层(硬件抽象层),如果想要测试的话,自己也要编写Java程序来测试你的驱动。 2.android的根文件系统是eclair_2.1版本。我会上传做好的根文件系统提供大家。这里要说的是,android底层内核还是linux的内核,只是进行了一些裁剪。做好的linux内核镜像,这个我也会上传给大家。android自己做了一套根文件系统,这才是android自己做的东西。android事实上只是做了一套根文件系统罢了。 假设linux驱动大家都已经做好了。我板子上有四个灯,通过ioctl控制四个灯,给定不同的参数,点亮不同的灯。 linux驱动代码因平台不同而有所不同,这就不黏代码了。 这是我测试linux驱动编写的驱动,代码如下: [cpp] view plaincopy #include #include #include #include #include #include #include #include #define LED_ON _IO ('k',1) #define LED_OFF _IO ('k',2) int main() { int i = 0; int dev_fd; dev_fd = open("/dev/led",O_RDWR); if ( dev_fd == -1 ) { printf("Cann't open file /dev/led\n"); exit(1); } while(1) { ioctl(dev_fd,LED_ON,1); sleep(1); ioctl(dev_fd,LED_OFF,1); sleep(1); ioctl(dev_fd,LED_ON,2); sleep(1); ioctl(dev_fd,LED_OFF,2);

Android Linux驱动开发工程师简历模板

Megan简历 工作经历 XX有限公司2016年09月- 2019年10月Android/Linux驱动开发工程师 带领驱动开发团队进行DM8127平台的定制开发,完成inux内核/uboot移植,外围驱动移植与开发, 基于IPNCRDK 搭建视频采集,降噪,编码、输出的数据流。配合应用团队实现智能交通抓拍业务。负责技术方案的预研和选型。负责软件版本需求评估、实现评估,工作分配,版本构建和发布、测试故障指派和处理等。 负责Atmel maxtouch电容触摸产品线技术开发与支持,包括Android驱动开发支持和项目性能调试和优化等。负责MIPI 桥接芯片和DDI显示驱动芯片技术支持。负责团队的建设和协调,以及开发进度的跟踪。 XX有限公司 2014年07月- 2016年08月Android/Linux驱动开发工程师 负责几款公司开发的ARM+DSP多媒体处理器芯片的测试、应用开发;这几款芯片广泛应用于Android平板电脑、微型投影机、电子书、MID等领域。 熟悉codec图像编解码算法,dsp底层算法库,主要用汇编开发,独立解决了编解码双核调度的问题。熟练使用c/c++。阅读过Android操作系统ion源码 公司ti平台开发板WinCE系统BSP,公司ti和freescale平台开发板的Android系统BSP开发和驱动开发,负责开发了一个RTSP流媒体的流媒体,把上级领导交代的工作尽快做好,提高工作效率。 教育经历 成都信息工程学院2010年09月- 2014年06月电子科学与技术本科 成都其他 技能:Dsp,Word,C/C++,Wince,Excel,Android,操作系统,办公软件 语言:普通话二级甲等证书

Linux驱动开发人员所需要做的工作

Linux驱动开发人员所需要做的工作 Boot Loader 当CPU一上电,此时CPU必须从NOR Flash或者NAND Flash中取指令,直接从 NAND Flash取指令的AP为支持Nand 启动。 Nand boot ,其实原理就是AP 内部的ROM里有一小段代码,包括NAND Flash驱动,它启动从Nand Flash中读取一段(比如4KB)到内部的SRAM中, 然后跳转到SRAM起始位置,执行SRAM中的代码。SRAM中的代码中包括初始化SDRAM,Nand Flash driver等,它的第一件事情就是初始化SDRAM, 然后把Nand Flash中的更多的东西(整个boot loader)搬到SDRAM中,然后执行uboot NOR boot : 代码就在NOR Flash中,直接执行,初始化CPU ,SDRAM 等,把整个uboot 搬到SDRAM中,然后执行uboot,在uboot中把kernel从 NAND Flash中读出。 对于常用的cpu , u boot 都支持,这块不需要改什么 对于u boot不支持的cpu , 需要写汇编,初始化cpu ,SDRAM ,NAND Flash驱动,NOR Flash驱动(setenv命令需要)等 在boot loader 中,还需要UART驱动,以支持打印信息。 另外要加上LCD 驱动,以支持splash ,否则在uboot阶段,没有任何显示。 正常启动 uboot,以引导linux 这些就够了。 但是对于一个产品: 它在研发阶段,uboot 必须支持TFTP , 需要网卡驱动(在boot loader中) 必须支持通过uboot下载,对于串口下载到内存,uboot本身支持,loadb,loady 等命令,但因为速度慢,所以 一般要uboot支持USB下载,可基于DFU的基础上改成bulk 传输。 同时对于生产ATE,把它放在uboot阶段对生产比较好,否则要等到整个系统起来,kernel+小测试文件系统也要10多妙。 这样的话,在ATE中需要加上 memory test ,LCD test, 声卡测试,需要加上I2C驱动,key test,RTC test,。

