当前位置:文档之家› 风电机组的控制系统方案

风电机组的控制系统方案

风电机组的控制系统方案
风电机组的控制系统方案

大型风电场及风电机组的控制系统方案

时间:2011-01-19 07:00 编辑:胡明忠

1 前言

随着煤碳、石油等能源的逐渐枯竭,人类越来越重视可再生能源的利用。而风力发电是可再生能源中最廉价、最有希望的能源,并且是一种不污染环境的“绿色能源”。目前国外数百千瓦级的大型风电机组已经商品化,兆瓦级的风力发电机组也即将商品化。全世界风电装机总容量已超过1000万千瓦,单位千瓦造价为1000美元,发电成本为5美分/千瓦时,已经具有与火力发电相竞争的能力。

我国的风能资源丰富,理论储量为16亿kW,实际可利用2.5亿kW,有巨大的发展潜力。1995年初,国家计委、科委、经贸委联合发表了《中国新能源和可再生能源发展纲要(1996~2010)》。1996年3月,国家计委又制定了以国产化带动产业化的风电发展计划,即有名的“乘风计划”,为我国风力发电技术国产化指明了方向,创造了条件。同时,我国也是利用风能资源进行风力发电、风力提水较早的国家,到1996年底,我国小型风力发电机组保有量达15万台,年生产能力为3万台,均居世界首位。

2 风力发电机组的类型

2.1 恒速恒频与变速恒频

在风力发电中,当风力发电机组与电网并网时,要求风电的频率与电网的频率保持一致,即保持频率恒定。恒速恒频即在风力发电过程中,保持风车的转速(也即发电机的转速)不变,从而得到恒频的电能。在风力发电过程中让风车的转速随风速而变化,而通过其它控制方式来得到恒频电能的方法称为变速恒频。

2.2 两种类型机组的性能比较

由于风能与风速的三次方成正比,当风速在一定范围变化时,如果允许风车做变速运动,则能达到更好利用风能的目的。风车将风能转换成机械能的效率可用输出功率系数CP来表示,CP在某一确定的风轮周速比λ(桨叶尖速度与风速之比)下达到最大值。恒速恒频机组的风车转速保持不变,而风速又经常在变化,显然CP不可能保持在最佳值。变速恒频机组的特点是风车和发电机的转速可在很大范围内变化而不影响输出电能的频率。由于风车的转速可变,可以通过适当的控制,使风车的周速比处于或接近最佳值,从而最大限度地利用风能发电。

2.3 恒速恒频机组的特点

目前,在风力发电系统中采用最多的异步发电机属于恒速恒频发电机组。为了适应大小风速的要求,一般采用两台不同容量、不同极数的异步发电机,风速低时用小容量发电机发电,风速高时则用大容量发电机发电,同时一般通过变桨距系统改变桨叶的攻角以调整输出功率。但这也只能使异步发电机在两个风速下具有较佳的输出系数,无法有效地利用不同风速时的风能。

2.4 变速恒频系统的实现

可用于风力发电的变速恒频系统有多种:如交一直一交变频系统,交流励磁发电机系统,无刷双馈电机系统,开关磁阻发电机系统,磁场调制发电机系统,同步异步变速恒频发电机系统等。这种变速恒频系统有的是通过改造发电机本身结构而实现变速恒频的;有的则是发电机与电力电子装置、微机控制系统相结合而

实现变速恒频的。它们各有其特点,适用场合也不一样。为了充分利用不同风速时的风能,应该对各种变速恒频技术做深入的研究,尽快开发出实用的,适合于风力发电的变速恒频技术。

3恒速恒频风电机组的控制

3.1 风电机组的软启动并网

在风电机组启动时,控制系统对风速的变化情况进行不间断的检测,当10分钟平均风速大于起动风速时,控制风电机组作好切入电网的一切准备工作:松开机械刹车,收回叶尖阻尼板,风轮处于迎风方向。控制系统不间断地检测各传感器信号是否正常,如液压系统压力是否正常,风向是否偏离,电网参数是否正常等。如10分钟平均风速仍大于起动风速,则检测风轮是否已开始转动,并开启晶闸管限流软起动装置快速起动风轮机,并对起动电流进行控制,使其不超过最大限定值。异步风力发电机在起动时,由于其转速很小,切入电网时其转差率很大,因而会产生相当于发电机额定电流的5~7倍的冲击电流,这个电流不仅对电网造成很大的冲击,也会影响风电机组的寿命。因此在风电机组并网过程中采取限流软起动技术,以控制起动电流。当发电机达到同步转速时电流骤然下降,控制器发出指令,将晶闸管旁路。晶闸管旁路后,限流软起动控制器自动复位,等待下一次起动信号。这个起动过程约40S左右,若超过这个时间,被认为是起动失败,发电机将被切出电网,控制器根据检测信号,确定机组是否重新起动。

异步风电机组也可在起动时转速低于同步速时不并网,等接近或达到同步速时再切入电网,则可避免冲击电流,也可省掉晶闸管限流软启动器。

3.2 大小发电机的切换控制

在风电机组运行过程中,因风速的变化而引起发电机的输出功率发生变化时,控制系统应能根据发电机输出功率的变化对大小发电机进行自动切换,从而提高风电机组的效率。具体控制方法为:

(1) 小发电机向大发电机的切换

在小发电机并网发电期间,控制系统对其输出功率进行检测,若1秒钟内瞬时功率超过小发电机额定功率的20%,或2分钟内的平均功率大于某一定值时,则实现小发电机向大发电机的切换。切换过程为:首先切除补偿电容,然后小发电机脱网,等风轮自由转动到一定速度后,再实现大发电机的软并网;若在切换过程中风速突然变小,使风轮转速反而降低的情况下,应再将小发电机软并网,重新实现小发电机并网运行。

(2) 大发电机向小发电机的切换

检测大发电机的输出功率,若2分钟内平均功率小于某一设定值(此值应小于小发电机的额定功率)时,或50S瞬时功率小于另一更小的设定值时,立即切换到小发电机运行。切换过程为:切除大发电机的补偿电容器,脱网,然后小发电机软并网,计时20S,测量小发电机的转速,若20S后未达到小发电机的同步转速,则停机,控制系统复位,重新起动。若20S内转速已达到小发电机旁路转速则旁路晶闸管软起动装置,再根据系统无功功率情况投入补偿电容器。

3.3 变桨距控制方式及其改进

风力发电机并网以后,控制系统根据风速的变化,通过桨距调节机构,改变桨叶攻角以调整输出电功率,更有效地利用风能。在额定风速以下时,此时叶片攻角在零度附近,可认为等同于定桨距风力发电机,发

电机的输出功率随风速的变化而变化。当风速达到额定风速以上时,变桨距机构发挥作用,调整叶片的攻角,保证发电机的输出功率在允许的范围内。

但是,由于自然界的风力变幻莫测。风速总是处在不断地变化之中,而风能与风速之间成三次方的关系,风速的较小变化都将造成风能的较大变化,导致风力发电机的输出功率处于不断变化的状态。对于变桨距风力发电机,当风速高于额定风速后,变桨距机构为了限制发电机输出功率,将调节桨距,以调节输出功率。如果风速变化幅度大,频率高,将导致变桨距机构频繁大幅度动作,使变桨距机构容易损坏;同时,变桨距机构控制的叶片桨距为大惯量系统,存在较大的滞后时间,桨距调节的滞后也将造成发电机输出功率的较大波动,对电网造成一定的不良影响。

为了减小变桨距调节方式对电网的不良影响,可采用一种新的功率辅助调节方式-RCC(Rotor Current Control转子电流控制)方式来配合变桨距机构,共同完成发电机输出功率的调节。RCC控制必须使用在线绕式异步发电机上,通过电力电子装置,控制发电机的转子电流,使普通异步发电机成为可变滑差发电机。RCC控制是一种快速电气控制方式,用于克服风速的快速变化。采用了RCC控制的变桨距风力发电机,变桨距机构主要用于风速缓慢上升或下降的情况,通过调整叶片攻角,调节输出功率;RCC控制单元则应用于风速变化较快的情况,当风速突然发生变化时,RCC单元调节发电机的滑差,使发电机的转速可在一定范围内变化,同时保持转子电流不变,发电机的输出功率也就保持不变。

3.4 无功补偿控制

由于异步发电机要从电网吸收无功功率,使风电机组的功率因数降低。并网运行的风力发电机组一般要求其功率因数达到0.99以上,所以必须用电容器组进行无功补偿。由于风速变化的随机性,在达到额定功率前,发电机的输出功率大小是随机变化的,因此对补偿电容的投入与切除需要进行控制。在控制系统中设有四组容量不同的补偿电容,计算机根据输出无功功率的变化,控制补偿电容器分段投入或切除。保证在半功率点的功率因数达到0.99以上。

3.5 偏航与自动解缆控制

偏航控制系统有三个主要功能:

(1) 正常运行时自动对风。当机舱偏离风向一定角度时,控制系统发出向左或向右调向的指令,机舱开始对风,直到达到允许的误差范围内,自动对风停止。

(2) 绕缆时自动解缆。当机舱向同一方向累计偏转2.3圈后,若此时风速小于风电机组启动风速且无功率输出,则停机,控制系统使机舱反方向旋转2.3圈解绕;若此时机组有功率输出,则暂不自动解绕;若机舱继续向同一方向偏转累计达3圈时,则控制停机,解绕;若因故障自动解绕未成功,在扭缆达4圈时,扭缆机械开关将动作,此时报告扭缆故障,自动停机,等待人工解缆操作。

(3) 失速保护时偏离风向。当有特大强风发生时,停机,释放叶尖阻尼板,桨距调到最大,偏航90o背风,以保护风轮免受损坏。

3.6 停车控制

停机过程分为正常停机和紧急停机。

(1) 正常停机

当控制器发出正常停机指令后,风电机组将按下列程序停机:

①切除补偿电容器;

②释放叶尖阻尼板;

③发电机脱网;

④测量发电机转速下降到设定值后,投入机械刹车;

⑤若出现刹车故障则收桨,机舱偏航900背风。

(2) 紧急故障停机

当出现紧急停机故障时,执行如下停机操作:首先切除补偿电容器,叶尖阻尼板动作,延时0.3秒后卡钳闸动作。检测瞬时功率为负或发电机转速小于同步速时,发电机解列(脱网),若制动时间超过20S,转速仍未降到某设定值,则收桨,机舱偏航900背风。

停机如果是由于外部原因,例如风速过小或过大,或因电网故障,风电机组停机后将自动处于待机状态;如果是由于机组内部故障,控制器需要得到已修复指令,才能进入待机状态。

4变速恒频发电机组的控制

4.1同步发电机交一直一交系统的控制

这种类型的风电机组采用同步发电机,发电机发出的电能的频率、电压、电功率都是随着风速的变化而变化的,这样有利于最大限度地利用风能资源,而恒频恒压并网的任务则由交一直一交系统完成。

(1) 风轮机的控制

风轮机的起动、控制、保护功能基本上与恒速恒频机组相似,所不同的是这类机组一般采用定桨距风轮,因此省去了变桨距控制机构。

(2) 发电机的控制

发电机的输出功率由励磁来控制。当输出功率小于额定功率时,以固定励磁运行;当输出功率超过额定功率时,则通过调整励磁来调整发电机的输出功率在允许的安全范围内运行。励磁的调整是由控制器调整励磁系统晶闸管的导通角来实现的。

(3) 交-直-交变频系统的控制

这里的变频器的概念与普通变频器的概念是不一样的。普通变频器是将电压和频率固定的市电

(220/380V,50Hz),

变成频率和电压都可变的电源,以适应各种用电器的需要,如果用于变频调速系统,则电压和频率根据负载的要求不断地改变。相反,这里的变频器则是将风力发电机发出的电压和频率都在不断改变的电能,变成频率和电压都稳定(220/380V,50Hz)的电能,以便与电网的电压及频率相匹配,而使风电机组能并网运行。

所谓的“交-直-交”变频,是变频方式的一种,是将一种频率和电压的交流电整流成直流电,再通过微机控制电力电子器件,将直流电再逆变成某种频率和电压的交流电的变频方式。其基本原理如图1所示。

风力发电机发出的三相交流电,经二极管三相全桥整流成直流电后,再由六只绝缘栅双极型电力晶体管(IGBT),在控制和驱动电路的控制下,逆变成三相交流电并入电网。逆变器的控制一般采用SPWM-VVVF 方式,即正弦波脉宽调制式变压变频方式。采用交-直-交系统的变频装置的容量较大,一般要选发电机额定功率的120%以上。

4.2双馈发电机的控制

目前的风电机组多采用恒速恒频系统,发电机多采用同步电机或异步感应电机。在风电机组向恒频电网送电时,不需要调速,因为电网频率将强迫控制风轮的转速。在这种情况下,风力机在不同风速下维持或近似维持同一转速。效率下降,被迫降低出力,甚至停机,这显然是不可取的。与之不同的是,无论处于亚同步速或超同步速的双馈发电机都可以在不同的风速下运行,其转速可随风速变化做相应的调整,使风力机的运行始终处于最佳状态,机组效率提高。同时,定子输出功率的电压和频率却可以维持不变,既可以调节电网的功率因数,又可以提高系统的稳定性。

(1) 双馈电机的工作特性

双馈电机的结构类似于绕线式感应电机,定子绕组也由具有固定频率的对称三相电源激励,所不同的是转子绕组具有可调节频率的三相电源激励,一般采用交-交变频器或交-直-交变频器供以低频电流。

当双馈电机定子对称三相绕组由频率为f1(f1=P?n1/60)的三相电源供电时,由于电机转子的转速

n=(l-s)n1(s为转差率,n1为气隙中基波旋转磁场的同步速率)。为了实现稳定的机电能量转换,定子磁场与转子磁场应保持相对静止,即应满足:

ωR=ω1-ω2

其中:ωR是转子旋转角频率;

ω1是定子电流形成的旋转磁场的角频率;

ω2是转子电流形成的旋转磁场的角频率。

由此可得转子供电频率f2=S?f1,此时定转子旋转磁场均以同步速n1旋转,两者保持相对静止。

与同步电机相比,双馈电机励磁可调量有三个:一是与同步电机一样,可以调节励磁电流的幅值;二是可以改变励磁电流的频率;三是可以改变励磁电流的相位。通过改变励磁频率,可调节转速。这样在负荷突然变化时,迅速改变电机的转速,充分利用转子的动能,释放和吸收负荷,对电网的扰动远比常规电机小。另外,通过调节转子励磁电流的幅值和相位,可达到调节有功功率和无功功率的目的。而同步电机的可调量只有一个,即励磁电流的幅值,所以调节同步电机的励磁一般只能对无功功率进行补偿。与之不同的是双馈电机的励磁除了可以调节电流幅值外,亦可以调节其相位,当转子电流的相位改变时,由转子电流产生的转子磁场在气隙空间的位置就产生一个位移,改变了双馈电机电势与电网电压向量的相对位置,也就改变了电机的功率角。所以双馈电机不仅可调节无功功率,也可调节有功功率。一般来说,当电机吸收电网的无功功率时,往往功率角变大,使电机的稳定性下降。而双馈电机却可通过调节励磁电流的相位,减小机组的功率角,使机组运行的稳定性提高,从而可多吸收无功功率,克服由于晚间负荷下降,电网电压过高的困难。与之相比,异步发电机却因需从电网吸收无功的励磁电流,与电网并列运行后,造成电网的功率因数变坏。所以双馈电机较同步电机和异步电机都有着更加优越的运行性能。

(2) 风力发电中双馈电机的控制

在风力发电中,由于风速变幻莫测,使对其的利用存在一定的困难。所以改善风力发电技术,提高风力发电机组的效率,最充分地利用风能资源,有着十分重要的意义。任何一个风力发电机组都包括作为原动机的风力机和将机械能转变为电能的发电机。其中,作为原动机的风力机,其效率在很大程度上决定了整个风力发电机组的效率,而风力机的效率又在很大程度上取决于其负荷是否处于最佳状态。不管一个风力机是如何精细地设计和施工建造,若它处于过载或久载的状态下,都会损失其效率。从风力机的气动曲线可以看出,存在一个最佳周速比λ,对应一个最佳的效率。所以风力发电机的最佳控制是维持最佳周速比λ。另外,由于要考虑电网对有功功率和无功功率的要求,所以风力机最佳工况时的转速应由其气动曲线及电网的功率指令综合得出。也就是说,风力发电机的转速随风速及负荷的变化应及时作出相应的调整,依靠转子动能的变化,吸收或释放功率,减少对电网的扰动。通过变频器控制器对逆变电路中功率器件的控制。可以改变双馈发电机转子励磁电流的幅值、频率及相位角,达到调节其转速、有功功率和无功功率的目的,既提高了机组的效率,又对电网起到稳频、稳压的作用。图2是按这种控制思路得出的风力发电双馈电机控制系统框图。

整个控制系统可分为三个单元:转速调整单元、有功功率调整单元、电压调整单元(无功功率调整)。它们分别接受风速和转速、有功功率、无功功率指令,并产生一个综合信号,送给励磁控制装置,改变励磁电流的幅值、频率与相位角,以满足系统的要求。由于双馈电机既可调节有功功率,又可调节无功功率,有风时,机组并网发电;无风时,也可作抑制电网频率和电压波动的补偿装置。

(3) 双馈风力发电机组应用前景广阔

综上所述,将双馈电机应用于风力发电中,可以解决风力机转速不可调、机组效率低等问题。另外,由于双馈电机对无功功率、有功功率均可调,对电网可起到稳压、稳频的作用,提高发电质量。与同步机交一直一交系统相比,还有变频装置容量小(一般为发电机额定容量的10~20%)、重量轻的优点,更适合于风力发电机组使用,同时也降低了造价。

将双馈电机应用于风力发电的设想,不仅在理论上成立,在技术上也是可行的。与现有的风力发电技术相比,无论从经济性,还是可靠性来看,都具有无可替代的优势,具有很强的竞争力,有利于风电机组国产化的进程,其发展前景十分广阔。

