当前位置:文档之家› 2016年专项练习题集-不等式恒成立问题

2016年专项练习题集-不等式恒成立问题

2016年专项练习题集-不等式恒成立问题
2016年专项练习题集-不等式恒成立问题

2016年专项练习题集-不等式恒成立问题

三级知识点:不等式恒成立问题

介绍:不等式恒成立问题以含参不等式“恒成立”为载体,镶嵌函数、方程、不等式等内容,综合性强,能力要求高,为历年高考试题的热点。

选择题

1.不等式2230mx mx +-≤对一切x ∈R 恒成立,则实数m 的取值范围是( )

A .30m -<<

B .30m -<≤

C .30m -≤<

D .30m -≤≤

【分值】5

【答案】D 【易错点】容易忽略0m =的情形。

【考查方向】本题主要考查了含参数的二次不等式的恒成立问题。 【解题思路】对m 的分类讨论,(1)0m =,(2)当0m ≠时,结合二次函数图象,二次函数应该开口向下,判别式小于等于零,列出满足的条件求解.

【解析】当0m =时不等式化为30-≤恒成立;当0m ≠时需满足00

m

?≤?,所以30m -≤<,综上可知实数a 的取值范围是30m -≤≤.

2.已知2()3f x ax bx =+-,不等式0)(

等式()10f x m -≥恒成立,m 的取值范围是( )

A . [14,10]--

B .(,10]-∞-

C .(,14]-∞-

D .[14,14]-

【分值】5

【答案】C

【易错点】不会求出a ,b 的值,不会转化恒成立问题。

【考查方向】本题主要考查了函数的解析式,考查恒成立问题,解题的关键是利用好不等式的解集与方程解之间的关系,将恒成立问题转化为函数的最值加以解决.

【解题思路】(1)根据不等式的解集与方程解之间的关系可知230ax bx +-=的两根为1-,3,从而可求,a b 的值,进而可求()f x 的解析式;(2)要使对于任意[1,2]x ∈-,不等式()10f x m -≥恒成立,只需[]min ()10f x m -≥即可,从而可求m 的范围. 【解析】不等式()0f x <的解集是(1,3)-,所以1-和3是方程230ax bx +-=的两个根,由

韦达定理得1,2a b ==-.所以2()23f x x x =--,所以()10f x m -≥恒成立等价于

2213x x m --≥恒成立,由22213(1)1414x x x --=--≥-,所以14m ≤-.选C .

3.对任意的实数x ,不等式恒成立,则实数a 的取值范围是( )

A .0a <

B .03a <<

C .3a <

D .3a >-

【分值】5

【答案】D

【易错点】不会去掉绝对值,函数的最值。

【考查方向】本题主要考查了含参数的绝对值不等式的恒成立问题。 ,依题意,只需求得min ()f x 即可求得a 的取值范围. ,则min ()3f x =,所以min ()3a f x <=,即3a <,故选C.

4.若不等式290x tx -+≥对于任意(0,)x ∈+∞都成立,则t 的最大值是( )

A .0

B .-6

C .6

D .9

【分值】5

【答案】C

【易错点】不会将变量t 分离出来。

【考查方向】本题主要考查了含参数的二次不等式的恒成立问题以及分类变量法。

【解题思路】首先根据不等式将t 对任意(0,)x ∈+∞

都成立,即 【解析】不等式290x tx -+≥对于任意(0,)x ∈+∞都成立等价

任意

(0,)x ∈+∞都成立.因为,所以只需6t ≤即可.故C 正确.

5.若关于x 的不等式2(2)120x a x a +--->对任意的[2,2]a ∈-均成立,则x 的取值范围是( )

A . (,1)(3,)-∞+∞

B

.(,)-∞+∞

C

.(,(3,)-∞+∞

D

.(

【分值】5

【答案】C

【易错点】不知道讲原不等式转化为关于a 的一次函数。

【考查方向】本题主要考查了一元二次不等式恒成立问题,将恒成立问题转化为函数的最值加以解决.

【解题思路】可将a 视作自变量,则上述问题即可转化为在[-2,2]内关于a 的一次函数大于0恒成立的问题. 解:原不等式转化为2

(2)210a x x x -+-->在[2,2]a ∈-时恒成立, 设2()(2)21f a a x x x =-+--,则()f a 在[-2,2]上恒大于0,故有:

(2)0(2)0f f ->??>?即2243050x x x ?-+>??->??

解得:31x x x x >

所以3x x ><或 C.

填空

6.若函数()sin cos 3f x x a x =++的图象始终在直线1y =的上方,则a 的取值范围是_______.

【分值】5

【易错点】不会利用辅助角公式对()sin cos 3f x x a x =++进行变形,不会将()f x 在1y =的上方转化成()1f x >恒成立。

【考查方向】三角恒等变换和不等式恒成立问题。 【解题思路】问题转化为()1f x >恒成立,利用三角恒等变形以及三角函数的最值建立不等式,求出a 的范围。 【解析】由()f x 的图象始终在1y =的上方,即()1f x >恒成立,

7.若关于x 的不等式21x mx m ++≥恒成立,则实数m = .