Android之蓝牙驱动开发总结

Android之蓝牙驱动开 发总结

二Android Bluetooth架构 (1) 2.1 Bluetooth架构图 (1) 2.2 Bluetooth代码层次结构 (3) 三Bluetooth协议栈分析 (4) 3.1 蓝牙协议栈 (4) 3.2 Android与蓝牙协议栈的关系 (5) 四Bluetooth之HCI层分析 (5) 4.1 HCI层与基带的通信方式 (6) 4.2 包的分析及研究 (7) 4.3 通信过程的研究与分析 (8) 五Bluetooth之编程实现 (8) 5.1 HCI层编程 (8) 5.2 L2CAP层编程 (10) 5.3 SDP层编程 (12) 六Bluetooth之启动过程实现 (13) 6.1 Bluetooth启动步骤 (14) 6.2 Bluetooth启动流程 (14) 6.3 Bluetooth数据流向 (14) 6.4 Bluez控制流程 (14) 6.5 Bluetooth启动过程分析 (15) 七Bluetooth之驱动移植 (15) 7.1 android系统配置 (15) 7.2 启动项修改 (16) 7.3 电源管理rfkill驱动 (16) 7.4 Rebuild Android image and reboot (16) 7.5 实现BT睡眠唤醒机制 (16) 7.6 系统集成 (17) 八Bluetooth之调试与编译 (17) 8.1 Bluetooth驱动调试 (17)

九Bluetooth之应用程序开发 (18) 9.1 Bluetooth的API开发 (18) 9.2 The Basics开发 (18) 9.3 Bluetooth Permissions开发 (19) 9.4 Setting Up Bluetooth服务 (19) 9.5 Finding Devices服务 (20) 9.6 Connecting Devices服务 (22) 9.7 Managing a Connection服务 (26) 9.8 Working with Profiles服务 (28) 十总结与疑问 (29)

【免费下载】linux驱动开发的经典书籍

Linux 驱动开发的经典书籍 Linux 驱动学习的最大困惑在于书籍的缺乏,市面上最常见的书为 《linux_device_driver 3rd Edition 》,这是一本很经典的书,无奈Linux 的东东还是过于庞大,这本侧重于实战的书籍也只能停留在基本的接口介绍上,更深入的东东只能靠我们自己摸索了。但万事总有一个开头,没有对Linux 驱动整体框架的把握是很难做一个优秀的驱动开发者的。除了这本Jonathan Corbet, Greg Kroah-Hartman, Alessandro Rubini 合著的经典大作外,另一本理论实践并重的书就是《Linux Kernel Development,2nd Edition 》有著名的内核专家Robert Love 所著,通过Robert Love 的娓娓道来,相信你会感到自己功力的不断提升,但学习驱动,最本质的东西还是操作系统的一些基本的理论了,《Understanding The Linux Kernel, 3rd ed 2005》更加关注这一点,作为一个注重理论的经典之作,则是Linux 驱动研发人员内功的根基。但很遗憾的是,以上几本书都更侧重于编程者内功的修养,对于初学者而言,往往有过于深奥之感,关乎国内的书,也似乎只懂得copy 些代码做些粗浅的讲解,花拳绣腿的态势又过于明显。 成为一名精通 Linux 程序设计的高级程序员一直是不少朋友孜孜以求的目标。根据中华英才网统计数据,北京地区 Linux 程序员月薪平均为 Windows 程序员的 1.8 倍、Java 程序员的 2.6 倍, Linux 程序员年终奖金平均为 Windows 程序员的 2.9 倍。同时数据显示,随着工作经验的增长, Linux 程序员与 Windows 程序员的收入差距还有扩大的趋势。Denis 认为,要学好 Linux 环境下的编程,关键是要看对、选对、学会正确的书籍。可以说,如果你选对了 Linux 编程的经典书籍,配合你在程序设计工作中的刻苦钻研,成为一名精通 Linux 程序设计的高级程序员并非一件可望不可及的事情。但如果各位程序员朋友没有选对正确的书籍,则你的职业生涯之路就可能面临坎坷。今天,水煮鱼向各位朋友推荐的这些书,有的是资深老前辈们当初向水煮鱼的推荐,还有的是 IBM 的内部培训指定参考书,它们都很值得各位朋友抽空认真一读。 为什么要学习 Linux 环境下的编程 Linux 是一个开放、灵活、跨平台的操作系统,上至庞大的数据中心,下至可放于掌心中的嵌入式设备,无处没有 Linux 的身影。更为重要的是, Linux 是一个与 Unix 既一脉相承又与时俱进的系统。可以说,上世纪70年代学习的 Unix 知识和技巧,在今天仍然大有用武之地,这与 Windows 平台的开发形成了鲜明的对比。程序员不用担心今天微软出一个 .net ,明天又出一个 F#,使得自己过去学习的成果付之东流。 上个星期,水煮鱼与一位 Linux 项目经理聊天过程中,这位 Linux 项目经理告诉水煮鱼,他们项目的利润非常高,急需具备一定 Linux 编程知识的程序员。他说:“其实我们对程序员的编程技巧要求也并非很高,这是可以在工作中培训和提高的,关键是很多程序员连基本的 Linux 编程思想都不了解,我怎么聘用他们呢?我们去大学招聘的时候,给本科应届生开出 8000 元的月薪,但是就是很难招到人。我拿一些经典书籍中一些经典例子来考他们,他们基本上都是一问三不知。其实,如果他们能回答上一半的问题,我还是很愿意考虑是否聘用他们的。而对于项目相关部分的专业知识,我们有专业的内部培训,并不担心这个问题,关键是看应聘者是否具备 Linux 编程的基本思想。” 水煮鱼认为,这位项目经理朋友提到的问题还是很有代表性的。其实很多程序员朋友,只要能掌握这些书中的基础知识,是很容易脱颖而出的。事实上,项目经理他们也都很忙,并没有空去自己设计高难度的面试题目,而是直接采用经典书籍中的经典例子。 、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