5大型风电场的计算机监控系统

风力发电技术的发展将带动大型风电场的建设。以大型风力发电机组组成的大型风电场,可为电网提供可再生的绿色能源,也可解决边远地区的能源供应紧张形势,大型风电场的运行管理己提上议事日程。目前,我国各大风电场在引进国外风力发电机组的同时,一般也都配有相应的监控系统。但各有自己的设计思路,致使风电场监控技术互不兼容。如果一个风电场中有多种机型的风电机组的话,就会给风电场的运行管理造成很大困难。因此,国家计委在“九五”科技攻关计划中实施对大型风电机组进行攻关的同时,也把风电场的监控系统列入攻关计划,以期开发出适合我国风电场运行管理的监控系统。本文在对目前国内几个风电场监控系统进行调研分析的基础上,提出我们的总体设计思路。

5.1 通讯方式

目前风电场所采用的风电机组都是以大型并网型机组为主,各机组有自己的控制系统,用来采集自然参数,机组自身数据及状态,通过计算、分析、判断而控制机组的启动、停机、调向、刹车和开启油泵等一系列控制和保护动作,能使单台风力发电机组实现全部自动控制,无需人为干预。当这些性能优良的风电机组安装在某一风电场时,集中监控管理各风电机组的运行数据、状态、保护装置动作情况、故障类型等,十分重要。为了实现上述功能,下位机(机组控制机)控制系统应能将机组的数据、状态和故障情况等通过专用的通讯装置和接口电路与中央控制室的上位计算机通讯,同时上位机应能向下位机传达控制指令,由

下位机的控制系统执行相应的动作,从而实现远程监控功能。根据风电场运行的实际情况,上、下位机通讯有如下特点:

①一台上位机能监控多台风电机组的运行,属于一对多通讯方式;

②下位机应能独立运行,并能对上位机通讯;

③上、下位机之间的安装距离较远,超过500m;

④下位机之间的安装距离也较远,超过100m;

⑤上、下位机之间的通讯软件必须协调一致,并应开发出工业控制专用功能。

为了适应远距离通讯的需要,目前国内风电场所引进的监控系统主要采用如下两种通讯方式:

①异步串行通讯,用RS-422或RS-485通讯接口。它的传输距离可达数千公里,传输速度也可达数百万位。由于所用传输线较少,所以成本较低,很适合风电场监控系统采用。同时因为此种通讯方式的通讯协议比较简单,也很常用,所以成为较远距离通讯的首选方式。

②调制解调器(MODEM)方式。这是将数字信号调制成一种模拟信号,通过介质传输到远方,在远方再用解调器将信号恢复,取出信息进行处理,是一种实现远距离信号传输的方式。此种传输方式的传输距离不受限制,可以将某地的信息与世界各地交换,且抗干扰能力较强,可靠性高,虽相对说来成本较高,但在风电机组通讯中也有较多的应用。

5.2 上、下位机通讯接口的设计

(1) 上位机通讯接口的设计

在工业现场控制应用中,通常采用工控PC机作为上位计算机,通过RS-232串行口与下位机通讯,构成集散式监控系统。但是,采用RS-232串行口进行数据通讯,其缺点是带负载能力差,仅用于近距离(15m 以内)通讯,无法满足分散的、远距离的风电场监控的通讯要求。无论是采用异步串行通讯方式还是调制解调方式,均要在PC机RS-232串行口的基础上进行适当的改进与扩展。

RS-232的电气接口是单端的,双极性电源供电系统,这种电路无法区分由驱动电路产生的有用信号和外部引入的干扰信号,使传输速率和传输距离都受到限制;RS-422则采用平衡驱动和差分接收的方法,从根本上消除信号地线。当干扰信号作为共模信号出现时,接收器只接收差分输入电压,因而这种电路保证了较长的传输距离和较高的传输速率。两者之间可用异步通讯用RS-232/422转换接口板转换。

(2) 下位机通讯接口的设计

监控系统的下位机是指各风电机组的中心控制器。对于每台风力发电机组来说,即使没有上位机的参与,也能安全正确地工作。所以相对于整个监控系统来说,下位机控制系统是一个子系统,具有在各种异常工况下单独处理风电机组故障,保证风电机组安全稳定运行的能力。从整个风电场的运行管理来说,每台风电机组的下位控制器都应具有与上位机进行数据交换的功能,使上位机能随时了解下位机的运行状态并对其进行常规的管理性控制,为风电场的管理提供方便。因此,下位机控制器必须使各自的风力发电机组可靠地工作,同时具有与上位机通讯联系的专用通讯接口。

可编程控制器(PLC)具有功能齐全,可靠性高和编程方便的特点,在工业控制领域受到广泛的欢迎。尤其是近年来,为了适应现场控制要求及集散控制的要求,国外的PLC厂家纷纷推出与各自PLC相配套的

通讯模块,这些模块提供了RS232/422适配器或RS-232接口与PC机之间实现数据通讯,并有专门的编程软件,使软件开发更加方便。因而,采用可编程控制器(PLC)作为风力发电机组的下位控制器,完全可以满足风力发电机组控制和风电场监控的要求。

5.3 抗干扰措施

风电场监控系统的主要干扰源是:

①工业干扰:高压交流电场、静电场、电弧、可控硅等;

②自然界干扰:雷电冲击、各种静电放电、磁爆等;

③高频干扰:微波通讯、无线电信号、雷达等。

这些干扰通过直接辐射或由某些电气回路传导进入的方式进入控制系统,干扰控制系统工作的稳定性。从干扰的种类来看,可分为交变脉冲干扰和单脉冲干扰两种,它们均以电或磁的形式干扰系统,从而抗干扰措施应从以下几方面着手:

①在机箱、控制柜的结构上:对于上位机来说,要求机箱能有效地防止来自空间辐射的电磁干扰,而且尽可能将所有的电路、电子器件均安装于机箱内。还应防止由电源进入的干扰,所以应加入电源滤波环节,同时要求机箱有良好的接地和机房内有良好的接地装置。

②通讯线路上:信号传输线路要求有较好的信号传输功能,衰减较小,而且不受外界电磁场的干扰,所以应该使用屏蔽电缆。

③通讯方式及电路上:不同的通讯方式对干扰的抵御能力不同。一般说来,风电场中上、下位机之间的距离不会超过几千米,这种情况下经常采用串行异步通讯方式,其接口形式采用RS-422A接口电路,采用平衡驱动、差分接收的方法,从根本上消除信号地线。这种驱动器相当于两个单端驱动电路,输入相同信号,输出一个正向信号和一个反向信号,对共模干扰有较好的抑制作用。RS-422A串行通讯接口电路适合于点对点、一点对多点、多点对多点的总线型或星型网络,它的发送和接收是分开的,所以组成双工网络非常方便,很适合于风电场监控系统。

调制解调方式一般适用于远距离传输,用于多站互联,现在也有用于风电场监控系统的例子。此种通讯方式的特点是采用平衡差分方式,是半双工的,具有RS-422A的优点。用一对双绞线即可实现通讯,可节省电缆投资。但对于近距离通讯来说,RS-422A电路的串行通讯方式显得更加经济一些。

5.4 监控软件的编制

监控应用软件是根据具体对象来实施工业监控而开发出的软件,用在监控系统中执行监视、控制生产过程和及时调整的应用程序。对于风电场监控系统,首先要显示风电场整体及机组安装的具体位置,而后要了解各台机组之间的连接关系及每台风电机组的运行情况。因此,风电场的监控软件应具有如下功能:

①友好的控制界面。在编制监控软件时,应充分考虑到风电场运行管理的要求,应当使用汉语菜单,使操作简单,尽可能为风电场的管理提供方便。

②能够显示各台机组的运行数据,如每台机组的瞬时发电功率、累计发电量、发电小时数、风轮及电机的转速和风速、风向等,将下位机的这些数据调入上位机,在显示器上显示出来,必要时还应当用曲线或图表的形式直观地显示出来。

③显示各风电机组的运行状态,如开机、停车、调向、手/自动控制以及大/小发电机工作等情况。通过各风电机组的状态了解整个风电场的运行情况,这对整个风电场的管理是十分重要的。

④能够及时显示各机组运行过程中发生的故障。在显示故障时,应能显示出故障的类型及发生时间,以便运行人员及时处理及消除故障,保证风电机组的安全和持续运行。

⑤能够对风电机组实现集中控制。值班员在集中控制室内,只需对标明某种功能的相应键进行操作,就能对下位机进行改变设置、状态和对其实

施控制。如开机、停机和左右调向等。但这类操作必须有一定的权限,以保证整个风电场的运行安全。

⑥系统管理。监控软件应当具有运行数据的定时打印和人工即时打印以及故障自动记录的功能,以便随时查看风电场运行状况的历史记录情况。

监控软件的开发应尽可能在现有工业控制软件的基础上进行二次开发,这样可以缩短开发周期。(下转23页)同时,在软件的编制过程申,应当采用模块化程序设计思想,有利于软件的编制和总体调试。

6结束语

风力发电技术已日趋成熟,在可再生的绿色能源的开发领域中占有突出的地位,具有重要的开发利用价值。尤其是在偏远的山区、牧区和海岛等地区,风力发电可为当地居民的生活和生产提供洁净的能源,缓解能源供应紧张的局面。

