当前位置:文档之家› 多元正态分布

多元正态分布

标准正态分布的密度函数样本

幻灯片1 正态分布 第二章 第七节 一、标准正态分布的密度函数 二、标准正态分布的概率计算 三、一般正态分布的密度函数 四、正态分布的概率计算幻灯片2 正态分布的重要性正态分布是概率论中最重要的分布, 这能够由 以下情形加以说明: ⑴ 正态分布是自然界及工程技术中最常见的分布之一, 大量的随机现象都是服从或近似服从正态分布的.能够证明, 如果一个随机指标受到诸多因素的影响, 但其中任何一个因素都不起决定性作用, 则该随机指标一定服从或近似服从正态分布. 这些性质是其它 ⑵ 正态分布有许多良好的性质, 许多分布所不具备的. ⑶ 正态分布能够作为许多分布的近似分布.幻灯片3 -标准正态分布下面我们介绍一种最重要的正态分布 一、标准正态分布的密度函数若连续型随机变量X 的密度函数为定义 则称X 服从标准正态分布,

记为标准正态分布是一种特别重要的它的密度函数经常被使用, 分布。 幻灯片4 密度函数的验证 则有 ( 2) 根据反常积分的运算有能够推出 幻灯片5 标准正态分布的密度函数的性质若随机变量 , X 的密度函数为 则密度函数的性质为: 的图像称为标准正态( 高斯) 曲线幻灯片6 随机变量 由于 由图像可知, 阴影面积为概率值。对同一长度的区间 , 若这区间越靠近 其对应的曲边梯形面积越大。标准正态分布的分布规律时”中间多, 两头少” . 幻灯片7 二、标准正态分布的概率计算 1、分布函数分布函数为幻灯片8 2、标准正态分布表书末附有标准正态分布函数数值表, 有了它, 能够解决标准正态分布的概率计算.表中给的是x > 0时,①(x)的值. 幻灯片9 如果由公式得令则幻灯片10

2.4.1正态分布

2. 4.1正态分布 【教学目标】 1.了解正态分布的意义,掌握正态分布曲线的主要性质及正态分布的简单 应用。 2.了解假设检验的基本思想,会用质量控制图对产品的质量进行检测,对 生产过程进行控制。 【教学重难点】 教学重点:1.正态分布曲线的特点; 2.正态分布曲线所表示的意义. 教学难点:1.在实际中什么样的随机变量服从正态分布; 2.正态分布曲线所表示的意义. 【教学过程】 一、设置情境,引入新课 这是一块高尔顿板,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,最后掉入高尔顿板下方的某一球槽内。 问题1.在投放小球之前,你能知道这个小球落在哪个球槽中吗? 问题 2.重复进行高尔顿板试验,随着试验次数的增加,掉入每个球槽中小球的个数代表什么? 问题 3.为了更好的研究小球分布情况,对各个球槽进行编号,以球槽的编号

为横坐标,以小球落入各个球槽的频率值为纵坐标,你能画出它的频率分布直方图吗? 问题4.随着试验次数的增加,这个频率直方图的形状会发生什么样的变化? 二、合作探究,得出概念 随着试验次数的增加,这个频率直方图的形状会越来越像一条钟形曲线. 这条曲线可以近似下列函数的图像: 22 ()2,(),(,),2x x e x μσμσ?πσ -- = ∈-∞+∞ 其中实数(0)μσσ>和为参数,我们称,()x μσ?的图像为正态分布密度曲线,简称正态曲线。 问题 5.如果在高尔顿板的底部建立一个水平坐标轴,其刻度单位为球槽的宽度,X 表示一个随机变量,X 落在区间(,]a b 的概率为什么?其几何意义是什么? 一般地,如果对于任何实数a b <,随机变量X 满足

t分布和标准规定正态分布

数理统计实验 t分布与标准正态分布 院(系): 班级: 成员:

成员: 成员: 指导老师: 日期:

