当前位置:文档之家› 高三数学不等式的证明

高三数学不等式的证明

备战2019高考数学选择题专题04不等式的证明理

专题04 不等式的证明 知识通关 1.基本不等式 (1)定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. (2)定理2(基本不等式):如果a ,b>0,那么 2 a b ab +≥,当且仅当a=b 时,等号成立. 用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数. (3)定理3:如果a ,b ,c 为正数,那么 3 3 a b c abc ++≥a =b =c 时,等号成立. 用语言可以表述为:三个正数的算术平均数不小于(即大于或等于)它们的几何平均数. (4)算术平均—几何平均定理(基本不等式的推广):对于n 个正数a 1,a 2,···,a n ,它们的算术平均数不小于(即大于或等于)它们的几何平均数,即 12123n n n a a a a a a a n ++ +≥??,当且仅当 a 1=a 2=···=a n 时,等号成立. 2.柯西不等式 (1)二维形式的柯西不等式:若a ,b ,c ,d 都是实数,则2 2 2 2 2 ()(+)()a b c d ac bd +≥+,当且仅当 ad=bc 时,等号成立. (2)柯西不等式的向量形式:设α,β是两个向量,则||||||?≥?αβαβ,当且仅当α是零向量或β是零向量或存在实数k 使α=k β时,等号成立. (3)二维形式的三角不等式:设x 1,y 1,x 2,y 2∈R ,22 221212x x y y ++≥211222()()x y x y -+- (4)一般形式的柯西不等式:设1212,, ,,,, ,n n a a a b b b 是实数,则 (22212n a a a ++ +)(222 12n b b b + ++) ≥()2 1122n n a b a b a b +++,当且仅当a i =0或b i =0(i=1,2,···,n )或存在一个数k 使得 a i =k b i (i=1,2,···,n )时,等号成立. 3.不等式证明的方法 (1)比较法 比较法是证明不等式最基本的方法,可分为作差比较法和作商比较法两种.

微积分证明不等式方法

用微积分理论证明不等式的方法 江苏省扬中高级中学 卞国文 212200 高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量).对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似. 微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式. 一、用导数定义证明不等式法 1.证明方法根据-导数定义 导数定义:设函数)(x f y =在点0x 的某个邻域内有定义,若极限 x y x x x x x x f x f ??→?→=--lim lim 0 00)()(0 存在,则称函数)(x f 在0x 可导,称这极限为函数)(x f y =在点0x 的导数,记作)(0x f y '=. 2.证明方法: (1)找出0x ,使得)(0x f y '=恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究. 3.例 例1:设函数nx a x a x a x f n sin 2sin sin )(21+++= ,其中n a a a ,,21都为实数, n 为正整数,已知对于一切实数x ,有x x f sin )(≤,试证:1221≤+++n na a a . 分析:问题中的条件与结论不属于同一类型的函数,如果能找出它们之间的关系,无疑能帮助解决此题,可以看出:)0(221f na a a n '=+++ .于是问题可以转化为证明 1)0(≤'f . 证 明 : 因 nx na x a x a x f n cos 2cos 2cos )(21+++=' .则n na a a f +++=' 212)0(. 利 用 导 数 的 定 义 得 :