【分值】5

【答案】2 【易错点】判别式容易容易出现0?≥。

【考查方向】二次不等式恒成立问题。 【解题思路】将不等式右边项移到左边,利用判别式0?≤,求出m 的值.

【解析】原不等式可变为210x mx m ++-≥,0?≤,()2410m m ∴--≤,()220m ∴-≤,2m ∴=.

8.已知1a >,若关于x 在区间()0,2上恒成立,则实数a 的取值范围是 .

【分值】5 【答案】[)4,+∞.

【易错点】不会转化原不等式,不会利用数形结合处理本题。

【考查方向】本题主要考查了反比例函数及其单调性、不等式恒成立问题,同时考查了数形结合的思想。 在区间()0,2上恒成立,由图象可知,在区间()0,2上,函数的图象在函数log a y x =的图象的上方,从而可得解.

,解得4a ≥,所以实数a 的取值范围[)4,+∞.

综合题

9.已知函数321()13f x ax x =-+ ()x R ∈ 其中0a >,若在区间1[,2]2-上,()0f x >恒成立,求a 的取值范围.

【分值】6

18a << 【易错点】导数的计算与分类讨论。

【考查方向】导数与不等式恒成立问题。

【解题思路】对321()13f x ax x =-+进行求导,判断利用导数求出321()13

f x ax x =-+的极值点,利用极值点与端点值的函数值大于0,解不等式,得到a 的取值范围。 【解析】22

()2()f x ax x ax x a '=-=-,由于0a >,所以20a

>,对a 进行讨论: (1)若01a <≤,22a

>,于是当10x -<<时,'()0f x >;当02x <≤时,'()0f x <。 由1()022()0f f a

?->????>??,即1898a a ??,由01a <<,故无解。 (2)若1a >,

22a <,于是当10x -<<时,'()0f x >;当20x a <<时,'()0f x <, 当22x a

<<时,'()0f x >。 由1()02(2)0f f ?->???>?,即21843a a ??

18a <<。 综合(1)(2

18a <<。

10.已知不等式2310ax x a ++-<对于所有的实数x 不等式恒成立,求a 的取值范围. 【分值】6

【答案】12

a < 【易错点】讨论时容易忽略0a =的情形。

【考查方向】本题主要考查了一元二次不等式恒成立问题。 【解题思路】当0a =时,经检验不满足条件; 解得0a ≠时,设2()31f x ax x a =++-,则由题意可得094(1)0a a a

--

【解析】当0a =时, 310x -<,即当 当0a ≠时,设2()31f x ax x a =++-,由于()0f x <恒成立,则有094(1)0a a a

--

不等式恒成立问题

不等式恒成立问题 一、 教学目标 1、 知识目标;掌握不等式恒成立问题求参数的范围的求解方法并会运用 2、 能力目标;培养学生分析问题解决问题的能力 3、 情感目标;优化学生的思维品质 二、 教学重难点 1、教学的重点;不等式恒成立问题求参数的范围的求解方法并会运用 2、教学的难点;不等式恒成立问题求参数的范围的求解方法的选择 三、 教学方法:高三复习探究课:学生研讨探究----学生归纳小结-----学生巩 固练习----学生变式探究---学生总结 四、 教学过程 1、 引人 高三数学复习中的不等式恒成立问题,涉及到函数的性质、图象, 渗透着换元、化归、数形结合、函数方程等思想方法,有利于考查学生的综合解题能力,因此备受命题者的青睐,也成为历年高考的一个热点。我们今天这堂课来研究不等式恒成立求参数的取值范围问题的求解方法。引入课题 2、新课 下面我们来看例1例1、对一切实数x ]1,1[-∈,不等式 a x a x 24)4(2-+-+>0恒成立,求实数a 的取值范围(由学生完成) 由一个基本题得到不等式恒成立问题求参数的范围的求解方法 解法一;分离参数 由原不等式可得:a(x-2) > -x 2+4x-4 , 又因为x ∈[-1,1] ,x-2∈[-3,-1] a<2-x 又因为x ∈[-1,1],所以 a<1. 解法二;分类讨论、解不等式

(x-2)[x-(2-a)]>0 当a=0时不等式恒成立 当a<0 时x>2-a 或x<2 不等式恒成立 当a>0时x>2 或x<2-a 所以2-a>1 即a<1 所以a<1时不等式恒成立 解法三;构造函数求最值 设f(x)=x2+(a-4)x+4-2a 当(4-a)/2∈[-1,1],即a∈[2,6]时 -a2<0 不成立,舍弃; 当a>6时,f(-1)=1-a+4+4-2a>0 a<3 不成立,舍弃; 当a<2时,f(1)=1+a-4+4-2a=1-a>0 a<1 综上得:a<1 解法四;构造方程用判别式韦达定理根的分布 设x2+(a-4)x+4-2a=0 方程无实根或有两实根两根小于-1或两根大于1 △=(a-4)2-4(4-2a)=a2≥0 所以1-(a-4)+4-2a>0且(4-a)/2<-1 或1+(a-4)+4-2a>0 且(4-a)/2>16且a<3 或a<1且a<2, 所以a<1 解法五;数形结合(用动画来演示 a(x-2)>-x2+4x-4 设y=a(x-2) 和y=-x2+4x-4 分别作两函数的图象