XXX风电安装施工方案

. XX风电场风力发电机组安装工程施工方案 编制单位: 编制人: 编制日期:

施工方案审批页

目录 1 工程概况 (1) 2 吊装平台规划 (3) 3 机组吊装的施工方法 (4) 4 施工网络进度计划 (23) 5 施工设备、机具及量具计划 (25) 6 项目管理组织机构及施工劳动力资源计划 (26) 7 施工质量保证措施 (28) 8 施工安全保证措施 (32) 9 文明施工及环境保护措施 (37) 10 冬雨季施工预防措施 (40)

1工程概况 1.1工程名称:XX风电场风机安装工程 1.2工程地址:云南省安宁市 1.3工程简述 XX风电场主要分为东、西两部分,西部区域主要位于安宁市与楚雄彝族自治州交界的山脊上,还有一部分位于安宁市青龙镇与禄脿镇交界的山脊,地理坐标介于北纬24°7′6″~25°7′6″,东经102°10′10″~102°14′17″之间,高程介于2100m~2600m之间;东部区域主要位于安宁市青龙镇与温泉镇交界的山脊上,地理坐标介于北纬25°0′2″~25°3′10″,东经102°20′41″~102°26′14″之间,高程介于2000m~2500m之间,本工程共布置43台2000kW风力机组,总装机86MW。 项目业主: 设计单位: 项目监理: 施工单位: 1.4工程量及机组参数 实物量安装43台单机容量为2000kW的风电机组。

1.5工程特点 ?高、大、重是风力发电机组的施工特点,设备吊装是施工的重点和难点; ?场区处于高山,多风、强阵风对机组吊装施工会产生不利的影响。 ?安装分两个区域进行。距离跨度较大,设备和机械需要二次转场。 1.6编制依据 ?招标方提供的招标文件及技术资料; ?《厂家提供的2.0MW风电机组现场安装手册》; ?《工业安装工程施工质量验收统一标准》GB50252-2010 ?《机械设备安装工程施工及验收通用规范》GB50231-2009 ?《工程测量规范》GB50026-2007 ?《建筑电气安装工程质量验收规范》GB50303-2002 ?《电气装置安装工程电力变流设备施工及验收规范》GB50255-96 ?《电气装置安装工程接地装置施工及验收规范》GB50169-2006 ?《电气装置安装工程电缆线路施工及验收规范》GB50168-2006 ?《电气装置安装工程高压电器施工及验收规范》GB50147-2010 ?《风力发电场项目建设工程验收规程》DLT5191-2004; ?《建筑机械使用安全技术规程》(JGJ33-2012); ?《起重机械安全规程》GB6067.1-2010 ; ?《起重工操作规程》SYB4112-80; ?《电力建设安全施工管理规定》和《补充规定》; ?《建设工程项目管理规范》GB/T50326-2006; ?《大型设备吊装工程施工工艺标准》SH 3515-2003 ?《风力发电场安全规程》DL796-2001 ?《中华人民共和国环境保护法》 ?《中华人民共和国水土保持法》 ?同类型工程施工经验、施工管理文件、资料及施工方案和工程技术总结

风电安装施工组织设计

辉腾锡勒风电场100MW世行项目工程( B1标段:风机安装) 施工组织设计

目录 第一章编制说明、依据、范围及工程概况 (4) 第二章施工部署 (8) 一、部署原则 二、工程建设目标 第三章现场总平面布置 (9) 第四章主要机械设备配置及进场计划 (10) 一、主要施工机械装备一览表及进场计划 第五章劳动力计划 (12) 第六章施工管理 (14) 一、项目管理机构 二、施工各岗位职责及管理制度 三、施工技术准备及管理 四、物资管理 五、建立收发文和资料管理制度 六、施工现场周边关系协调 第七章施工方法 (23) 一、施工机械的选择 二、施工顺序 三、施工条件准备 四、卸车和掏箱 第八章分部分项工程及工程重点、难点的施工方法 (25) 一、设备吊装吊车的选择 二、变频柜安装过程 三、底部塔筒的吊装 四、第二节塔筒的吊装

五、第三、第四节塔筒的吊装 六、机舱安装 七、转子的安装 八、其它工作 第九章设备的存放 (32) 第十章施工进度网络计划及工期进度保证措施 (33) 一、开竣工日期及进度网络计划 二、工期进度保证措施 1、组织保证措施 2、劳动力保证措施 3、机械设备保证措施 4、周转工具保证措施 5、进度计划动态控制措施 第十一章保证工程质量管理措施 (37) 一、质量保证体系 二、质量管理制度 第十二章安全生产保护措施 (41) 一、安全生产方针及目标 二、组织管理 三、安全教育 四、安全生产技术措施 1、安全防护技术措施 2、施工机械安全技术措施 3、吊装作业安全技术措施 第十三章冬雨季施工措施 (46) 第十四章环境保护、降低环境污染及噪音措施 (48) 第十五章文明施工措施 (51)

风电机组安装施工方案

施工组织专业设计、施工方案(作业指导书)报审表 表号:A-1 工程名称:中电投张北大囫囵风电场二期工程编号:

本表一式2份(承包商、监理工程师各1份),附送审稿1份,经审查修改后出版,正式方案交监理工程师2份(存档1份、专业监理工程师1份),送建设单位1份。 中电投张北大囫囵风电场二期工程 中电投张北大囫囵风电场二期2#标段风力发电工程 风机安装工程施工方案(作业指导书)

编制单位:山西电建二公司中电投审定单位:黑龙江润华电力工程管理公司张北风电场工程项目部中电投张北风电场项目监理部 批准:年月日总监理师:年月日审核:年月日专业监理师:年月日编制:年月日建设单位:年月日

目录 1.1工程简况 (5) 1.2建设规模 (5) 1.3气象、水文 (5) 1.4交通情况 (5) 1.5工程特点 (5) 1.6工程范围 (5) 1.7主要设备参数 (6) 2.编制依据 (6) 3.施工单位组织机构 (7) 4吊装机械选用 (8) 5.人员资质、配备及分工 (9) 5.1 施工力量的配置计划 (9) 5.2项目管理人员分工: (9) 6.安全措施及危险点分析 (10) 6.1危险点: (10) 6.2控制措施: (10) 6.3环境因素识别评价与控制表 (11) 7.质量控制 (16) 7.1 (16)

8作业交底卡 (17) 9 施工作业程序 (17) 9.1施工准备 (17) 风机基础砼经过充分养护,强度达到设计要求,基础四周完全回填压实,并已办理移交验收签证后安装。 (17) 9.2吊装工序流程 (17) 9.3塔筒吊装方案 (18) 9.4机舱吊装方案 (20) 9.5叶轮组合吊装方案 (21) a.由于叶轮的直径较大,所以组合时,应先将组合场地、设备存放场地规划选择好,同时,要设计好叶片组合时的顺序并按此顺序摆放好叶片。保证叶片支架落地后受力点均衡。 (21) 附表2安全管理机构: (3) 附表3质量管理机构: (3) 附表5 (6) 施工技术交底卡 (6) 中电投张北大囫囵风电场二期2#标段风力发电工程

风电吊装安全文明生产施工方案

安全文明施工实施细则 一、工程概况: 龙源西藏新能源有限公司投资建设的西藏那曲高海拔试验风电场(49.5MW)项目风机安装工程。本期工程共安装5台国电联合动力风机。 1.1 施工范围 我公司负责5台风机的吊装,安装塔内主电缆、控制电缆等附件安装,控制柜、塔筒、机舱、轮毂及叶片等设备的卸车及设备保管等工作。 1.2施工部署 针对该工程安装设备实际情况,我公司将组建一支精干、技术资质高和经验丰富的项目管理班子,挑选施工经验丰富、吃苦耐劳的优秀专业施工队伍,特别是选定参加过类似工程建设的施工队伍参加本工程施工。 采用一台750吨汽车吊主吊,一台130汽车起重机、一台70吨汽车起重机、一台65吨汽车吊为副吊。对于塔筒、机舱、轮毂、叶片利用750吨履带吊和70吨汽车吊进行吊装,两吊机配合慢慢将塔筒吊到垂直状态,拆除70吨吊机的吊装连接索具和连接板,750吨汽车吊单机吊装就位。 二、安全目标、安全保证体系及技术组织措施 2.1安全管理目标 遵守有关环境保护的法律、法规和规章、龙源电力集团股份有限公司关于《工程建设文明施工管理办法》、《工程建设质量管理办法》、《工程建设安全管理办法》及本合同的有关规定,并对其违反上述法律、法规和规章以及本合同规定所造成的环境破坏以及人员伤害和财产损失负责。 我方将始终贯彻“安全第一,预防为主”的方针和“安全为天”的管理思想,提高工程建设过程安全质量管理水平,保障职工在劳动过程中的安全与健康,努力创建安全文明施工样板工程。

