当前位置:文档之家› 转轮原理

转轮原理

转轮原理
转轮原理

转轮式全热交换器的热回收原理

转轮型全热交换器的基本构造,在一个被分隔成上、下两个区的壳体中,具有蜂窝状结构的热交换器转轮在电机的驱动下,以大约l0~20 rpm的回转速度在壳体中转动。由于全热交换器转轮的芯材是由带有吸湿性涂层、导热性很高的铝箔等材料加工而成。来自室内被污染的排风空气从装置的上半部通过转轮向室外排风时,排风空气中所含热量和水分(显热和潜热)的绝大部分将蓄积在转轮中。随着转轮的转动,新风空气从装置下半部通过转轮时吸收蓄积在转轮中的全热能,实现热能回收。

譬如在冬季,室外新风在通过蜂窝状转轮时由于温度差、水蒸气分压力差的存在,蓄积在转轮里的显热和潜热(水分)会放出,使新风被预热和加湿变为温暖、湿润的空气后供给到室内。同样原理,在夏季可以实现连续地向室内供给经过预冷和被除湿后的凉爽干燥的新风。因此,使用全热交换器可以降低新风热负荷,实现节能。

全热换热器应用于空调系统节能的研究进展

摘要:空调系统的大量使用导致了空调能耗所占社会总能耗的比重越来越大。因此,降低空调系统的能耗对降低建筑物耗能、节约能源有重要意义。全热交换器是一种可以降低空调负荷、节约系统能耗、提高系统效率的高效节能产品。它有效地解决了改善室内空气品质与空调节能之间的矛盾,在空调系统节能领域中是不可替代的。

关键词:空调节能全热换热器

1.我国空调节能的背景和意义

近年来,民用空调普及率极大提高。以上海为例,在1978---1996年间,高层建筑增加了十几倍。在这些新建建筑中,一般都安装大型集中式空调系统,而在大多数的改建项目中,增加或改造集中式空调系统也成了改造计划中的重要内容。建筑空调已经成为现代社会所必需的,可显著改善人们生活环境,提高生活质量。

但是从总体上看,我国目前的经济增长模式还是粗放型的,主要表现为资源利用率较低。空调作为耗能大户,与能源供应紧张特别是当前电力供应紧张有着密切的关系。随着空调的迅速普及,空调用电负荷逐年猛增,至2003年底,空调能耗已占全国耗电量的15%左右。在夏季用电高峰时段,空调用电负荷甚至高达城镇总体用电负荷的40%左右,大大增加了电网的负担。到2020年我国空调高峰负荷节电空间约9000万KW,相当于5个三峡电站的满负荷容量,相应可减少电力建设投资4000亿元以上。

降低空调系统的能耗对于减少建筑系统的能耗、缓解当前电力供应紧张状况、优化能源结构、提高能源利用效率等方面都有着非常重要的意义。

2.全热换热器在我国应用现状

众所周知,增大新风量稀释室内空气中有害气体的浓度是改善室内空气品质最直接,最有效的方法之一。因此,国内相关规范和标准均规定了室内最小新风量,并逐年有所提高。2003年颁布执行的《室内空气质量标准》,对室内新风量做出了明确的规定。2003年出版的《全国民用建筑工程设计技术措施(暖通空调·动力)》分册也对各类建筑物的最小新风量标准做出了重大调整。新风量的增大虽然显著地改善了室内空气品质,但也导致新风负荷相应增加,使提高室内空气品质与空调节能之间的矛盾更加突出。

全热换热器是一种高效节能产品,它可以利用排风中的能量来预冷(预热)引入室内的新风,在新风进入室内或空调机组的表冷器进行热湿处理之前,

降低(增加)新风焓值,减小空调系统50%--80%的新风负荷。它的使用可以有效降低空调系统负荷,提高空调系统运行效率,减小空调系统设备装机容量,大大节省空调系统能耗和运行费用。全热换热器有效地解决了提高室内空气品质与空调节能之间的矛盾,在空调系统节能领域中具有不可替代的作用。

《民用建筑热工设计规范》中规定:凡是空调面积在300m2以上的建筑,空调系统应选用匹配的热回收设备,利用空调排风中热量或冷量的总回收效率应达到40%---50%;国家质量监督检验检疫总局和建设部颁布的《旅游旅馆建筑热工与空气调节节能设计标准》中规定:凡是在客房部分设置独立的新排风系统建筑,宜选用全热或显热交换器,其额定回收效率应不小于60%。

但是通过对几个大城市的集中式空调系统进行的调查发现:现有的空调系统中,绝大多数没有安装全热换热器等能量回收装置,致使冬季排风中的热量和夏季排风中的冷量被浪费,一些安装了空气热回收装置的空调系统由于运行管理不合理,未能达到应有的效果,加热和冷却室外新风的能耗相当大。

在西方经济发达国家,全热换热器作为一种性能优良的节能产品已经被广泛应用于各种类型空调系统当中。而在我国,全热换热器一直未能得到推广和普及,究其原因主要是由于:

1)国产全热换热器的热湿交换材料性能不佳,换热效率低,用国产纸的换热效率在40%左右,但价格不菲。如果需要提高国产全热换热器的效率则必须使用进口纸,而进口的材料和全热换热器,虽然效率高于国产的,但是价格较高。因此,迄今为止,国内全热换热器市场是:国产全热换热器整体性能不高,价格居高不下;而进口全热换热器的价格属于“天价”,大多数工程不用,因此大大制约了全热换热器在我国的推广和普及。

2)迎面风速对传统芯材全热换热器影响很大,往往需要将迎面风速控制很低,才能使产品的热回收效率达到相关规范中规定的下限值,因此产品体积庞大。当受到建筑条件限制时,体积庞大的全热换热器将无法安装。

3)设计师对全热换热器在空调系统中的应用形式和设计方法没有全面的认识和深入的了解,采用全热换热器的空调系统与常规空调系统相比,系统要复杂的多,不但需要全面了解全热换热器的结构、性能、尺寸,才能正确进行设计。而且如何处理好新风、回风、排风和送风的关系,存在相当的难度,因此不少设计师望而却步。

4)缺乏系统的全热换热器节能分析软件,设计师和用户都无法简便地评价使用全热换热器的空调系统经济性和节能性,因此无法确定在空调系统中安装全热换热器是否经济合理。

因此,开发性能优良的全热换热器热湿交换材料,进而研制出一系列高效全热换热器产品,是全热换热器在我国推广和普及的必要前提。与此同时,也应该进一步加强全热换热器在空调系统中应用方面的研究,对全热换热器在空调

系统中应用形式进行归纳和总结,优化带全热换热器空调系统的系统设计方法,并全面、系统地评价全热换热器在空调系统中节能效果。

3.全热换热器种类和特点

转轮式全热换热器和板翅式全热换热器是两种最常见的全热换热器产品。转轮式全热换热器开发较早、技术较成熟,以其热湿交换效率高、性能较稳定等特点成了全热换热器的主流产品。但是,由于其自身所带的运动部件需要消耗一定的能量,而且由于结构固有缺陷,空气泄漏和芯体污染问题仍然无法避免,因此它作为节能产品,其综合效果受到了一定的影响。

转轮式热交换器主要由转芯、传动装置、自控调速装置及机体构成。转芯是转轮式全热交换器的主体,它可以采用各种不同材料和工艺制成。目前成熟的做法是采用铝箔或合金钢作为基本材料,添加硫酸钠、氯化钠和氯化锂等吸热剂和吸湿剂以及增加强度的胶料加工而成;也有采用硅酸盐类物质烧结而成的复合材料制作的。转轮呈蜂窝状,外形成轮形并转动。在换热器旋转体内,设有两侧分隔板,上半部通过新风,下半部通过室内排风,使新风与排风反向逆流。转轮以8---10r/min的速度缓慢旋转,把排风中冷热量收集在覆盖吸湿性涂层的抗腐蚀铝合金箔蓄热体里,然后传递给新风。空气以2.5---3.5m/s的流速通过蓄热体,靠新风与排风的温差和水蒸汽分压差来进行热湿交换。所以,它既能回收显热,又能回收潜热。其工作原理和处理过程的焓湿图见图 1、图2。

转轮式热交换器具有自净和净化功能。蓄热体是由平直形和波纹形相间的两种箔片构成,其相互平行轴向通道,使内部气流形成不偏斜的层流,避免了随气流带进粉尘微粒堵塞通道的现象。光滑的转轮表面及交替改变气流方向的层流,确保了蓄热体本身良好的自净作用。轮体外壳上连接了1个净化扇形器,当转轮从排气侧移向新风侧时,强迫少量新风经过扇形器,将暂时残留在蓄热体中的污物又冲入排气侧,防止了臭味、细菌向新风转移,对转轮体起到了净化作用。为了保护又薄又软的铝箔芯片不受磨损,必须在设备入口端设置空气过滤器。转轮式热交换器具有自控能力。转轮体附带的自动控制装置可以适应外界环境的变化,随时改变转速比,保证进入新风处理机前空气温湿度的设定值,使换热器能够全年经济运行。