证明不等式的几种方法

证明不等式的几种方法 淮安市吴承恩中学 严永飞 223200 摘要:不等式证明是中学数学的重要内容,证明方法多种多样.通常所用的公式法、放缩法只能解决一些较简单的问题,对于较难的问题则束手无策.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法,使解题容易,新颖独特. 关键词:不等式,公式法,构建模型法 前言 证明不等式是中学数学的重要内容之一,内容抽象,难懂,证明方法更是变化多端.通常所用的一些方法如公式法、放缩法只能解决一些较简单的问题,较难的问题则无法解决.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法. 这里所举的几种证明不等式的特殊方法看似巧妙,但如果认真思考,广泛联系,学以致用,一定能使问题得到很好的解决. 1 运用倒数变换证明不等式 这里所说倒数变换是根据具体的题目要求把不等式的部分进行倒数变换,通过化简后使不等式变得简单,更好更快的解决证明问题. 例1 设+∈R z y x ,,,且xyz =1 求证:)(13z y x ++)(13z x y ++)(13y x z +≥2 3 分析 如果先通分再去分母,则不等式将变得很复杂. 令A x =-1,B y =-1 ,C z =-1 ,则+∈R C B A ,,且1=ABC . 欲证不等式可化为 C B A +2+A C B +2+B A C +2≥23(*) 事实上,a 2+22b λ≥ab λ2 (+∈R b a ,,λ), 而当b >0时, a 2/b ≥b a 22λλ-. (*)式左边≥A λ2-2λ(C B +)+ B λ2-2λ(C A +)+C λ2-2λ(A B +) = λ2(λ-1)(C B A ++) ≥λ6(λ-1)3ABC = λ6(λ-1). 令λ=21时,C B A +2+A C B +2+ B A C +2 ≥6×21×(1-21)=23 得证. (这里用到二元平均不等式的变形和三元平均不等式.) 例 2 已知z y x ,,>0,n 为大于1的正整数,且n n x x +1+n n y y +1+n n z z +1=1 求证:n x x +1+n y y +1+n z z +1≤n n 12-

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.doczj.com/doc/b15479025.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.doczj.com/doc/b15479025.html,) 原文地址: https://www.doczj.com/doc/b15479025.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

高考数学高三模拟考试试卷压轴题专题六十三不等式的证明

高考数学高三模拟考试试卷压轴题专题六十三不等式的证明 【高频考点解读】 1.了解证明不等式的基本方法:比较法、综合法、分析法、放缩法、数学归纳法. 2.了解柯西不等式、排序不等式以及贝努利不等式. 3.能利用均值不等式求一些特定函数的极值. 【重点知识梳理】 一、比较法证明不等式 (1)求差比较法: 知道a>b ?a -b>0,ab 只要证明a -b>0即可,这种方法称为求差比较法. (2)求商比较法: 由a>b>0?a b >1且a>0,b>0,因此当a>0,b>0时,要证明a>b ,只要证明a b >1即可,这种方法称为求商比较法. 二、综合法与分析法 1.综合法 利用某些已经证明过的不等式和不等式的性质,推导出所要证明的不等式,这种方法叫综合法.即“由因导果”的方法. 2.分析法 证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够肯定这些充分条件都已经具备,那么就可以判定原不等式成立,这种方法叫作分析法.即“执果索因”的方法. 3.平均值不等式 定理:如果a ,b ,c 为正数,则a +b +c 3≥3 abc ,当且仅当a =b =c 时,等号成立. 我们称 a + b + c 3 为正数a ,b ,c 的算术平均值,3 abc 为正数a ,b ,c 的几何平均值,定理中的不等式为三个正数的算术—几何平均值不等式,简称为平均值不等式. 4.一般形式的算术—几何平均值不等式 如果a1,a2,…,an 为n 个正数,则a1+a2+…+an n ≥n a1a2…an ,当且仅当a1=a2=…=an 时,等号成立. 【高考考纲突破】

高等数学不等式的证明试题及答案

微积分中不等式的证明方法讨论 不等式的证明题经常出现在考研题中,虽然题目各种各样,但方法无非以下几种: 1.利用函数的单调性证明不等式 若在),(b a 上总有0)(>'x f ,则)(x f 在),(b a 单调增加;若在),(b a 上总有0)(<'x f ,则)(x f 在),(b a 单调减少。 注:考研题的难点是,构造恰当的辅助函数,有时需要两次利用函数的单调性证明不等式,有时需要对),(b a 进行分割,分别在小区间上讨论。 例1:证明:当0a b π<<<时, sin 2cos sin 2cos b b b b a a a a ππ++>++. 【分析】 利用“参数变易法”构造辅助函数,再利用函数的单调性证明. 【详解】 令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<, 则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=. 又 ()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,s i n 0x x x π<<>时), 故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即 sin 2cos sin 2cos b b b b a a a a ππ++>++. 【评注】 证明数值不等式一般需构造辅助函数,辅助函数一般通过移项,使不等式一端为“0”,另一端即为所作辅助函数()f x ,然后求导验证()f x 的增减性,并求出区间端点的函数值(或极限值)。 例2:设2e b a e <<<, 证明)(4ln ln 2 22a b e a b ->-. 【分析】即证a e a b e b 2 222 4ln 4ln ->- 证明: 设x e x x 224ln )(-=?,则 24ln 2)(e x x x -='?, 2ln 12)(x x x -=''?, 所以当x>e 时,,0)(<''x ? 故)(x ?'单调减少,从而当2 e x e <<时,