关于不等式恒成立问题的几种求解方法

关于不等式恒成立问题的几种求解方法 不等式恒成立问题,在高中数学中较为常见。这类问题的解决涉及到一次函数、二次函数、三角函数、指数与对数函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。 不等式恒成立问题在解题过程中有以下几种求解方法:①一次函数型;②二次函数型;③变量分离型;④数形结合型。 下面我们一起来探讨其中一些典型的问题 一、一次函数型——利用单调性求解 例1、若不等式对满足的所有实数m都成立,求x的取值范围。 若对该不等式移项变形,转化为含参数m的关于x的一元二次不等式,再根据对称轴和区间位置关系求对应的二次函数的最小值,利用最小值大于零求解。这样得分好几种情况讨论,这思路应该说从理论上是可行的,不过运算量不小。能不能找出不需要讨论的方法解决此问题呢?若将不等式右边移到左边,然后将新得到的不等式左边看做关于m的一次函数,借助一次函数的图像直线(其实是线段)在m轴上方只需要线段的两个端点在上方即可。 分析:在不等式中出现了两个字母:x及m,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然可将m视作自变量,则上述问题即可转化为在[-2,2]内关于m的一次函数大于0恒成立的问题。 解:原不等式转化为(1-x2)m+2x-1>0在|m|2时恒成立, 设f(m)= (1-x2)m+2x-1,则f(m)在[-2,2]上恒大于0,故有: 此类题本质上是利用了一次函数在区间[a,b]上的图象是一线段,故只需保证该线段两端点均在m轴上方(或下方)即可。 给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(线段)(如下图)可得上述结论等价于 ⅰ),或ⅱ) 可合并成 同理,若在[m,n]内恒有f(x)0恒成立;f(x)3;

不等式恒成立、能成立、恰成立问题

编号:2007-HX-001 不等式恒成立、能成立、恰成立问题 [文档副标题] [日期] 福建省长乐第一中学教科室 [公司地址]

不等式恒成立、能成立、恰成立问题 一、不等式恒成立问题的处理方法 1、转换求函数的最值: (1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,?()f x 的下界大于A (2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A 例1、设f(x)=x 2 -2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值范围。 例2、已知(),22x a x x x f ++= 对任意[)()0,,1≥+∞∈x f x 恒成立,试求实数a 的取值范围; 例 3、R 上的函数()x f 既是奇函数,又是减函数,且当?? ? ??∈2, 0πθ时,有() ()022sin 2cos 2>--++m f m f θθ恒成立,求实数m 的取值范围. 例4、已知函数)0(ln )(4 4>-+=x c bx x ax x f 在1=x 处取得极值3c --,其中a 、b 为常数. (1)试确定a 、b 的值; (2)讨论函数)(x f 的单调区间; (3)若对任意0>x ,不等式2 2)(c x f -≥恒成立,求c 的取值范围。 2、主参换位法 例5、若不等式a 10x -<对[]1,2x ∈恒成立,求实数a 的取值范围 例6、若对于任意1a ≤,不等式2 (4)420x a x a +-+->恒成立,求实数x 的取值范围 例7、已知函数32 3()(1)132 a f x x x a x = -+++,其中a 为实数.若不等式2()1f x x x a '--+>对任意(0)a ∈+∞,都成立,求实数x 的取值范围. 3、分离参数法 (1) 将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2) 求()f x 在x D ∈上的最大(或最小)值; (3) 解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围。 适用题型:(1) 参数与变量能分离;(2) 函数的最值易求出。 例8、当(1,2)x ∈时,不等式2 40x mx ++<恒成立,则m 的取值范围是 .

不等式恒成立问题的基本类型及常用解法 - 副本

不等式恒成立问题基本类型及常用解法 类型1:设f(x)=ax+b f(x) >0在x ∈[]n m ,上恒成立? ???0 )(0)( n f m f f(x) <0在x ∈[]n m ,上恒成立??? ?0)(0)( n f m f . 例1. 设y=(log 2x)2+(t-2)log 2x-t+1,若t 在[-2,2]上变化,y 恒取正值,求实数x 的取值范围。 例2. 对于 -1≤a ≤1,求使不等式(21)ax x +2<(2 1)12-+a x 恒成立的x 的取值范围。 类型2:设f(x)=ax 2+bx+c (a ≠0) f(x) >0在x ∈R 上恒成立?a >0 且△<0; f(x) <0在x ∈R 上恒成立?a <0 且△<0. 说明:①.只适用于一元二次不等式 ②.若未指明二次项系数不等于0,注意分类讨论. 例3.不等式3 642222++++x x m mx x <1对一切实数x 恒成立,求实数m 的取值范围。

