当前位置:文档之家› 实验三 驱动调度

实验三 驱动调度

实验三  驱动调度
实验三  驱动调度

实验三驱动调度

一.实验内容

模拟电梯调度算法,实现对磁盘的驱动调度。

二.实验目的

磁盘是一种高速、大容量、旋转型、可直接存取的存储设备。它作为计算机系统的辅助存储器,担负着繁重的输入输出任务,在多道程序设计系统中,往往同时会有若干个要求访问磁盘的输入输出请求等待处理。系统可采用一种策略,尽可能按最佳次序执行要求访问磁盘的诸输入输出请求,这就叫驱动调度,使用的算法称驱动调度算法。驱动调度能降低为若干个输入输出请求服务所需的总时间,从而提高系统效率。本实验模拟设计一个驱动调度程序,观察驱动调度程序的动态运行过程。

三.实验题目

模拟电梯调度算法,对磁盘进行移臂调度和旋转调度。

四.实验步骤

(1)程序中使用的数据结构及符号说明

const int PCB=100; //定义100个进程

int pcbs_num=0; //记录当前io表的进程个数

typedef struct process //请求io表

{

char pname[10]; //进程名

int Cylinder; //柱面号

int Track; //磁道号

int Record; //物理记录号

int Way;

}PROCESS;

PROCESS pcbs[PCB];

PROCESS a; //记录当前位置(柱面号、物理记录号)采用带头节点的循环链表存

(2)流程图

程序总体结构框图:

初始化:

建立一张“请求I/O”表,指出等待访问磁盘的进程要求访问的物理地址,其中包括进程名、柱面号、磁道号、物理记录号。

“接收请求”进程部分框图:

运行部分框图:

(3)源代码(附注释)

#include "stdafx.h"

#include

#include

#include

#include

#include

using namespace std;p

const int PCB=100; //定义100个进程

int pcbs_num=0; //记录当前io表的进程个数typedef struct process //请求io表

{

char pname[10]; //进程名

int Cylinder; //柱面号

int Track; //磁道号

int Record; //物理记录号

int Way;

}PROCESS;

PROCESS pcbs[PCB];

PROCESS a; //记录当前位置(柱面号、物理记录号)

void init_a() //设置当前位置

{

a.Cylinder =4;

a.Track =0;

a.Record =0;

}

int count_PN() //记录进程总数

{

int i;

for(i=0;pcbs[i].Cylinder != NULL;i++)

{}

cout<

return i;

}

void accept() //接受请求模拟算法

{

cout<<"输入进程名和物理地址(柱面号,磁道号,物理记录号)"<

cin>>pcbs[pcbs_num].pname >>pcbs[pcbs_num].Cylinder >>pcbs[pcbs_num].Track >>pcbs [pcbs_num].Record ;

pcbs_num++;

}

int Cylinder_e() //判断柱面号相等

{

for(int i=0; i

{

if(pcbs[i].Cylinder == a.Cylinder)

return i;

}

return 0;

}

int Cylinder_near(int cylinder,int record ) ////选择当前柱面号的访问者中物理块号最近的

{

int t=8,a,k;

for (int i=0;i

{

if (pcbs[i].Cylinder== cylinder)

{

a= pcbs[i].Record - record;

if(a<0){a=a+8;}

if (a

{

t=a;

k=i;

}

}

}

return k;

}

int Cylinder_max(int cylinder) //选择比当前柱面号大的请求中柱面号最小的

{

int num,t=199,i,a=0,b=0;

for (i=0 ;i

{

if ((abs(pcbs[i].Cylinder -cylinder)) cylinder)

{

t=abs(pcbs[i].Cylinder -cylinder);

}

}

num = cylinder+t; //选择的柱面号

t = 8; //物理块号最大相差7

for (i=0;i

{

if(pcbs[i].Cylinder==num &&pcbs[i].Record < t)

{

t=pcbs[i].Record;

a=i;

}

}

return a;

}

int Cylinder_max1(int cylinder)

{

int t=199,i,b=0,c=0;

for (i=0 ;i

{

if ((abs(pcbs[i].Cylinder -cylinder))>b && pcbs[i].Cylinder > cylinder)

{

b=abs(pcbs[i].Cylinder -cylinder);

}

}

return b;