2.2安全管理组织机构及安全管理制度和办法 2.2.1安全管理组织机构图 2.2.2安全管理组织体系 1、建立健全安全生产管理机构,成立以项目经理为组长、项目技术负责人为副组长的安全生产领导小组,全面负责并领导本项目的安全生产工作。主管安全生产的项目安全员为安全生产的直接责任人。成立施工安全组,全面负责施工全过程的安全检查、安全远见卓识置、安全监督和安全奖惩。 2、所有施工人员进入施工现场必须纳入项目的安全管理网,并签订安全生产协议书。对所有施工人员进行安全施工“三级教育”形成制度前有记录和签字,坚持未经安全教育、不得上岗的原则。 3、项目将根据施工不同阶段制定有关遵守安全生产的若干规定,施工人员除了熟悉并认真执行国家和省建委颁发的有关安全生产规章制度,还应遵守项目制定的各工种工序技术方案。 4、根据工程实际情况,制定防火、防盗、防冻及动用明火、临时用电等方面的管理办法,按计划定期检查执行情况,发现问题,责成其在规定时间内进行整改。 5、施工现场平面布置按施组要求布设,认真做好材料堆放、设备和机具存放、宿舍管理等文明施工方面工作。

风电吊装方案

目录 一工程概况 二施工组织管理 三主要施工方法及技术措施 四主要施工机具配制计划 五质量保证措施 六安全文明施工保证措施及HSE

1.工程概况 1.1项目简介 华电徐闻黄塘风电场位于徐闻县城区东偏北约49.5km 的下洋镇及前山镇,地理坐标为东经110o29′~110o33′,北纬20o46′~20o30′之间。湛江市徐闻县地处中国大陆最南端,地处东经109°52′~110°35′,北纬20°13′~20°43′。三面环海,距离湛江市区149.5 多公里,距离海口市只有18 海里,是大陆通往海南的咽喉之地。徐闻交通四通八达,207国道和粤海铁路贯穿南北,南部有中国最大的汽车轮渡港口(海安港)和亚洲第二大火车轮渡码头(粤海铁路轮渡码头)。 本期工程建设方案拟安装24台2000kW风电机组和1台1500kW 风电机组,总装机容量为49.5MW,110kV升压站已在一期工程中建设完成,升压站内已建设完成综合楼、设备楼以及泵房、仓库、车库、事故油池,总占地面积6396m2。升压变电站工程使用类别在建筑设计中属于工程的等级3等,主要建筑物等级为2等。 1.2设备结构与交货状态 1)设备结构主体由四大件组成:2MW风力发电机组,①塔架②机舱③发电机④叶轮 2)设备交货状态①控制柜②塔架分三段,现场组装③机舱分机舱与发电机,现场组装④叶轮分轮毂与叶片,现场组装

1.3风电机组主要设备部件实物量参数 2MW风电机组主要设备部件实物量参。 序号设备(部件) 名称 数量 件(套) 单件重量 (t) 单件垂直 高度 (mm) 备注 1 塔筒(下段)25 64.1 20000 2 塔筒(中段)25 60.1 27500 3 塔筒(上段)25 41.6 30000 4 机舱2 5 19.5 5 发电机25 66 6 轮毂25 21.5 7 叶片75 9 46500 1.4风力发电机组安装(吊装)采用的主要施工方法 1)设备进场运输,大型吊机进场移动转移,设置临时施工道路。 2)风电机组的周围各设置一个施工平台,进行吊机设备的转场放置。机组与吊机定位吊装的场所,施工平台与施工临时道路相接。 3)小件设备卸车与吊装选用TR-250M(25t)液压汽车式起重机。(包括配合其他吊机)。 4)大件设备吊装选用QAY800(800t)液压汽车式起重机。 5)大件设备吊装抬吊选用QAY260(260t)液压汽车式起重机(包括其他吊装)。 1.5重要工期节点要求 风电机组安装于2014年9月16日开始施工,2014年11月30日前全部吊装完毕。 1.6方案编制依据 1)《安装手册(适用于XE96-2000风力发电机组)》。

风电风机及箱变基础建筑安装工程施工方案

目录 第一章前 言 (2) 第二章施工优 势 (2) 第三章工程概况及特 点 (3) 第四章主要工程 量 (5) 第五章工程难点特点分析及采取的措 施 (6) 第六章施工部 署 (7) 第七章施工总平面布置及管理措 施 (13) 第八章主要施工方案及措 施 (20) 第九章工程进度计划及管 理 (33) 第十章质量管理及技术管

理 (38) 第十一章职业安全健康保证体 系 (45) 第十二章环境保护及文明施 工 (51) 第十三章特殊条件下的施工措 施 (54) 第十四章计划、统计和信息管 理 (55) 第一章前言 编制说明 本工程施工组织设计是按《》、安装工程招标文件国华乾安一、二期项目风机及箱变基础建筑、国家现行技术法规及施工规范、规程、标准编制的。依据的主要技术标准与规范见下: 风电机组地基基础设计规定(2007) FD003-2007 GB 50009-2001 年版)建筑结构荷载规范(2006GB 50010-2002 混凝土结构设计规范GB 50007-2002 建筑地基基础设计规范 GB 50011-2001 年版)建筑抗震设计规范(2008GB50108—地下工程防水技术规范 2001 GB/T 50105-2001 建筑结构制图标准GB/T 50001-2001 房屋建筑制图统一标准GB 50068-2001 建筑结构可靠度设计统一标准《电力建设施工质量及评定规程》(第1部分:土建工程) 建筑工程施工质量验收统一标准 GB50300-2001 GB50204-2002 混凝土结构工程施工质量验收规范其它有关的现行规程、规范第二章施工优势 一、真诚的感谢业主对我公司的信任,能够给予我公司参与本工程投标机会!我

风电机组控制安全系统安全运行的技术要求(正式)

编订:__________________ 单位:__________________ 时间:__________________ 风电机组控制安全系统安全运行的技术要求(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5841-15 风电机组控制安全系统安全运行的 技术要求(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 控制与安全与系统是风力发电机组安全运行的大脑指挥中心,控制系统的安全运行就是保证了机组安全运行,通常风力发电机组运行所涉及的内容相当广泛就运行工况而言,包括起动、停机、功率调解、变速控制和事故处理等方面的内容。 风力发电机组在启停过程中,机组各部件将受到剧烈的机械应力的变化,而对安全运行起决定因素是风速变化引起的转速的变化。所以转速的控制是机组安全运行的关键。风力发电机组组的运行是一项复杂的操作,涉及的问题很多,如风速的变化、转速的变化、温度的变化、振动等都是直接威胁风力发电机组的安全运行。

一控制系统安全运行的必备条件 1、风力发电机组开关出线侧相序必须与并网电网相序一致,电压标称值相等,三相电压平衡。 2、风力发电机组安全链系统硬件运行正常。 3、调向系统处于正常状态,风速仪和风向标处于正常运行的状态。 4、制动和控制系统液压装置的油压、油温和油位在规定范围内。 5、齿轮箱油位和油温在正常范围。 6、各项保护装置均在正常位置,且保护值均与批准设定的值相符。

风力发电控制系统

贝加莱风力发电控制系统 2009-05-18 09:24 1、蓬勃发展的风电技术 风力发电正在中国蓬勃发展,即使在金融危机的大形势下,风力发电行业仍然不断的加大投资。在2008年,风力发电仍然保持着30%以上的强劲增长势头,包括Vestas、Gemsa、GE、国内的金风科技、华锐、运达工程等其订单交付已经到2011年后。 国内的风力发电控制技术起步较晚,目前的控制系统均是由欧洲专用控制方案提供商提供的专用系统,价格高昂且交货周期较长。开发自主知识产权的控制系统必须要提上日程,一方面,由于缺乏差异化而使得未来竞争中的透明度过高,而造成陷入激烈的价格竞争,另一方面,寻找合适的平台开发自主的风电控制系统将使得制造商在未来激烈竞争中获得先手。 然而,风电控制系统必须满足风电行业特殊的需求和苛刻的指标要求,这一切都对风力发电的控制系统平台提出了要求,而B&R的控制系统,在软硬件上均提供了适应于风力发电行业需求的设计,在本文我们将介绍因何这些控制器能够满足风力发电的苛刻要求。 2、风力发电对控制系统的需求 2.1高级语言编程能力 由于功率控制涉及到风速变化、最佳叶尖速比的获取、机组输出功率、相位和功率因素,发电机组的转速等诸多因素的影响,因此,它包含了复杂的控制算法设计需求,而这些,对于控制器的高级语言编程能力有较高的要求,而B&R PCC产品提供了高级语言编程能力,不仅仅是这些,还包括了以下一些关键技术: 2.1.1复杂控制算法设计能力 传统的机器控制多为顺序逻辑控制,而随着传感器技术、数字技术和通信技术的发展,复杂控制将越来越多的应用于机器,而机器控制本身即是融合了逻辑、运动、传感器、高速计数、安全、液压等一系列复杂控制的应用,PCC的设计者们很早就注意到这个发展方向而设计了PCC 产品来满足这一未来的需求。 为了满足这种需求,PCC设计为基于Automation Runtime的实时操作系统(OS)上,支持高级语言编程,对于风力发电而言,变桨、主控逻辑、功率控制单元等的算法非常复杂,这需要一个强大的控制器来实现对其高效的程序设计,并且,代码安全必须事先考虑,以维护在研发领域的投资安全。 2.1.2功能块调用 PCC支持PLCopen Motion、PLCopen Safety和PLCopenHydraulic库