类型3:设f(x)=ax 2+bx+c (a ≠0) (1) 当a >0时 ① f(x) >0在x ∈[]n m ,上恒成立 ??????≤-0)(2 m f m a b 或??????-o n a b m 2或?????≥-0)(2 n f n a b ??????≤-0)(2 m f m a b 或△<0或?????≥-0 )(2 n f n a b . ② f(x) <0在x ∈[]n m ,上恒成立?? ??0)(0)( n f m f . (2) 当a <0时 ① f(x) >0在x ∈[]n m ,上恒成立? ? ? ?0)(0)( n f m f ② f(x) <0在x ∈[]n m ,上恒成立 ??????≤-0)(2 m f m a b 或??????-o n a b m 2或?????≥-0)(2 n f n a b ??????≤-0)(2 m f m a b 或△<0或?????≥-0 )(2 n f n a b . 说明:只适用于一元二次不等式. 类型4:a >f(x) 恒成立对x ∈D 恒成立?a >f(x)m ax , a <f(x)对x ∈D 恒成立? a <f(x)m in . 说明:①. f(x) 可以是任意函数 ②.这种思路是:首先是---分离变量,其次用---极端值原理。把问题转化为求函数的最值,若f(x)不存 在最值,可求出f(x)的范围,问题同样可以解出。 例4.(2000.上海)已知f(x)=x a x x ++22 >0在x ∈[)+∞,1上恒成立,求实数a 的取值范围。

不等式恒成立或有解问题的解决策略

不等式恒成立或有解问题的解决策略 恒成立与有解问题的解决策略大致分四类: ①构造函数,分类讨论; ②部分分离,化为切线; ③完全分离,函数最值; ④换元分离,简化运算; 在求解过程中,力求“脑中有‘形’,心中有‘数’”.依托端点效应,缩小范围,借助数形结合,寻找临界. 一般地,不等式恒成立、方程或不等式有解问题设计独特,试题形式多样、变化众多,涉及到函数、不等式、方程、导数、数列等知识,渗透着函数与方程、等价转换、分类讨论、换元等思想方法,有一定的综合性,属于能力题,在提升学生思维的灵活性、创造性等数学素养起到了积极的作用,成为高考的一个热点. 【考点突破】 【典例1】(2018届石家庄高中毕业班教学质量检测)已知函数()()()121x f x axe a x =-+-. (1)若1a =,求函数()f x 的图象在点()0,(0)f 处的切线方程; (2)当0x >时,函数()0f x ≥恒成立,求实数a 的取值范围. 【解析】(Ⅰ)若1a =,则)12(2)(--=x xe x f x ,4)('-+=x x e xe x f 当0=x 时,2)(=x f ,3)('-=x f , ………﹝导数的几何意义的应用﹞ 所以所求切线方程为23+-=x y 。 (Ⅱ)思路一:()()()121x f x axe a x =-+-,)1(2)1()('+-+=a e x a x f x , 由条件可得,首先0)1(≥f ,得01 1 >-≥ e a , 令()'()(1)2(1)x h x f x a x e a ==+-+,则 '()(2)0x h x a x e =+>恒为正数,所以()'()h x f x =单调递增,………﹝高阶导数的灵活应用﹞ 而02)0('<--=a f ,0222)1('≥--=a ea f ,所以)('x f 存在唯一根0(0,1]x ∈,使得函数)(x f 在),0(0x 上单调递减,在)(0∞+x 上单调递增, ………﹝极值点不可求,虚拟设根﹞

恒成立问题----不等式恒成立、能成立、恰成立问题分析及应用(例题+练习+答案)

不等式恒成立、能成立、恰成立问题分析及应用 一、不等式恒成立问题的处理方法 1、转换求函数的最值: (1)若不等式A x f >)(在区间D 上恒成立,则等价于在区间D 上A x f >min )(,即)(x f 的下界大于A (2)若不等式B x f <)(在区间D 上恒成立,则等价于在区间D 上B x f --++m f m f θθ恒成立,求实数m 的取值范围. 例4.已知函数)0(ln )(4 4>-+=x c bx x ax x f 在1=x 处取得极值c --3,其中b a 、为 常数. (1)试确定b a 、的值; (2)讨论函数)(x f 的单调区间; (3)若对任意0>x ,不等式2 2-)(c x f ≥恒成立,求c 的取值范围.

2、主参换位法 例5.若不等式01<-ax 对[]2,1∈x 恒成立,求实数a 的取值范围. 例6.若对于任意1≤a ,不等式024)4(2>-+-+a x a x 恒成立,求实数x 的取值范围. 例7.已知函数1)1(2 33)(2 3+++-= x a x x a x f ,其中a 为实数.若不等式1)('2+-->a x x x f 对任意),0(+∞∈a 都成立,求实数x 的取值范围. 3、分离参数法 (1)将参数与变量分离,即化为)()(x f g ≥λ(或)()(x f g ≤λ)恒成立的形式; (2)求)(x f 在D x ∈上的最大(或最小)值; (3)解不等式max )()(x f g ≥λ(或min )()(x f g ≤λ),得λ的取值范围. 适用题型:(1)参数与变量能分离;(2)函数的最值易求出。 例8.当)2,1(∈x 时,不等式042 <++mx x 恒成立,求m 的取值范围.

