当前位置:文档之家› 18.2原子的核式结构模型 学案(含答案)

18.2原子的核式结构模型 学案(含答案)

18.2原子的核式结构模型 学案(含答案)
18.2原子的核式结构模型 学案(含答案)

18.2原子的核式结构模型学案(含答案)

2原子的核式结构模型原子的核式结构模型学科素养与目标要求物理观念

1.知道汤姆孙的原子结构模型.

2.了解粒子散射实验的原理.现象和结论.

3.知道卢瑟福的原子核式结构内容和意义.

4.知道原子和原子核大小的数量级以及原子核的电荷数和核外电子数的关系科学思维

1.领会卢瑟福原子核式结构实验的科学方法,培养学生的抽象思维能力和想象能力.

2.利用动力学观点与方法分析粒子运动情形与轨迹.

3.利用能量观点分析计算库仑力对粒子做功情况

一.汤姆孙的原子模型1汤姆孙原子模型汤姆孙于1898年提出了原子模型,他认为原子是一个球体,正电荷弥漫性地均匀分布在整个球体内,电子镶嵌其中,有人形象地把汤姆孙模型称为“西瓜模型”或“枣糕模型”,如图

1.图12粒子散射实验1粒子散射实验装置由粒子源.金箔.放大镜.荧光屏等几部分组成,实验时从粒子源到荧光屏这段路程应处于真空中2实验现象绝大多数的粒子穿过金箔后,基本上仍沿原来的方向前进;少数粒子发生了大角度偏转;偏转的角度甚至大于90,它们几乎被“撞了回来”3实验意义卢瑟福通过粒子散射实验,否定了汤姆孙的原子模型,建立了核式结构模型

二.卢瑟福的核式结构模型1核式结构模型1911年由卢瑟福提出在原子中心有一个很小的核,叫原子核它集中了全部的正电荷和几乎全部的质量,电子在核外空间运动2原子核的电荷与尺度1判断下列说法的正误1汤姆孙的枣糕模型认为原子是一个球体,正电荷弥漫性地均匀分布在整个球体内2粒子散射实验证实了汤姆孙的枣糕式原子模型3卢瑟福的核式结构模型认为原子中带正电的部分体积很小,电子在正电体外面运动4原子核的电荷数等于核中的中子数5对于一般的原子,由于原子核很小,所以内部分空旷2多选卢瑟福的原子核式结构学说可以解决的问题是A 解释粒子散射现象B用粒子散射的实验数据估算原子核的大小C 卢瑟福通过粒子散射实验证实了在原子核内部存在质子D卢瑟福通过粒子散射实验证明了原子核是由质子和中子组成的答案AB解析粒子散射实验现象与汤姆孙的枣糕模型相矛盾,卢瑟福的原子核式结构模型合理解释了该实验现象,并通过实验数据估算出了原子核的半径的数量级为1015m,

A.B正确;卢瑟福通过粒子散射实验,提出了原子是由原子核和核外电子组成的,但不能说明原子核内存在质子,故C错误;卢瑟福通过粒子散射实验提出了原子的核式结构模型,但不能证明原子核是由质子和中子组成的,故D错误.

一.粒子散射实验现象的分析与理解如图所示为1909年英籍物理学家卢瑟福指导他的学生盖革和马斯顿进行粒子散射实验的实验装置,阅读课本,回答以下问题1什么是粒子2实验装置中

各部件的作用是什么实验过程是怎样的3实验现象如何4少数粒子发生大角度散射的原因是什么答案1粒子42He是从放射性物质中发射出来的快速运动的粒子,实质是失去两个电子的氦原子核质量是电子的7300倍2粒子源把放射性元素钋放在带小孔的铅盒中,放射出高能的粒子带荧光屏的放大镜观察粒子打在荧光屏上发出的微弱闪光实验过程粒子经过一条细通道,形成一束射线,打在很薄的金箔上,由于金原子中的带电粒子对粒子有库仑力的作用,一些粒子会改变原来的运动方向带有放大镜的荧光屏可以沿题图中虚线转动,以统计向不同方向散射的粒子的数目3粒子散射实验的实验现象绝大多数粒子穿过金箔后,基本上仍沿原来的方向前进,但有少数粒子发生了大角度偏转,偏转的角度甚至大于90.4粒子带正电,粒子受原子中带正电的部分的排斥力发生了大角度散射1粒子散射实验装置如图2图22实验现象如图3图31绝大多数的粒子穿过金箔后仍沿原来的方向前进2少数粒子发生较大的偏转3极少数粒子偏转角度超过90,有的几乎达到180.3实验现象的分析1核外电子不会使粒子的速度发生明显改变2汤姆孙的原子模型不能解释粒子的大角度散射3少数粒子发生了大角度偏转,甚至反弹回来,表明这些粒子在原子中的某个地方受到了质量比它本身大得多的物质的作用4绝大多数粒子在穿过厚厚的金原子层时运动方向没有明显变化,说明原子中绝大部分是空的,原子的正电荷和几乎全部质量都集中在体积很小的核内例1多选xx济南一中高二期中卢瑟福和他的学生用粒子轰击不同

的金属,并同时进行观测,经过大量的实验,最终确定了原子的核式结构如图4为该实验的装置,其中荧光屏能随显微镜在图中的圆面内转动当用粒子轰击金箔时,在不同位置进行观测,如果观测的时间相同,则下列说法正确的是图4A在1处看到的闪光次数最多B2处的闪光次数比4处多C3和4处没有闪光D4处有闪光但次数极少答案ABD解析在卢瑟福粒子散射实验中,粒子穿过金箔后,绝大多数粒子仍沿原来的方向前进,则在1处看到的闪光次数最多,故A正确;少数粒子发生大角度偏转,极少数粒子偏转角度大于90,极个别粒子被反弹回来,在

2.3.4位置观察到的闪光次数依次减少,故C错误,

B.D正确解决这类问题的关键是理解并熟记以下两点1明确实验装置的组成及各部分的作用2弄清实验现象,知道“绝大多数”.“少数”和“极少数”粒子的运动情况及原因针对训练粒子散射实验中,不考虑电子和粒子的碰撞影响,是因为A粒子与电子根本无相互作用B粒子受电子作用的合力为零,是因为电子是均匀分布的C粒子和电子碰撞时受力极小,可忽略不计D电子很小,粒子碰撞不到电子答案C解析在粒子散射实验中,电子与粒子存在相互作用,A错;电子质量只有粒子的17300,电子与粒子碰撞后,电子对粒子的影响就像灰尘对子弹的影响,完全可忽略不计,C正确,

B.D错误

二.原子的核式结构模型与原子核的组成1原子的核式结构模型在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部的质量都集中在原子核里,带负电的电子在核外空间运动2原子内的电荷关系原子核的电荷数与核外的电子数相等,非常接近原子的原子序数3原子核的组成原子核由质子和中子组成,原子核的电荷数等于原子核的质子数4原子核的大小原子的半径数量级为1010m,原子核半径的数量级为1015m,原子核的半径只相当于原子半径的万分之一,体积只相当于原子体积的10

15.例2多选根据卢瑟福的原子核式结构理论,下列对原子结构的认识中,正确的是A原子中绝大部分是空的,原子核很小B 电子在核外运动,库仑力提供向心力C原子的全部正电荷都集中在原子核里D原子核的直径大约为1010m答案ABC解析卢瑟福粒子散射实验的结果否定了关于原子结构的汤姆孙模型,提出了关于原子的核式结构学说,并估算出原子核半径的数量级为1015m,原子半径的数量级为1010m,原子半径是原子核半径的万倍,所以原子内部是分“空旷”的,核外带负电的电子由于受到带正电的原子核的吸引而绕核旋转,所以

A.