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

用微积分理论证明不等式的方法

用微积分理论证明不等式的方法 高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量).对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似. 微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式. 一、用导数定义证明不等式法 1.证明方法根据-导数定义 导数定义:设函数)(x f y =在点。0x 的某个邻域内有定义,若极限 x y x x x x x x f x f ??→?→=--lim lim 0) ()(0 存在,则称函数)(x f 在0x 可导,称这极限为函数)(x f y =在点0 x 的导数,记作)(0x f y '=. 2.证明方法: (1)找出0x ,使得)(0x f y '=恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究. 3.例 例1:设函数nx a x a x a x f n sin 2sin sin )(21+++= ,其中n a a a ,,21都为实数, n 为正整数,已知对于一切实数x ,有x x f sin )(≤,试证:1221≤+++n na a a . 证 明 : 因 nx na x a x a x f n cos 2cos 2cos )(21+++=' .则 n na a a f +++=' 212)0(. 得:x x f x x f x f x f f x x x ) ()(lim 0)0()()0(lim lim 00 →→→==--= '.由于x x f sin )(≤. 所以1sin )0(lim =≤ '→x x f x .即1221≤+++n na a a . 4.适用范围 用导数定义证明不等式,此方法得适用范围不广,我们应仔细观察问题中的条件与结论之间的关系.有些不等式符合导数的定义,因此可利用导数的定义将其形式转化,以达到化繁为简的目的. 二.用可导函数的单调性证明不等式法

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

2021年高考数学第一轮专题复习- 不等式——不等式的证明

第48课时:第六章 不等式——不等式的证明(二) 课题:不等式的证明(二) 一.复习目标: 1.了解用反证法、换元法、放缩法等方法证明简单的不等式. 二.知识要点: 1.反证法的一般步骤:反设——推理——导出矛盾(得出结论); 2.换元法:一般由代数式的整体换元、三角换元,换元时要注意等价性; 3.放缩法:要注意放缩的适度,常用的方法是:①舍去或加上一些项;②将分子或分母放大(或缩小). 三.课前预习: 1.设实数,x y 满足22(1)1x y +-=,当0x y c ++≥时,c 的取值范围是 ( ) () A 1,)+∞ () B (1]-∞ () C 1,)+∞ () D (1]-∞ 2 .1A n =+++与)n N *∈的大小关系是 . 四.例题分析: 例1.已知332x y +=,求证:2x y +≤. 例2.设正有理数1a 是3的一个近似值,令21 211a a =+ +, (1介于1a 与2a 之间;

(2)证明:2a 比1a 更接近于3; (3的有理近似值的方法. 例3.在数列{}n a 中,23sin sin 2sin 3sin 2222n n n a αααα=++++,对正整数,m n 且m n >,求证:12m n n a a -< . 例4.设1a b c ++=,2221a b c ++=,a b c >>,求证:103c -<<. 五.课后作业: 1.下列三个式子22a c -,22b a -,22(,,)c b a b c R -∈中 ( ) ()A 至少有一式小于1- ()B 都小于1- ()C 都大于等于1- ()D 至少有一式大于等于1- 2设0,0,,111x y x y x y A B x y x y +>>==+++++,则,A B 的大小关系是 .