目录 t分布与标准正态分布的关系 (1) 一、实验目的 (1) 二、实验原理 (1) 三、实验内容及步骤 (1) 四、实验器材 (6) 五、实验结果分析 (6) 六、实验结论 (6)

t分布与标准正态分布的关系 一、实验目的 正态分布是统计中一种很重要的理论分布,是许多统计方法的理论基础。正态分布有两个参数,μ和σ,决定了正态分布的本质。为了应用和计算方便,常将一般的正态变量X通过μ变换[(X-μ)/σ]转化成标准正态变量μ,以使原来各种形态的正态分布都转换为μ=0,σ=1的标准正态分布,亦称μ分布。对于标准正态分布来说,μ是数据整体的平均值,σ是整体的标准差。但实际操作过程中,人们往往难以获得μ和σ。因此人们只能通过样本对这两个参数做出估计,用样本平均值和样本标准差代替整体的平均值和标准差,从而得出了t分布。另外从图像的层面说,正态分布的位置和形态只与μ和σ有关,而t分布不只与样本平均值和样本标准差有关,还与自由度相关。通过实验了解t分布与标准正态分布之间的关系。 二、实验原理 运用EXCEL软件验证t分布与标准正态分布的关系,绘制相应的统计图表进行分析。 三、实验内容及步骤 1.打开Excel文件,将“t分布与标准正态分布N(0,1)”合并并居中,黑体,20字号,红色;

2.选中文件,选项,自定义功能区,加载开发工具.在开发工具中插入滚动条,调节滚动条大小; 3.设置A2单元格格式,数字自定义区”!n=#,##0;[红 色]¥-#,##0”.然后左对齐,设置为红色;

正态分布讲解(含标准表)

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线 b 单位 O 频率/组距 a 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 2 2 () 2 , 1 (),(,) 2 x x e x μ σ μσ ? πσ - - =∈-∞+∞ 式中的实数μ、)0 (> σ σ是参数,分别表示总体的平均数与标准差,, ()x μσ ? 的图象为正态分布密度曲线,简称正态曲线. 讲解新课:

一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2 σ μN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响

标准正态分布

标准正态分布 标准正态分布(英语:standard normal distribution,德语Standardnormalverteilung),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。 定义: 标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。 正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是位置参数均数为0, 尺度参数:标准差为1的正态分布 特点: 密度函数关于平均值对称 平均值与它的众数(statistical mode)以及中位数(median)同一数值。 函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。 95.449974%的面积在平均数左右两个标准差的范围内。 99.730020%的面积在平均数左右三个标准差的范围内。 99.993666%的面积在平均数左右四个标准差的范围内。 函数曲线的反曲点(inflection point)为离平均数一个标准差距离的位置。 标准偏差:

深蓝色区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%,根据正态分布,两个标准差之内的比率合起来为95%;三个标准差之内的比率合起来为99%。 在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68.3%数值分布在距离平均值有1个标准差之内的范围,约95.4%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”或“经验法则”

正态分布分析

正态分布 以平均值为中心呈对称分布的钟形曲线。正态分布是最常见的统计分布,因为许多物理、生物和社会方面的测量值都自然近似于正态。许多统计分析均要求数据来自正态分布总体。 例如,居住在宾夕法尼亚州的所有成年男性的身高近似于正态分布。因此,大多数男性的身高都将接近于 69 英寸的平均身高。高于和矮于 69 英寸的男性的数量相近。只有一小部分身材特别高或特别矮。 平均值 (μ) 和标准差 (σ) 是定义正态分布的两种参数。平均值是钟形曲线的波峰或中心。标准差决定数据的散布情况。大约有 68% 的观测值与平均值相差不到 +/- 1 个标准差;95% 与平均值相差不到 +/- 2 个标准差;而 99% 的观测值与平均值相差不到 +/- 3 个标准差。 就宾夕法尼亚州男性的身高而言,平均身高为 69 英寸,标准差为 2.5 英寸。 大约68% 的宾夕法尼亚男性身高介于66.5 (μ- 1σ) 和71.5 (μ+ 1σ) 英寸之间。 大约95% 的宾夕法尼亚男性身高介于64 (μ- 2σ) 和74 (μ+ 2σ) 英寸之间。 大约99% 的宾夕法尼亚男性身高介于61.5 (μ- 3σ) 和76.5 (μ+ 3σ) 英寸之间。 过程能力