板翅式全热换热器由于无运动部件,空气泄漏和芯体污染问题可完全避免,因此“9·11”之后,这种形式的全热换热器成了西方经济发达国家的研究重点,如果其全热交换效率能达到或超过转轮式全热换热器,其迎风面风速可以进一步提高,则板翅式全热换热器完全有可能全面替代转轮式全热换热器。板翅式全热换热器主要内部结构为1个板翅式换热器,其结构与板式换热器相似,只是在平板间通道内加装许多锯齿形、梯形等翅片,通常由铝材制成,它只能进行显热交换。全热式板翅换热器的隔板材质采用特殊加工的纸或膜,这种特殊材料具有良好的传热和透湿性,而不透气。当隔板两侧气流之间存在温差和水蒸汽分压差时,两股气流之间就产生传热和传质过程,进行全热交换。其结构见图3。

由图1可知,当室内空调排风和新风分别呈正交叉方式流经换热芯体时,由于分隔板两侧气流存在着温差和蒸汽分压差,两股气流通过分隔板时呈现传热传质现象,引起全热交换过程。

夏季运行时,新风从空调排风获得冷量,使温度降低,同时被空调风干燥,使新风含湿量降低;冬季运行时,新风从空调室排风获得热量,温度升高,同时被空调室排风加湿。这样,通过换热芯体的全热换热过程,让新风从空调排风中回收能量。

4.全热换热器的适用性特征及研究成果

全热交换器要在常温状态下保证有较高的热湿交换效率,取决于它所采用的芯体材料。因为采用一种既易于吸湿又易于解吸的芯体材料,就能够保证交换器在空气调节系统中有较高且连续的换热传湿效率,且无交叉污染。当采用高效芯体材料的全热交换器应用于北方地区的时侯,还可以使室外空气在进入室内时被加湿;而用于南方地区时,又使室外空气在进入室内时被减湿,并与排气进行换热,从而实现热湿的转移与交换,机内不会产生冷凝水析出现象。

从焓湿图中可以分析出,空调排风中可供回收的余热中潜热占很大部分,尤其在夏季,室外空气中潜热量明显要大于显热量,而在潮湿的室外空气条件下更是如此。因此,对于以湿热天气为特征的长江中下游地区使用全热交换器尤其适合。下面对两种常见全热换热器的优缺点做一分析。

4.1 全热换热器的适用性特征比较

4.1.1 转轮换热器的优点

1)既能回收显热,又能回收潜热;

2)排风与新风交替逆向流过转轮,具有自净作用;

3)通过转速控制,能适应不同的室内外空气参数;

4)回收效率高,可达到70%---80%;

5)适应较高温度≤80℃的排风系统。

4.1.2 转轮换热器的缺点

1)装置体积较大,占用建筑空间也较大。为了保证蓄热体高效率的性能,充分发挥热湿交换回收作用,限制了转轮的迎面风速,导致单位负荷转轮断面相对较大,使装置占用建筑空间过多。

2)转轮式换热器将送风和排风的接管位置固定,使系统难以灵活布置。

3)有传动设备,自身需消耗动力。

4)压力损失较大。因受旋转芯体密集结构及旋转变化通道的影响,气流压降较大,一般为25Pa。

5)由于送风与排风之间存在压差,气体相互有少量渗漏,无法完全避免交叉污染。

为了防止空气中的尘埃阻塞板翅式换热器,在送风和排风的入口端都应安装空气过滤器。同时为了防止结露和结霜等现象的发生,对进入换热器的空气环境有一定的限制:

温度:-10℃—+40℃;

湿度:低于80%;

温差:在通常的室内通风范围内。

4.1.3 板翅式换热器的优点

1)传热效率高。由于翅片对流的扰动,使边界层不断破裂,因而具有较大的换热系数;同时所采用的材料(一般为铝)具有高导热性以及较小的当量直径,所以使得板翅式换热器可以达到很高的效率,空气在强迫对流下的换热系数可达350W/m2·℃。

2)结构紧凑。单位体积内的传热面积一般都能达到1500--2500m2/m3,最高可达5000m2/m3。就单位体积的传热面积而言,板翅式换热器为翅片管式换热器的2--5倍。

3)轻巧而牢固。由于翅片很薄,一般为0.2--0.3mm,换热器的结构紧

凑、体积小,换热器一般全部用铝制造,因而重量很轻,同时翅片既是主要的换热表面又是两隔板的支撑,因此强度很高。例如用0.7mm厚的平隔板和0.2mm 厚的翅片制成的板翅式换热器能承受4MPa表压的负荷。

4)适应性强。可用于气体—气体、气体—液体、液体—液体之间的热交换,也可用于存在相变的场合如冷凝与蒸发,这种换热器可在逆流、顺流、错流等流动情况下使用。

5)经济性好。由于结构紧凑、体积小,采用铝合金材质制造,其重量很轻,制造成本低。

4.1.4 板翅式换热器的缺点

1)换热效率小于转轮式换热器。

2)流动阻力较大,传热系数与压降之间的优选问题尚待解决。

3.)耐温、耐压并可长期使用的密封垫片需要进一步开发。对于以湿热天气为特征的长江中下游地区使用全热交换器尤其适用。对于像上海那样的海洋性气候,室外空气比较潮湿,可供回收的热量中潜热部分比重很大,因此采用全热交换器比显热交换器更为有利。

4.2 全热换热器的研究成果

在市场需求的推动下,近年来板翅式全热换热器的研究逐渐受到国内外同行的重视。通过对近年来有关板翅式全热换热器的研究成果进行分析可以发现,这些研究大致可以分为两大类。

4.2.1 对板翅式全热换热器本身性能优化进行的理论和实验研究。L.Z.Zhang等人对亲水膜芯材的传热传湿机理进行了系统研究,在七大基本假设的基础上,对透湿膜式板式全热交换器的传热传湿基本方程式、数学模型边界条件、亲水膜芯材边界层的传热传湿机理等进行了深入研究和模拟分析。YinPingZhang教授对透湿膜材料的传热传湿机理进行了研究,通过严格的理论推导建立了膜式板式全热交换器的数学模型。文献[9]从产品研制的方向、目的、方法和实验研究等方面详细介绍了一种新型板式全热交换器的研制过程。通过试验测试数据显示,这种板式全热交换器显热效率可达72.7%,全热效率可达5

5.7%。文献[10]对板翅式全热交换器在不同运行工况下的性能进行了试验研究,得出了运行工况和性能参数之间的变化曲线。通过试验发现:板翅式全热交换器的热交换效率随着所通过风量的增大而下降,压降却随风量的增大而增加,而且显热效率随风量的变化更具有线性关系;潜热效率随着排风和新风湿度差的变化而变化,当湿度差较大时,潜热效率随湿度差增大而增大的趋势比较明显;显热效率随着温度差的增大而有所增加,但是增加的幅度不明显。

这些研究揭示了板翅式全热换热器的热湿交换和节能机理,为板翅式全

热换热器的开发和应用提供了理论基础,也为板翅式全热换热器的性能提高和改进提供了有益的参考和借鉴。

4.2.2 对使用全热换热器的空调系统进行节能分析及优化控制

一方面是优化带全热换热器空调系统的设计和控制方法,提高全热换热器在空调系统中的能量回收效果;另一方面是对使用全热换热器的空调系统进行能耗分析,并分析各种因素对全热换热器节能效果的影响。

YinPingZhang和J.L.Niu通过研究发现,使用膜式全热换热器比使用显热换热器具有更大的优势。他们开发的模型软件显示,香港地区使用膜式全热换热器每年可以节省58%的新风能耗,而使用显热换热器只能节省10%的新风能耗。从分析中得出,使用空气能量回收装置和变新风的空调系统节能与否和节能的多少与空气处理过程和室外气象条件相关。还对全国不同气候区的代表性城市使用空气能量回收装置和变新风量的节能效果进行了模拟分析。

这些研究对使用全热换热器的空调系统节能性分析和系统设计优化提供了工具,为不同空调系统合理选用空气能量回收装置提供了有益参考,也为进一步开发不同类型全热换热器的数学模型提供了借鉴。

5.结语

能源供应紧张已经成为一个世界性的问题。空调作为能耗大户,采取必要的节能措施降低其能耗已是势在必行。全热换热器作为一种重要的节能产品,在中国乃至国际市场上都具有极大的市场潜力。对于国内市场来说,目前传统的国产全热换热器低下的换热效率、居高不下的价格、庞大的体积、高的空气阻力、不合理的结构形式已经成为制约全热换热器在我国推广和普及的重要因素。

针对以上制约因素,建议全热换热器的研发单位围绕全热换热器结构优化和高性能全热换热器芯材的国产化两大主题,对全热换热器的结构优化过程、新型芯材开发过程和性能做对比试验,尽早研发出适合我国国情的全热回收产品,进一步推动我国空调系统的节能。(责编:罗增润)

参考文献

1.龙惟定,胡欣.上海公用建筑能耗现状及节能潜力分析.见:19984年全国暖通空调制冷学术年会论文集"+北京:中国建筑工业出版社.1998.166---168.

2.周石清,刘惠,王亮,等.提升中国建筑空调能效水平的必要性和技术可行性2004.10.26.

3.吴天.解读空调26度.200

4.07.0

5.