几个重要不等式

几个重要不等式(二)柯西不等式 ,当且仅当b i=l a i(1£i£n)时取等号 柯西不等式的几种变形形式 1.设a i?R,b i>0 (i=1,2,…,n)则,当且仅当b i=l a i(1£i£n)时取等号 2.设a i,b i同号且不为零(i=1,2,…,n),则,当且仅当b1=b2=…=b n时取等号 例1.已知a1,a2,a3,…,a n,b1,b2,…,b n为正数,求证: 证明:左边= 例2.对实数a1,a2,…,a n,求证: 证明:左边= 例3.在DABC中,设其各边长为a,b,c,外接圆半径为R,求证:

证明:左边3 例4.设a,b,c为正数,且a+b+c=1,求证:证明:左边= 3 = = 例5.若n是不小于2的正整数,试证: 证明: 所以求证式等价于 由柯西不等式有

于是: 又由柯西不等式有 < 例6.设x1,x2,…,x n都是正数(n32)且,求证: 证明:不等式左端即 (1) ∵,取,则(2) 由柯西不等式有 (3) 及 综合(1)、(2)、(3)、(4)式得:

三、排序不等式 设a1£a2£…£a n,b1£b2£…£b n;r1,r2,…,r n是1,2,…,n的任一排列,则有:a1b n+ a2b n-1+…+ a n b1£a1b r1+ a2b r2+…+ a n b rn£ a1b1+ a2b2+…+ a n b n 反序和£乱序和£同序和 例1.对a,b,c?R+,比较a3+b3+c3与a2b+b2c+c2a的大小 解:取两组数a,b,c;a2,b2,c2,则有a3+b3+c33a2b+b2c+c2a 例2.正实数a1,a2,…,a n的任一排列为a1/,a2/,…a n/,则有 证明:取两组数a1,a2,…,a n; 其反序和为,原不等式的左边为乱序和,有 例3.已知a,b,c?R+求证: 证明:不妨设a3b3c>0,则>0且a123b123c12>0 则

高中数学百大经典例题—不等式证明

高中数学 典型例题一 例1 若10<-(0>a 且1≠a ). 分析1 用作差法来证明.需分为1>a 和10<a 时, 因为 11,110>+<---=x a . (2)当10<+<--=x a . 综合(1)(2)知)1(log )1(log x x a a +>-. 分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比较法. 因为 )1(log )1(log x x a a +-- a x a x lg ) 1lg(lg )1lg(+- -= [])1lg()1lg(lg 1 x x a +--= [])1lg()1lg(lg 1 x x a +---= 0)1lg(lg 1 2>--= x a , 所以)1(log )1(log x x a a +>-.

说明:解法一用分类相当于增设了已知条件,便于在变形中脱去绝对值符号;解法二用对数性质(换底公式)也能达到同样的目的,且不必分而治之,其解法自然简捷、明快. 典型例题二 例2 设0>>b a ,求证:.a b b a b a b a > 分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式. 证明:b a a b b a a b b a b a b a b a b a ---=?=)( ∵0>>b a ,∴ .0,1>->b a b a ∴1)(>-b a b a . ∴a b b a b a b a .1> 又∵0>a b b a , ∴.a b b a b a b a >. 说明:本题考查不等式的证明方法——比较法(作商比较法).作商比较法证明不等式的步骤是:判断符 号、作商、变形、判断与1的大小. 典型例题三 例3 对于任意实数a 、b ,求证 444 ()22 a b a b ++≥(当且仅当a b =时取等号) 分析 这个题若使用比较法来证明,将会很麻烦,因为,所要证明的不等式中有4 ( )2 a b +,展开后很复杂。若使用综合法,从重要不等式:2 2 2a b ab +≥出发,再恰当地利用不等式的有关性质及“配方”的技巧可得到证明。 证明:∵ 222a b ab +≥(当且仅当22 a b =时取等号) 两边同加4 4 4 4 2 22 ():2()()a b a b a b ++≥+, 即: 44222 ()22 a b a b ++≥ (1) 又:∵ 2 2 2a b ab +≥(当且仅当a b =时取等号)

高中数学不等式的几种常见证明方法(县二等奖)

高中数学不等式的几种常见证明方法 摘 要:不等式是中学数学的重要知识,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目都有所出现,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解. 关键字:不等式;数学归纳法;均值;柯西不等式 一、比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法. 例 1 设,x y R ∈,求证:224224x y x y ++≥+. 证明: 224224x y x y ++-- =2221441x x y y -++-+ =22(1)(21)x y -+- 因为 2(1)0x -≥, 2(21)0y -≥ ∴ 22(1)(21)0x y -+-≥ ∴2242240x y x y ++--≥ ∴224224x y x y ++≥+ 例 2 已知:a >b >c >0, 求证:222a b c a b c ??>b c a c b c a b c +++??. 证明:222a b c b c a c b c a b c a b c +++????=222a b c b a c c b c a b c ------?? >222a b c b a c c b c c c c ------??