}

int Cylinder_min(int cylinder) //选择比当前柱面号小的请求中柱面号最大的

{

int num,t=199,i,a=0;

for (i=0 ;i

{

if ((abs(pcbs[i].Cylinder -cylinder))

{

t=abs(pcbs[i].Cylinder -cylinder);

}

}

num = cylinder-t;

t = 8; //物理块号相差最大为7

for (i=0;i

{

if(pcbs[i].Cylinder==num && pcbs[i].Record

{

t=pcbs[i].Record ;

a=i;

}

}

return a; //返回柱面号小的请求中柱面号最大的下标

}

void delete_scan(int x)

{

for (int i=x;i

pcbs[i]=pcbs[i+1];

pcbs_num--;

}

void print_io() //打印请求io表

{

cout<<"输出请求i/o表:"<

cout<<"进程名"<<" 柱面号"<<" 磁道号"<<" 物理记录号"<

for (int i=0;i

{

cout<

}

}

void print_scan(bool x)

{

cout<<"选中的:"<

cout<<"进程名"<<" 柱面号"<<" 磁道号"<<" 物理记录号"<<" 方向"<

cout<

<

<

<

<

}

int SCAN() //驱动调度电梯调度模拟算法

{

print_io(); //打印io表

int scan;

int scan1;//scan为选择的进程的编号

bool way=1; //方向0=out 1=in

if (a.Cylinder ==NULL)

{

init_a();

}

if (pcbs_num==0)

{

cout<<"无等待访问者"<

return 0;

}

else

{

if (pcbs[Cylinder_e()].Cylinder ==a.Cylinder) //选择能使旋转距离最短的访问者{

scan=Cylinder_near(a.Cylinder ,a.Record);//选择当前柱面号的访问者中最近的

if (pcbs[scan].Cylinder

{

way=0;

}

else

way=1;

}

else

{

if (way==1)

{

scan =Cylinder_max(a.Cylinder); //选择比当前柱面号大的请求中物理块号最小的

scan1=Cylinder_max1(a.Cylinder);

if (scan==scan1)

{

scan=Cylinder_min(a.Cylinder); //选择比当前柱面号小的请求中物理块号最大的

way=0;

}

}

else

{

scan =Cylinder_min(a.Cylinder);

if (scan==0)

{

scan=Cylinder_max(a.Cylinder);

way=1;

}

}

}

a=pcbs[scan];

delete_scan(scan); //删除pcbs[scan]

print_scan(way); //打印

return 1;

}

}

void work ()//初始化

{

float n;

char y='y';

while(y=='y'||y=='Y')

{

cout<<"输入在[0,1]区间内的一个随机数"<

cin>>n;

if (n>0.5)

{

SCAN(); //驱动调度

}

else

{

accept(); //接受请求

}

cout<<"继续?(y/n)"<

cin>>y;

}

}

void main()

{

work();

}

五、实验小结

通过模拟电梯调度算法实现对磁盘的驱动调度的设计,使我更加深刻的了解了磁盘驱动调度的工作的过程。初始化“请求I/O”表,置当前移臂方向为里移;置当前位置为0号柱面,0号物理记录。当有等待访问磁盘的进程时,按电梯调度算法从中选择一个等待访问者,按该进程指定的磁盘物理地址启动磁盘为其服务。对移动臂磁盘来说,驱动调度分移臂调度和旋转调度。电梯调度算法的调度策略是与移动臂的移动方向和移动臂的当前位置有关的,所以每次启动磁盘时都应登记移臂方向和当前位置。电梯调度算法总是优先选择与当前柱面号相同的访问请求,从这些请求中再选择一个能使旋转距离最短的等待访问者。如果没有与当前柱面号相同的访问请求,则根据移臂方向来选择,每次总是沿臂移动方向选择一个与当前柱面号最近的访问请求,若沿这个方向没有访问请求时,就改变臂的移动方向。在这次实验中,巩固了C语言编程知识,并且对电梯调度算法的状况有了更