生产或提供满足根据客户需要定义的规格的产品或服务的能力。例如,影印机制造商要求橡胶辊筒的宽度必须介于 32.523 cm 与 32.527 cm 之间,才能避免卡纸。能力分析揭示了制造过程满足这些规格的程度,并提供有关如何改进该过程和维持改进的见解。 在评估过程能力之前,必须确保过程是稳定的。不稳定的过程是无法预测的。如果过程稳定,则可以预测将来的性能并改进其能力。 应定期测量并分析过程的能力。能力分析有助于回答以下问题: ?过程是否满足客户规格? ?过程将来的性能如何? ?过程是否需要改进? ?过程是保持了这些改进还是回复到了原来的未改进状态? 可使用过程指标(如 Cp、Pp、Cpk 和 Ppk)来分析过程能力。 潜在(组内)能力和整体能力 大多数能力评估都可以分组为两种类别中的一种:潜在(组内)能力和整体能力。每种能力都表示对过程能力的唯一度量。潜在能力通常称为过程的“权利”:它忽略子组之间的差异并表示当消除了子组之间的偏移和漂移时执行过程的方法。另一方面,整体能力是客户所体验到的;它考虑了子组之间的差异。评估潜在能力的能力指标包括 Cp、CPU、CPL 和 Cpk。评估整体能力的能力指标包括 Pp、PPU、PPL、Ppk 和 Cpm。 例如,您检查某一糖果厂的设备,其中包括将特定重量的糖果装入容器的机器。糖果每周从工厂出货一次。为评估此过程的能力,在一周内的每天,对袋子样本进行称重;每个样本在分析中表示一个子组。观察发现,每个子组内的变异性很小,但由于子组平均值每天都有偏移,因此袋子重量的总体变异性很大。因此,整个一周的出货在袋子重量上与给定日期内生产的袋子重量之间存在较大的变异性。在下图中,较小的分布表示连续七天内每天的袋子重量的分布。最上面的分布表示整周的出货,它是子组的合计。

第二章 多元正态分布及参数的估计汇总

第二章多元正态分布及参数的估计 在多元统计分析中,多元正态分布占有相当重要的地位.这是因为许多实际问题涉及到的随机向量服从正态分布或近似服从正态分布;当样本量很大时,许多统计量的极限分布往往和正态分布有关;此外,对多元正态分布,理论与实践都比较成熟,已有一整套行之有效的统计推断方法.基于这些理由,我们在介绍多元统计分析的种种具体方法之前,首先介绍多元正态分布的定义、性质及多元正态分布中参 数的估计问题. 目录 §2.1 随机向量 §2.2 多元正态分布的定义与基本性质 §2.3 条件分布和独立性 §2.4 多元正态分布的参数估计 §2.1 随机向量 本课程所讨论的是多变量总体.把p个随机变量放在一起得X=(X1,X2,…,Xp)′为一个p维随机向量,如果同时对p维总体进行一次观测,得一个样品为p维数据.常把n个样品排成一个n×p矩阵,称为样本资料阵.

?? ? ? ?? ??'''= ?????? ??=)()2()1(2 1 2222111211n np n n p p X X X x x x x x x x x x X def =(X 1,X 2,…,X p ) 其中 X(i)( i =1,…,n)是来自p 维总体的一个样品. 在多元统计分析中涉及到的都是随机向量,或是多个随机向量放在一起组成的随机矩阵. 本节有关随机向量的一些概念(联合分布,边缘分布,条件分布,独立性;X 的均值向量,X 的协差阵和相关阵,X 与Y 的协差阵)要求大家自已复习. 三﹑ 均值向量和协方差阵的性质 (1) 设X ,Y 为随机向量,A ,B 为常数阵,则 E(AX )=A·E(X ), E(AXB )=A·E(X )·B D(AX)=A·D(X)·A' COV(AX,BY)=A·COV(X,Y)·B' (2) 若X,Y 相互独立,则COV(X,Y)=O;反之不成立. 若COV(X,Y)=O,我们称X 与Y 不相关.故有: 两随机向量若相互独立,则必不相关;