4. 国家质量监督检验检疫总局,国家环境保护总局,卫生部.室内空气质

量标准.北京:中国标准出版社,2003

5.中国建筑科学研究院.民用建筑热工设计规范.北京:中国标准出版社,2002

6.中国建筑科学研究院.旅游旅馆建筑热工与空气调节的节能设计标准.北京:中国标准出版社,2003

7.王强.空气能量回收装置在变新风量系统中的应用研究:[学位论文].北京:北京工业大学,2003

8.程珈宁.关于客房排气的热回收系统.暖通空调,2001.31(2):50--51

9.代伯清,汪莉.铝+纸高效板式空气—空气全热新风交换器的研制"建筑热能通风空调,2003.22(5):12--13

10.汪妇欢,次晋芳.板翅式全热交换器运行条件对性能影响的研究.制冷空调与电力机械,2004.26(93):29--32

转轮热回收原理

转轮式全热交换器的心脏是一个以10转/分钟的速度不断转动的蜂窝状转轮.转芯用特殊金属箔作载体,将无毒、无味、环保型蓄热、吸湿材料,用高科技方法合成,制作成具有蓄热吸湿等性能的蜂窝状转轮,装配在一个左右或上下分隔区的金属箔箱体内由传动装置通过皮带驱动轮子转动。冬季运动时,室内排风经过过滤后再通过热回收转轮处理时,转芯温度升高,水分含量增加,当转芯转过清洗扇后与室外新鲜空气接触,转轮向低温的新鲜空气放出热量和水分,使新鲜空气升温增湿。夏季与之相反,降低新风温湿度。通过换热从而使空调系统达到节能的目的。

这种蜂窝式转轮的设计构成了一个吸湿、蓄热、传质、传热的巨大接触面积,蕴藏了超级能量,具备了回收显热和潜热的优异特性。

在空调系统中,为了人员舒适和通风顺畅,必须考虑引入外界新鲜空气,同时排出部分室内浑浊空气。由于新风为高温高湿状态,因此冷负荷大部分要被新风负荷所占有,能耗惊人。

工作原理

转轮式能量回收换热器有两种型式,即全热回收和显热回收。

转轮作为蓄热芯体,新风通过轮转的一个半圆,而同时排风逆向通过转轮的另一个半圆,新风和排风以这种方式交替逆向通过转轮。

在冬季,转轮蓄热芯体吸收排风中的热(湿)量,当转到新风侧时,由于存在温(湿)差的原因,蓄热芯体就会释放其中的热(湿)量,当再转到排风侧时,又继续吸收排风中的热(湿)量。如此往复循环实现能量的回收,其工作原理如图。

在夏季则是一个相反的处理过程。

结构特点

高热回收效率:蜂窝状的蓄热芯体设计,构成了一个蓄热、吸湿、传热、传质的巨大接触面积具备了回收显热和潜热的优异特性。

自清洁功能:通过转轮的气流方向不断的交替改变以及设置双清洁扇面,保证了自清洁能达到最佳的效果。

低运行费用:转轮的结构特点,决定了其运行费用较低。

便于控制:可以根据室内外温湿度变化控制转轮转速,以达到最佳运行效果。

热回收效率

寿命周期成本

标准的转轮能量回收换热器装有双清洁扇面,其工作原理如图。这种结构不仅防止了气体、细菌、灰尘颗粒等在转轮中从排风混流到新风中,也确保了气流的充分分开和气流的交叉污染,这在某些场合显的优为重要。

几何形状

应用范围

不同的芯体材质,不同的材料厚度,不同的波纹高度决定了转轮能量回收换热器有广泛的应用范围,可用于民用通风空调系统,工业通风空气系统以及国防、科研等,并且根据需要可提供不同的设计。

第一封

Good day, Aven,

I have no idea about Kevin asked in point1. Please try to receive some more details.

About point 3and 4 I discuss with Dima what can we do and inform you asap.

Evgeniya.

第2封

Dear Aven,

Please see the blue font below and thanks!!

Regards,

Kevin

Dear Aven,

Could you please advice or provide supporting documents for the following with Yellow color painted first?

We can't

match with

Master agreement. Please advice. We don't have it

now

We don't have it

now

We got it

You

said

you

don't

have

it.

We got

it

We got

it

We got

it

We don't

have it

now

We saw it from

bank statement

Thanks for your help. Regards,

Kevin

Aven,

Please find attached file with my notes in acc.with your request

(list “VEFK account_for correspondence”) –please give your feedback if any.

About expenses’ supporting documents I’ll give you my reply after receipt of Dima’s notes. Thanks,

Evgeniya

转轮热回收与乙二醇热回收的比较分析

转轮热回收与乙二醇热回收对比分析 一、转轮热回收和乙二醇热回收工作原理 转轮热回收:以轮芯作为换热媒介,转轮使用定制的蜂窝状金属材料,表面涂有一层特殊等级的吸附材料分子筛干燥剂。将转轮置于风道之间,从而使其分成两部分。来自空调房间不新鲜空气从一半转轮排出,室外空气以相反的方向从另一半转轮进入。同时,轮子缓慢旋转(约20RPM)。金属层从较热(冷)空气流吸收存储热量(冷量),并释放到较冷(较热)部分,显热发生转移。附着干燥剂的金属片将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收(同时释放热量),再蒸发(吸热),将湿气释放到低湿度的气流里,这个过程将潜热转移。 乙二醇热回收:以换热器和乙二醇溶液作为换热媒介在排风侧将排风中的冷量(热量)通过换热器传递给乙二醇溶液,降低(提高)乙二醇溶液的温度,然后通过循环泵将被冷却(加热)的乙二醇溶液输送到新风侧的换热器中,降低(提高)新风温度,减少系统的负荷和整个空调系统的运行成本。 二、关键部件外形图 转轮热回收转轮:乙二醇热回收换热器 三、关键部件材质 转轮热回收转轮: 可选用进口优质产品美国百瑞(Bry-Air)热回收转轮,美国百瑞(Bry-Air)热回收转轮为能量回收领域的领先品牌。 其特点如下: 1、独有分子筛技术:百瑞热回收转轮的基材采用铝箔材料,在铝箔表面覆盖不可移动式

分子筛干燥剂;相比采用其他材料覆盖在铝箔上的其他热回收转轮,美国百瑞(Bry-Air)热回收转轮在铝箔表面覆盖低微孔尺寸佛石干燥剂,仅容许水分子通过,拒绝所有其他污染物,其结果是污染物只留在排风中。 2、百瑞转轮内置净化装置:消除了交叉污染,做到新风和排风气流的隔离,防止新风排风的交叉污染;净化装置具备严格的空气流隔离功能,以防止细菌、灰尘和污染物从排风侧携带到新风侧,净化装置和迷宫式密封系统把交叉污染的排风浓度限制在0.04%。 3、清洁扇:转轮采用可调整式内置清洁扇清洗部件;免除清洁烦恼,降低运行成本。 乙二醇热回收换热器: 排风侧的换热器和新风侧的换热器组成,两换热器直接通过乙二醇管道相连,通过循环泵循环。由于有载冷剂乙二醇的存在,乙二醇有一定的挥发性及有毒性,且是可燃性液体,存在泄露隐患。 四、与空调系统配套情况 转轮热回收: 由于转轮热回收整体结构简单,无连接件。则与空调系统配套较为方便,可作为空调箱的一个功能段可以上下安装也可以左右安装。可以承收5.5m/s的面风速,占用空间小。 乙二醇热回收: 由于连接部件较多,结构复杂,连接件较多。则与空调系统配套较复杂,连通管道的泄漏,换热媒介的质量,换热器的质量,管道循环泵的质量,均可形成空调整套系统隐患。可作为空调箱的一个功能段可以上下安装也可以左右安装。比较适用于送排风须完全隔离的(甚至是远距离的末端处理)送排风系统。可承受的最大面风速为2.8m/s,占用空间大。 五、换热效率 转轮热回收: 中间换热媒介单一,换热效率高,在高温高湿条件下显热效率和潜热效率到均可达到70%以上,最高可达90%(焓换效率)。 乙二醇热回收: 间接能量回收(显热)型,中间换热媒介较多,换热效率低,显热效率一般仅为30-40%,最高仅能达到45%基本上无潜热回收(温度交换效率)。 下面就本工程单台机组冬季运行时作经济分析: 转轮热回收换热效率按70%,乙二醇热回收换热效率按40%,其他参数暂定如下:

提高热利用率的废气燃烧处理法RTO

环境污染日益严重,环保法规、标准加严,我国对汽车厂涂装车间废气排放提出了更加严格的要求。VOC总量限值、排放浓度、排放速率较第一阶段指标要求更加严格,而相比原有的国家标准,有机废气的排放指标更加明确、要求也更加严格。 根据最新法规要求,无论通过理论计算还是实际测量,无论是传统的3C2B 还是新型的水性漆免中涂工艺,都无法达到排放指标的要求。汽车涂装车间废气主要是涂料所含的有机溶剂和涂膜在烘干时的分解物,统称为挥发性有机物(VOC),对人的健康和生活环境有害,并且有恶臭。 VOC的成分排出量随所使用的涂料品种、使用量、使用条件等的变化而有差异。涂装车间废气主要发生源为喷漆室、晾干室和烘干室三者的排气,为了达到排放要求,国内大部分汽车厂在新建涂装车间或在旧车间基础上都已开始着手配置喷漆废气处理系统。 废气燃烧法作为一种有效且操作简单的方法被广泛应用于各个领域。但是对废气采用直接燃烧法却仍有诸多弊端,燃烧过程中的明火会对生产企业产生安全隐患,同时对废气的浓度要求较高,此外燃烧过程产生的热量外溢导致周围环境温度的升高,无法对其充分利用。 基于上述技术问题,提出了一种高性价比、质量好、安全系数高的RTO废气焚烧系统。 其基本原理实在高温下(≥760℃)将有机废气氧化生成CO2和H2O,从而净化废气,并回收分解时所释出的热量,以达到环保节能的双重目的,是一种用于处理中高浓度挥发性有机废气的节能型环保装置。