B.C正确,D错误

三.粒子散射实验中粒子的轨迹与受力1粒子的运动情况在离原子核较远处,粒子近似做匀速直线运动在粒子靠近原子核的运

动过程中,库仑斥力随运动距离和运动方向的变化而变化,是变力所以,粒子做变速运动,当运动方向与粒子和原子核的连线不在同一方向上时,粒子做变速曲线运动,受库仑斥力作用,曲线向原子核外侧弯曲且库仑斥力方向与速度方向分布于轨迹两侧2库仑力对粒子的做功情况1当粒子靠近原子核时,库仑力做负功,电势能增加2当粒子远离原子核时,库仑力做正功,电势能减小例3如图5所示为卢瑟福的粒子散射实验,.两条线表示实验中粒子运动的轨迹,则沿所示方向射向原子核的粒子可能的运动轨迹为图5A轨迹aB轨迹bC轨迹cD轨迹d答案A解析卢瑟福通过研究粒子散射提出了原子的核式结构模型,正电荷全部集中在原子核内,粒子带正电,同种电荷相互排斥,因离原子核越近,受到的库仑斥力越强,则偏转程度越大,所以沿所示方向射向原子核的粒子可能的运动轨迹为a,故A正确,

B.

C.D错误例4如图6所示,根据粒子散射实验,卢瑟福提出了原子的核式结构模型图中虚线表示原子核所形成的电场的等势面,实线表示一个粒子的运动轨迹在粒子从A运动到B再运动到C 的过程中,下列说法中正确的是图6A动能先增大后减小B电势能先减小后增大C电场力先做负功后做正功,总功等于零D加速度先减小后增大答案C解析粒子及原子核均带正电,故粒子受到原子核的斥力,粒子从A运动到B,电场力做负功,动能减小,电势能增大,从B运动到C,电场力做正功,动能增大,电势能减小,

A.C在同一等势面上,

A.C两点的电势差为零,则粒子从A到C的过程中电场力做的总功等于零,

A.B错误,C正确;粒子所受的库仑力Fkq1q2r2,B点离原子核最近,所以粒子在B点时所受的库仑力最大,加速度最大,故加速度先增大后减小,D错误.1物理学史的考查xx鹤岗一中高二期末物理学重视逻辑,崇尚理性,其理论总是建立在对事实观察的基础上下列说法正确的是A爱因斯坦在光的粒子性的基础上,建立了光电效应方程B康普顿效应表明光子只具有能量,不具有动量C卢瑟福根据粒子散射实验提出了原子的枣糕式结构模型D 德布罗意指出微观粒子的动量越大,其对应的波长就越长答案A 解析爱因斯坦在光的粒子性的基础上,建立了光电效应方程,选项A正确;康普顿效应表明光子不但具有能量,还具有动量,选项B错误;卢瑟福根据粒子散射实验提出了原子的核式结构模型,选项C错误;德布罗意指出微观粒子的动量越大,其对应的波长就越短,选项D错误2粒子散射实验现象的认识如图7所示为卢瑟福粒子散射实验装置的示意图,图中的显微镜可在圆周轨道上转动,通过显微镜前相连的荧光屏可观察粒子在各个角度的散射情况下列说法中正确的是图7A在图中的

A.B两位置分别进行观察,相同时间内观察到屏上的闪光次数一样多B在图中的B位置进行观察,屏上观察不到任何闪光C卢瑟福选用不同重金属箔片作为粒子散射的靶,观察到的实验结果

基本相似D粒子发生散射的主要原因是粒子撞击到金箔原子后产生的反弹答案C解析粒子散射实验现象绝大多数粒子沿原方向前进,少数粒子有大角度散射,所以A处观察到的粒子数多,B处观察到的粒子数少,所以选项

A.B错误粒子发生散射的主要原因是受到原子核库仑斥力的作用,所以选项D错误,C正确3粒子散射实验现象的解释多选关于粒子散射实验,下列说法中正确的是A该实验说明原子中正电荷是均匀分布的B粒子发生大角度散射的主要原因是原子中原子核的作用C只有少数粒子发生大角度散射的原因是原子的全部正电荷和几乎全部质量集中在一个很小的核上D卢瑟福根据粒子散射实验提出了原子核式结构理论答案BCD解析在粒子散射实验中,有少数粒子发生大角度偏转说明三点一是原子内有一质量很大的物质存在;二是这一物质带有较大的正电荷;三是这一物质的体积很小,但不能说明原子中正电荷是均匀分布的,故A错误,

B.C正确卢瑟福依据粒子散射实验的现象提出了原子的核式结构理论,D正确4原子的核式结构模型多选卢瑟福原子核式结构理论的主要内容有A原子的中心有个核,叫原子核B原子的正电荷均匀分布在整个原子中C原子的全部正电荷和几乎全部质量都集中在原子核内D带负电的电子在核外绕着核旋转答案ACD解析卢瑟福原子核式结构理论的主要内容是在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原

子核内,带负电的电子在核外空间绕着核旋转,由此可见,B选项错误,

A.

C.D选项正确5粒子的受力情况xx广州五校高二下期末联考如图所示为卢瑟福粒子散射实验的金原子核和两个粒子的径迹,其中可能正确的是答案A解析粒子与金原子核都带正电,相互排斥,粒子径迹越靠近金原子核,所受库仑斥力越大,运动方向的偏转角度就越大,根据这个特点可以判断只有A正确

《原子的核式结构模型》

原子的核式结构模型 【学习目标】 1、知识与技能 (1)了解原子结构模型建立的历史过程及各种模型建立的依据;(2)知道粒子散射实验的实验方法和实验现象,及原子核式结构模型的主要内容。 2、过程与方法 (1)通过对粒子散射实验结果的讨论与交流,培养学生对现象的分析中归纳中得出结论的逻辑推理能力; (2)通过核式结构模型的建立,体会建立模型研究物理问题的方法,理解物理模型的演化及其在物理学发展过程中的作用; (3)了解研究微观现象。 3、情感、态度与价值观 (1)通过对原子模型演变的历史的学习,感受科学家们细致、敏锐的科学态度和不畏权威、尊重事实、尊重科学的科学精神; (2)通过对原子结构的认识的不断深入,使学生认识到人类对微观世界的认识是不断扩大和加深的,领悟和感受科学研究方法的正确使用对科学发展的重要意义。 【自主学习】 填一填:卢瑟福对α粒子散射实验中少数粒子大角度偏转分析后提出了原子的核式结构模型,即占因原子质量绝大部分的带正电的物质体积很小而被称为原子核,其半径R的数量级为10-15m。通过α粒子散射实验确定各元素原子核的电荷量,从而推断原子内的电子数。 【典例剖析】 [例题1] 在α粒子散射实验中,当α粒子最接近原子核时,α粒子符合下列哪些情况( ) A.动能最小 B.势能最小 C.α粒子与原子核组成的系统能量最小 D.所受原子核斥力最大 [例题2]实验测得α粒子与金核作对心碰撞时所能达到的离金核的最小距离约为2×10—14m,由此数据估算金核的密度(金原子序数79,质量数197)。 【课堂训练】 1.下列叙述中,符合物理学史实的是 A.汤姆生发现了电子,并由此提出了原子的核式结构学说