利用Excel的NORMSDIST计算正态分布函数表

利用Excel的NORMSDIST函数建立正态 分布表 董大钧,乔莉 理工大学应用技术学院、信息与控制分院,113122 摘要:利用Excel办公软件特有的NORMSDIST函数可以很准确方便的建立正态分布表、查找某分位数点的正态分布概率值,极大的提高了数理统计的效率。该函数可返回指定平均值和标准偏差的正态分布函数,将其引入到统计及数据分析处理过程中,代替原有的手工查找正态分布表,除具有直观、形象、易用等特点外,更增加了动态功能,极大提高了工作效率及准确性。 关键词:Excel;正态分布;函数;统计 引言 正态分布是应用最广泛的连续概率分布,生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,某种产品的力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布。从理论上看,正态分布具有很多良好的性质,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。在科学研究及数理统计计算过程中,人们往往要通过某本概率统计教材附录中的正态分布表去查找,非常麻烦。若手头有计算机,并安装有Excel软件,就可以利用Excel的NORMSDIST( x )函数进行计算某分位数点的正态分布概率值,或建立一个正态分布表,准确又方便。 1 正态分布及其应用 正态分布(normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为N(μ,σ2 )。则其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟

正态分布练习含答案

正态分布 一.选择题: 1.正态分布有两个参数μ与σ,( )相应的正态曲线的形状越扁平。 A .μ越大 B .μ越小 C .σ越大 D .σ越小 答案: C 。解析:由正态密度曲线图象的特征知。 2. 已知随机变量X 服从正态分布N (3,σ2 )则P (X <3)等于 ( ) A.15 B.14 C.13 D.12 解析:由正态分布图象知,μ=3为该图象的对称轴,P (X <3)=P (X >3)=12. 答案:D 3.设两个正态分布N (μ1,σ21)(σ1>0)和N (μ2,σ2 2)(σ2>0)的密度函数图象如图所示,则有 ( ) A .μ1<μ2,σ1<σ2 B .μ1<μ2,σ1>σ2 C .μ1>μ2,σ1<σ2 D .μ1>μ2,σ1>σ2 解析:由图可知,μ2>μ1,且σ2>σ1. 答案:A 4.设随机变量ξ服从正态分布)1,0(N ,则下列结论不正确的是 。 A .)0)(|(|)|(|)|(|>=+<=-<=<-=>-=

B .分数在120分以上的人数与分数在60分以下的人数相同 C .分数在110分以上的人数与分数在50分以下的人数相同 D .该市这次考试的数学成绩标准差为10 解析:由密度函数知,均值(期望)μ=80,标准差σ=10,又曲线关于直线x =80对称,故分数在100分以上的人数与分数在60分以下的人数相同,所以B 是错误的. 答案:B 6. 已知随机变量X ~N (3,22 ),若X =2η+3,则D η等于 ( ) A .0 B .1 C .2 D .4 解析:由X =2η+3,得DX =4D η,而DX =σ2 =4,∴D η=1. 答案:B 7. 在一次英语考试中,考试的成绩服从正态分布)36,100(,那么考试成绩在区间(]112,88内的概率是 ( ) A .0.6826 B .0.3174 C .0.9544 D .0.9974 答案:C 。解析:由已知X —N (100,36), 故88100112100 (88112)( )(22)2(2)10.954466 P X P Z P Z P Z --<≤=<≤=-<≤=≤-=。 8. 某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80 分到90分的人数是 ( ) A. 32 B. 16 C. 8 D. 20 答案:B 。解析:数学成绩是X —N(80,102 ), 8080 9080(8090)(01)0.3413,480.34131610 10P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ???。 二.填空题 9. 若随机变量X ~N (μ,σ2 ),则P (X ≤μ)=________. 解析:由于随机变量X ~N (μ,σ2 ),其概率密度曲线关于x =μ,对称,故P (X ≤μ)=1 2 . 答案:12 10. 已知正态分布总体落在区间(0.2,+∞)的概率为0.5,那么相应的正态曲线f (x )在x =________时达到最高点. 解析:∵P (X >0.2)=0.5,∴P (X ≤0.2)=0.5,