形象的认识。

操作系统实验报告

操作系统实验报告 一、实验目的 1、处理机调度:在多道程序或多任务系统中,系统中同时处于就绪状态有 若干,也就是说能运行的进程数远远大于处理机个数。为了使系统中的 各进程能有条不紊地运行,必须选择某种调度策略,以选择一进程占用 处理机。 2、银行家算法:模拟进程的资源分配算法,了解死锁的产生和避免。 3、页面替换:在分页虚拟存储系统中,当硬件发出缺页中断后转操作系统 处理缺页中断。如果主存中已无空闲块,采用合适算法进行缺页处理。 4、移臂调度:在启动之前按驱动调度策略对访问的请求优化其排序十分必 要。就应该考虑使移动臂的移动时间最短的调度策略。 将上述算法放在一个程序中进行调度,就是本次课程设计的主要内容。二、实验要求 书写实验报告,应该包括以下几项内容: 1、实验题目 2、程序中使用的数据结构及主要符号说明。 3、程序流程图和带有注释的源程序。 4、执行程序名,并打印程序运行时的初值和运行结果,其中包括: I、各程序进程块的初始状态。 II、选中运行进程的名字、运行后各进程控制块状态以及每次调度时,就绪队列的进程排列顺序。 5、通过实验后的收获和体会及对实验的改进意见和见解。 三、实验内容 该程序中包括了处理机调度、页面置换算法、移臂调度算法;这三种算法中各包含了三种调度方式。最后还有银行家算法。 四、实验结果展示 1、初始界面如下

2、处理机调度过程

3、页面替换调度的界面

4、银行家算法界面 5、移臂调度界面 五、实验收获与体会 本次课程设计将平时做的实验综合在一起,通过界面的控制来调度不同的算法,实现不同的目的。当初单个实验执行没有错误,放在一起就出现了很多问题,比如重定义问题,整个实验中也只能出现一个main( )函数。 通过本次课程设计,收获颇多,当调出没错误时,一种前所未有的成就感油

实验五-页面调度算法模拟实验报告

《计算机操作系统》实验报告 实验五:页面调度算法模拟 学校:╳╳╳ 院系:╳╳╳ 班级:╳╳╳ 姓名:╳╳╳ 学号:╳╳╳

指导教师:╳╳╳ 目录 一、实验题目 (3) 二、实验学时 (4) 三、指导老师 (4) 四、实验日期 (4) 五、实验目的 (4) 六、实验原理 (4) 6.1页面的含义 (4) 6.2 页面置换算法的含义 (4) 6.3 置换算法 (4) 6.3.1最佳置换算法(Optimal) (5) 6.3.2先进先出(FIFO)页面置换算法 (5) 6.3.3 LRU置换算法 (5) 七、实验步骤及结果 (5)

7.1 验证最佳置换算法 (5) 7.1.1 实验截图 (5) 7.1.2 实验分析 (6) 7.2 验证先进先出(FIFO)页面置换算法 (7) 7.2.1 实验截图 (7) 7.2.2 实验分析 (7) 7.3 验证LRU置换算法 (8) 7.3.1 实验截图 (8) 7.3.2 实验分析 (8) 八、报告书写人 (9) 附录一最佳置换算法(Optimal) (9) 附录二先进先出(FIFO)页面置换算法 (15) 附录三LRU置换算法 (20) 实验五:页面调度算法模拟 一、实验题目 页面调度算法模拟

二、实验学时 2学时 三、指导老师 ╳╳╳ 四、实验日期 2018年12月10日星期一 五、实验目的 (1)熟悉操作系统页面调度算法 (2)编写程序模拟先进先出、LRU等页面调度算法,体会页面调度算法原理 六、实验原理 6.1页面的含义 分页存储管理将一个进程的逻辑地址空间分成若干大小相等的片,称为页面或页。 6.2 页面置换算法的含义 在进程运行过程中,若其所要访问的页面不在内存而需把它们调入内存,但内存已无空闲空间时,为了保证该进程能正常运行,系统必须从内存中调出一页程序或数据,送磁盘的对换区中。但应将哪个页面调出,须根据一定的算法来确定。通常,把选择换出页面的算法称为页面置换算法(Page_Replacement Algorithms)。 6.3 置换算法 一个好的页面置换算法,应具有较低的页面更换频率。从理论上讲,应将那些以后不再会访问的页面换出,或将那些在较长时间内不会再访问的页面调出。