原子模型发展史

原子结构理论模型发展史 道尔顿的原子模型 英国自然科学家约翰·道尔顿将古希腊思辨的原子论改造成定量的化学理论,提出了世界上第一个原子的理论模型。他的理论主要有以下三点[11]: ①所有物质都是由非常微小的、不可再分的物质微粒即原子组成; ②同种元素的原子的各种性质和质量都相同,不同元素的原子,主要表现为质量的不同; ③原子是微小的、不可再分的实心球体; ④原子是参加化学变化的最小单位,在化学反应中,原子仅仅是重新排列,而不会被创造或者消失。 虽然,经过后人证实,这是一个失败的理论模型,但,道尔顿第一次将原子从哲学带入化学研究中,明确了今后化学家们努力的方向,化学真正从古老的炼金术中摆脱出来,道尔顿也因此被后人誉为“近代化学之父”。 葡萄干布丁模型 葡萄干布丁模型由汤姆生提出,是第一个存在着亚原子结构的原子模型。 汤姆生在发现电子的基础上提出了原子的葡萄干布丁模型,汤姆生认为[11]: ①正电荷像流体一样均匀分布在原子中,电子就像葡萄干一样散布在正电荷中,它们的负电荷与那些正电荷相互抵消; ②在受到激发时,电子会离开原子,产生阴极射线。 汤姆生的学生卢瑟福完成的α粒子轰击金箔实验(散射实验),否认了葡萄干布丁模型的正确性。 土星模型 在汤姆生提出葡萄干布丁模型同年,日本科学家提出了土星模型,认为电子并不是均匀分布,而是集中分布在原子核外围的一个固定轨道上[16]。 行星模型 行星模型由卢瑟福在提出,以经典电磁学为理论基础,主要内容有[11]: ①原子的大部分体积是空的; ②在原子的中心有一个体积很小、密度极大的原子核; ③原子的全部正电荷在原子核内,且几乎全部质量均集中在原子核内部。带负电的电子在核空间进行高速的绕核运动。 随着科学的进步,氢原子线状光谱的事实表明行星模型是不正确的。 玻尔的原子模型 为了解释氢原子线状光谱这一事实,卢瑟福的学生玻尔接受了普朗克的量子论和爱因斯坦的光子概念在行星模型的基础上提出了核外电子分层排布的原子结构模型。玻尔原子结构模型的基本观点是[12]: ①原子中的电子在具有确定半径的圆周轨道(orbit)上绕原子核运动,不辐射能量 ②在不同轨道上运动的电子具有不同的能量(E),且能量是量子化的,轨道能量值依n(1,2,3,...)的增大而升高,n称为量子数。而不同的轨道则分别被命名为K(n=1)、L(n=2)、N(n=3)、O(n=4)、P(n=5)。 ③当且仅当电子从一个轨道跃迁到另一个轨道时,才会辐射或吸收能量。如果辐射或吸收的能量以光的形式表现并被记录下来,就形成了光谱。 玻尔的原子模型很好的解释了氢原子的线状光谱,但对于更加复杂的光谱现象却无能为力。现代量子力学模型 物理学家德布罗意、薛定谔和海森堡等人,经过13年的艰苦论证,在现代量子力学模型在玻尔原子模型的基础上很好地解释了许多复杂的光谱现象,其核心是波动力学。在玻尔原子

湖北大学附属中学物理(选修3-5)导学案18.2《原子的核式结构模型》(人教版)(最新整理)

课题18.2原子的核式结构模型 学习目标1、知道卢瑟福a粒子散射实验 2、知道原子的核式结构模型 3、理解卢瑟福的原子核式结构学说对a粒子散射实验的解释 学习重难 点 学法指导 预习评价 课堂学习流程设计 【课程导学】 通常情况下,物质是不带电的,因此,原子应该是电中性的。既然电子是带负电的,质量又很小,那么原子中一定还有带的部分,它具有大部分的原子质量。那么原子中带正电的部分以及带负电的电子可能是如何分布的? 请你根据这些推测来设计一种原子模型 一、汤姆孙的原子模型 1、带着猜想,阅读第一自然段,完成刚才的问题。 2、汤姆孙的“西瓜模型”:

二、α粒子散射实验 汤姆孙的原子模型提出后,他的学生卢瑟福想用实验的方法来加以论证。由于原子是微小的,无法直接观察它的内部结构,卢瑟福发现研究原子的有效办法是利用高能粒子去碰撞原子,引起某些可能观察到的现象,从分析这些现象的过程中逐步探索认识原子的内部结构和规律。在这样的思想方法的指导下1909-1911年卢瑟福和他的助手盖革,学生马斯登等做了用α粒子轰击金箔的实验,也就是著名的α粒子散射实验。 1、自主学习(阅读α粒子散射实验,完成下列问题) 1)什么是α粒子?为何选用α粒子来做实验? 2)实验装置中用到哪些器材?有何作用? 放射源:钋放在带小孔的铅盒中,能放射粒子。 金箔:被轰击的对象,厚度 显微镜:能够围绕金箔在水平面内转到不同的方向,对散射的α粒子进行观察。 荧光屏:玻璃片上涂有荧光物质硫化锌,装在显微镜上,可以记录在某一时间内某一方向散射的α粒子数。 3)实验过程 4)观察到的实验现象如何? (1)绝大多数的α粒子穿过金箔后; (2)少数粒子发生了; (3)极少数粒子(约有1/8000)的偏转角θ超过90°,甚至有个别粒子。 5)实验现象分析: (1)按照汤姆孙的原子模型,正电荷均匀分布在整个原子球体内。

高中物理人教版选修3-5 18.2《原子的核式结构模型》教案设计

原子的核式结构 一、教学目标 1.知识与技能 ①了解原子结构模型建立的历史过程及各种模型建立的依据。 ②知道ɑ粒子散射实验的实验方法和实验现象以及原子核式结构模型的主要内容。 2.过程与方法 ①通过对ɑ粒子散射实验结果的讨论与交流,培养学生对现象的分析中归纳中得出结论的逻辑推理能力。 ②通过核式结构模型的建立,体会建立模型研究物理问题的方法,理解物理模型的演化及其在物理学发展过程中的作用。 ③了解研究微观现象的方法。 3.情感态度与价值观 ①通过对原子模型演变的历史的学习,感受科学家们细致、敏锐的科学态度和不畏权威、尊重事实、尊重科学的科学精神。 ②通过对原子结构的认识的不断深入,使学生认识到人类对微观世界的认识是不断扩大和加深的,领悟和感受科学研究方法的正确使用对科学发展的重要意义。 二、教学重点 ①引导学生小组自主思考讨论在于对ɑ粒子散射实验的结果分析从而否定“枣糕模型”,得出原子的核式结构。 ②在教学中渗透和让学生体会物理学研究方法,渗透三个物理学方法:模型方法,黑箱方法和微观粒子的碰撞方法。 三、教学难点 引导学生小组自主思考讨论在于对ɑ粒子散射实验的结果分析从而否定“枣糕模型”,得出原子的核式结构模型。 四、教学资源 多媒体教学设备、PPT多媒体课件、网上下载的FLASH小课件。 五、教学过程 1.回顾历史,引入新课