=0c =1 222a b c b c a c b c a b c a b c +++??∴??>1 ∴222a b c a b c ??>b c a c b c a b c +++?? 二、分析法 分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立. 例 3 求证3< 证明: 960+>> 5456<成立∴原不等式成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱写,从而加强针对性,较快地探明解题的途径. 三、综合法 从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法. 例 4 已知,a b R +∈,1a b +=,求证:221125()()2 a b a b +++≥ 证明:∵ 1a b += ∴ 1=22222()22()a b a b ab a b +=++≤+ ∴ 221 2 a b +≥

基本不等式的证明

课题:基本不等式及其应用 一、教学目的 (1)认知:使学生掌握基本不等式a 2+b 2≥2ab(a 、b ∈R ,当且仅当a=b 时取“=”号)和 ab b a ≥+2 (a 、b ∈R +,当且仅当a=b 时取“=”号),并能应用它们证明一些不等式. (2)情感:通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力. 二、教学重难点 重点:两个基本不等式的掌握; 难点:基本不等式的应用。 三、教材、学生分析 教材分析:两个基本不等式为以后学习不等式的证明和求函数的最大值或最小值提供了一种 方法,基本不等式的理解和掌握对以后的解题是很有帮助的。 学生分析:学生在上新课之前都预习了本节内容,对上课内容有一定的理解。所以根据这一 情况多补充了一些内容,增加了课堂容量。 四、教学过程 (一)引入新课 客观世界中,有些不等式关系是永远成立的。例如,在周长相等时,圆的面积比正方形的面积大,正方形的面积又比非正方形的任意矩形的面积大。对这些不等关系的证明,常常会归结为一些基本不等式。今天, 我们学习两个最常用的基本不等式。

(二)推导公式 1.奠基 如果a、b∈R,那么有(a-b)2≥0 ① 把①左边展开,得 a2-2ab+b2≥0, ∴a2+b2≥2ab. ② ②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,也就是基本不等式1,对任何两实数a、b都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢? 学生回答:a=b,因为a=b a2+b2=2ab 充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号). 以公式①为基础,运用不等式的性质推导公式②,这种由已知推出未知(或要求证的不等式)的证明方法通常叫做综合法.以公式②为基础,用综合法可以推出更多的不等式.现在让我们共同来探索. 2.探索 公式②反映了两个实数平方和的性质,下面我们研究两个以上的实数的平方和,探索可能得到的结果.先考查三个实数.设a、b、c∈R,依次对其中的两个运用公式②,有 a2+b2≥2ab;

选修4-5不等式证明的基本方法

选修4-5 不等式选讲第2课时 不等式证明的基本方法(对应学生用 书(理)200~202页 ) 1. 设a 、b ∈R + ,试比较 a +b 2与a +b 的大小. 解:∵ (a +b)2 -? ?? ??a + b 22 =(a -b )2 2≥0,∴ a +b ≥ a +b 2 . 2. 若a 、b 、c ∈R + ,且a +b +c =1,求a +b +c 的最大值. 解:(1·a +1·b +1·c)2≤(12+12+12)(a +b +c)=3,即a +b +c 的最大值为 3. 3. 设a 、b 、m ∈R + ,且b a 2a ,b a +a>2b , ∴ a b +b +b a +a>2b +2a ,即a b +b a >b +a ,即M>N. 5. 用数学归纳法证明不等式 1n +1+1n +2+…+1n +n >1 2 (n>1,n ∈N *)的过程中,用n =k +1时左边的代数式减去n =k 时左边的代数式的结果是A ,求代数式A. 解:当n =k 时,左边=1k +1+1k +2+…+1k +k ,n =k +1时,左边=1k +2+1 k +3+… + 1(k +1)+(k +1), 故左边增加的式子是12k +1+12k +2-1k +1 ,即A = 1 (2k +1)(2k +2) .