风电机组安装施工方案

表号:A-1 工程名称:中电投张北大囫囵风电场二期工程编号:

正式方案交监理工程师2份(存档1份、专业监理工程师1份),送建设单位1份。 中电投张北大囫囵风电场二期工程 中电投张北大囫囵风电场二期2#标段风力发电工程 风机安装工程施工方案(作业指导书) 编制单位:山西电建二公司中电投审定单位:黑龙江润华电力工程管理公司张北风电场工程项目部中电投张北风电场项目监理部 批准:年月日总监理师:年月日 审核:年月日专业监理师:年月日 编制:年月日建设单位:年月日 目录

10、成品保护 (18) 11、施工进度计划 (19) 中电投张北大囫囵风电场二期2#标段风力发电工程 风机安装工程施工作业指导书 1.工程概述及工作范围 工程简况 中电投张北大囫囵风电场位于河北省张北县大囫囵镇境内。本工程由中国电力投资有限公司投资,中国电力建设工程咨询公司设计,黑龙江润华电力工程监理有限公司进行监督管理,山西电建二公司承建,风机生产厂家是华锐。 建设规模 本期工程安装33台1500kW的风力发电机组,装机容量为。风机叶轮直径为77m,轮毂高度为70m,机舱重量约58t。

气象、水文 ? 张北县地处坝上高寒区,属中温带亚干旱季风气候,年降水量400毫米左右,年平均气温℃。年平均7级以上大风日数30天左右。全年无霜期90-110天,光照充足,昼夜温差大,干旱、多风、少雨、无霜期短是主要的气候特征。 交通情况 风电场变电站位于河北省张家口市张北县大囫囵镇境内,距离万宝庄村约2km,距张北县城约75km,距张家口市约120km,交通较为便利。 工程特点 单件吊装重(机舱重58t),吊装高度高达70m,组合体吊装受风的影响很大。本工程施工环境地处山区比较偏僻,道路崎岖弯多坡陡,地势高差较大,材料、设备运输困难,施工用电、水比较困难,气候比较寒冷。 工程范围 10台1500KW风机吊装: 风力发电机的吊装、以及配合系统调试、风机的清理等。 包括但不限于塔筒、机舱、发电机、叶轮以及配套的设备部件的到货卸车、保管;吊装设备运输、进出场、机械设备站位、场内拆卸及转移;叶轮的现场组装;塔筒、机舱、发电机、叶轮等的吊装、风机内部电气线缆及设备安装等。 主要设备参数 主要部件参数一览表

风电综合信息化系统解决方案

风电综合信息化系统解决方案 1 项目概述 伴随我国国民经济的快速发展和人民生活水平的提高,人们对电力的依赖程度越来越高,同时电力生产也越来越受到资源和环境的制约。为了实现可持续发展战略,提高电能使用效率已成为我国能源战略的一项重要内容。由于我国资源的严峻形势,发展可持续资源是长久之计,风能是一种有巨大发展潜力的无污染可再生能源。发展可再生能源是最理想的能源,可以不受能源短缺的影响,但也受自然条件的影响,如需要有水力、风力、太阳能资源,而且最主要的是投资和维护费用高、效率低,所以发出的电成本高。现在许多国家都在积极寻找提高利用可再生能源效率的方法,相信随着地球资源的短缺,可再生能源将发挥越来越大的作用。 为了加强对各个风电场的管理,使风电集团能够直观、动态、综合地掌握下属各风电场生产一线的情况,杜绝风电机组运行和生产经营数据的错报、迟报、漏报,同时便于进行数据统计、分析以及提供技术支持,力控科技为许继许昌风电科技有限公司在总部建设一套风电场生产数据采集、监测、储存、分析、展现系统,以便风电集团能及时获取风电场生产及风电机组运行状态的信息,为集中监测、故障分析、技术支持、经营决策等提供及时、准确的数据基础。 2 系统整体拓扑结构介绍 2.1 集团调度中心系统建设 2.1.1 调度中心系统平台 调度中心信息化平台由实时服务器、历史服务器、关系数据库服务器、报警服务器、GIS地理信息系统服务器、WEB服务器以及各种辅助系统组成。 1) 实时服务器 实时数据服务器主要为系统提供实时数据管理支撑,主要负责处理、存储、管理电站采集传送来的实时数据,并为网络中的其它服务器和工作站提供实时数据。实时数据存放在

风力发电机基础施工方法

一、施工方法: 1、风机基础的施工顺序: 材料进场→各机位定位放线→机械挖土→人工清理修正→基槽验收→垫层混凝土浇筑→预埋基础环支撑钢板→放线→安装基础环地脚螺栓支撑件→安装基础环→钢筋绑扎→预埋电力电缆管→支模→基础混凝土浇筑→拆模→验收→土方回填。 2、基础开挖 a.根据施工现场坐标控制点,包括基线和水平基准点,定出基础轴线,再根据轴线定出基坑开挖线。利用白灰进行放线。灰线、轴线经复核检查无误后进行挖土施工。 b.土方开挖采取以机械施工开挖为主,人工配合为辅的方法。考虑到风机塔架基础混凝土浇筑在冬季进行,根据现场开挖情况,基坑开挖中局部部位可能会采用小剂量爆破松动后机械挖除的方式进行。基坑开挖(考虑结合接地网施工)按照沿基础结构尺寸每边各加宽一米进行,结合云南省红河州蒙自老寨风电场的地质条件,基坑开挖边坡系数采用3:1,施工过程中控制好了基底标高,无超挖现象发生。 c.开挖完工后,应人工进行基坑清理,清理干净后进行基槽验收,根据不同地质情况分别采取措施进行处理,验收合格后进行下道工序施工。 d.风机基础接地应随同基坑开挖进行,并在基坑回填前依据规范进行隐蔽验收工作。 e.根据工程地质勘察资料,场区位置地下水埋深较深,所以在基础施工中没考虑地下水的影响,只考虑地表水及雨水排放问题。 f、基础开挖完毕,如基坑遇降雨积水浸泡,垫层混凝土浇筑前应对基坑进

行人工晾晒清挖,清挖深度不小于30cm。 土方开挖后,利用机械将开挖出的土石方铺设吊装平台,吊装平台绕基坑四边进行修整,保证了吊车和罐车以及安装使用。 3、基础回填 a、基础施工完毕,在混凝土强度达到规范要求、隐蔽工程验收合格后,进行土方回填。 b、土方回填采用汽车运输、人工分层回填、机械夯实的方式,根据设计要求,回填时要求压实干容重大于18kN/m3(密实度不小于。土石方分层回填厚度、土质要求按照《建筑地基基础工程施工质量验收规范》GB50202-2002执行。 c、在碾压(或夯实)前应进行回填料含水率及干容重的试验,以得出符合设计密实度要求条件下的最佳含水量和最少碾压遍数。 d、基坑回填前必须先清除基坑底的杂物。土方回填时,要对每层回填土进行质量检验,用环刀法等取样方法测定土的干密度,符合设计要求后才能填筑上层。 e、回填应由坑内最低部位开始自下而上分层铺筑,每层虚铺土厚度应≤30mm,用小型柴油振动碾压机压实,一般来回碾压3~4遍(需根据现场试验确定)。振动碾压机移动时,做到一碾压半碾。如必须分段填筑,交接处应留出阶型接头,上、下层错缝间距应≥1m,以后继续回填时应分层搭接夯实,使新老回填层接合严密。 4、基础环施工工艺 (1)基础环安装工序: 千斤顶就位—吊车抬吊—立直—安装调平螺栓—起钩转杆就位

风电安装安全、文明生产施工方案标准版本

文件编号:RHD-QB-K3524 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 风电安装安全、文明生产施工方案标准版本

风电安装安全、文明生产施工方案 标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 1 工程概况: 湖北石首桃花山风电场位于湖北省荆州市石首市桃花山镇境内,距石首市区运输距离约25km,距荆州市运输距离约101km。S221省道南北贯穿桃花山镇,从S221省道或桃花山镇现有县级公路可直达场区,交通便利。 湖北荆州石首桃花山风电场装机规模为 49.5MW,安装24台单机容量为2000kW的风力发电机组+1台单机容量为1500kW的风力发电机组。风电场建设一座110kV升压站变电站、3回

35KV集电线路、风电场以1回110kV架空线路接入至伯牙110kV变电站。 本次吊装范围:桃花山风电场风机吊装工程(吊装套数:24台115/2000kW(轮毂高度85米)+1台93/1500机组(轮毂高度75米))。 1.1 施工范围 【湖北石首桃花山】风电场【24】台【2000】kW及【1】台【1500】kW风力发电机组的机舱、塔筒、轮毂、发电机、电缆、叶片、电控柜、螺栓及风机其他附件等风机全部组件的卸货及保管看护并承担责任;高强度螺栓的复检并承担费用;低压配电柜的安装、设备包装物及支架等装车、叶轮的地面组装、塔筒内电缆(含通信)、照明灯具安装及附件调整;塔筒组对、风机机舱、发电机、叶轮等设备的吊装调整及螺栓连接力矩紧固、钢梯安装及钢梯砼底座