通过播放1964年我国第一颗原子弹爆炸成功的视频,介绍人类现在已经开始利用原子的核能,其实早在1897年,汤姆孙就发现了电子,使人类第一次敲开原子世界的大门,今天我们就循着前人的足迹研究原子内部结构的发现过程。 2.发现电子,提出问题 汤姆孙发现电子,根据原子呈电中性,原子内还有带正电部分,那么原子内部具有怎样的结构呢?汤姆孙提出了原子的葡萄干布丁模型,动画展示原子葡萄干布丁模型,汤姆孙的原子葡萄干布丁模型虽然能够解释一些物理现象,但无法解释卢瑟福α粒子散射实验3.ɑ粒子散射实验原理、装置、实验现象 ɑ粒子散射实验的装置,主要由放射源、金箔、荧光屏、望远镜和转动圆盘几部分组成。ɑ粒子散射实验在课堂上无法直接演示,利用动画向学生模拟实验的装置、过程和现象,使学生获得直观的切身体验,留下深刻的印象。通过多媒体重点指出,荧光屏和望远镜能够围绕金箔在一个圆周上运动,从而可以观察到穿透金箔后偏转角度不同的ɑ粒子。动画展示实验中,通过显微镜观察到的现象,并且要让学生了解,这种观察是非常艰苦细致的工作,所用的时间也是相当长的。α粒子散射实验的数据 教师适时提问:根据以上实验数据,用科学语言表述实验结果: 学生分组讨论交流得到实验结果:绝大多数沿原来的方向前进,少数发生了较大偏转,极少数发生大角度偏转。 教师再次提问:根据汤姆孙原子模型分析,α粒子轰击金箔后应出现什么情况? ①α粒子出现大角度散射有没有可能是与电子碰撞后造成的? ②按照汤姆孙原子模型,α粒子在原子附近或穿越原子内部后有没有可能发生大角度偏转? 学生分组讨论交流得到结果:

32原子的构成第一课时教案

课题2原子的构成(第一课时) 【核心素养】 从原子结构模型、理论的发展历程中,让学生体验假说、模型、实验等方法在微观世界研究中的作用。 【教学目标】 1?知道原子的结构; 2.知道原子结构的发现史。 【教学重点】原子的构成,依据现象分析本质的思维方法 【教学难点】原子的结构 【教学方法】自学探究,小组合作 【课前准备】 学生完成教师发布的课前预习任务,教师通过预习反馈,了解学生的薄弱点。 【教学过程】

课题2:原子的结构(第一课时) 导学案 一、学习目标: 1知道原子结构的发现 2知道原子的结构 【情境导入】 1945年7月16日人类第一颗原子弹爆炸成功,原子弹的巨大威力是如何产生的

呢? 二.自主探究:了解原子的结构 问题1:从资料上看原子结构的发现主要经历了哪几个阶段?请用简洁的语言概括每个阶段的核心观点和探究方法。

过渡:那么科学发展到今天,人类又是如何认识原子结构的呢? 【阅读】教材第53页的内容,完成以下问题 1描述原子的构成,充分想象原子的空间结构。 原子的构成 厂| ____ (带一个单位的_____ ) 原子三(带—电)[ _________ (不带电) (____) L_________ (带一个单位的___________ ) 2 .原子中有带电的粒子,那么整个原子为什么不显电性?归纳:原子中 核电荷数= __________ 数= _________ 数 3.小组合作: 根据表3-1,几种原子的构成,你能找出哪些规律? 思考讨论 通过今天的学习,你认为资料上的几位科学家的原子结构理论有哪些不足? 从中你得到什么启示? 课堂小结】通过本节课的学习,你收获了什么?

鲁科版化学选修3《原子结构模型》教案

鲁科版化学选修3《原子结构模型》教案 【学习目标】 1、知识与技能目标 (1)了解“玻尔原子结构模型”,知道其合理因素和存在的不足。初步认识原子结构的量子力学模型 (2)能利用“玻尔原子结构模型”解释氢原子的线状光谱。 (3)能用n、ι、m、ms四个量子数描述核外电子的运动状态。 (4)知道n、ι、m、ms的相互关系及有关量子限制 (5)了解原子轨道和电子云的概念及形状,能正确书写能级符号及原子轨道符号 2、过程与方法目标 (1)通过介绍几种原子结构模型,培养学生分析和评价能力。 (2)通过原子结构模型不断发展、完善的过程,使学生认识到化学实验对化学理论发展的重要意义,使学生感受到在学生阶段就要认真作实验、认真记录实验现象。 (3)通过自主学习,培养学生自学能力和创造性思维能力。 (4)通过介绍四个量子数及有关量子限制,使学生感受到科学的严密性。 3、情感态度·价值观目标 (1)通过原子结构模型不断发展、完善的过程教学,培养学生科学精神和科学态度。(2)通过合作学习,培养团队精神。 【学习重点】1、基态、激发态及能量量子化的概念。 2、利用跃迁规则,解释氢原子光谱是线状光谱及其他光谱现象。 3、用四个量子数描述核外电子的运动状态。 【学习难点】1、n、ι、m、ms的相互关系及有关量子限制。 2、原子轨道和电子云的概念 第1课时 【自主预习提纲】 一、原子结构理论发展史: 1、1803年提出原子是一个“实心球体”建立原子学说的是英国化学家,1903 年汤姆逊提出原子结构的“”模型,1911年卢瑟福提出了原子结构的模型,1913年玻尔提出的原子结构模型,建立于20世纪20年代中期的模型已成为现代化学的理论基础。 二、必修中学习的原子核外电子排布规律: (1)原子核外的电子是________排布的,研究表明已知原子的核外电子共分为______

高中化学选修导学案:原子结构(人教版)

4月12日学科高中化学年级高二作者 课题1-1-1 原子结构(1)课时 1 课型新授【学习目标】 1.了解原子核外电子的运动状态 2.了解原子结构的构造原理 3.知道原子核外电子的能级分布,能用电子排布式表示常见元素(1~36号)原子核外电子的排布 【知识链接】 原子模型的发展史: 不同时期的原子结构模型: 古希腊原子论道尔顿原子模型(1803年)汤姆生原子模型(1904年) ___________________ (1911年)玻尔原子模型(1913年)_______ ___________(1926年) 【自主学习】 一、原子的诞生 ________是宇宙中最丰富的元素。地球上的元素大多数是________,非金属(包括稀有气体)仅有________种。 二、能层与能级 1.多电子原子的核外电子的能量是________的,按________________可以将电子分成不同的________,用符号___________________分别表示相应的1~7能层。各能层最多可容纳的电子数分别为________。 2.多电子的原子中,同一能层的电子,能量也可能________,还可以分成________。在第n能层中,能级符号的顺序是________。 能层… 符号… 电子离 核远近 电子能 量高低 能级… 最多容纳电子……

数 1.原子核外电子的每一个能层最多可容纳的电子数与能层的序数(n)间存在什么关系? 2.不同的能层分别有多少个能级,与能层的序数(n)间存在什么关系? 3.不同层中,符号相同的能级中所能容纳的最多电子数是否相同? 三、构造原理 即电子排布的能级顺序 1.比较同一能层的不同能级间的能量关系 2.比较不同能层的相同能级间的能量关系 3.是不是能层越高,能级的能量一定越高? 4.观察构造原理图示,原子核外电子排布应遵循的顺序是: 四、电子排布式 1.电子排布式表示方法:用数字在能级符号右上角表明该能级上的排布的电子数。

原子结构模型的教学设计

《原子结构的模型》教学设计 浙江省海宁市实验初中宋竺 《原子结构的模型》是学生在教师的指导下,进行自主的学习、合作学习。案例的动画模型有直观、形象的优点,动画与单纯用语言描述相比,教学效果较好。 一、教学分析 (一)教材分析 本节为浙教版初中《科学》八年级(下)第一章《粒子的模型与符号》的第3节第一课时,本节两个课时,第一课时主要对学生学习原子结构模型的建立完善。让学生沿着科学家的道路去构建原子模型,同时渗透模型的构建方法。通过对有关科学家和其研究的介绍,培养学生的科学兴趣,使学生体验、学习科学家提出问题、建立假设、修正模型的研究方法。教会学生学会观察、学会分析、学会总结,帮助学生认知,从而帮助学生构建知识。 本节的基本概念和基础原理多,如原子结构的概念,这些内容抽象,肉眼不可见,远离学生的生活,所以运用了大量的图片和动画来展示或模拟结构,使之形象化,便于直观认识。 本节还密切联系现代生活、生产和科学技术的实际,有着浓郁的生活气息和时代气息。使学生更好地理解科学与生活、科学与社会的关系。 (二)学生分析 从知识水平来看,本节内容抽象,肉眼又不可见,远离生活,学生难以理解,但学生在学习了前面的模型、符号的建立与作用,物质与微观粒子模型的基础上,继续来学习原子结构的模型,有一定的微观认识基础。 从人的思维发展阶段看,初中的学生还处于具体形象思维的阶段,要使他们形成正确的微观的结构表象和概念,需要教师提供直观的动画模型,帮助学生由感性认识上升到理性认识,帮助学生构建知识。 从学生的学习兴趣看,本节的丰富内容,精美的图片,与生活、科技紧密接合的事例,激起了学生探索科学的兴趣。 (三)网络教室 学生上课时可以直接查找网络或到自主学习网站学习,方便快捷,课堂容量大。