matlab计算多元正态分布函数

函数名对应分布的概率密度函数 betapdf 贝塔分布的概率密度函数 binopdf 二项分布的概率密度函数 chi2pdf 卡方分布的概率密度函数 exppdf 指数分布的概率密度函数 fpdf f分布的概率密度函数 gampdf 伽玛分布的概率密度函数 geopdf 几何分布的概率密度函数 hygepdf 超几何分布的概率密度函数normpdf 正态(高斯)分布的概率密度函数lognpdf 对数正态分布的概率密度函数nbinpdf 负二项分布的概率密度函数 ncfpdf 非中心f分布的概率密度函数nctpdf 非中心t分布的概率密度函数 ncx2pdf 非中心卡方分布的概率密度函数poisspdf 泊松分布的概率密度函数 raylpdf 雷利分布的概率密度函数 tpdf 学生氏t分布的概率密度函数 unidpdf 离散均匀分布的概率密度函数unifpdf 连续均匀分布的概率密度函数weibpdf 威布尔分布的概率密度函数 表Ⅰ-2 累加分布函数 函数名对应分布的累加函数 betacdf 贝塔分布的累加函数 binocdf 二项分布的累加函数

chi2cdf 卡方分布的累加函数 expcdf 指数分布的累加函数 fcdf f分布的累加函数 gamcdf 伽玛分布的累加函数 geocdf 几何分布的累加函数 hygecdf 超几何分布的累加函数logncdf 对数正态分布的累加函数nbincdf 负二项分布的累加函数 ncfcdf 非中心f分布的累加函数 nctcdf 非中心t分布的累加函数 ncx2cdf 非中心卡方分布的累加函数normcdf 正态(高斯)分布的累加函数poisscdf 泊松分布的累加函数 raylcdf 雷利分布的累加函数 tcdf 学生氏t分布的累加函数 unidcdf 离散均匀分布的累加函数unifcdf 连续均匀分布的累加函数weibcdf 威布尔分布的累加函数 表Ⅰ-3 累加分布函数的逆函数 函数名对应分布的累加分布函数逆函数betainv 贝塔分布的累加分布函数逆函数binoinv 二项分布的累加分布函数逆函数chi2inv 卡方分布的累加分布函数逆函数expinv 指数分布的累加分布函数逆函数finv f分布的累加分布函数逆函数

标准正态分布的密度函数

正态分布 第二章 第七节 一、标准正态分布的密度函数 二、标准正态分布的概率计算 三、一般正态分布的密度函数 四、正态分布的概率计算 幻灯片2 正态分布的重要性正态分布是概率论中最重要的分布, 这可以由 以下情形加以说明: ⑴正态分布是自然界及工程技术中最常见的分布 之一, 大量的随机现象都是服从或近似服从正态分布的. 可以证明, 如果一个随机指标受到诸多因素的影响, 但其中任何一个因素都不起决定性作用, 则该随机指标 一定服从或近似服从正态分布. 这些性质是其它 ⑵正态分布有许多良好的性质, 许多分布所不具备的. ⑶正态分布可以作为许多分布的近似分布. 幻灯片3 -标准正态分布 下面我们介绍一种最重要的正态分布 一、标准正态分布的密度函数 若连续型随机变量X的密度函数为 定义 则称X服从标准正态分布, 记为 标准正态分布是一种特别重要的 它的密度函数经常被使用, 分布。 幻灯片4 密度函数的验证 则有 (2)根据反常积分的运算有 可以推出 幻灯片5 标准正态分布的密度函数的性质

,X的密度函数为 则密度函数的性质为: 的图像称为标准正态(高斯)曲线。 幻灯片6 随机变量 由于 由图像可知,阴影面积为概率值。 对同一长度的区间 ,若这区间越靠近 其对应的曲边梯形面积越大。 标准正态分布的分布规律时“中间多,两头少”. 幻灯片7 二、标准正态分布的概率计算 1、分布函数 分布函数为 幻灯片8 2、标准正态分布表 书末附有标准正态分布函数数值表,有了它,可以解决标准正态分布的概率计算. 表中给的是x > 0时, Φ(x)的值. 幻灯片9 如果 由公式得 令 则 幻灯片10 例1 解 幻灯片11 由标准正态分布的查表计算可以求得, 当X~N(0,1)时, 这说明,X 的取值几乎全部集中在[-3,3]区间内,超出这个范围的可能性仅占不到0.3%. 幻灯片12 三、一般正态分布的密度函数 如果连续型随机变量X的密度函数为 (其中 为参数) 的正态分布,记为 则随机变量X服从参数为 所确定的曲线叫 作正态(高斯)曲线. 幻灯片13