函数不等式恒成立问题经典总结

函数、不等式恒成立问题解法(老师用) 恒成立问题的基本类型: 类型1:设)0()(2 ≠++=a c bx ax x f ,(对于任意实数R 上恒成立) (1)R x x f ∈>在0)(上恒成立00?且a ; (2)R x x f ∈<在0)(上恒成立00a 时,],[0)(βα∈>x x f 在上恒成立?????>>-?????<- ?0 )(2020)(2βββαααf a b a b f a b 或或, ],[0)(βα∈x x f 在上恒成立?? ?>>?0 )(0 )(βαf f ],[0)(βα∈- ?????<-?0 )(2020)(2βββαααf a b a b f a b 或或 类型3: αα>?∈>min )()(x f I x x f 恒成立对一切 αα>?∈?∈>的图象的上方或的图象在恒成立对一切 恒成 一、用一次函数的性质 对于一次函数],[,)(n m x b kx x f ∈+=有: ?? ?<>?>0 )(0 )(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122 ->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。 解析:我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2 <---x x m ,;令)12()1()(2 ---=x x m m f ,则22≤≤-m 时,0)(

高中数学不等式的恒成立问题

高中数学不等式的恒成立问题 高三数学备课组 肖英文 2011-11-23 不等式恒成立的问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点. 考题通常有两种设计方式:一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的取值范围.解决这类问题的方法关键是转化化归,通过等价转化可以把问题顺利解决,下面我就结合自己教学谈谈不等式的恒成立问题的处理方法。 题型一:构造函数法(利用一次函数的性质) 在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,即构造函数法,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数.例如; 类型1:对于一次函数],[,)(n m x b kx x f ∈+=有: ()0f x >?恒成立(ⅰ)???>>0)(0m f a ,或(ⅱ)???><0)(0n f a ;亦可合并定成???>>0)(0 )(n f m f ; ()0 ()0()0f m f x f n 2a+x 恒成立的x 的取值范围。 分析:在不等式中出现了两个字母:x 及a,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然可将a 视作自变量,则上述问题即可转化为在[-2,2]内关于a 的一次函数大于0恒成立的问题。 解:原不等式转化为(x-1)a+x 2 -2x+1>0, 设f(a)= (x-1)a+x 2 -2x+1,则f(a)在[-2,2]上恒大于0,故有: ?? ?>>-)2(0)2(f f 即?????>->+-0 10 3422 x x x 解得:???-<><>1113x x x x 或或 ∴x<-1或x>3. 引申:在不等式中出现3个字母:m 、x 、a 已知函数()f x 是定义在[]1,1-上的奇函数,且(1)1f =,若[],1,1a b ∈-,0a b +≠,有 ()()0f a f b a b +>+, (1)证明()f x 在[]1,1-上的单调性;(2)若2 ()21f x m am ≤-+对所有[]1,1a ∈-恒成立,求m 的取值范围。 分析:第一问是利用定义来证明函数的单调性,第二问中出现了3个字母,最终求的是m 的范围,所以根据上式将m 当作变量,a 作为常量,而x 则根据函数的单调性求出()f x 的最大值 即可。 (1) 简证:任取[]12,1,1x x ∈-且12x x <,则[]21,1x -∈- 1212 ()() 0f x f x x x +>- ()()1212()()0x x f x f x ∴-+-> 又 ()f x 是奇函数 ()()1212()()0x x f x f x ∴--> ()f x ∴在[]1,1-上单调递增。 (2) 解: 2()21f x m am ≤-+对所有[]1,1x ∈-,[]1,1a ∈-恒成立,即 2max 21m am f -+≥, max (1)1f f == 22211 20m am m am ∴-+≥∴-≥ 即2 ()20g a am m =-+≥在[]1,1-上恒成立。(1)120(1)120g a g a -=+≥?∴?=-≥? 1212 a a ?≤-??∴??≤?? 1122 a ∴-≤≤。 例2.已知不等式 对任意的都成立,求的取值范围. 解:由移项得: .不等式左侧与二次函数非常相 似,于是我们可以设 则不等式 对满足 的一切实数 恒成立 对 恒成立.当 时, 即 解得故的取值范围是. 评注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x 为参数,以为变量,令 则问题转化为求一次函数(或常数函数)的值在内恒 为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了。 题型二:分离参数法 类型1:αα>?∈>min )()(x f I x x f 恒成立对一切()f x x I α<∈对一切恒成立. max ()f x α?< 类型2:)()(x g x f >对于任意的],[b a x ∈恒成立?min max ()()f x g x >,或)(x f 在