Android底层驱动开发

Android 开发之---- 底层驱动开发(一) 说到android 驱动是离不开Linux驱动的。Android内核采用的是Linux2.6内核(最近Linux 3.3已经包含了一些Android代码)。但Android并没有完全照搬Linux系统内核,除了对Linux进行部分修正,还增加了不少内容。android 驱动主要分两种类型:Android专用驱动和Android使用的设备驱动(linux)。Android 专有驱动程序: 1)Android Ashmem 匿名共享内存;为用户空间程序提供分配内存的机制,为进程间提供大块共享内存,同时为内核提供回收和管理这个内存。 2)Android Logger 轻量级的LOG(日志)驱动; 3)Android Binder 基于OpenBinder框架的一个驱动; 4)Android Power Management 电源管理模块; 5)Low Memory Killer 低内存管理器; 6)Android PMEM 物理内存驱动; 7)USB Gadget USB 驱动(基于gaeget 框架); 8)Ram Console 用于调试写入日志信息的设备; 9)Time Device 定时控制设备; 10)Android Alarm 硬件时钟; Android 上的设备驱动(linux): 1)Framebuff 显示驱动; 2)Event 输入设备驱动; 3)ALSA 音频驱动; 4)OSS 音频驱动; 5)v412摄像头:视频驱动; 6)MTD 驱动; 7)蓝牙驱动; 8)WLAN 设备驱动; Android 专有驱动程序 1.Android Ashmem 为用户空间程序提供分配内存的机制,为进程间提供大块共享内存,同时为内核提供回收和管理这个内存。 设备节点:/dev/ashmen .主设备号10. 源码位置:include/linux/ashmen.h Kernel /mm/ashmen.c 相比于malloc和anonymous/named mmap等传统的内存分配机制,其优势是通过内核驱动提供了辅助内核的内存回收算法机制(pin/unoin)

linux的lcd驱动详细讲解

嵌入式驱动程序Day12 Top 1. LCD驱动设计开发 1 LCD驱动设计开发 1.1问题 通过led驱动开发掌握linux内核framebuffer 驱动开发通用方法。 1.2方案 一、帧缓冲(Framebuffer )。 帧缓冲(Framebuffer )是Linux为显示设备提供的一个接口,Linux抽象出FrameBuffer这个设备来供用户态进程实现直接写屏。Framebuffer机制模仿显卡的功 能,将显卡硬件结构抽象掉,可以通过Framebuffer的读写直接对显存进行操作。用户 可以将Framebuffer看成是显示内存的一个映像,将其映射到进程地址空间之后,就可以直接进行读写操作,而写操作可以立即反应在屏幕上。这种操作是抽象的,统一的。用户不必关心物理显存的位置、换页机制等等具体细节。这些都是由Framebuffer 设备驱动 来完成的。 Framebuffer本身不具备任何运算数据的能力,就只好比是一个暂时存放水的水池。CPU将运算后的结果放到这个水池,水池再将结果流到显示器,中间不会对数据做处 理。应用程序也可以直接读写这个水池的内容。在应用程序中,一般通过将FrameBuffer 设备映射到进程地址空间的方式使用,比如下面的程序就打开/dev/fbO 设备,并通过mmap系统调用进行地址映射。 FrameBuffer设备还提供了若干ioctl 命令,通过这些命令,可以获得显示设备的 一些固定信息(比如显示内存大小)、与显示模式相关的可变信息(比如分辨率、象素结构、每扫描线的字节宽度),以及伪彩色模式下的调色板信息等等。 二、FrameBuffer 在Linux中的实现和机制。 Framebuffer对应的源文件在linux/drivers/video/ 目录下。总的抽象设备文件为fbcon.c,在这个目录下还有与各种显卡驱动相关的源文件。 1. 分析Framebuffer设备驱动。 FrameBuffer设备驱动基于如下两个文件: (1) linux/include/linux/fb.h (2) linux/drivers/video/fbmem.c 2. 分析这两个文件。

相关主题
文本预览
相关文档 最新文档