RTO主体结构由燃烧室、陶瓷填料床和切换阀等组成。该装置中的蓄热式陶瓷填充床换热器可使热能得到最大限度的回收,热回收率大于95%,处理VOC 时不用或使用很少的燃料。若处理低浓度废气,可选装浓缩装置,以降低燃烧消耗。 RTO废气焚烧系统,其包括RTO燃烧室、气水换热系统、排气筒和沸石转轮浓缩系统,其中RTO燃烧室的第一输出端依次连接气水换热系统和排气筒,所述RTO燃烧室还包括第二输出端,所述第二输出端连接排气筒,沸石转轮浓缩系统连接在RTO燃烧室上。 RTO燃烧室包括三个腔室,分别为蓄热一室、蓄热二室和蓄热三室,三个腔室的输出端相互连通,沸石转轮浓缩系统分别与三个腔室相互连接。气水换热系统设有进水管道,所述进水管道上设有温度传感器。气水换热系统设有排水管;排水管道上设有温度传感器;RTO燃烧室上外接天然气管道。

转轮除湿机组技术资料

空气干燥方案 机组原理: 转轮除湿机组是通过转轮的旋转,使被除湿的气流所流经的转轮除湿器的扇形部分对湿空气进行除湿,而再生气流流过的剩余扇形部分同时进行吸附剂的再生,被除湿的处理气流和再生气流一起逆流流动,从而形成一个连续的,稳定的除湿过程,达到除湿的目的。 转轮机组的核心部件为吸附式除湿转轮,它以高强度绝热材料为基材,加工成蜂巢管道结构,使其湿交换面积加大;当需 要除湿的被处理空气通过除湿转轮的除湿区时, 能充分与吸湿剂接触。复合吸附剂均匀生成在 基体上形成一个巨大的吸附表面。密封装置将 转轮分为270°扇形的除湿区和90°扇形的再 生区。转轮端部周边采用正压气流及硅氟弹性 材料平面密封,除湿区与再生区之间为弹性密 封。需处理的潮湿空气由处理风机送入转轮除 湿区,空气的水份子被吸附剂吸附,得到相对 湿度极低的干燥气流,以达到除湿的目的;同 时再生空气经加热加热到预定温度(一般在110 ~120℃之间)逆向通过转轮再生区,将吸附剂内的水份解吸出来并带走,恢复吸附湿能力。转轮以极低的转速(一般在5~10转/h)缓慢旋转,整个过程为一反复除湿与再生的周期性过程,确保了连续的除湿效果,得到状态稳定的干燥空气! 转轮除湿机组在转轮除湿的基础之上综合冷冻除湿之优势!于转轮处理前加装冷冻除湿表冷,充分利用转轮低温低湿情况下除湿之性能!于转轮后加装后表冷盘管,控制转轮出风温度;以实现温湿连控。 转轮除湿机组由蒸发冷却器,除湿转轮,后表冷,风机和再生加热器等部分有机组合而成;整机通过PLC集中整体控制,可实现节能高效稳定运行之目的。 本公司转轮除湿机组分普通型和节能型;节能型转轮除湿机利用逆卡诺循环原理;对转轮余热进行回收;用于再生进风预加热;从而节省再生功率!实现节省运行。

沸石转轮处理原理

沸石转轮技术工作原理 沸石转轮浓缩系统(ROTOR)在处理大风量低浓度的废气、连续性操作、效率稳定度、废气排放状况均优于固定床系统,转轮同时亦有低压损、无吸附损耗、极少可移动组件的优点。转轮机后为无机性蜂巢疏水性沸石,对于高温度的挥发性有机气体,沸石亦能有效处理。 操作原理

VOCs废气通过疏水性沸石浓缩转轮后,能有效被吸附于沸石中,达到去除的目的。经过沸石吸附的挥发性有机物的洁净气体,直接通过烟囱排放到大气中,转轮持续以每小时1-6转的速度旋转,同时将吸附的挥发性有机物传送至脱附区。于脱附区中利用一小股加热气体将挥发性有机物进行脱附,脱附后的沸石转轮旋转至吸附区,持续吸附挥发性有机气体。脱附后的浓缩有机废气送至焚化炉进行燃烧转化成二氧化碳及水蒸气排放至大气中。

吸附浓缩 处理大风量含浓度低于800 ppm、40℃温度以下的VOCs气体,通过转轮内的沸石被吸附,以系统抽气变频风机将干净尾气排入大气。吸附器为立式转轮(CTR)可提供大量的气体接触沸石表面积,转轮持续以每小1~6转的速度旋转。提供95%以上的VOCs(volatile organic compounds)去除率。 脱附 转轮内VOCs(volatile organic compounds)被浓缩成饱和沸石区、再利用热交换器提供的热流(约200℃)来进行脱附,脱附完成后旋转至冷却区,以常温空气吹嘘冷却至常温、再旋转至吸附浓缩区。 氧化 脱附出高浓度VOCs(volatile organic compounds)气流,以氧化风机抽送至蓄热式焚化炉(RTO)内燃烧焚化处理,排放出干净CO2(g)及H2O(g)至大气。燃烧室高温气流被引出至气对气热交换器,与常温空气进行热交换、升 温至脱附温度的热流,供脱附使用达到省能目的。

冷却除湿原理

冷却除湿原理 标签:空气除湿新风冷却除湿转轮 1、空气除湿概述: 恒温恒湿系统如为组合式机组,通常具有新风冷却和转轮除湿机段。当处理空气经过新风过滤器洁净后,在新风表冷段与表冷器表面接触,由于新风表冷器的表面温度低于空气的温度,于是空气被冷却,温度降低;同时,空气中的水份变成凝结水析出,并由冷凝水管排除,空气的温度和含水量都得到降低;之后,再由转轮进行吸附除湿,以达到低湿度的要求;最后,所有空气再由后表冷器或加热器控制温度,由送风机将温湿度都符合要求的工艺空气送出。 2、冷却除湿原理: 由于空气在不同的温度及能量下,空气所能容纳的水分是不同的,空气中的水分含量随着空气温度的降低而减小。当室外空气通过新风表冷器时,空气被表冷盘管冷却降温,空气随着温度的降低,空气中的水蒸汽逐渐凝结,并达到饱和状态,当空气的露点继续降低时,空气的中的水蒸汽就变成凝结水并析出,从而空气中的绝对含水量得到降低,空气实现了除湿过程。 3、吸附式转轮的除湿原理: 除湿转轮在除湿段内部由密封系统分为处理区域和再生区域,除湿转轮以8-10转/小时的速度缓慢旋转,以保证整个除湿为一个连续的过程。当处理空气通过转轮的处理区域时,其中的水蒸汽被转轮中的吸湿介质所吸附,水蒸气同时发生相变,并释放出潜热,转轮也因吸湿了一定的水份而逐渐趋向饱和;这时,处理空气因自身的水份减少和潜热释放而变成干的、热的空气。同时,在再生区域,另一路空气先经过再生加热器后,变成高温空气(一般为1 00-140度)并穿过吸湿后的饱和转轮,使转轮中已吸附的水份蒸发,从而恢复了转轮除湿机的除湿能力;同时,再生空气因水份的蒸发而变成湿空气;之后,再通过再生风机将湿空气排到室外。 作为转轮吸附式除湿机,其最主要的核心部件是除湿转轮,转轮是由玻璃纤维和耐热的陶瓷材料作为转轮的内部支撑载体,加以特殊的效吸湿介质材料(如高效硅胶)而合成。这样,高效吸湿剂加以转轮自身的特殊蜂窝结构,不仅保证了转轮与空气接触的巨大表面积,也提高转轮的吸湿效率,增加了吸湿能力;转轮可通过气体吹扫清洗,以便除去转轮表面的一些机械污染物质,如灰尘,油污等。 4、组合除湿的优点