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

2020高考数学复习--专题05 导数与函数不等式恒成立、有解(存在性)-用思维导图突破导数压轴题

专题05 导数与函数不等式恒成立、有解(存在性)(训练篇B ) -用思维导图突破解导数压轴题 1. 已知函数. (1)讨论的单调性; (2)当时,证明. 解 (1)的定义域为,. 若,则当时,,故在单调递增. 若,则当时,; 当时,. 故在单调递增,在单调递减. (2)由(1)知,当时,在取得最大值,最大值为 . 所以等价于,即. 设,则, 当时,; 当时,. 所以在单调递增,在单调递减.故当时,取得最大值,最大值为.所以当时. 从而当时,,即. 2. 已知函数,设. (1)求的极小值; ()2(1)2lnx ax a x f x =+++()f x 0a <3()24f x a ≤--()f x (0,)+∞'1(1)(21)()221x ax f x ax a x x ++= +++=0a ≥(0,)x ∈+∞()0f x '>()f x (0,)+∞0a <1(0,)2x a ∈- ()0f x '>x ∈1(,)2a -+∞()0f x '<()f x 1(0,)2a -1(,)2a -+∞0a <()f x 12x a =- 11()214)21(ln f a a a =----3(4)2a f x ≤--13(12441)2a ln a a ---≤--1(02121)a ln a -++≤()ln 1 g x x x =-+1()1g x x '= -(0,1)x ∈()0g x '>(1,)x ∈+∞()0g x '<()g x (0,1)(1,)+∞1x =()g x (1)0g =0x >()0g x ≤0a <10,2a ->1(02121)a ln a -++≤3(4)2a f x ≤--()()e x f x x a x a =-++()() g x f x '=()g x

一元二次不等式恒成立问题专项练习

一元二次不等式恒成立问题专项练习 例题:设函数f (x )=mx 2-mx -1. (1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. (3)对于任意m ∈[1,3],f (x )<-m +5恒成立,求实数x 的取值范围. 解: (1)要使mx 2-mx -1<0恒成立, 若m =0,显然-1<0,满足题意; 若m ≠0,则??? m <0, Δ=m 2+4m <0,即-40时,g (x )在[1,3]上是增函数, ∴g (x )max =g (3)=7m -6<0,∴00, 又m (x 2-x +1)-6<0,∴m <6 x 2-x +1. ∵函数y =6x 2-x +1=6? ????x -122+34 在[1,3]上的最小值为67 ,∴只需 m <67即可.

高考数学:不等式恒成立、能成立、恰成立问题

不等式恒成立、能成立、恰成立问题 一、不等式恒成立问题的处理方法 1、转换求函数的最值: (1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,?() f x 的下界大于A (2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A 例1、设f(x)=x2-2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值范围。 例2、已知(), 22x a x x x f ++=对任意[)()0,,1≥+∞∈x f x 恒成立,试求实数a 的取值范围; 例3、R 上的函数()x f 既是奇函数,又是减函数,且当? ?? ? ?∈2,0πθ时,有()()022sin 2cos 2>--++m f m f θθ恒 成立,求实数m 的取值范围. 例4、已知函数 )0(ln )(4 4>-+=x c bx x ax x f 在1=x 处取得极值3c --,其中a 、b 为常数.(1)试确定a 、b 的值; (2)讨论函数)(x f 的单调区间; (3)若对任意0>x ,不等式2 2)(c x f -≥恒成立,求c 的取值范围。 2、主参换位法 例5、若不等式a 10x -<对[] 1,2x ∈恒成立,求实数a 的取值范围 例6、若对于任意 1 a ≤,不等式2 (4)420x a x a +-+->恒成立,求实数x 的取值范围 例7、已知函数 32 3()(1)132a f x x x a x = -+++,其中a 为实数.若不等式 2 ()1f x x x a '--+>对任意(0)a ∈+∞,都成立,求实数x 的取值范围. 3、分离参数法 (1) 将参数与变量分离,即化为()() g f x λ≥(或 ()() g f x λ≤)恒成立的形式; (2) 求 () f x 在x D ∈上的最大(或最小)值; (3) 解不等式 ()max ()g f x λ≥(或 ()()min g f x λ≤) ,得λ的取值范围。 适用题型:(1) 参数与变量能分离;(2) 函数的最值易求出。 例8、当(1,2)x ∈时,不等式2 40x mx ++<恒成立,则m 的取值范围是 . 例9、已知函数321 ()3 3f x ax bx x =+++,其中0a ≠(1)当b a ,满足什么条件时,)(x f 取得极值?(2)已知0>a , 且)(x f 在区间(0,1]上单调递增,试用a 表示出b 的取值范围.

不等式恒成立问题的大全

不等式恒成立问题 “含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。本文就结合实例谈谈这类问题的一般求解策略。 一、判别式法 若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有 1)0)(>x f 对R x ∈恒成立? ???00a ; 2)0)(+-+a x a x 对R x ∈恒成立,即有 04)1(22<--=?a a 解得3 11>-x F 显然成立; 当0≥?时,如图,0)(≥x F 恒成立的充要条件为: ??? ????-≤--≥-≥?1220)1(0m F 解得23-≤≤-m 。 综上可得实数m 的取值范围为)1,3[-。 二、最值法 将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有: 1)a x f >)(恒成立min )(x f a ? 1.已知两个函数2()816f x x x k =+-, 32()254g x x x x =++,其中k 为实数. O x y x -1