风电机组控制系统

风电机组控制系统 摘要:风电机组控制系统作为风电机组的重要组成部分,我们有必要对其进行详细的研究论述。本文主要介绍风电机组控制系统的组成结构和风电机组在运行时不同区域的基本控制策略,以及不同厂家在风电机组主要系统的实现上对软硬件采用情况。 关键词:风电机组 控制系统 构成 一、风电机组控制系统的组成结构 从实现功能的角度可以将控制系统分为:主控系统、变流控制系统、变桨距控制系统、偏航控制系统、液压控制系统及安全链保护。这些控制系统通常采用分布式控制系统,主控制器只有一个,且位于地面的塔筒柜里,而从控制器有好几个,这些从控制器之间是通过光纤、工业以太网、profibus 、CANbus 等进行通信的。为了能够更直观更清晰地了解控制系统的总体结构,以下将展示其结构图,具体如图1: 主控制器运行监控机组起停远程通信故障监测及保护动作电网、风况检测 人机界面 输入用户命令、变更参数 显示系统运行状态、统计 数据和故障 变桨距控制柜 桨距角调整 转速控制功率控制系统安全链系统紧急停机保护 偏航控制系统自动调向控制解缆控制液压站控制刹车机构压力控制机械刹车控制变流控制柜 交流励磁控制 并网控制 图1 控制系统的总体结构图 二、风电机组在运行时不同区域的基本控制策略 根据风速情况以及风力机功率特性,变速恒频风力发电机组的运行可以划分成很多区域,分别为:待机区、启动并网区、最大风能追踪区、转速限制区、功率限制区、切出保护区。 (1)待机区:控制系统的带电工作,保证所有执行机构和信号均处于正常状态。 (2)启动并网区:当风速达到切入风速时,风电机组起动,通过变桨距机

构调节桨距角使风力机升速,达到并网转速时,执行并网程序,使发电机组顺利切入电网,并带上初负荷。待发电机出口三相电压的电网电压满足同期条件时,接触器合闸,发电机并入电网。 (3)最大风能追踪区:风力发电机组运行在额定风速以下时,发电机输出功率未达到额定功率,此时控制目标为保持最佳叶尖速比,快速稳定的电机变速控制,尽可能将风能转化为输出的电能,实现风能最大捕获。 (4)转速恒定区:这一区域内发电机转速达到最大值,并保持恒定,风速逐步增大,机组功率因为发电机扭矩的增大而增加。而这个阶段,为了保护机组的安全运行,不再进行最大风能追踪,该区域的转速限制主要是通过调节发电机的电磁转矩实现的,功率曲线也较前一阶段平滑。 (5)功率恒定区:如果风速继续增大,发电机和变流器将达到其功率额定值,此时,只能减小风轮吸收的能量才能保障机组的安全,于是加入变桨距控制,增大桨距角,继续减小风能利用系数Cp,以维持机组的输出功率稳定在额定值。 (6)切出保护区:当风速继续增大,超过切出风速时,从保护机组的角度出发要将风力机叶片调至顺桨状态,风力发电机组切出电网,实现安全停机。 三、不同厂家在风电机组主要系统的实现上对软硬件采用情况 (1)关于主控系统 主控制器是电控系统的核心,要完成对机组运行参数和状态的检测和监控,同时要建立良好的人机交互界面和远程通讯的功能。 在主控系统的硬件上,几乎所有的厂家都选择PLC作为主控制器PLC系统因为构成灵活,扩展容易,以开关量控制为其特长,也能进行连续过程的PID回路控制,并能与上位机构成复杂的控制系统,实现生产过程的综合自动化;使用方便,编程简单,开发周期短,现场调试容易;能适应风电场恶劣的运行环境,可靠性强,所以完全适用于风电领域。 (2)关于变桨系统 变桨距是指风电机组安装在轮毂上的叶片借助控制技术和动力系统改变桨距角的大小从而改变叶片气动特性,使桨叶和整机的受力情况大为改善。 作为变桨系统,主要有两大技术路线,如下: 1.电动变桨方式:几乎所有的国内风机制造商以及GE、Enercon、Suzlon、Siemens都是采用该种变桨方式,驱动电机有直流电机和交流电机之分,传动方式有齿轮齿圈传动和齿形皮带传动(仅有金风一家)之分。 2.液压变桨方式:以Vestas和Gamesa两大国际风机巨头为代表。 两种变桨方式各有优缺点,两种系统在基本功能方面几乎是一致的,而在细节方面各有利弊,目前在电动型应用领域更为广泛。 (3)关于变流系统

风电机组安装施工方案

word 施工组织专业设计、施工方案(作业指导书)报审表 表号:A-1 案交监理工程师2份(存档1份、专业监理工程师1份),送建设单位1份。

中电投张北大囫囵风电场二期工程 中电投张北大囫囵风电场二期2#标段风力发电工程 风机安装工程施工方案(作业指导书) 编制单位:山西电建二公司中电投审定单位:黑龙江润华电力工程管理公司张北风电场工程项目部中电投张北风电场项目监理部 批准:年月日总监理师:年月日审核:年月日专业监理师:年月日编制:年月日建设单位:年月日 目录

1.1工程简况 (3) 1.2建设规模 (3) 1.3气象、水文 (3) 1.4交通情况 (3) 1.5工程特点 (3) 1.6工程范围 (3) 1.7主要设备参数 (3) 2.编制依据 (4) 3.施工单位组织机构 (4) 4吊装机械选用 (5) 5.人员资质、配备及分工 (6) 5.1 施工力量的配置计划 (6) 5.2项目管理人员分工: (6) 6.安全措施及危险点分析 (6) 6.1危险点: (6) 6.2控制措施: (6) 6.3环境因素识别评价与控制表 (7) 7.质量控制 (9) 7.1 (9) 8作业交底卡 (10) 9 施工作业程序 (10) 9.1施工准备 (10) 风机基础砼经过充分养护,强度达到设计要求,基础四周完全回填压实,并已办理移交验收签证后安装。 (10) 9.2吊装工序流程 (10) 9.3塔筒吊装方案 (11) 9.4机舱吊装方案 (12) 9.5叶轮组合吊装方案 (12) a.由于叶轮的直径较大,所以组合时,应先将组合场地、设备存放场地规划选择好,同时,要设计好叶片组合时的顺序并按此顺序摆放好叶片。保证叶片支架落地后受力点均衡。 (13) 附表2安全管理机构: (1) 附表3质量管理机构: (1) 附表5 (2) 施工技术交底卡 (3)

风力发电机组控制系统

风力发电机组控制系统

风力发电机组控制系统功能研究 风力发电机组控制系统简介 风力发电机组由多个部分组成,而控制系统贯穿到每个部分,其相当于风电系统的神经。因此控制系统的质量直接关系到风力发电机组的工作状态、发电量的多少以及设备的安全性。 自热风速的大小和方向是随机变化的,风力发电机组的并网和退出电网、输入功率的限制、风轮的主动对封以及运行过程中故障的检测和保护必须能够自动控制。同时,风力资源丰富的地区通常都是边远地区或是海上,分散布置的风力发电机组通常要求能够无人值班运行和远程控制,这就对风力发电机组的控制系统的自动化程度和可靠性提出了很高的要求。与一般的工业控制过程不同,风力发电机组的控制系统是综合性控制系统。他不仅要监视电网、风况和机组运行参,对机组进行控制。而且还要根据风速和风向的变化,对机组进行优化控制,以提高机组的运行效率。 控制系统的组成 风力发电机由多个部分组成,而控制系统贯穿到每个部分,相当于风电系统的神经。因此控制系统的好坏直接关系到风力发电机的工作状态、发电量的多少以及设备的安全。目前风力发电亟待研究解决的的两个问题:发电效率和发电质量都和风电控制系统密切相关。对此国内外学者进行了大量的研究,取得了一定进展,随着现代控制技术和电力电子技术的发展,为风电控制系统的研究提供了技术基础。 风力发电控制系统的基本目标分为三个层次:这就是保证风力发电机组安全可靠运行,获取最大能量,提供良好的电力质量。 控制系统组成主要包括各种传感器、变距系统、运行主控制器、功率输出单元、无功补偿单元、并网控制单元、安全保护单元、通讯接口电路、监控单元。具体控制内容有:信号的数据采集、处理,变桨控制、转速控制、自动最

风力发电系统电气控制设计风电-毕设论文

毕业论文 风力发电系统电气控制设计 摘要 风力发电系统电气控制技术是风力发电在控制领域的关键技术。风力发电机组控制系统工作的安全可靠性已成为风力发电系统能否发挥作用,甚至成为风电场长期安全可靠运行的重大问题。在实际应用过程中,尤其是一般风力发电机组控制与检测系统中,控制系统满足用户提出的功能上的要求是不困难的。往往不是控制系统功能而是它的可靠性直接影响风力发电机组的声誉。有的风力发电机组控制系统的功能很强,但由于工作不可靠,经常出故障,而出现故障后对一般用户来说维修又十分困难,于是这样一套控制系统可能发挥不了它应有的作用。因此对于一个风力发电机组控制系统的设计和使用者来说,系统的安全可靠性必须认真加以考虑,必须引起足够的重视。 我们的目的是希望通过控制系统的设计,采取必要的手段使我们的系统在规定的时间内不出故障或少出故障,并且在出故障之后能够以最快的速度修复系统,使之恢复正常工作。 关键词:风力发电的基本原理;风力发电机的基础理论;风力发电控制系统;风轮机的气动特性;变桨距控制系统。