标准正态分布函数表

函数: 函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。 标准正态分布: 标准正态分布,是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。 定义: 标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。 标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。 正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是位置参数均数为0, 尺度参数:标准差为1的正态分布(见下图中绿色曲线)。 特点: 密度函数关于平均值对称 平均值与它的众数(statistical mode)以及中位数(median)

同一数值。 函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。 95.449974%的面积在平均数左右两个标准差的范围内。 99.730020%的面积在平均数左右三个标准差的范围内。 99.993666%的面积在平均数左右四个标准差的范围内。 函数曲线的反曲点(inflection point)为离平均数一个标准差距离的位置。 标准偏差: 深蓝色区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%,根据正态分布,两个标准差之内的比率合起来为95%;三个标准差之内的比率合起来为99%。 在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68.3%数值分布在距离平均值有1个标准差之内的范围,约95.4%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”或“经验法则”。

标准正态分布表

标准正态分布表 标准正态分布表怎么看 将未知量Z对应的列上的数与行所对应的数字结合查表定位 例如要查Z=1.96的标准正态分布表 首先在Z下面对应的数找到1.9 然后在Z右边的行中找到6 这两个数所对应的值为0.9750 即为所查的值 有谁知道,为什么标准正态分布表x的右边和下边都有值啊,难道一个x可以有两个值,看表是怎么看啊 那是一个精度问题,例如当x=0.12,那么应该先在x下方找到0.1,再在右边找到0.02,那么这两个同时对应的那个数就应该是你所要的! 标准正态分布的x值算出来介于两个之间,取哪一个。概论值如果介于两个间,取更大的还是更近的啊 精度要求不是很高的话,在正中取中间值,靠一边取更近的,四舍五入。 精度要求高的话用插值函数,比如在两点间作一次函数逼近。 为什么u0.025等于1.96?标准正态分布表查不到这个结果啊。u0.05是多少?u0.1是多少? 因为P{Z<1.96}=1-0.025=0.975 u0.05=1.645 因为P{Z<1.645}=1-0.05 u0.1类似 统计学中,标准正态分布表中Z值代表意义 Z值只是一个临界值,他是标准化的结果,本身没有意义,有意义的在于在标准正态分布模型中它代表的概率值。通过查表便可以知道。 标准正态分布 期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。 标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。 标准正态分布的密度函数为:

标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。

正态分布讲解含标准表

正态分布讲解含标准表 Revised by Jack on December 14,2020

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 式中的实数 μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσ ?的图象为正态分布密度曲 线,简称正态曲线. 讲解新课: 一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作 ),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ和标准差σ唯一决定的分布 3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称 正态曲线的作图,书 中没有做要求,教师也不必补上 讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面 均值与标准差对图形的影响,引导学生观察总结正态曲线的性质 4.正态曲线的性质: (1)曲线在x 轴的上方,与x (2)曲线关于直线x=μ对称 (3)当x=μ时,曲线位于最高点

正态总体统计量的分布

§5.5 正态总体统计量的分布 1. 单个正态总体的统计量的分布 从总体X 中抽取容量为n 的样本n X X X ,,,21 ,样本均值与样本方差分别是 2 1 2 111,1 n i i n i i X X n S X n X . 定理1 设总体X 服从正态分布 2 , N ,则样本均值X 服从正态分布 n N 2 , ,即 证 因为随机变量n X X X ,,,21 相互独立,并且与总体X 服从相同的正态分布 2, N ,所以由§4.3中的定理知,它们的线性组合X 服从正态分布 n N 2 , 。 定理2 设总体X 服从正态分布 2, N ,则统计量n X u 服从标准正态分布 1,0N ,即 由定理1结论的标准化即得到定理2。 定理3 设总体X 服从正态分布 2 , N ,则统计量 n i i X X 1 2 2 2 1 服从自由 度为n 的2 分布,即 证 注意到 2,~ N X i ,则 又上述统计量相互独立,并按照2 分布的定义可得结果。 定理4 设总体X 服从正态分布 2, N ,则 (1)样本均值X 与样本方差2S 相互独立; (2)统计量 2 2 2 1 S n 服从自由度为1 n 的2 分布,即 证明略。 定理5 设总体X 服从正态分布 2, N ,则统计量n S X t 服从自由度为1 n 的 t 分布,即 证 由定理2知,统计量 又由定理4知,统计量 因为X 与2S 相互独立,所以u 与2 也相互独立,于是根据t 分布的定义得结论。