实验一进程调度实验报告书

淮海工学院计算机工程学院实验报告书 课程名:《操作系统原理A》 题目:进程调度 班级:软件132 学号:2013122907 姓名:孙莹莹

操作系统原理实验——进程调度实验报告 一、目的与要求 1)进程是操作系统最重要的概念之一,进程调度是操作系统内核的重要功能,本实验要求用C 语言编写一个进程调度模拟程序,使用优先级或时间片轮转法实现进程调度。本实验可加深对进程调度算法的理解。 2)按照实验题目要求独立正确地完成实验内容(编写、调试算法程序,提交程序清单及及相关实验数据与运行结果) 3)于2015年4月18日以前提交本次实验报告(含电子和纸质报告,由学习委员以班为单位统一打包提交)。 二、实验内容或题目 1)设计有5个进程并发执行的模拟调度程序,每个程序由一个PCB表示。 2)模拟调度程序可任选两种调度算法之一实现(有能力的同学可同时实现两个调度算法)。 3)程序执行中应能在屏幕上显示出各进程的状态变化,以便于观察调度的整个过程。 4)本次实验内容(项目)的详细说明以及要求请参见实验指导书。 三、实验步骤与源程序 (1)流程图

(2)实验步骤 1)PCB的结构:优先级算法中,设PCB的结构如下图所示,其中各数据项的含义如下: Id:进程标识符号,取值1—5。 Priority:优先级,随机产生,范围1—5。 Used:目前已占用的CPU时间数,初值为0;当该进程被调用执行时,每执行一个时间片,Used加1。 Need:进程尚需的CPU时间数,初值表示该进程需要运行的总时间,取值范围为5—10。并随机产生,每运行一个时间片need减1;need为0则进程结束。 Status:进程状态R(运行),W(就绪),F(完成);初始时都处于就绪状态。 Next:指向就绪队列中下一个进程的PCB的指针。 2)初始状态及就绪队列组织: 5个进程初始都处于就绪状态,进程标识1—5,used初值都为0。各进程的优先级随机产生,范围1—5。处于就绪状态的进程,用队列加以组织,队列按优先级由高到低依次排列,队首指针设为head,队尾指针为tail。 3)调度原则以及运行时间的处理: 正在执行的进程每执行一个时间片,其优先级减1(允许优先级为负)。进程调度将在以下情况发生:当正在运行的程序其优先级小于就绪队列队首进程的优先级时。程序中进程的运行时间以逻辑时间片为单位。

作业调度_实验报告

实验名 称 作业调度 实验内容1、设计可用于该实验的作业控制块; 2、动态或静态创建多个作业; 3、模拟先来先服务调度算法和短作业优先调度算法。 3、调度所创建的作业并显示调度结果(要求至少显示出各作业的到达时间,服务时间,开始时间,完成时间,周转时间和带权周转时间); 3、比较两种调度算法的优劣。 实验原理一、作业 作业(Job)是系统为完成一个用户的计算任务(或一次事物处理)所做的工作总和,它由程序、数据和作业说明书三部分组成,系统根据该说明书来对程序的运行进行控制。在批处理系统中,是以作业为基本单位从外存调入内存的。 二、作业控制块J C B(J o b C o nt r o l Bl o ck) 作业控制块JCB是记录与该作业有关的各种信息的登记表。为了管理和调度作业,在多道批处理系统中为每个作业设置了一个作业控制块,如同进程控制块是进程在系统中存在的标志一样,它是作业在系统中存在的标志,其中保存了系统对作业进行管理和调度所需的全部信息。在JCB中所包含的内容因系统而异,通常应包含的内容有:作业标识、用户名称、用户帐户、作业类型(CPU 繁忙型、I/O 繁忙型、批量型、终端型)、作业状态、调度信息(优先级、作业已运行时间)、资源需求(预计运行时间、要求内存大小、要求I/O设备的类型和数量等)、进入系统时间、开始处理时间、作业完成时间、作业退出时间、资源使用情况等。 三、作业调度 作业调度的主要功能是根据作业控制块中的信息,审查系统能否满足用户作业的资源需求,以及按照一定的算法,从外存的后备队列中选取某些作业调入内存,并为它们创建进程、分配必要的资源。然后再将新创建的进程插入就绪队列,准备执行。 四、选择调度算法的准则 1).面向用户的准则 (1) 周转时间短。通常把周转时间的长短作为评价批处理系统的性能、选择作业调度方式与算法的重要准则之一。所谓周转时间,是指从作业被提交给系统开始,到作业完成为止的这段时间间隔(称