转轮热回收原理及应用

转轮热回收原理及应用 ?https://www.doczj.com/doc/b15636499.html, ?https://www.doczj.com/doc/b15636499.html,/EEB/heat_recovery.html 转轮式全热交换器的心脏是一个以10转/分钟的速度不断转动的蜂窝状转轮.转 芯用特殊金属箔作载体,将无毒、无味、环保型蓄热、吸湿材料,用高科技方法合成,制作成具有蓄热吸湿等性能的蜂窝状转轮,装配在一个左右或上下分隔区的金属箔箱体内由传动装置通过皮带驱动轮子转动。冬季运动时,室内排风经过过滤后再通过热回收转轮处理时,转芯温度升高,水分含量增加,当转芯转过清洗扇后与室外新鲜空气接触,转轮向低温的新鲜空气放出热量和水分,使新鲜空气升温增湿。夏季与之相反,降低新风温湿度。通过换热从而使空调系统达到节能的目的。 这种蜂窝式转轮的设计构成了一个吸湿、蓄热、传质、传热的巨大接触面积,蕴藏了超级能量,具备了回收显热和潜热的优异特性。 在空调系统中,为了人员舒适和通风顺畅,必须考虑引入外界新鲜空气,同时排出部分室内浑浊空气。由于新风为高温高湿状态,因此冷负荷大部分要被新风负荷所占有,能耗惊人。 工作原理 转轮式能量回收换热器有两种型式,即全热回收和显热回收。 转轮作为蓄热芯体,新风通过轮转的一个半圆,而同时排风逆向通过转轮的另一个半圆,新风和排风以这种方式交替逆向通过转轮。 在冬季,转轮蓄热芯体吸收排风中的热(湿)量,当转到新风侧时,由于存在温(湿)差的原因,蓄热芯体就会释放其中的热(湿)量,当再转到排风侧时,又继续吸收排风中的热(湿)量。如此往复循环实现能量的回收,其工作原理如图。 在夏季则是一个相反的处理过程。

结构特点 高热回收效率:蜂窝状的蓄热芯体设计,构成了一个蓄热、吸湿、传热、传质的巨大接触面积具备了回收显热和潜热的优异特性。 自清洁功能:通过转轮的气流方向不断的交替改变以及设置双清洁扇面,保证了自清洁能达到最佳的效果。 低运行费用:转轮的结构特点,决定了其运行费用较低。 便于控制:可以根据室内外温湿度变化控制转轮转速,以达到最佳运行效果。 热回收效率 寿命周期成本 标准的转轮能量回收换热器装有双清洁扇面,其工作原理如图。这种结构不仅防止了气体、细菌、灰尘颗粒等在转轮中从排风混流到新风中,也确保了气流的充分分开和气流的交叉污染,这在某些场合显的优为重要。

凹版印刷油墨废气治理沸石转轮+催化燃烧CO技术方案

XXXX有限公司凹版印刷油墨废气治理 技 术 方 案 环保达人百度ID:jakejion

目录 一、基础信息资料 (2) 项目概况 (2) 生产现状 (2) 污染物排放标准 (3) 二、设计依据和原则 (5) 设计依据 (5) 设计原则 (6) 三、系统工艺设计说明 (7) 系统设计说明 (7) 主要设备技术说明 (8) 干式过滤器 (8) 沸石转轮装置 (10) 催化燃烧系统 (12) 四、主要设备参数及供货范围 (15) 主要设备技术参数 (15) 主要备品备件清单 (16) 五、运行成本分析 (17) 六、项目实施计划 (18) 七、质量保证措施 (20) 八、售后服务承诺及措施 (23) 九、客户培训服务措施 (26)

一、基础信息资料 项目概况 XXXX有限公司是国内唯一的专业印钞油墨制造企业,隶属于中国印钞造币总公司。作为一家将“用色彩和品质守护真实”作为使命的高新技术企业,XXXX 有限公司成立13年来,专注于印钞油墨和防伪油墨两个细分领域,为钞票、证件、证券、票据以及政府与企业的重要文件和产品提供保护。因厂内废气处理设施老旧,需要将原设施进行升级改造:(1)通过末端治理实现VOCs无组织废气转有组织废气的达标处理;(2)减少无组织逸散,提高生产现场作业环境,促进员工职业健康。我方根据现场踏勘及客户的提资设计一套技术方案供客户评审及决策。 生产现状 (1)生产工况资料

(2)废气浓度 根据前期检测和跟踪,废气浓度设计为300mg/m3。 废气组分:正十二烷(60~70%)、十一烷(10~15%)、二甲苯(5%)、甲基异丁基甲酮(3%)、甲苯、丙酮、己烷、庚烷、乙醇。 (3)废气治理设施安装位置 VOC设备放置在风冷热泵机组东侧,可用位置为18×9m,高度不限。两柱之间距离6米,排风机管道可以缩短。需要评估建筑物承重和抗震能力。 污染物排放标准 (1)有组织排放按照上海市地方标准《涂料、油墨及其类似产品制造工业大气污染物排放标准》(DB31/881-2015)以及客户相关要求进行设计; (2)废气处理效率大于95%,以进、出口浓度和风量折算的去除质量计; (3)运行要求:做到无人值守,只需巡检就好,因此要做好信号传输和自动化的设计。 因此本项目排放标准如下所示: 考虑到排放标准升级,客户要求非甲烷总烃排放限值为30 mg/m3。 排气筒高度不低于15m,具体高度由环评影响高度确定。

转轮除湿机工作原理

工作原理 一.除湿方式的种类 1.冷却除湿 将空气冷却至露点以下,再除去冷凝后的水分。在露点为以上的场合有效。 2.压缩除湿 对潮湿空气进行压缩、冷却,分离其水分。在风量小的场合有效,但不适宜于大风量。 3.固体吸附式除湿 采用毛细管作用将水分吸附在固体吸湿剂上。可降低露点,但吸附面积大时设备也随之变大。 4.液体吸收式除湿 采用氯化锂水溶液的喷雾吸收水分。露点可降至左右,但设备较大,而且必须更换吸收液。 5.吸附转轮除湿 将浸渍吸湿剂的薄板加工成蜂窝状转轮,进行通风。其除湿结构简单,经过特殊组配露点可达-70℃以下。 二.除湿适宜范围 三.空气处理的原理 连续不断地提供干燥空气。空气处理是采用蜂窝式除湿转轮的高性能干式除湿机。 空气处理的蜂窝式转轮在旋转时,持续重复吸湿再生动作,不影响空气流动,连续不断地提供超低露点的干燥空气。 四.蜂窝式转轮

奥波除湿机的转轮采用日本NICHIAS高效陶瓷矽胶转轮。保证除湿机转轮通过大风量而牢固不脱粉尘。日本NICHIAS高效陶瓷矽胶转轮是用陶瓷为基材与矽胶混合烧结成蜂巢状圆柱体精密切割而成,整个转轮就是一个高效吸湿体,可以处理100%湿空气并且不脱落,不变形。使用寿命可达10年以上,可以多次清洗,寿命特长。 五.空气处理的除湿原理 该系统采用蜂窝式结构的除湿转轮,如图所示,驱动电机每小时使除湿转轮旋转8~18次,连续重复吸湿再生动作,从而提供干燥空气。 转轮分为吸湿区和再生区。空气中的水分在吸湿区被除掉后,鼓风机将干燥后的空气送入室内。 吸收了水分的转轮移动到再生区,这时从逆方向送入的再生用空气(温风)将驱除水分,使转轮继续工作。 再生用空气的加热方式分为蒸汽、天然气、煤气、燃气、燃油、电等多种装置。 由于日本NICHIAS高效陶瓷矽胶转轮和沸石转轮的特殊性能,使奥波系列除湿机可在很大风量下能连续除湿,可以达到极低的含湿量要求。经配套组合后,处理空气的含湿量可低于0.0007g/kg 如果想要干燥空气的温度保持稳定,可以通过安装冷气设备或加热器的方式,对除湿机出口的空气进行冷却或加热。 空气处理的特征 在产品生产过程中,湿气对产品带来的烦恼无时不在困扰着人类。应用固体吸附剂进行吸湿的过程中同步对吸湿后的吸附剂进行再生脱水处理,使固体吸附剂循环使用,整个吸湿工作可以连续进行。克服了静态固体吸附不能连续除湿而制冷冷凝除湿在低温低湿情况下无能为力的缺点。可发挥其在低温低湿条件下可连续稳定、大除湿量的特点。奥波公司的转轮除湿机就是应用这一先进技术研制而成,具有能人所不能的特殊功能。转轮式除湿机,与其它除湿方法比较,有其独特的特点; 能简单地获得超低湿度的干燥空气。 可连续提供冷却除湿方式无法实现的露点在6℃以下的超低湿度的干燥空气,成本低廉。 运转操作和维修简单。 结构单纯,驱动部简单,只需除湿转轮、再生用加热器和送风机运转,即可得到干燥空气,所以操作非常简便。另外,它属于干式除湿型,无需补充吸湿剂,维修保养方便,运转和维修费用等成本低廉。 耐久性能超群。 在清洁的空气环境下,除湿转轮的性能几乎不会下降或退化,可胜任长年的连续运转。

《旋转式沸石吸附浓缩装置技术要求(征求意见稿)》编制说明

旋转式沸石吸附浓缩装置技术要求 (征求意见稿) 编制说明 《旋转式沸石吸附浓缩装置技术要求》编制组 二〇二〇三月

目次 1 任务来源 (1) 2 标准制定必要性、编制依据、编制原则 (1) 3 相关标准概况 (3) 4 主要工作过程 (3) 5 产品调研 (4) 6 标准的主要技术内容说明 (9) 7 标准水平评价 (19) 8 标准实施建议 (19)