不等式有解和恒成立问题

不等式有解和恒成立问题 Prepared on 24 November 2020

不等式有解和恒成立问题 知识点的罗列,文字不宜太多,简洁明了最好) ? 知识点一:不等式恒成立问题 ? 知识点二:不等式有解问题 分析该知识点在中高考中的体现,包含但不仅限于:考察分值、考察题型(单选、填空、解答题)、考察方式:考场难度、和哪些知识点在一起考察,参考中高考真题) 含参不等式的恒成立与有解问题是高考与会考考察不等式的一个重点内容,也是常考的内容,难度中等偏上,考察综合性较强,该知识点在填空选择解答题里都有涉及,经常和函数的最值问题在一起考察,需要同学对典型函数的值域求法有熟悉的掌握。 注意题目的答案,不要展示给学生看,这里答案和解析是帮助老师自己分析的) 一、不等式有解问题 例题:当m 为何值时,2211223 x mx x x +-<-+对任意的x ∈R 都成立 解法1:二次函数法: 移项、通分得: 又22230x x -+>恒成立,故知:2(2)40x m x -++>恒成立。 所以:2(2)160m ?=+-<,得到62m -<< 解法2:分离参数法: 注意到2(2)40x m x -++>恒成立,从而有:224mx x x <-+恒成立,那么: 注意到,在上式中我们用到了这样一个性质: 总结:解决恒成立问题的方法:二次函数法和分离参数法 变式练习:(初三或者高三学生必须选取学生错题或者学生所在地区的中高考真题或者当地的统考题目) 【试题来源】(上海2016杨浦二模卷) 【题目】设函数x x g 3)(=,x x h 9)(=,若b x g a x g x f +++=)()1()(是实数集R 上的奇函数,且0))(2()1)((>?-+-x g k f x h f 对任意实数x 恒成立,求实数k 的取值范围. 【答案】:因为b x g a x g x f +++= )()1()(是实数集上的奇函数,所以1,3=-=b a . )1 321(3)(+-=x x f ,)(x f 在实数集上单调递增.

不等式恒成立问题及能成立问题

例谈不等式恒成立问题和能成立问题的解题策略 ——谈2008年江苏高考数学试卷第14题 摘要:所有问题均可分成三类:恒成立问题、能成立问题和不成立问题。《例谈不等式恒成立问题和能成立问题》介绍了解决不等式恒成立问题和不等式能成立问题常用的直接法、分离参数法、分类讨论法、数形结合法等,采用了等价转化的处理策略。 关键词:分离参数、分类讨论、数形结合、等价转化,换元,求最值。 2008年江苏高考数学试卷第14题是一道很好的恒成立问题:设函数3()31()f x ax x x R =-+∈若对于任意[]1,1x ∈-都有()0f x ≥成立,则实数a 的值为 。解析如下: 析:将()0f x ≥中的,a x 分离,然后求函数的最值。 解:函数3()31()f x ax x x R =-+∈若对于任意[]1,1x ∈-都有()0f x ≥成立,函数3()31()f x ax x x R =-+∈对于任意[)(]1,0,0,10x x x ∈-∈=及其有()0f x ≥都成立。 若[)1,0x ∈-,33213()310f x ax x a x x =-+≥?≤- +,设1t x =则1t ≤- 3232133(1)t t t x x ∴-+=-+≤-,令323(1)y t t t =-+≤-,则'2360y t t =-+< 323(1)y t t t ∴=-+≤-单调递减,32min 1(1)3(1)4t y y =-==--+-=,4a ∴≤(1) 若(]0,1x ∈,33213()310f x ax x a x x =-+≥?≥- +,设1t x =,则1t ≥ 3232133(1)t t t x x ∴-+=-+≥,令323(1)y t t t =-+≥,则'2363(2)y t t t t =-+=--,当12t ≤≤时'0y ≥,323(1)y t t t =-+≥单调递增;当2t >时'0y <,323(1)y t t t =-+≥单调递减,32max 22324t y y ===-+?=,4a ∴≥(2) 若0x =则a R ∈,()0f x ≥成立(3) 由题意知(1)(2)(3)应同时成立4a ∴= 解题中采取了不等式恒成立问题的处理策略: 1、若f(x)≥a 对x ∈D 恒成立,只须f(x)min (x ∈D)≥a 即可。 2、若f(x)≤a 对x ∈D 恒成立,只须f(x)max (x ∈D)≤a 即可。

2021高三数学人教B版一轮学案:第二章第十二节第1课时不等式恒成立与有解问题含解析

第十二节导数破解疑难优质课 第1课时不等式恒成立与有解问题 1.“恒成立问题”与“有解问题”的区别 (1)两者在量词上的区别 恒成立问题中使用的量词是全称量词,如“任意、所有、全部、均、恒、总、都”等;而有解问题中使用的量词是特称量词,如“存在、至少一个、有解”等. (2)两者在等价转换上的区别 恒成立问题的转化: ①f(x)>0恒成立?f(x)min>0;f(x)<0恒成立?f(x)max<0. ②f(x)>a恒成立?f(x)min>a;f(x)g(x)恒成立?[f(x)-g(x)]min>0;f(x)0有解?f(x)max>0;f(x)<0有解?f(x)min<0. ②f(x)>a有解?f(x)max>a;f(x)g(x)有解?[f(x)-g(x)]max>0;f(x)