原子结构导学案

第四章第一节 原子结构与元素周期表 第1课时 《原子结构》学案 【学习目标】 1、认识原子结构,了解原子核外电子的排布。 2、能够正确书写1~20号元素的原子结构示意图。 【学习重点】原子结构及核外电子的排布。 【学习难点】核外电子排布规律。 【课前预习】 一、原子的构成 1.构成 (1)原子????? 原子核?? ? 质子(相对质量近似为1,带1个单位正电荷)中子(相对质量近似为1,不带电)核外电子(带1个单位负电荷) (2)关系: (电中性原子中)。 2.质量数 (1)概念:质子和中子的相对质量都近似为1,忽略电子的质量,将原子核内所有 和 的相对质量取近似整数值相加,所得的数值叫作质量数。 (2)关系:质量数(A )= (Z )+ (N )。 二、核外电子排布 1.电子层 (1)概念:在多电子原子里,把电子运动的 的区域简化为 ,称作电子层。 (2各电子层由内到外 电子层数 1 2 3 4 5 6 7 字母代号 离核远近 由 到 能量高低 由 到 2.电子分层排布 (1)能量最低原理 核外电子总是优先排布在 的电子层里,然后再由里往外排布在 的电子层里,即按K→L→M→N……顺序排列。 (2)电子层最多容纳的电子数 ①第n 层最多容纳 个电子。如K 、L 、M 、N 层最多容纳电子数分别为 。 ②最外层电子数目最多不能超过 个(K 层为最外层时不能超过 个)。 ③次外层最多能容纳的电子数不超过 个。 3.(1)原子(离子)结构的表示方法,如下所示 (2)原子结构示意图中,核内质子数等于核外电子数,而离子结构示意图中, 二者则不相等。如: 阳离子: 。 阴离子: 。

高中化学《原子结构模型的演变》教学设计 苏教版必修1.doc

第3单元课时1 原子结构模型的演变教学设计 一、学习目标 1. 通过原子结构模型演变的学习,了解原子结构模型演变的历史,了解科学家探索原子结构的艰难过程。认识实验、假说、模型等科学方法对化学研究的作用。体验科学实验、科学思维对创造性工作的重要作用。 2.了解钠、镁、氯等常见元素原子的核外电子排布情况,知道它们在化学反应过程中通过得失电子使最外层达到8电子稳定结构的事实。通过氧化镁的形成了解镁与氧气反应的本质。了解化合价与最外层电子的关系。 3.知道化学科学的主要研究对象,了解化学学科发展的趋势。 二、重点、难点 重点:原子结构模型的发展演变 镁和氧气发生化学反应的本质 难点:镁和氧气发生化学的本质 三、设计思路 本课设计先让学生描绘自己的原子结构模型,继而追随科学家的脚步,通过交流讨论,逐步探讨各种原子结构模型存在的问题,并提出改进意见,让学生主动参与人类探索原子结构的基本历程,同时也可体会科学探索过程的艰难曲折。通过镁和氧气形成氧化镁的微观本质的揭示,初步认识化学家眼中的微观物质世界。 四、教学过程 [导入] 观看视频:扫描隧道显微镜下的一粒沙子。今天我们还将进入更加微观的层次,了解人类对于原子结构的认识。你认为我们可以通过什么样的方法去认识原子的内部结构呢? 直接法和间接法,直接法努力的方向是观察技术的提高和观察工具的改进,而间接法则依赖精巧的实验和大胆的假设。事实上直到今天即使借助扫描隧道显微镜也无法观察到原子的内部结构,所以在人们认识原子结构的过程中,实验和假设以及模型起了很大的作用。 一、中国古代物质观 [提出问题]我们通常接触的物体,总是可以被分割的(折断粉笔)。但是我们能不能无限地这样分割下去呢? [介绍]《中庸》提出:“语小,天下莫能破焉”。惠施的人也说道“其小无内,谓之小一”。

高中物理-原子的核式结构模型教案+练习

高中物理-原子的核式结构模型教案+练习 教学目标 1、知道α粒子散射实验及其现象,了解卢瑟福原子核式结构模型,以及提出此模型的实验依据 2、认识实验对理论发展的总要作用 3、知道物理模型建立的意义及其局限性,培养学生抽象思维能力和想象力 重点难点 重点:α粒子散射实验和原子核式结构理论 难点:渗透和让学生体会物理学研究方法 设计思想 α粒子散射实验是一个很重要的实验,体现了研究微观世界的一种科学的方法,也是锻炼学生分析问题、解决问题的知识点。对卢瑟福如何分析α粒子散射实验,否定汤姆孙原子模型,提出原子核式结构模型的了解,有利于学生学习人类研究微观世界的科学方法,提高分析解决问题的能力。因此本节的设计强调核式结构模型建立的依据而非结论,重点在于暴露模型建立的思路和研究的方法。对物理学史的教育要贯穿在整个教学过程当中。 教学资源多媒体课件 教学设计 【课堂引入】 讲述:汤姆生发现电子,根据原子呈电中性,提出了原子的枣糕模型。 学生活动:师生共同得出汤姆生的原子枣糕模型。 点评:用图片或动画展示原子枣糕模型。。 【课堂学习】 学习活动一:α粒子散射实验 问题一:为什么用α粒子的散射现象可以研究原子的结构? 原子的结构非常紧密,用一般的方法是无法探测它的内部结构的,要认识原子的结构,需要用高速粒子对它进行轰击。而α粒子具有足够的能量,可以接近原子中心。它还可以使荧光屏物质发光。如果α粒子与其他粒子发生相互作用,改变了运动方向,荧光屏就能够显示出它的方向变化。研究高速的α粒子穿过原子的散射情况,是研究原子结构的有效手段。 学生:体会α粒子散射实验中用到科学方法;渗透科学精神(勇于攀登科学高峰,不怕苦、不怕累的精神)的教育。 问题二:α粒子散射是怎么做的 α粒子散射实验的装置,主要由放射源、金箔、荧光 屏、望远镜和转动圆盘几部分组成。 动画展示 粒子散射实验装置动画展示实验中,通过显微镜观察到的现象。 通过多媒体重点指出,荧光屏和望远镜能够围绕金箔在一个圆周上运动,从而可以观察到穿