《旋转式沸石吸附浓缩装置技术要求》编制说明 1 任务来源 2017年,中国环境保护产业协会下达了“固定式蜂窝活性炭吸附浓缩装置技术要求等八项中国环境保护产业协会标准制修订计划项目”〔2018〕第128号,其中提出了制定《旋转式沸石吸附浓缩装置技术要求》的编制任务。青岛华世洁环保科技有限公司承担该标准的编制工作,其他参编单位有可迪尔空气技术(北京)有限公司、恩国环保科技(上海)有限公司、河北莫兰斯环境科技有限公司、潍坊正轩稀土催化材料有限公司、扬州市恒通环保科技有限公司、北京泷涛环境科技有限公司。 2 标准制定必要性、编制依据、编制原则 2.1必要性 近年来,雾霾、光化学烟雾、近地面高浓度臭氧和二次气溶胶污染等事件频发,人类呼吸道疾病、癌症种类和数量均显著增加,说明大气污染引发的环境问题已日趋严重。挥发性有机物(Volatile Organic Compounds,VOCs)是一类常见且非常重要的大气污染物,也是臭氧和PM2.5形成的重要前体物质。许多VOCs具有毒性和恶臭气味,浓度超过一定限值会对生态环境和人体健康产生重大负面影响。因此,如何治理VOCs成为废气处理领域的研究热点。 VOCs来源十分广泛,包括自然源和人为源,其中人为因素产生的挥发性有机物成为引发环境问题的关键,人为因素中有约70%来自工业源排放的废气。涉及VOCs排放的行业包括喷涂、涂料、油墨印刷、冶金制造、合成树脂、合成橡胶、合成制药、炼焦、石油开采与炼制、天然气开发与利用、日用化学品制造、半导体及电子产品制造、人造板与木制家具制造等,各行业排放废气成分复杂,包括300余种,主要为烷烃类、烯烃类、芳香族及其衍生物、醇类、酯类、醚类、酮类、醛类、胺、酰胺和乙二醇衍生物等。 目前,大风量、中低浓度的VOCs排放在有机废气污染中占据很大的比例,约占市场份额的60~70%,其中吸附浓缩技术是此类废气治理中最为经济有效的技术途径。早期吸附浓缩技术中,主要采用活性炭材料(颗粒活性炭、活性碳纤维)作为吸附剂,但是存在安全性能差、难以实现连续操作、再生脱附不彻底等明显缺陷。近年来,沸石转轮浓缩-蓄热(催化)氧化技术成为最具潜力的大风量、中低浓度VOCs治理技术,沸石转轮因具有风阻低、效率高、连续脱附、无着火危险、寿命长的优势,市场占有率日益扩大,已广泛应用在涂装、印刷、石油化工、橡胶、机械等行业,但随着该技术的广泛应用,转轮产品装备质量良莠不齐的问题不断凸显,亟需制定相应的产品标准进行规范。 2.2编制依据 标准的编制以工业固定源VOCs废气的排放和污染现状、各行业的排放特点及其污染治理情况为基础,充分考虑吸附浓缩治理技术的发展水平、成熟程度、应用范围和覆盖度,并

一种沸石转轮吸附浓缩+催化燃烧新工艺新选.

一种沸石转轮吸附浓缩+催化燃烧新工艺 摘要:阐述了沸石转轮吸附浓缩+焚烧技术的研究现状及基本工艺特点,并介绍了一种新的沸石转轮浓缩+催化燃烧工艺,详细阐述了该工艺的特点及关键点,并指出该技术的发展方向。 的种类繁多、成分复杂、性质各异,在很多情况下采用一种净化技术往往难以达到治理要求,而且也不经济。利用不同单元治理技术的优势,采用组合治理工艺,不仅可以满足排放要求,而且可以降低净化设备的运行费用。因此,在有机废气治理中,采用两种或多种净化技术的组合工艺得到了迅速发展。沸石转轮浓缩技术就是针对低浓度的治理而发展起来的一种新技术,与催化燃烧或高温焚烧进行组合,形成了沸石转轮吸附浓缩+焚烧技术[1]。 1、技术研究现状 蜂窝转轮吸附+催化燃烧处理技术是20世纪70年代由日本发明的一种有机废气处理系统,吸附装置是用分子筛、活性炭纤维或含炭材料制备的瓦楞型纸板组装起来的蜂窝转轮,吸附与脱附气流的流向相反,两个过程同时进行。这种系统在20世纪80年代初被我国引进和仿制,但由于吸附元件(蜂窝转轮)以及系统关键部位连接技术都不过关,吸附与脱附的串风问题未得到根本解决,设备性能不稳定,因此国内应用较少,一直未得到推广。 20世纪80年代末研制设计了固定床吸附+催化燃烧处理系统。该系统是将吸附材料装填在固定床中,再将吸附床与催化燃烧装置组合成净化处理系统。该工艺系统的原理与上述蜂窝转轮吸附+催化燃烧技术基本相同,但由于单件吸附床的吸附与脱附再生过程分开进行,在操作上克服了蜂窝转轮净化系统吸、脱附易串

气的缺点。经不断改进,系统配置更加合理,净化效率高,运行节能效果显著,在技术上达到国际先进水平[2]。该工艺系统非常适合处理大气体量、低浓度的废气,其单套系统的废气处理量可以从几千到十几万(m3)。该技术是我国真正自主创新的废气治理工艺,自1989年首次在国内推广,到目前已有数百套该类系统与装置在使用。已经成为国内工业废气治理的主流产品之一,并预计在将来仍将有很大的应用前景[3]。 利用催化燃烧法进行工业有机废气的治理,已经普遍应用于汽车喷涂、磁带制造和飞机零部件喷涂等。催化燃烧技术将挥发出来的大量有机溶剂充分燃烧。催化剂采用多孔陶瓷载体催化剂,催化前的预热温度视种类而不同:聚氨酯380~480℃,聚酯亚胺480~580℃;有机物浓度约16003,净化效率平均为99%。 2、转轮浓缩+催化燃烧新工艺 2.1 技术介绍 针对现行各种方法在处理低浓度、大风量的污染空气时存在的设备投资大、运行成本高、去除效率低等问题,我们研发了一种用于处理低浓度、大风量工业废气的高效率、安全的处理工艺。该方法的基本构思是:采用吸附分离法对低浓度、大风量工业废气中的进行分离浓缩,对浓缩后的高浓度、小风量的污染空气采用燃烧法进行分解净化,通称吸附分离浓缩+燃烧分解净化法。具有蜂窝状结构的吸附转轮被安装在分隔成吸附、再生、冷却三个区的壳体中,在调速马达的驱动下以每小时3~8转的速度缓慢回转。吸附、再生、冷却三个区分别与处理空气、冷却空气、再生空气风道相连接。而且,为了防止各个区之间串风及吸附转轮的圆周与壳体之间的空气泄漏,各个区的分隔板与吸附转轮之间、吸附转轮的圆周与壳体之间均装有耐高温、耐溶剂的氟橡胶密封材料。含有的污染空气由鼓风机送到吸附转轮的吸附区,污染空气在通过转轮蜂窝状通道时,所含成分被吸附剂所吸附,空

除湿机及其工作基础学习知识原理

除湿机及工作原理 除湿机又称为抽湿机、干燥机、除湿器,一般可分为民用除湿机和工业除湿机两大类,属于空调家庭中的一个部分。通常,常规除湿机由压缩机、热交换器、风扇、盛水器、机壳及控制器组成。 其工作原理是:由风扇将潮湿空气抽入机内,通过热交换器,此时空气中的水分子冷凝成水珠,处理过后的干燥空气排出机外,如此循环使室内湿度保持在适宜的相对湿度。 全球除湿机的主要产地集中在意大利、日本、中国等地,中国在全球除湿机市场中的地位日益显著。特别是工业除湿机,应用在医药,医院,电子,计算机,食品行业居多;家用除湿机在中国国内市场才刚刚起步,还没有完全被中国的消费者认知。 发展简史 除湿机在中国的市场其实已经有几十年的历史。但是除湿器却一直处于初始状态。除湿机在中国的市场容量非常有限。多年来支持除湿器成长的只有出口。从二十一世纪开始,国家主要生产除湿器的企业总共出口20多万台。之后五年,迅速增长到205万台。当年,国内的销售总量是250万台,这其中近96%的份额都是用于出口。不得不说,5年中国迈上一了个新的阶梯。但是随后的日子,除湿机行业受到了原材料的影响,利润状况不容乐观。中国除湿器的市场不具规模主要的原因就是消费意识和消费水平。除此之外还有产品的技术、宣传等等。因此中国的除湿器市场有待开发。 现状分析 工业除湿机领域的情况则大为不同。工业除湿机是以内销市场为主,其销售量占内销总数的60%,销售额比例则超过90%。商用机的市场还没有真正发展起来。销售状况和家用机类似,都处于比较被动的局面。许多单位和场所需要用到除湿机,但对产品不甚了解,并未将其纳入采购范围。有关除湿机的采购招标项目也非常少,客户需要商家主动去挖掘,需要“曲线”营销,甚至除湿机只是作为配套产品配给用户。 工业除湿机的消费群体: 1.对产品需求不复杂,只要能满足除湿即可,但对价格的敏感度较高; 2.是实力较强的单位及一些科研所等机构,对机器的性能要求较高,价格则是次要考虑因素。 在国内的生产企业中,除湿机是较早涉足除湿机领域的企业,而格力归绿等近几年开始迅速成长。许多大企业出于各方面因素考虑,比如市场成熟度、消费价格接受度等,主动放弃了国内市场。 品牌格局 除湿器行业中还没有真正形成规模的品牌和企业,2010年销售收入超过亿元的企业屈指可数,大部分企业的销售收入都在2000万元之下,品牌格局还仅是一个雏形。形成这样局面的原因主要有两点:一是较小的市场需求影响了产业的发展。除湿机行业的市场容量不到20亿元,国内市场更是微乎其微,在没有市场需求的拉动下各企业对该产品的重视度不够,除湿机只能成为一个附属的小产品,而专业除湿机企业又没有足够的实力来大力推广。 二是除湿机产品品类繁多,应用领域也纷繁复杂,造成销售渠道杂乱,同时每种产品的需求量都相对较少,这也给企业在推广及销售造成较大困难。 从除湿机短期的发展态势来看,这种局面还将维持很长的一段时间。虽然近两年国内市场的需求有较快增长,但市场需求的绝对量还是有限,很难让众多有实力的品牌介入,领军品牌自然也无法形成。但毕竟作为一个细分的市场,除湿机行业的市场及利润空间仍客观存在,因此还是会吸引新的品牌不断进入。 产品特点