嵌入式操作系统实验报告

中南大学信息科学与工程学院实验报告 姓名:安磊 班级:计科0901 学号: 0909090310

指导老师:宋虹

目录 课程设计内容 ----------------------------------- 3 uC/OS操作系统简介 ------------------------------------ 3 uC/OS操作系统的组成 ------------------------------ 3 uC/OS操作系统功能作用 ---------------------------- 4 uC/OS文件系统的建立 ---------------------------- 6 文件系统设计的原则 ------------------------------6 文件系统的层次结构和功能模块 ---------------------6 文件系统的详细设计 -------------------------------- 8 文件系统核心代码 --------------------------------- 9 课程设计感想 ------------------------------------- 11 附录-------------------------------------------------- 12

课程设计内容 在uC/OS操作系统中增加一个简单的文件系统。 要求如下: (1)熟悉并分析uc/os操作系统 (2)设计并实现一个简单的文件系统 (3)可以是存放在内存的虚拟文件系统,也可以是存放在磁盘的实际文件系统 (4)编写测试代码,测试对文件的相关操作:建立,读写等 课程设计目的 操作系统课程主要讲述的内容是多道操作系统的原理与技术,与其它计算机原理、编译原理、汇编语言、计算机网络、程序设计等专业课程关系十分密切。 本课程设计的目的综合应用学生所学知识,建立系统和完整的计算机系统概念,理解和巩固操作系统基本理论、原理和方法,掌握操作系统开发的基本技能。 I.uC/OS操作系统简介 μC/OS-II是一种可移植的,可植入ROM的,可裁剪的,抢占式的,实时多任务操作系统内核。它被广泛应用于微处理器、微控制器和数字信号处理器。 μC/OS 和μC/OS-II 是专门为计算机的嵌入式应用设计的,绝大部分代码是用C语言编写的。CPU 硬件相关部分是用汇编语言编写的、总量约200行的汇编语言部分被压缩到最低限度,为的是便于移植到任何一种其它的CPU 上。用户只要有标准的ANSI 的C交叉编译器,有汇编器、连接器等软件工具,就可以将μC/OS-II嵌入到开发的产品中。μC/OS-II 具有执行效率高、占用空间小、实时性能优良和可扩展性强等特点,最小内核可编译至2KB 。μC/OS-II 已经移植到了几乎所有知名的CPU 上。 严格地说uC/OS-II只是一个实时操作系统内核,它仅仅包含了任务调度,任务管理,时间管理,内存管理和任务间的通信和同步等基本功能。没有提供输入输出管理,文件系统,网络等额外的服务。但由于uC/OS-II良好的可扩展性和源码开放,这些非必须的功能完全 可以由用户自己根据需要分别实现。 uC/OS-II目标是实现一个基于优先级调度的抢占式的实时内核,并在这个内核之上提供最基本的系统服务,如信号量,邮箱,消息队列,内存管理,中断管理等。 uC/OS操作系统的组成 μC/OS-II可以大致分成核心、任务处理、时间处理、任务同步与通信,CPU的移植等5个部分。如下图:

进程调度算法实验报告

操作系统实验报告(二) 实验题目:进程调度算法 实验环境:C++ 实验目的:编程模拟实现几种常见的进程调度算法,通过对几组进程分别使用不同的调度算法,计算进程的平均周转时间和平均带权周转时间,比较 各种算法的性能优劣。 实验内容:编程实现如下算法: 1.先来先服务算法; 2.短进程优先算法; 3.时间片轮转调度算法。 设计分析: 程序流程图: 1.先来先服务算法 开始 初始化PCB,输入进程信息 各进程按先来先到的顺序进入就绪队列 结束 就绪队列? 运行 运行进程所需CPU时间 取消该进程 2.短进程优先算法

3.时间片轮转调度算法 实验代码: 1.先来先服务算法 #include #define n 20 typedef struct { int id; //进程名

int atime; //进程到达时间 int runtime; //进程运行时间 }fcs; void main() { int amount,i,j,diao,huan; fcs f[n]; cout<<"请输入进程个数:"<>amount; for(i=0;i>f[i].id; cin>>f[i].atime; cin>>f[i].runtime; } for(i=0;if[j+1].atime) {diao=f[j].atime; f[j].atime=f[j+1].atime; f[j+1].atime=diao; huan=f[j].id; f[j].id=f[j+1].id; f[j+1].id=huan; } } } for(i=0;i #define n 5 #define num 5 #define max 65535 typedef struct pro { int PRO_ID; int arrive_time;