1绪论 1.1国内外风力发电的现状与发展趋势 风能属于可再生能源,具有取之不尽、用之不竭、无污染的特点。人类面临的能源、环境两大紧迫问题使风能的利用日益受到重视。我国的风能资源丰富,可利用的潜能很大,大力发展风、水电是我国长期的能源政策。而其中风电是可再生能源中最具发展潜力和商业开发价值的能源方式。从20世纪80年代问世的现代并网风力发电机组,只经过30多年的发展,世界上已有近50个国家开发建设了风电场(是前期总数的3倍),2002年底,风电场总装机容量约31128兆瓦(是前期总数的300倍)。 2005年以来,全球风电累计装机容量年平均增长率为27.3%,新增装机容量年平均增长率为36.1%,保持着世界增长最快能源的地位。2010年全球装机容量达196630MW,新装机容量37642MW,比去年同期增长23.6%。 目前,德国、西班牙和意大利三国的风电机组的装机容量约占到欧洲总量的65%。近年来,在欧洲大力发展风电产业的国家还有法国、英国、葡萄牙、丹麦、荷兰、奥地利、瑞典、爱尔兰。欧洲之外,发展风电的主要国家有美国、中国、印度、加拿大和日本。迄今为止,世界上已有82个国家在积极开发和应用风能资源。 海上风力资源条件优于陆地,将风电场从陆地向近海发展在欧洲已经成为一种新的趋势。有人把风电的发展规划为3步曲,陆上风电技术(当前技术)一近海风电技术(正研发技术)一海上风电技术(未来发展方向)。 2010年北美的装机容量有显著下降,美国年度装机容量首度不及中国;多数西欧国家风能发展处于饱和阶段,但风能产业在东欧国家得到显著发展;非洲风能发展主要集中在北非。 随着海上风电的迅速发展,单机容量为3 -6MW的风电机组已经开始进行商业化运行。美国7MW风电机组已经研制成功,正在研制10MW机组;英国10MW机组也正在进行设计,挪威正在研制14MW的机组,欧盟正在考虑研制20MW的风电机组,全球各主要风电机组制造厂家都在为未来更大规模的海上风电场建设做前期开发。 1.1.1世界上风力发电的现状 近年来,世界风电发展持续升温,速度加快。现主要以德国、西班牙、丹麦和美国的一些公司为代表,大规模地促进了风电产业化和风机设备制造业的发展。经过四、五年时间的整合,国际上风机制造业大约有十几家比较好的大企业。2003年底,全世界风电是3800万千瓦左右,而2003年一年就增加了400多万千瓦,仅德国到2003年底的装机容量就有1600万千瓦,其次是西班牙、美国、丹麦等国。国外风电的发展趋势,一是发展速度加快,二是风机机组从小型化向大型化发展,海上风电厂是下一步发展的主流。

(完整word版)风电绿色施工方案

一、工程概况 1、工程概述 1.1 工程名称 内蒙古霍林河循环经济示范工程一期2×50MW风电项目。 1.2 工程地点 内蒙古自治区通辽市扎鲁特旗扎哈淖尔夏营地。 1.3 工程性质、规模 本工程为新建工程,规模为2×50MW风电项目,同期新建一座 220kV场内升压站,作为升压汇集点,升压站总规模按照600MW容量设计。本期规划建设1×150MVA 主变压器,以二回 220kV线路就近接入附近铝场三、四期母线。 1.4 质量目标 1.4.1 按中电投集团公司达标投产考核办法,实现达标投产,争创行业优质工程。 1.4.2 土建工程一次性合格率100%、单位工程优良率≥95%; 安装工程一次性合格率100%,单位工程有优良率≥98%; 1.4.3绿色、文明施工目标:噪音不影响周边牧民,污水排放达标不影响环境,文明施工考核优良,绿色施工达标。 1.5 开工、完工日期 计划开工日期:2013年04月1日,计划完工日期:2013年10月31日。 二、编制依据 1、《建筑工程绿色施工评价标准》GB/50640-2010 2、《建筑施工现场环境与卫生标准》JGJ146-2004 3、《建筑施工现场安全检查标准》JGJ59-99 4、《节水型生活用水器具》CJ164-2002 5、《建筑照明设计标准》GB50034-2004 6、《污水综合排放标准》GB8978-1996 7、《施工现场临时建筑物技术规范》JGJ/T188-2009 三、绿色施工目标与要求 运用ISO14000和ISO18000管理体系,在保证质量、安全等基本要求的前提下,通过科学管理和技术进步,最大限度的节约资源与减少对环境负面影响的施工活动——尽可能

风力发电机组主控制系统

. 密级:公司秘密 东方汽轮机有限公司 DONGFANG TURBINE Co., Ltd. 2.0MW108C型风力发电机组主控制系统 说明书 编号KF20-001000DSM 版本号 A 2014年7 月

. 编制 <**设计签字**> <**设计签字日期**> 校对 <**校对签字**> <**校对签字日期**> 审核 <**审核签字**> <**审核签字日期**> 会签 <**标准化签字**> <**标准化签字日期**> <**会二签字**> <**会二签字日期**> <**会三签字**> <**会三签字日期**> <**会四签字**> <**会四签字日期**> <**会五签字**> <**会五签字日期**> <**会六签字**> <**会六签字日期**> <**会七签字**> <**会七签字日期**> <**会八签字**> <**会八签字日期**> <**会九签字**> <**会九签字日期**> 审定 <**审批签字**> <**审批签字日期**> 批准 <**批准签字**> <**批准签字日期**> 编号

换版记录

目录 序号章 节名称页数备注 1 0-1 概述 1 2 0-2 系统简介 1 3 0-3 系统硬件11 4 0-4 系统功能 5 5 0-5 主控制系统软件说明12 6 0-6 故障及其处理说明64

0-1概述 风能是一种清洁环保的可再生能源,取之不尽,用之不竭。随着地球生态保护和人类生存发展的需要,风能的开发利用越来越受到重视。 风力发电机就是利用风能产生电能,水平轴3叶片风力发电机是目前最成熟的机型,它主要是由叶片、轮毂、齿轮箱、发电机、机舱、变频器、偏航装置、刹车装置、控制系统、塔架等组成。 风力发电机的控制技术和伺服传动技术是其核心和关键技术,这与一般工业控制方式不同。风力发电机组控制系统是一个综合性的控制系统,主要由机舱主控系统、变桨系统、变频控制系统三部分组成,通过现场总线以及以太网连接在一起,各个模块都有独立的控制单元,可独立完成与自身相关的功能(图0-1-1)。目的是保证机组的安全可靠运行、获取最大风能和向电网提供优质的电能。

西藏风电场风电机组设备安装施工方案(附示意图)

施工方案 1 编制依据和适用范围 1.1 编制依据 1.1.1 业主提供的设备技术资料。 1.1.2 现场勘查的实际情况。 1.1.3 起重机械性能手册。 1.1.4 合同中约定的相应规范条款。 1.2 适用范围 本方案适用于西藏那曲高海拔试验风电场工程风电机组设备的吊装施工。 2 工程概况 2.1 项目简介 工程为7.5MW风电装机容量(国电联合动力技术有限公司制造,型号为UP96,单机容量1500kW,5台),最重件是机舱,重量达到85t,叶轮(由叶轮和轮毂组装而成)安装高度达到80m。 2.2 主要工程量 2.2.1 5套风电机组的吊装,每套机组需要吊装的工作量包括:底段塔筒(重量:52.5t)、中下段塔筒(重量:45.3t)、中上段塔筒(重量:45.6t)、上段塔筒(重量:42.6t)、机舱(重量:85t)、叶轮(重量:59.8t)。 2.3 工程特点 2.3.1 5套风电机组规格相同,现场条件相同,作业面基本相同。 2.3.2 现场是风场,刮风概率比较大,风速达到8m以上不能吊装。 2.3.3 吊物重量、体积和吊装高度比较大。体现在:(1)单件重量最大物体是机舱,单重达到85t;(2)单件尺寸最大物体是叶轮,直径(含叶片)达到97m;(3)机舱、叶轮均安装在顶塔筒的顶部,离地面高度达到80m。 2.3.4 吊装采用甲方提供的专用吊具和钢丝绳,专用吊具的安装位置和方法、钢丝绳的绑扎位置和方法等,甲方有明确的要求。 2.3.5 施工平台应为45m×45m,以便预先将各备件、施工用的吊车摆放就位。但如果受到具体条件的限制,部分机位不具备上述施工平台,备件只能部分就位,或只能满足施工用的吊车就位。

相关主题
文本预览
相关文档 最新文档