考向一 不等式恒成立问题 方法1 分离参数法 【例1】 (2020·石家庄质检)已知函数f (x )=ax e x -(a +1)(2x -1). (1)若a =1,求函数f (x )的图象在点(0,f (0))处的切线方程; (2)当x >0时,函数f (x )≥0恒成立,求实数a 的取值范围. 【解】 (1)若a =1,则f (x )=x e x -2(2x -1). 即f ′(x )=x e x +e x -4,则f ′(0)=-3,f (0)=2, 所以所求切线方程为3x +y -2=0. (2)由f (1)≥0,得a ≥1e -1 >0,则f (x )≥0对任意的x >0恒成立可转化为a a +1 ≥2x -1x e x 对任意的x >0恒成立. 设函数F (x )=2x -1x e x (x >0), 则F ′(x )=-(2x +1)(x -1)x 2e x . 当00; 当x >1时,F ′(x )<0. 所以函数F (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以 F (x )max =F (1)=1e . 于是a a +1≥1e ,解得a ≥1e -1 .

导数在处理不等式的恒成立问题(一轮复习教案)

学习过程 一、复习预习 考纲要求: 1.理解导数和切线方程的概念。 2.能在具体的数学环境中,会求导,会求切线方程。 3.特别是没有具体点处的切线方程,如何去设点,如何利用点线式建立直线方程。4.灵活应用建立切线方程与其它数学知识之间的内在联系。

5. 灵活应用导数研究函数的单调性问题 二、知识讲解 1.导数的计算公式和运算法则 几种常见函数的导数:0'=C (C 为常数);1 )'(-=n n nx x (Q n ∈); x x cos )'(sin =; x x sin )'(cos -=;1(ln )x x '= ; 1(log )log a a x e x '=, ()x x e e '= ; ()ln x x a a a '= 求导法则:法则1 [()()]()()u x v x u x v x ±'='±'.

法则2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '= 法则3: ' 2 '' (0)u u v uv v v v -??=≠ ??? 复合函数的导数:设函数()u x ?=在点x 处有导数()x u x ?'=',函数()y f u =在点x 的对应点u 处有导 数()u y f u '=',则复合函数(())y f x ?=在点x 处也有导数,且x u x u y y '''?= 或(())()()x f x f u x ??'='?' 2.求直线斜率的方法(高中范围内三种) (1) tan k α=(α为倾斜角); (2) 1212 ()() f x f x k x x -= -,两点1122(,()),(,())x f x x f x ; (3)0()k f x '= (在0x x =处的切线的斜率); 3.求切线的方程的步骤:(三步走) (1)求函数()f x 的导函数()f x '; (2)0()k f x '= (在0x x =处的切线的斜率); (3)点斜式求切线方程00()()y f x k x x -=-; 4.用导数求函数的单调性: (1)求函数()f x 的导函数()f x '; (2)()0f x '>,求单调递增区间; (3)()0f x '<,求单调递减区间; (4)()0f x '=,是极值点。 考点一 函数的在区间上的最值 【例题1】:求曲线29623-+-=x x x y 在)5,2(上的最值 。 【答案】:最大值为18,最小值为-2. 【解析】:∵根据题意09123'2=+-=x x y ,∴3,121==x x ,由函数的单调性,当11=x ,2=y , 取得极大值;当32=x ,2-=y ,取得极小值;当5=x ,18=y 。所以最大值为18,最小值为-2.

学而思高中数学7恒成立与有解问题

【例1】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值范围是 _ . 【例2】 若不等式1 21x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 【例3】 设函数2()1f x x =-,对任意23x ?? ∈+∞???? ,,2 4()(1)4()x f m f x f x f m m ??--+ ??? ≤恒成立,则实数m 的取值范围是 . 典例分析 恒成立与有解问题

【例4】 若不等式220ax x ++>的解集为R ,则a 的范围是( ) A .0a > B .1 8 a >- C .18a > D .0a < 【例5】 已知不等式 ()11112log 1122123 a a n n n +++>-+++L 对于一切大于1的自然数n 都成立,试求实数a 的取值范围. 【例6】 若不等式2(2)2(2)40a x a x -+--<对x ∈R 恒成立,则a 的取值范围是______. 【例7】 2()1f x ax ax =+-在R 上恒满足()0f x <,则a 的取值范围是( ) A .0a ≤ B .4a <- C .40a -<< D .40a -<≤

【例8】 若对于x ∈R ,不等式2230mx mx ++>恒成立,求实数m 的取值范围. 【例9】 不等式210x ax ++≥对一切102x ?? ∈ ??? ,成立,则a 的最小值为( ) A .0 B .2- C .5 2 - D .3- 【例10】 不等式2|3||1|3x x a a +---≤对任意实数x 恒成立,则实数a 的取值范围为 ( ) A .(][)14-∞-+∞U ,, B .(][)25-∞-+∞U ,, C .[12], D .(][)12-∞∞U , , 【例11】 对任意[11]a ∈-,, 函数2()(4)42f x x a x a =+-+-的值恒大于零,则x 的取值范围为 .

相关主题
文本预览
相关文档 最新文档