高中化学第1章原子结构第1节第1课时氢原子光谱和玻尔的原子结构模型学案鲁科版

第1课时 氢原子光谱和玻尔的原子结构模型 [学习目标定位] 1.知道原子结构模型的演变历程和玻尔的原子结构模型的内容。2.知道基态、激发态和原子光谱等概念,认识原子光谱分析的应用。 一 原子结构模型的演变 1.阅读教材,将下列各原子结构模型的名称及相关科学家的名字填入表中: 中在原子核上,电子在原子核外空间做高速运动。卢瑟福因此被誉为“原子之父”。 [归纳总结] 1.由于道尔顿最早提出了原子论,合理地解释了当时的一些化学现象和规律,给化学奠定了唯物主义理论基石,所以道尔顿被誉为近代化学之父。 2.从原子结构模型的演变过程可以看出,人类对原子结构的认识过程是逐步深入的。虽然很多科学家得到了一些错误的结论,但对当时发现真相作出了一定的贡献。 3.随着现代科学技术的发展,科学家已能利用电子显微镜和扫描隧道显微镜来拍摄表示原子图像的照片并且能在晶体硅表面上用探针对原子进行“搬迁”。 [活学活用] 1.自从1803年英国化学家、物理学家道尔顿提出了原子假说,人类对原子结构的认识就不断深入、发展,并通过实验事实不断地完善对原子结构的认识。下列关于原子结构模型的说法中,正确的是( ) A .道尔顿的原子结构模型将原子看作实心球,故不能解释任何问题 B .汤姆逊“葡萄干布丁”原子结构模型成功地解释了原子中的正负粒子是可以稳定共存的 C .卢瑟福核式原子结构模型指出了原子核和核外电子的质量关系、电性关系及占有体

积的关系 D .玻尔电子分层排布原子结构模型引入了量子化的概念,能够成功解释所有的原子光谱 答案 C 解析 道尔顿的原子理论成功地解释了质量守恒定律等规律,故A 选项是错误的;汤姆逊“葡萄干布丁”原子结构模型提出了正负电荷的共存问题,但同时认为在这样微小的距离上有着极大的作用力,存在着电子会被拉进去并会碰撞在带正电的核心上这样的问题,故B 选项是错误的;卢瑟福通过α粒子散射实验提出了核式原子结构模型,散射实验的结果能够分析出原子核和核外电子的质量关系、电性关系及占有体积的关系,故C 选项是正确的;玻尔电子分层排布原子结构模型只引入了一个量子化的概念,只能够解释氢原子光谱,而不能解释比较复杂的原子光谱,故D 选项是错误的。 2.道尔顿的原子学说曾起了很大的作用。他的学说包含下列三个论点: ①原子是不能再分的粒子; ②同种元素的原子的各种性质和质量都相同; ③原子是微小的实心球体。 从现代的观点考虑,你认为三个论点中不确切的是___________________________。 答案 ①②③ 解析 根据现代物质结构的观点可知原子是由原子核和核外电子构成的,因此可以再分;由于存在同位素,因此质子数相同的同种原子也会因中子数不同而导致其质量和物理性质不同,但其化学性质相同;原子核的体积很小,原子中大部分为空隙,电子在核外作 高速运动。 二 氢原子光谱和波尔的原子结构模型 1.阅读教材,回答下列问题: (1)处于最低能量状态的原子称为基态原子。若基态原子的电子吸收能量后,电子跃迁至能量较高轨道成为激发态原子。 (2)原子基态与激发态相互转化间的能量变化 基态原子 吸收能量释放能量激发态原子 2.光是电子释放能量的重要形式之一。在日常生活中,大家看到的许多可见光(如灯光、霓虹灯光、激光)和节日燃放的焰火等都与原子核外电子发生跃迁释放能量有关。 (1)不同元素的原子发生跃迁时会吸收或释放不同的光,若用光谱仪摄取各种元素的电子的吸收光谱或发射光谱,则可确立某种元素的原子,这些光谱总称原子光谱。在现代化学中,常利用原子光谱上的特征谱线来鉴定元素,称为谱学分析。 (2)氢原子光谱是线状光谱而不是连续光谱,是由于氢原子光谱源自核外电子在能量不

高中物理:原子的核式结构模型教案

第十八章原子结构 新课标要求 1.内容标准 (1)了解人类探索原子结构的历史以及有关经典实验. 例1 用录像片或计算机模拟,演示α粒子散射实验. (2)通过对氢原子光谱的分析,了解原子的能级结构. 例2 了解光谱分析在科学技术中的应用. 2.活动建议 观看有关原子结构的科普影片. 新课程学习 高中物理:原子的核式结构模型教案 ★新课标要求 (一)知识与技能 1.了解原子结构模型建立的历史过程及各种模型建立的依据. 2.知道α粒子散射实验的实验方法和实验现象,及原子核式结构模型的主要内容. (二)过程与方法 1.通过对α粒子散射实验结果的讨论与交流,培养学生对现象的分析中归纳中得出结论的逻辑推理能力. 2.通过核式结构模型的建立,体会建立模型研究物理问题的方法,理解物理模型的演化及其在物理学发展过程中的作用.

3.了解研究微观现象. (三)情感、态度与价值观 1.通过对原子模型演变的历史的学习,感受科学家们细致、敏锐的科学态度和不畏权威、尊重事实、尊重科学的科学精神. 2.通过对原子结构的认识的不断深入,使学生认识到人类对微观世界的认识是不断扩大和加深的,领悟和感受科学研究方法的正确使用对科学发展的重要意义. ★教学重点 1.引导学生小组自主思考讨论在于对 粒子散射实验的结果分析从而否定葡萄干布丁模型,得出原子的核式结构; 2.在教学中渗透和让学生体会物理学研究方法,渗透三个物理学方法:模型方法,黑箱方法和微观粒子的碰撞方法; ★教学难点 引导学生小组自主思考讨论在于对ɑ粒子散射实验的结果分析从而否定葡萄干布丁模型,得出原子的核式结构 ★教学方法 教师启发、引导,学生讨论、交流. ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 讲述:汤姆生发现电子,根据原子呈电中性,提出了原子的葡萄干布丁模型. 学生活动:师生共同得出汤姆生的原子葡萄干布丁模型. 点评:用动画展示原子葡萄干布丁模型.

高中物理18.4波尔的原子模型导学案新人教版选修Word版

波尔的原子模型 【学习目标】 1.知道玻尔原子理论基本假设的主要内容. 2.了解能级、跃迁、能量量子化以及基态、激发态等概念. 3.能用玻尔原子理论简单解释氢原子光谱. 【重点难点】 重点:玻尔原子理论的基本假设 难点:利用玻尔原子理论解释氢原子跃迁的现象 【导学】 一、玻尔原子理论的基本假设 1.定态假设:原子只能处于一系列_______的能量状态中,在这些状态中原子是_____的.电子虽然绕核旋转,但并不向外辐射能量,这些状态叫_____ 2.能量假设:原子从_________的定态轨道(其能量为E m)跃迁到_______的定态轨道(其能量为E n)时,它______一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m-E n. 3.轨道假设:原子的不同能量状态对应于电子不同的运行轨道,原子的定态是______的,因而电子的可能轨道也是______的. 二、玻尔理论对氢光谱的解释 1.氢原子的能级图 2.解释巴耳末公式 (1)按照玻尔理论,从高能级跃迁到低能级时辐射的光子的能量为___________ (2)巴耳末公式中的正整数n和2正好代表电子跃迁之前和跃迁之后所处的_________的量子数n和2. 3.解释氢原子光谱的不连续性 原子从较高能级向低能级跃迁时放出光子的能量等于前后____________.由于原子从较高能级向低