操作系统的进程调度 实验报告

《计算机操作系统2》实验报告 实验一题目:操作系统的进程调度 姓名:学号:12125807 实验日期:2014.12 实验要求: 1.设计一个有n个进程工行的进程调度程序。每个进程由一个进程控制块(PCB)表示。 进程控制块通常应包含下述信息:进程名、进程优先数、进程需要运行的时间、占用CPU的时间以及进程的状态等,且可按调度算法的不同而增删。 2.调度程序应包含2~3种不同的调度算法,运行时可任意选一种,以利于各种算法的分 析比较。 3.系统应能显示或打印各进程状态和参数的变化情况,便于观察诸进程的调度过程 实验目的: 1.进程是操作系统最重要的概念之一,进程调度又是操作系统核心的主要内容。本实习要 求学生独立地用高级语言编写和调试一个简单的进程调度程序。调度算法可任意选择或自行设计。例如,简单轮转法和优先数法等。本实习可加深对于进程调度和各种调度算法的理解。 实验内容: 1.编制和调试示例给出的进程调度程序,并使其投入运行。 2.自行设计或改写一个进程调度程序,在相应机器上调试和运行该程序,其功能应该不亚 于示例。 3.直观地评测各种调度算法的性能。 示例: 1.题目 本程序可选用优先数法或简单轮转法对五个进程进行调度。每个进程处于运行R(run)、就绪W(wait)和完成F(finish)三种状态之一,并假设起始状态都是就绪状态W。为了便于处理,程序进程的运行时间以时间片为单位计算。各进程的优先数或轮转时间片数、以及进程需要运行的时间片数,均由伪随机数发生器产生。 进程控制块结构如下:

PCB 进程标识数 链指针 优先数/轮转时间片数 占用CPU时间片数 进程所需时间片数 进程状态 进程控制块链结构如下: 其中:RUN—当前运行进程指针; HEAD—进程就绪链链首指针; TAID—进程就绪链链尾指针。 2.算法与框图 (1) 优先数法。 进程就绪链按优先数大小从高到低排列,链首进程首先投入运行。每过一个时间片,运行进程所需运行的时间片数减1,说明它已运行了一个时间片,优先数也减3,理由是该进程如果在一个时间片中完成不了,优先级应该降低一级。接着比较现行进程和就绪链链首进程的优先数,如果仍是现行进程高或者相同,就让现行进程继续进行,否则,调度就绪链链首进程投入运行。原运行进程再按其优先数大小插入就绪链,且改变它们对应的进程状态,直至所有进程都运行完各自的时间片数。 (2) 简单轮转法。 进程就绪链按各进程进入的先后次序排列,进程每次占用处理机的轮转时间按其重要程度登入进程控制块中的轮转时间片数记录项(相当于优先数法的优先数记录项位置)。每过一个时间片,运行进程占用处理机的时间片数加1,然后比较占用处理机的时间片数是否与该进程的轮转时间片数相等,若相等说明已到达轮转时间,应将现运行进程排到就绪链末尾,调度链首进程占用处理机,且改变它们的进程状态,直至所有进程完成各自的时间片。(3) 程序框图如下图所示。

期末操作系统实验报告

深圳大学实验报告 实验项目名称:操作系统实验报告 学院:师范学院 专业:教育技术学 指导教师:涂向华 报告人:赵静静学号:2010122004 实验时间:2012.12.20 实验报告提交时间:2012 12.24 教务处制