转轮除湿机2017

招标文样本书 一、我公司欲购置下列设备,现准备进行招标,请按下列要求进行投标。 二、设备名称和数量 转轮除湿机2台,详见技术文件 三、商务条款 1、付款条件:预付款30% ,发货40%,验收20%,余为质保,付款方式:商业承兑。 2、质保期:质保期为验收合格后壹年,其中易损件要有足够备件或免费更换。若出现质量问题, 造成的损失由供方负责。 3、售后服务承诺:设备出现问题供方接到需方通知后,必须于承诺的时间内到达需方现场。否 则,每拖延一天支付合同金额的1‰违约金。 4、调试周期:供货方的有关设备调试人员必须在接到通知后48小时内到达调试现场,并且必 须于合同约定的时间内将设备调试完毕,否则每拖延一天支付合同金额的 1‰违约金。在规定时间内调试不和格视为不和格产品,退款退货,供方承担相应责任。 5、交货期:供方要按时交货,否则,每拖延一天从验收款中扣除合同金额的1%。 6、供货方要免费指导安装并负责调试。 7、供货方要免费为需方培训操作人员及维修人员。 8、价格内含包装费、运输费、保险费、调试费。 9、技术资料齐全,如合格证、装箱单、说明书、出厂检测证明、维修用的部件图、易损件图、 外购件说明书、PLC梯形图、基础图、总装图、管路图、气压原理图、液压原理图、电器原理图、电器外部接线图、设备本体上要带有润滑点分布示意图等,其中基础图、总装图、各种管路及电源接口位置图要在一周内寄给需方,使用说明书至少要有四份。设备上要带有润滑图表。设备源程序、PLC梯形图、管路图、气压原理图、液压原理图、电器原理图、电器外部接线图、设备说明书等要提供电子版资料。设备的程序软件不得设有密码,否则,由此造成的一切损失皆有供方负责。 10、设备上要带有各种标识,如润滑点分布示意图、减速机或油箱的液位显示和标识、电机的转 动方向、管路流向、管路名称、各种阀门的名称、电器接线的线号、安全警示标志等。 11、设备验收按技术协议的有关条款和国家的有关标准执行。 12、设备交货地点为柳州广西玲珑厂内。 13、如有纠纷双方协商解决,协商不成由合同签订地法院裁决。 四、投标要求 1、标书要注明所投设备的技术参数、设备结构说明、供货范围、主要零部件的生产厂家、运行 费用分析(以壹年为准) 2、标书中要注明所投产品的交货期、调试周期、售后服务承诺。 3、所投设备要带有平面布置总图、基础图。 4、标书中要有必要的资质证明和近三年的销售业绩、业主的联系方式和联系人。不小于4份合 同复印件。

沸石转轮技术原理

沸石转轮技术综述一、VOCs治理技术 现今处理有害空气污染物技术分为五项: 各种处理技术的优缺点说明如下:

VOCs之处理方式可由以下几点考量决定采用何种防治设备,针对将VOCs加以冷凝回收,针对浓度低、价值低、风量大之废气可采用活性炭或沸石转轮以吸附方式浓缩再以燃烧或高温氧化方式处理,针对浓度高、价值低、风量小之废气可采用燃烧或高温氧化法处理。

二、沸石转轮系统简介 该系统系结合吸附、脱附及浓缩焚化三项操作单元为一体,是目前提供防治VOCs之较完善设备,但造价及操作维护成本偏高,并不适用于直接处理高沸点挥发性有机物是其限制所在。 较适合每分钟600立方公尺(CMM)高风量以上、VOCs之总碳氢化合物浓度介于500-1000ppm之废气特性厂家应用。但若废气中含有较多量之高沸点物质,则并不适合单独、直接使用此系统处理之。高沸点VOCs虽容易吸附于沸石转轮上,但由于系统设计之安全考量,使得脱附高沸点VOCs温度不足,所以往往造成脱附不易,且高沸点VOCs将蓄积其上、占据吸附位置,影响系统整体效能。若VOCs废气中含有较多量之高沸点物质,欲应用沸石吸附浓缩系统控制,建议于进入系统前端加装冷凝器、活性碳网栅及除雾器等设备,如此将可有效处理高沸点VOCs。 而若是废气中含有高浓度之颗粒,则必须以微粒处理装置设置于沸石转轮之前端,以避免这些颗粒于沸石之蜂巢结构中沉积,其中最简单的微粒过滤装置为单层涂布,但其仅针对较大颗粒之过滤效果较佳,无法有效处理较小

粒径之颗粒,因此适用于既设、无空间之工厂,其对沸石转轮之寿命延长仍然有限。而拟新设置之工厂,若能预留空间给较有效之微粒处理装置(如袋式集尘装置),方可使沸石转轮之寿命有效延长之。 若无法确认VOCs废气中是否有其他废气混入或含有较多量之高沸点物质,欲应用沸石吸附浓缩系统控制,建议: (1)设置颗粒物过滤设备。 (2)定期以清洁水保养清洗。 能承受水洗程序处理之转轮,可依厂内所处理之废气所含高沸点VOCs物质浓度状况,适时以洁净水清洗沸石吸附转轮。。唯清洗时须特别注意水质状况,若其中含有大量钙、镁等离子,将可能会在沸石内生成碳酸盐或碳酸氢盐,阻塞沸石之蜂巢状孔隙;而水中之氯仿可能占据沸石内吸附位置,阻碍处理废气内所含VOCs之吸附性能,此外水中所含微量之重金属物质亦会毒化沸石,这将随着清洗次数及水质水量状况而有不同之影响;为克服沸石吸附转轮之蜂巢状孔道及其结构使得一般清洗水无法深入转轮内部,有研究采用如下的清洗程序。 利用高压喷嘴将清洗水形成微细雾滴状,并以系统冷却端之干净空气为载流,先将微细雾滴状之清水携入沸石孔道内实施逆洗程序后,再从另一边之吸附端吸入干净空气汇流,除可将附着于沸石内部之水气携出视为第二道清洗外,亦可完成沸石干燥之程序,如此两阶段之清洗转轮,其耗水量经统计可为以往传统方式之20%至30%,能大幅降低废水量,故可在成本考量下顺利、有效进行沸石转轮之清洗。

转轮除湿机组技术资料

转轮除湿机组技术资料-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

空气干燥方案 机组原理: 转轮除湿机组是通过转轮的旋转,使被除湿的气流所流经的转轮除湿器的扇形部分对湿空气进行除湿,而再生气流流过的剩余扇形部分同时进行吸附剂的再生,被除湿的处理气流和再生气流一起逆流流动,从而形成一个连续的,稳定的除湿过程,达到除湿的目的。 转轮机组的核心部件为吸附式除湿转轮,它以高强度绝热材料为基材,加工成蜂巢管道结构,使其湿交换面积加大;当需 要除湿的被处理空气通过除湿转轮的除湿区时, 能充分与吸湿剂接触。复合吸附剂均匀生成在 基体上形成一个巨大的吸附表面。密封装置将 转轮分为270°扇形的除湿区和90°扇形的再 生区。转轮端部周边采用正压气流及硅氟弹性 材料平面密封,除湿区与再生区之间为弹性密 封。需处理的潮湿空气由处理风机送入转轮除 湿区,空气的水份子被吸附剂吸附,得到相对 湿度极低的干燥气流,以达到除湿的目的;同 时再生空气经加热加热到预定温度(一般在110 ~120℃之间)逆向通过转轮再生区,将吸附剂内的水份解吸出来并带走,恢复吸附湿能力。转轮以极低的转速(一般在5~10转/h)缓慢旋转,整个过程为一反复除湿与再生的周期性过程,确保了连续的除湿效果,得到状态稳定的干燥空气! 转轮除湿机组在转轮除湿的基础之上综合冷冻除湿之优势!于转轮处理前加装冷冻除湿表冷,充分利用转轮低温低湿情况下除湿之性能!于转轮后加装后表冷盘管,控制转轮出风温度;以实现温湿连控。