不等式的证明-高考理科数学试题

(六十四) 不等式的证明 1.(2018·武汉调研)若正实数a ,b 满足a +b =1 2,求证:a +b ≤1. 证明:要证 a +b ≤1,只需证a +b +2ab ≤1, 即证2ab ≤12,即证ab ≤1 4. 而a +b =12≥2ab ,∴ab ≤1 4成立, ∴原不等式成立. 2.已知函数f (x )=|x +3|+|x -1|,其最小值为t . (1)求t 的值; (2)若正实数a ,b 满足a +b =t ,求证:1a +4b ≥9 4 . 解:(1)因为|x +3|+|x -1|=|x +3|+|1-x |≥|x +3+1-x |=4,所以f (x )min =4,即t =4. (2)证明:由(1)得a +b =4,故a 4+b 4=1,1a +4 b =????1a +4b ????a 4+b 4=14+1+b 4a +a b ≥54+2 b 4a ×a b =54+1=94,当且仅当b =2a ,即a =43,b =83时取等号,故1a +4b ≥9 4. 3.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:????13a +16b <1 4; (2)比较|1-4ab |与2|a -b |的大小,并说明理由. 解:(1)证明:记f (x )=|x -1|-|x +2| =???? ? 3,x ≤-2,-2x -1,-20.

探讨定积分不等式的证明方法

探讨定积分不等式的证明方法 摘要:文章针对被积函数的特性,给出了几种关于定积分不等式的有效 证明方法。 关键词:定积分不等式证法 不等式的证明在高等数学的学习中很常见,但关于定积分不等式的证明 却一直是一个难点。要证明定积分不等式,首先要看被积函数,其性质确定 证明方法。本文根据被积函数的连续性、单调性、可导性等分别给出几种证 法。 1 .运用定积分中值定理证明 定积分中值定理是将定积分转化为连续函数在该区间上某点的函数值与 该区间长度的乘积,即将定积分转化为函数来证明不等式。 a 例1 :设f (x)在[0,1]上连续且单调不增,证明a € [0,1]有° f (x)dx > a °f (x)dx . a a 1 证明:由原不等式变形得0 f (x)dx > a ( 0 f (x)dx 0f (x)dx) , a 1 即是要证:(1 a)0f(x) dx > a 0f(x)dx , 对左式,f (x)在[0,1]上连续, 故由定 积分中值定 理 知: 1 0, a 使 a (1 a)0 f (x)dx a(1 a)f( 1), 冋理对右式: 2 1 a ,使 a 0f(x)dx a(1 a)f( 2),

显然, 1< 2又f(x)在[0,1]上单调不 增,

二 f ( 1 )> f ( 2 ) a 1 故原不等式o f (x)dx > a o f (x)dx 成立. 定积分中值定理的运用直观易懂,它的条件也极其简单,易于掌握 2 .运用辅助函数证明 构造辅助函数F(x)证明不等式,首先是做函数将要证结论中的积分上限 (下限)换成x ,移项使不等式的一边为零,另一边的表达式即是辅助函数。 然后再求F 'x),并运用单调性及区间端点值特性证明不等式。 例2:设f(x)在[a , b ]上连续,且f(x) >0. f(x) f(t) ? f (X )> 0,.. f (t) f (x) 又a < x ,二 F '(x) 0 , 即F(x)单调不减,又F (a) b b 1 2 故 f (x)dx dx (b a) 故 a a f (x) 该题构造出积分上限函数,其目的是用单调性来证明不等式。这种方法 开门见山、直截了当 b b 1 试证: (b a)2 证明:构造辅助函数F(x) (x a) (将b 换成x ), ' x 1 则 F(x) f(x)a 帀dt f(x) x f(t) f (t)dt 2(x a) a f(t) x (3 a f(t) dt a f(x) f (t) 2)dt x 2dt a f(x) ,二 F(b) F(a) 0,

相关主题
文本预览