2. 两个正态总体的统计量的分布 从总体X 中抽取容量为x n 的样本x n X X X ,,,21 ,从总体Y 中抽取容量为y n 的样本 y n Y Y Y ,,,21 。假设所有的抽样都是相互独立的,由此得到的样本 x i n i X ,,2,1 与 y j n j Y ,,2,1 都是相互独立的随机变量。我们把取自两个总体的样本均值分别记作 样本方差分别记作 定理6 设总体X 服从正态分布 2 ,x x N ,总体Y 服从正态分布 2,y y N ,则统计量 服从标准正态分布 1,0N ,即 证 由于独立的正态统计量的线性组合服从正态分布,所以 标准化即得结论。 当 y x 时,我们有 推论 设总体X 服从正态分布 2, x N ,总体Y 服从正态分布 2, y N ,则统计量 定理7 设总体X 服从正态分布 2, x N ,总体Y 服从正态分布 2, y N ,则统计量 其中 证 由定理6的推论知,统计量 又由定理4知 因为2x S 与2 y S 相互独立,由2 分布的可加性知 因为U 和V 相互独立,所以由t 分布的定义得结论。 定理8 设总体X 服从正态分布 2 ,x x N ,总体Y 服从正态分布 2,y y N ,则统计量 服从自由度为 y x n n ,的F 分布,即 证 由定理3知 因为2x 与2 y 相互独立,结合F 分布的定义得结论。 定理9 设总体X 服从正态分布 2 ,x x N ,总体Y 服从正态分布 2,y y N ,则统计量222 2y y x x S S F 服从自由度为 1,1 y x n n 的F 分布,即 证 由定理4知

标准正态分布函数表

标准正态分布: 标准正态分布(英语:standard normal distribution,德语Standardnormalverteilung),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。 定义: 标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。 标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。 正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是位置参数均数为0, 尺度参数:标准差为1的正态分布(见下图中绿色曲线)。 特点: 密度函数关于平均值对称 平均值与它的众数(statistical mode)以及中位数(median)同一数值。 函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。

95.449974%的面积在平均数左右两个标准差的范围内。 99.730020%的面积在平均数左右三个标准差的范围内。 99.993666%的面积在平均数左右四个标准差的范围内。 函数曲线的反曲点(inflection point)为离平均数一个标准差距离的位置。 标准偏差: 深蓝色区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%,根据正态分布,两个标准差之内的比率合起来为95%;三个标准差之内的比率合起来为99%。 在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68.3%数值分布在距离平均值有1个标准差之内的范围,约95.4%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”或“经验法则”。

第1章 多元正态分布的参数估计

第一章 多元正态分布的参数估计 一、填空题 1.设X 、Y 为两个随机向量,对一切的u 、v ,有 ,则称X 与Y 相互独立。 2.多元分析处理的数据一般都属于 数据。 3.多元正态向量),,(1'=p x x X 的协方差阵∑是 ,则X 的各分量是相互独立的随机变量。 4.一个p 元函数()p x x x f ,,,21 能作为p R 中某个随机向量的密度函数的主要条件是 和 。 5.若p 个随机变量1X ,2X , ,p X 的联合分布等于 ,则称1X ,2X , ,p X 是相互独立的。 6.多元正态分布的任何边缘分布为 。 7.若()∑,~μp N X ,A 为p s ?阶常数阵,d 为s 维常数向量,则~d AX + 。 8.多元正态向量X 的任何一个分量子集的分布称为X 的 。 9.多元样本中,不同样品的观测值之间一定是 。 10.多元正态总体均值向量和协差阵的极大似然估计量分别是 。 11.多元正态总体均值向量μ和协差阵∑的估计量X 、S n 1 1-具有 、 和 。 12.设X 和S 分别是多元正态总体()∑,μp N 的样本均值向量和离差阵,则 ~X ,X 和S 。 13.若()()∑,~μαp N X ,n ,,2,1 =α且相互独立,则样本离差阵 ()()()()∑='--=n X X X X S 1~ααα 。 14.若()∑,~i p i n W S ,k i ,,1 =,且相互独立,则~21k S S S S +++= 。 二、判断题 1.多元分布函数()x F 是单调不减函数,而且是右连续的。( )