转轮除湿机组由蒸发冷却器,除湿转轮,后表冷,风机和再生加热器等部分有机组合而成;整机通过PLC集中整体控制,可实现节能高效稳定运行之目的。 本公司转轮除湿机组分普通型和节能型;节能型转轮除湿机利用逆卡诺循环原理;对转轮余热进行回收;用于再生进风预加热;从而节省再生功率!实现节省运行。 除湿设计: (一)设计依据 《洁净厂房设计规范》 GB50073-2001 《采暖通风与空气调节设计规范》 GB50019-2003 《洁净室施工及验收规范》 JGJ71-90 《通风与空调工程施工及验收规范》 GB50243-2001 《通风与空调工程施工及验收规范》(GBJ243-82) 《工业管道工程及验收规范》(GBJ235-82) 《机械设备安装工程施工及验收规范》{(T)231(五)-78} 《制冷设备安装工程施工及验收规范》(GBJ66-84)

转轮除湿机的选型解析

转轮除湿机的选型解析 时间:2010-4-22 15:23 来源:互联网发布评论进入论坛 一、概述 目前软胶囊烘干技术有以下几种:①转笼式烘干、②履带式烘干③静态的托盘烘干。由于静态托盘烘干技术有着保证软胶囊表面光泽度好、无破损率等优点,经过四五年的实践经验比较采用静态托盘烘干技术是一种趋势。因为物料的烘干只与空气的温度、湿度、风速、自身的挥发率这四要素相关。由于软胶囊的自身因素,烘干温度不能过高,所以为了提高生产效率,就只好在降低空气湿度、增大干燥室内之换气次数方面想办法。 为保证软胶囊干燥室内的温度、湿度、洁净度、大的换气次数,且符合GMP标准,就必须创造一种人工环境来满足以上四个参数的要求。目前国内的净化空调厂家,在保证干燥室内温度、洁净度、大的送风量方面没有任何难题,难就难在低湿控制这方面。把湿度控制在50~70%,在夏季只靠空调就可解决,而软胶囊的最佳烘干湿度是20~30%,一般空调及压缩式制冷除湿机(属于物理机械除湿法)根本无法达到此湿度求,达到此要求就必须借助化学除湿法。目前普遍采用的化学除湿法就是氯化锂/硅胶/分子筛转轮除湿机。由于氯化锂具有很强的腐蚀性、易溶于水性、使用寿命短等缺点,在国外已被淘汰;而国内现于多种方面原因,有些单位还在采用。硅胶(Silica Gel)的繁体中文为矽膠二字,矽字为化学元素硅的旧名,而不是有的销售厂家在宣称的其特有的、独一无二的矽胶。硅胶除湿转轮在国内的发展也趋于缓慢,至今还不成熟,极易脱落,吸湿剂只是涂在纤维纸的表面,其吸湿效率不到国际成熟产品的20%。进口的硅胶转轮成熟产品在保证进风参数为27-30℃前提下,其单位除湿量为6g/kg干空气左右,而国产的只有2g/kg干空气以下的单位除湿量。分子筛除湿转轮适用于对空气湿度通常要求1%-10%的极低的场合,如手机锂电池制造、特种塑料行业等。由于分子筛除湿转轮的再生温度一般在160℃以上,耗能大,价格高,所以在一般制药企业不宜采用。 二、软胶囊烘干房的设计实例 面积60m,高度2.6m;容纳软胶囊350kg左右;干燥时间35-40小时;洁净度10万级;房间温度要求18-25℃,湿度要求20%-30%;用户所在地夏季室外计算干球温度35℃,湿球温度28℃;送风方式采用上送下回;工作人员最多4名;无其它湿源。 三、除湿机的选型 ⑴ 确定干燥室送风量:按照《空气调节设计手册》之空气净化和洁净室的相关章节,洁净度10万级时,房间换气次数按不小于15次/小时进行设计,本实例按照换气次数20 次/小时进行设计。送风量L=20V=20×60×2.6m3/h=3120m3/h。也有用户为了提高干燥效率,把换气次数提高至30次/小时的。 ⑵ 计算干燥室的散湿量:查取《空气调节设计手册》得知,在室温22℃时,轻劳动强度,成人的散湿量为150g/h,室内最多有4人工作,即房间内人体散湿量最大为600g/h。因为由于软胶囊的品种不同,其自身挥发率也有所不同,其散湿量实为变值,故本实例以在

转轮浓缩+RTO

系统描述 沸石转轮浓缩技术为处理大风量、低浓度挥发性有机物的污染防治设施,系统主要包含:利用疏水性沸石转轮吸附及浓缩挥发性有机物气体:透过多种形式的焚化炉处理浓缩的挥发性有机物。 操作原理 挥发性有机气体通过疏水性沸石浓缩转轮后,能有效被吸附于沸石中,达到去除的目的。 经过沸石吸附挥发性有机物的洁净空气,直接通过烟囱排放。 转轮持续一每小时1~6转的速度旋转,同时将吸附的挥发性有机物传送至脱附区。 在脱附区中利用一小股加热气体将挥发性有机物进行脱附。 脱附后的沸石转轮旋转到吸附区,持续吸附挥发性有机气体。 脱附后的有机气体送至焚化炉进行燃烧转化成水及二氧化碳,排至大气中。 利用余热交换将燃烧产生的热量用来预热脱附用气,并提供废气再焚化炉前的预热,使系统达到节能功效。 特点 转轮浓缩比高,浓缩比高达20:1 转轮使用寿命长,无需定期更换吸附剂 系统自动控制,自动化程度高,操作简单,运行安全可靠

沸石简介: 沸石是含碱土金属或碱金属的具有三维空间结构的硅铝酸盐晶体,分为天然沸石和人 工沸石。 天然沸石孔隙中充满大量的水分,加热时会沸腾而得其名。 人工合成沸石是以硅和含铝的盐为原料,经过水热合成大小与分子大小相当的材料, 也称分子筛。 据小编了解,现在市场上的沸石供应商五花八门,有进口,有国产,有天然的,也有 人工合成的。沸石含量从30%--70%,吸附和脱附效率不等,使用寿命不等。 效率最高的沸石转轮可达到40倍浓缩,这对于部分环保标准高的地区水性漆的涂装 废气治理是一个运行成本较低的解决方案。 疏水性沸石浓缩系统 蜂窝状沸石吸附材料,通过吸附浓缩法高效吸附废气中的VOCs,适用于低浓度、大风量的VOCs处理。广泛应用于世界各国工厂的喷涂、印刷、半导体、液晶及化学等各种工序中,VOCs去除效率世界领先。 适用的VOCs:苯、甲苯、二甲苯、苯乙烯、己烷、环己烷、MEK、MIBK、丙酮、乙酸 乙酯、NMP、THF、甲醇、乙醇、丙醇-1C、丁醇及各种氯体系溶剂等。 吸附浓缩原理

转轮热回收原理

转轮热回收原理 转轮式全热交换器的心脏是一个以10转/分钟的速度不断转动的蜂窝状转轮.转芯用特殊金属箔作载体,将无毒、无味、环保型蓄热、吸湿材料,用高科技方法合成,制作成具有蓄热吸湿等性能的蜂窝状转轮,装配在一个左右或上下分隔区的金属箔箱体内由传动装置通过皮带驱动轮子转动。冬季运动时,室内排风经过过滤后再通过热回收转轮处理时,转芯温度升高,水分含量增加,当转芯转过清洗扇后与室外新鲜空气接触,转轮向低温的新鲜空气放出热量和水分,使新鲜空气升温增湿。夏季与之相反,降低新风温湿度。通过换热从而使空调系统达到节能的目的。 这种蜂窝式转轮的设计构成了一个吸湿、蓄热、传质、传热的巨大接触面积,蕴藏了超级能量,具备了回收显热和潜热的优异特性。 在空调系统中,为了人员舒适和通风顺畅,必须考虑引入外界新鲜空气,同时排出部分室内浑浊空气。由于新风为高温高湿状态,因此冷负荷大部分要被新风负荷所占有,能耗惊人。 工作原理 转轮式能量回收换热器有两种型式,即全热回收和显热回收。 转轮作为蓄热芯体,新风通过轮转的一个半圆,而同时排风逆向通过转轮的另一个半圆,新风和排风以这种方式交替逆向通过转轮。 在冬季,转轮蓄热芯体吸收排风中的热(湿)量,当转到新风侧时,由于存在温(湿)差的原因,蓄热芯体就会释放其中的热(湿)量,当再转到排风侧时,又继续吸收排风中的热(湿)量。如此往复循环实现能量的回收,其工作原理如图。 在夏季则是一个相反的处理过程。

结构特点 高热回收效率:蜂窝状的蓄热芯体设计,构成了一个蓄热、吸湿、传热、传质的巨大接触面积具备了回收显热和潜热的优异特性。 自清洁功能:通过转轮的气流方向不断的交替改变以及设置双清洁扇面,保证了自清洁能达到最佳的效果。 低运行费用:转轮的结构特点,决定了其运行费用较低。 便于控制:可以根据室内外温湿度变化控制转轮转速,以达到最佳运行效果。 热回收效率 寿命周期成本

相关主题
文本预览
相关文档 最新文档