能级是

_______的,所以放出的光子的能量也是_______的,因此原子的发射光谱只有一些分立的亮线.三、玻尔理论的局限性 1.玻尔理论的成功之处在于把量子思想引入了原子结构理论,提出了_______和跃迁的概念,成功地解释了氢原子光谱的实验规律. 2.玻尔理论的不足之处在于保留了_________的观念,把电子的运动仍看做经典力学描述下的轨道运动,没有彻底摆脱________理论的框架. 【导练】 题组一对玻尔理论的理解 1.根据玻尔理论,下列关于氢原子的论述正确的是( ) A.若氢原子由能量为E n的定态向低能级跃迁,则氢原子要辐射的光子能量为hν=E n B.电子沿某一轨道绕核运动,若圆周运动的频率为ν,则其发光的频率也是ν C.一个氢原子中的电子从一个半径为r a的轨道自发地直接跃迁到另一半径为r b的轨道,已知r a>r b,则此过程原子要辐射某一频率的光子 D.氢原子吸收光子后,将从高能级向低能级跃迁 题组二氢原子的跃迁规律分析 2.在氢原子能级图中,横线间的距离越大,代表氢原子能级差越大,下列能级图中,能形象表示氢原子最低的四个能级的是( ) 3.大量氢原子从n=5的激发态,向低能级跃迁时,产生的光谱线条数是( ) A.4条 B.6条C.8条 D.10条 4.一群氢原子处于同一较高的激发态,它们向较低激发态或基态跃迁的过程中( ) A.可能吸收一系列频率不同的光子,形成光谱中的若干条暗线 B.可能发出一系列频率不同的光子,形成光谱中的若干条亮线 C.只吸收频率一定的光子,形成光谱中的一条暗线 D.只发出频率一定的光子,形成光谱中的一条亮线

《原子结构模型》导学案1

《原子结构模型》导学案 课程学习目标 1.了解原子结构的发展历程。 2.初步认识原子结构的量子力学模型,能用n、l、m、m s这四个量子数描述核外电子的 运动状态。 3.了解原子轨道的表示方法及意义。 知识体系梳理 一、氢原子光谱和波尔的原子结构模型 1.原子结构理论发展史 1803年提出原子是一个“实心球体”建立原子学说的是英国化学家①道尔顿,1903年汤姆逊提出原子结构的“②葡萄干布丁”模型,1911年卢瑟福提出了原子结构的③核式模型,1913年玻尔提出④核外电子分层排布的原子结构模型,建立于20世纪20年代中期的⑤量子力学模型已成为现代化学的理论基础。 2.氢原子光谱 人们常常利用仪器将物质吸收光或发射光的波长和强度分布记录下来,得到所谓的光谱,光谱分为⑥连续光谱和⑦线状光谱,氢原子光谱为⑧线状光谱。 3.玻尔原子结构模型 (1)玻尔原子结构模型基本观点 ①原子中的电子在具有⑨确定半径的圆周轨道上绕原子核运动,并且⑩不辐射能量。可理解为行星模型,这里的“轨道”实际上就是我们现在所说的电子层。 ②定态假设:玻尔原子结构理论认为同一电子层上的电子能量完全相同。在不同轨道上运动的电子具有不同的能量(E),而且能量是量子化的,即能量是“一份一份”的。各电子层能量差具有不连续性,即E3-E2≠E2-E1。 ③只有当电子从一个轨道(能量为E i)跃迁到另一个轨道时,才会辐射或吸收能量。如果辐射或吸收的能量以光的形式表现并记录下来,就形成了光谱。 (2)玻尔原子结构模型理论成功地解释了氢原子光谱是线状光谱的实验事实,但不能解决氢原子光谱的精细结构问题和多原子复杂的光谱现象。 二、原子轨道与四个量子数 根据量子力学理论,原子中的单个电子的空间运动状态可以用原子轨道来描述,而每个原子轨道由三个量子数n、l、m共同描述。 1.主量子数(n) 主量子数(n)的取值与电子层符号的对应关系 主量子数(n):1、2、3、4、5、6、7等,电子层符号:K、L、M、N、O、P、

第1章原子结构第1节原子结构模型 精品学案8

第1节 原子结构模型 1.了解玻尔原子结构模型的基本观点及如何用其解释氢原子光谱的特点。 2.能应用量子力学对原子核外电子的运动状态进行描述。(重点) 3.了解原子轨道和电子云的含义。(难点 ) 1.不同时期的原子结构模型 2.光谱和氢原子光谱 (1)光谱 ①概念:利用仪器将物质吸收的光或发射的光的波长和强度分布记录下来的谱线。 ②形成原因:电子在不同轨道间跃迁时,会辐射或吸收能量。 (2)氢原子光谱:属于线状光谱。 氢原子外围只有1 个电子,故氢原子光谱只有一条谱线,对吗? 【提示】 不对。 3.玻尔原子结构模型 (1)基本观点

①成功地解释了氢原子光谱是线状光谱的实验事实。 ②阐明了原子光谱源自核外电子在能量不同的轨道之间的跃迁,而电子所处的轨道的能量是量子化的。 (1)道尔顿原子学说涉及到原子内部结构。(×) (2)氢原子光谱属于线状光谱。(√) (3)基态氢原子转变成激发态氢原子时释放能量。(×) (4)焰色反应与电子跃迁有关,属于化学变化。(×) [核心·突破] 1.光谱 (1)基态原子吸收能量 释放能量激发态原子。 (2)同一原子不同状态的能量激发态大于基态;不同原子的能量不一定存在激发态大于基态。 (3)基态原子和激发态原子相互转化时吸收或释放能量,形成光谱。 (4)光谱分析:利用原子光谱上的特征谱线来鉴定元素。如焰色反应产生的原因是原子中的电子在能量不同轨道上跃迁。 2.玻尔原子结构模型 (1)基本观点:①电子在确定的轨道上运动 ②轨道能量是量子化的 ③电子跃迁产生能量变化 (2)意义:①成功解释了氢原子的线状光谱 ②说明核外电子是分层排布的 (3)不足:无法解释复杂光谱问题 [题组·冲关] 1.下列有关化学史知识错误的是( ) A .原子分子学说的建立是近代化学发展的里程碑 B .俄国科学家门捷列夫发现了元素周期律,编制了元素周期表 C .意大利科学家阿伏加德罗在总结气体反应体积比的基础上提出了分子的概念

原子的核式结构模型 教案

二、原子的核式结构模型 教学目标 1、知道α粒子散射实验及其现象,了解卢瑟福原子核式结构模型,以及提出此模型的实验依据 2、认识实验对理论发展的总要作用 3、知道物理模型建立的意义及其局限性,培养学生抽象思维能力和想象力 重点难点 重点:α粒子散射实验和原子核式结构理论 难点:渗透和让学生体会物理学研究方法 设计思想 α粒子散射实验是一个很重要的实验,体现了研究微观世界的一种科学的方法,也是锻炼学生分析问题、解决问题的知识点。对卢瑟福如何分析α粒子散射实验,否定汤姆孙原子模型,提出原子核式结构模型的了解,有利于学生学习人类研究微观世界的科学方法,提高分析解决问题的能力。因此本节的设计强调核式结构模型建立的依据而非结论,重点在于暴露模型建立的思路和研究的方法。对物理学史的教育要贯穿在整个教学过程当中。 教学资源多媒体课件 教学设计 【课堂引入】 讲述:汤姆生发现电子,根据原子呈电中性,提出了原子的枣糕 模型。 学生活动:师生共同得出汤姆生的原子枣糕模型。 点评:用图片或动画展示原子枣糕模型。。 【课堂学习】 学习活动一:α粒子散射实验 问题一:为什么用α粒子的散射现象可以研究原子的结构? 原子的结构非常紧密,用一般的方法是无法探测它的内部结构的,要认识原子的结构,需要用高速粒子对它进行轰击。而α粒子具有足够的能量,可以接近原子中心。它还可以使荧光屏物质发光。如果α粒子与其他粒子发生相互作用,改变了运动方向,荧光屏就能够显示出它的方向变化。研究高速的α粒子穿过原子的散射情况,是研究原子结构的有效手段。 学生:体会α粒子散射实验中用到科学方法;渗透科学精神(勇于攀登科学高峰,不怕苦、不怕累的精神)的教育。 问题二:α粒子散射是怎么做的 α粒子散射实验的装置,主要由放射源、金箔、荧光 屏、望远镜和转动圆盘几部分组成。 动画展示α粒子散射实验装置动画展示实验中,通过显微镜观察到的现象。 通过多媒体重点指出,荧光屏和望远镜能够围绕金箔在一个圆周上运动,从而可以观察到穿透金箔后偏转角度不同的α粒子。并且要让学生了解,这种观察是非常艰苦细致的工