2.设X 是p 维随机向量,则X 服从多元正态分布的充要条件是:它的任何组合()p R X ∈'αα都是一元正态分布。 ( ) 3.μ 是一个P 维的均值向量,当A 、B 为常数矩阵时,具有如下性质: (1)E (AX )=AE (X ) (2)E (AXB )=AE (X )B ( ) 4.若P 个随机变量X 1,…X P 的联合分布等于各自边缘分布的乘积,则称X 1,… X P 是相互独立的。( ) 5.一般情况下,对任何随机向量()'=p X X X ,,1 ,协差阵∑是对称阵,也 是正定阵。 ( ) 6.多元正态向量()'=p X X X ,,1 的任意线性变换仍然服从多元正态分布。( ) 7.多元正态分布的任何边缘分布为正态分布,反之一样。( ) 8.多元样本中,不同样品之间的观测值一定是相互独立的。( ) 9.多元正态总体参数均值μ的估计量X 具有无偏性、有效性和一致性。( ) 10.S n 1是∑的无偏估计。( ) 11.Wishart 分布是2χ分布在p 维正态情况下的推广。( ) 12.若()()∑,~μαp N X ,n ,,1 =α,且相互独立,则样本离差阵 ()()()()()∑-'--=∑=,1~1n W X X X X S n p ααα。 ( ) 13.若()∑,~n W X p ,C 为奇异矩阵,则()c c n W C CX p '∑',~。( ) 三、简答题 1.多元正态分布有哪些基本性质? 2.均值向量和协差阵的最大似然估计量有哪些优良性质? 3.维希特分布有哪些基本性质? 四、证明题 1.样本均值向量和离差阵也可以用样本资料X 直接表示如下: n X n X 11'=,X n I X S n n n ?? ? ??'-'=111 其中:()'=1,,1,11 n ,???? ??????=1001 I 试分别给以证明。 五、计算题

标准正态分布函数表

标准正态分布函数表 正态分布这个概念在统计学中很常见,在做与正态分布有关计算的时候经常会用到标准正态分布表。如果知道一个数值的标准分数即z-score,就可以非常便捷地在标准正态分布表中查到该标准分数对应的概率值。任何数值,只要符合正态分布的规律,均可使用标准正态分布表查询其发生的概率。 下表就是标准正态分布表,在使用的时候,第一步是先计算数值的标准分数,然后将标准分数四舍五入到小数点后第二位;第二步是在标准正态分布表中的左侧查到直到标准分数的小数点后第一位,然后用顶部的数值查到所对应的标准分数的小数点后第二位。 比如标准分数为1.16,在表左侧可以查到1.1所在的行,然后再找到0.06所在的列,最后对应的概率值为0.877。这就意味着在正态分布的情况下,如果一个数值的标准分数为1.16,那么该数值所代表的情况出现的概率为87.7%。 以下通过案例来看标准正态分布表的应用。假设某地成年男性的身高数据呈正态分布,平均身高为1.70米,标准差为4厘米。 问题:

1. 男性身高超过1.75米的占比为多少? 2. 男性身高在1.74-1.75米之间的占比为多少? 3. 如果有20%的男性身高高于某个数值,该数值所对应的身高数据是多少? 4. 如果有20%的男性身高低于某个数值,该数值所对应的身高数据是多少? 解题: 1、先用标准分数即z-score计算公式将1.75米的身高数据转换成标准分数,结果为(1.75– 1.70) / 0.04 =1.25,这样问题就成了:在标准正态分布曲线中标准分数大于1.25的概率是多少?查询标准正态分布表,可以看到1.25的标准分数对应的概率值为0.894= 89.4%,也就是有89.4%的男性身高数据的标准分数不超过1.25,因此有100%-89.4%=10.6%的男性身高超过1.75米。 2、在问题1中已知身高为1.75米的标准分数为1.25,那么身高为

相关主题
文本预览
相关文档 最新文档