高中物理-原子的核式结构模型学案

高中物理-原子的核式结构模型学案 【学习目标】 1.了解α粒子散射实验原理和实验现象。 2.知道卢瑟福的原子核式结构的主要内容。 3.知道原子核及原子大小的数量级。 【重点难点】 1.α粒子散射实验的现象及其成因。 2.原子核式结构模型的内容。 【课前预习】 1.α粒子散射实验 (1)在卢瑟福的α粒子散射实验之前,汤姆孙就提出了一种原子结构模型——“枣糕模型”。他认为原子是一个球体,正电荷弥漫性地均匀分布在整个球体内,________镶嵌其中。后来被卢瑟福的α粒子散射实验否定了这种原子结构模型。 (2)卢瑟福的α粒子散射实验现象是:绝大多数α粒子穿过金箔后仍按原方向运动,说明原子内部绝大部分是________的;少数α粒子穿过金箔后发生了偏转,说明原子内部有带_____电的部分;极少数α粒子穿过金箔时发生了大角度(有的甚至大于90?)偏转,说明原子内部存在________和__________相当集中的核心部分。 2.原子的核式结构模型 (1)原子核式结构的内容是:在原子的中心有一个很小的核叫________,原子的全部________和几乎全部的_______都集中在核里,带负电的电子在核外空间绕核旋转。 (2)原子半径的数量级为_________m,原子核半径的数量级为_____________m,两者相差十万倍,这就是原子内部绝大部分是空的的原因。 【预习检测】 1.如果汤姆孙的枣糕模型成立,用α粒子“轰击”单原子厚度的金箔,下列叙述正确的是() A.电子的吸引力会使α粒子产生很大的偏转 B.两侧正电荷对α粒子的库仑斥力有相当一部分相互抵消,使α粒子偏转的库仑力合力不会很大 C.电子的质量很小,故电子的吸引力不会使α粒子产生很大的偏转

原子的核式结构教学设计

《原子的核式结构》教学设计 一、教材分析 “原子的核式结构”是高中原子物理的重要内容,传统的教学设计虽然也能让学生掌握原子的核式结构内容,但不难看出传统教学模式仍为“师传生受”,学生还是被动地接收知识,即使学会了,也不能算会学,无法让学生体会建立模型研究物理问题的方法,理解物理模型的演化及其在物理学发展过程中的作用。面对新课程改革的要求,为营造一个让学生自主学习的良好环境,本人结合平时的实践,对本节内容采用通过让学生小组讨论:用汤姆生的葡萄干布丁模型能否解释ɑ粒子散射实验现象,一步一步得出卢瑟福的原子核式结构模型,在教学中虽然不能进行真实的实验,但同样处处渗透着新课程理念的科学探究思想,从而利于提高学生的逻辑推理能力,观察能力,有利用培养学生勇于攀登科学高峰,不怕苦、不怕累的科学精神,这种通过让学生自己动眼观察、动脑思考,引导他们自己获取知识,不仅活跃了课堂气氛,还发展了学生的思维能力和创新能力。本节课的设计旨在追寻前人的足迹,通过对粒子散射实验分析,从而否定汤姆孙的原子模型,建立卢瑟福的原子核式结构模型。让学生了解在科学研究中,科学家们通过对实验事实的分析,提出模型或假说,这些模型或假说又在实验中经受检验,正确的被肯定,经不起检验的被否定,在新的基础上再提出新的假说。科学的研究这样螺旋上升和不断深入发展的。 内容分析 粒子散射实验和原子核式结构的内容是本节教学重点。其中粒子散射实验是常用的获取微观世界信息的方法,在原子结构的研究中有非常重要的作用,以后的质子和中子的发现都与粒子散射实验有关。本节对于原子核式结构的建立,粒子散射实验更是起到决定性的作用,所以重点在于对粒子散射实验观察、现象的分析以及从现象中猜测合理的结构。“原子的核式结构”是高中原子物理的重要内容,除了让学生掌握原子的核式结构内容,让学生体会建立模型研究物理问题的方法,理解物理模型的演化也很重要。通过让学生小组讨论:用汤姆生的枣糕模型能否解释ɑ粒子散射实验现象,一步一步得出卢瑟福的原子核式结构模型,在教学中虽然不能进行真实的实验,但同样处处渗透着新课程理念的科学探究思想,从而利于提高学生的逻辑推理能力和分析能力。 学情分析 对于原子的结构其实学生早已经知道,初中的物理、化学中都已经清楚。所以原子结构如何不是本节课要教授的目的,如何从粒子散射实验现象中得出合理的原子结构模型才是本节要关注的重点。前面光的波动性、光的粒子性的学习使学生对于从现象找本质,建模型或假说的过程已不再陌生,所以对学生进行适当的引导、提问即可理解原子核式结构模型。前一节学习了电子的发现过程,学生已经知道原子是有结构的,那么结构如何分布呢学生在化学中已经学习了原子核外的电子排布,绝大多数学生都已经知道了原子由原 子核和电子组成但一般都尚未清楚原子大小与原子核大小的比例关系,而这一比例必将对 学生认识微观世界产生巨大的冲击,从而激发学生的学习热情。

【推荐精选】2018届高考物理一轮复习 专题 原子结构 原子核导学案

原子结构原子核 知识梳理 知识点一、氢原子光谱、氢原子的能级、能级公式 1.原子的核式结构 (1)电子的发现:英国物理学家汤姆孙发现了电子。 (2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来。 (3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。 2.光谱 (1)光谱 用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。 (2)光谱分类 有些光谱是一条条的亮线,这样的光谱叫做线状谱。 有的光谱是连在一起的光带,这样的光谱叫做连续谱。 (3)氢原子光谱的实验规律 巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1 λ =R? ? ?? ? 1 22 - 1 n2,( n=3,4, 5,…),R是里德伯常量,R=1.10×107 m-1,n为量子数。 3.玻尔理论 (1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。 (2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子

的能量由这两个定态的能量差决定,即h ν=E m -E n 。(h 是普朗克常量,h =6.63×10-34 J·s) (3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道也是不连续的。 4.氢原子的能级、能级公式 (1)氢原子的能级 能级图如图1所示 图1 (2)氢原子的能级和轨道半径 ①氢原子的能级公式:E n =1 n 2E 1 (n =1,2,3,…),其中E 1为基态能量,其数值为E 1 =-13.6 eV 。 ②氢原子的半径公式:r n =n 2 r 1 (n =1,2,3,…),其中r 1为基态半径,又称玻尔半径,其数值为r 1=0.53×10 -10 m 。 知识点二、原子核的组成、放射性、原子核的衰变、半衰期、放射性同位素 1.原子核的组成:原子核是由质子和中子组成的,原子核的电荷数等于核内的质子数。 2.天然放射现象 (1)天然放射现象 元素自发地放出射线的现象,首先由贝克勒尔发现。天然放射现象的发现,说明原子核具有复杂的结构。 (2)放射性和放射性元素 物质发射某种看不见的射线的性质叫放射性。具有放射性的元素叫放射性元素。 (3)三种射线:放射性元素放射出的射线共有三种,分别是α射线、β射线、γ射 线。

相关主题
文本预览
相关文档 最新文档