实验一进程调度模拟程序设计 【实验内容】 设计一个有几个进程并发执行的进程调度程序,每个进程由一个进程控制块(PCB)表示,进程控制块通常应包括下述信息:进程名,进程优先数,进程需要运行的时间,占用CPU的时间以及进程的状态等,且可按照调度算法的不同而增删。 调度程序应包含2种不同的调度算法,运行时可以任选一种,以利于各种方法的分析和比较。 系统应能显示或打印各进程状态和参数的变化情况,便于观察。 【实验目的】 进程是操作系统最重要的概念之一,也是操作系统的主要内容,本实验要求学生独立地用高级语言编写一个进程调度程序,调度算法可任意选择或自行设计,本实验可使学生加深对进程调度和各种调度算法的理解。 【实验过程】 1.做出进程调用流程图: 2.先来先服务算法(FCFS) 算法思想该算法思想是按照进入就绪队列的先后次序来分配处理机。FCFS 采用非剥夺调度方式,即一旦某个进程占有处理机,就一直运行下去,直到该进程完成其工作或因等待某一事件而不能继续执行时才释放处理机。 3.时间片轮转法(Round Robin)

算法思想 该算法思想是使每个进程在就绪队列中的等待时间与享受服务的时间成比例。即将CPU的处理时间分成固定大小的时间片,如果在执行的一个进程把它分给它的时间片用完了,但任务还没有完成,则它也只能停止下来,释放它所占的CPU资源,然后排在相应的就绪队列的后面去。 本次实验运用到的时间片轮转法: 1.设系统有3个进程,每个进程用一个进程控制块PCB来代表。 2.为每个进程任意确定一个要求运行时间。 3.按照进程输入的先后顺序排成一个队列。再设一个队首指针指向第一个到达进程的首址。 4.执行处理机调度时,开始选择队首的第一个进程运行。另外,再设一个当前运行进程的指针,指向当前正在运行的进程。 5.考虑到代码的可重用性, 轮转法调度程序是调用同一个模快进行输出。注:由于轮转法调度程序和最高优先级优先调度和最高优先级优先调度是调用同一个模快进行输出,所以在时间轮转法调度算法的进程中,依然显示了随即产生的优先级数. 6.进程运行一次后,以后的调度则将当前指针依此下移一个位置,指向下一个进程,即调整当前运行指针指向该进程的链接指针所指进程,以指示应运行进程。同时还应判断该进程的要求运行时间是否等于已运行时间。若不等,则等待下一轮的运行,否则将该进程的状态置为完成态,并退出循环队列。 7.若就绪队列不空,则重复上述的(5)和(6)步骤直到所有的进程都运行完为止。 8.在所设计的调度程序中,包含显示或打印语句。显示或打印每次选中的进程的名称及运行一次后队列的变化情况。 实验代码:FCFS算法 #include #include #include #define N 5 //进程个数,可改变 int rt[N]; //到达时间 int st[N]; //服务时间 int ct[N]; //完成时间 int cyt[N]; //周转时间 float rct[N]; //带权周转时间 float av[2]; int n,m; void line() //美化程序,使程序运行时更加明朗美观 { printf("------------------------------------------------------------------\n"); }

作业调度实验报告

作业调度实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二作业调度 一.实验题目 1、编写并调试一个单道处理系统的作业等待模拟程序。 作业调度算法:分别采用先来先服务(FCFS),最短作业优先(SJF)、响应比高者优先(HRN)的调度算法。 (1)先来先服务算法:按照作业提交给系统的先后顺序来挑选作业,先提交的先被挑选。 (2)最短作业优先算法:是以进入系统的作业所提出的“执行时间”为标准,总是优先选取执行时间最短的作业。 (3)响应比高者优先算法:是在每次调度前都要计算所有被选作业(在后备队列中)的响应比,然后选择响应比最高的作业执行。 2、编写并调度一个多道程序系统的作业调度模拟程序。 作业调度算法:采用基于先来先服务的调度算法。可以参考课本中的方法进行设计。 对于多道程序系统,要假定系统中具有的各种资源及数量、调度作业时必须考虑到每个作业的资源要求。 二.实验目的: 本实验要求用高级语言(C语言实验环境)编写和调试一个或多个作业调度的模拟程序,了解作业调度在操作系统中的作用,以加深对作业调度算法的理解三 .实验过程 <一>单道处理系统作业调度 1)单道处理程序作业调度实验的源程序: 执行程序: 2)实验分析:

1、由于在单道批处理系统中,作业一投入运行,它就占有计算机的一切资源直到作业完成为止,因此调度作业时不必考虑它所需要的资源是否得到满足,它所占用的 CPU 时限等因素。 2、每个作业由一个作业控制块JCB 表示,JCB 可以包含如下信息:作业名、提交时间、所需的运行时间、所需的资源、作业状态、链指针等等。作业的状态可以是等待W(Wait)、运行R(Run)和完成F(Finish)三种状态之一。每个作业的最初状态总是等待W 。 3、对每种调度算法都要求打印每个作业开始运行时刻、完成时刻、周转时间、带权周转时间,以及这组作业的平均周转时间及带权平均周转时间。 3)流程图: 二.最短作业优先算法 三.高响应比算法 图一.先来先服务流程图 4)源程序: #include <> #include <> #include <> #define getpch(type) (type*)malloc(sizeof(type)) #define NULL 0 int n; float T1=0,T2=0; int times=0; struct jcb .\n",p->name); free(p); .wait...",time); if(times>1000) 代替 代替

进程调度算法模拟实验

华北科技学院计算机系综合性实验 实验报告 课程名称操作系统C 实验学期2012至2013学年第2学期学生所在系部计算机系 年级专业班级 学生姓名学号 任课教师杜杏菁 实验成绩 计算机系制

《操作系统C》课程综合性实验报告 开课实验室:基础六机房2013年6月3日 实验题目进程调度算法模拟 一、实验目的 通过对进程调度算法的模拟,进一步理解进程的基本概念,加深对进程运行状态和进程调度过程、调度算法的理解。 二、设备与环境 1.硬件设备:PC机一台 2.软件环境:安装Windows操作系统或者Linux操作系统,并安装相关的程序开发环境,如C \C++\Java等编程语言环境。 三、实验内容 (1)用C语言(或其它语言,如Java)实现对N个进程采用某种进程调度算法(如动态优先权调度)的调度。 (2)每个用来标识进程的进程控制块PCB可用结构来描述,包括以下字段: ?进程标识数ID。 ?进程优先数PRIORITY,并规定优先数越大的进程,其优先权越高。 ?进程已占用CPU时间CPUTIME。 ?进程还需占用的CPU时间ALLTIME。当进程运行完毕时,ALLTIME变为0。 ?进程的阻塞时间STARTBLOCK,表示当进程再运行STARTBLOCK个时间片后,进程将进 入阻塞状态。 ?进程被阻塞的时间BLOCKTIME,表示已阻塞的进程再等待BLOCKTIME个时间片后,将 转换成就绪状态。 ?进程状态STATE。 ?队列指针NEXT,用来将PCB排成队列。 (3)优先数改变的原则: ?进程在就绪队列中呆一个时间片,优先数增加1。 ?进程每运行一个时间片,优先数减3。 (4)为了清楚地观察每个进程的调度过程,程序应将每个时间片内的进程的情况显示出来,包括正在运行的进程,处于就绪队列中的进程和处于阻塞队列中的进程。

移臂调度算法

移臂调度算法 一、实验目的 作为操作系统的辅助存储器,用来存放文件的磁盘是一类高速大容量旋转型存储设备,在繁重的I/O设备负载下,同时会有若干传输请求来到并等待处理,系统必须采用一种调度策略,能够按最佳次序执行要求访问的诸多请求,这叫做驱动调度,所使用的算法叫做驱动调度算法。 驱动调度算法能减少为若干I/O请求服务所需消耗的总时间,从而提高系统效率。 对于磁盘设备,在启动之前按驱动调度策略对访问的请求优化其排序十分必要。除了使旋转圈数达到最少的调度策略外,还应考虑使移动臂的移动时间最短的调度策略。 二、实验要求 书写实验报告,应该包括以下几项内容: (1)实验题目; (2)程序中使用的数据结构及主要符号说明; (3)程序流程图和带有注释的源程序; (4)执行程序名,并打印程序运行时的初值和运行结果; (5)通过实验后的收获与体会及对实验的改进意见和见解。 三、程序及主要符号说明 (1)先来先服务(FCFS) 这是一种简单的磁盘调度算法。它根据进程请求访问磁盘的先后次序进行调度。此算法的优点是公平、简单,且每个进程的请求都能依次得到处理,不会出

现某一进程的请求长期得不到满足的情况。但此算法由于未对寻道进行优化,致使平均寻道时间可能较长。 (2)最短寻道时间优先(SSTF) 该算法选择这样的进程,其要求访问的磁道与当前磁头所在的磁道距离最近,以使每次的寻道时间最短,但这种调度算法却不能保证平均寻道时间最短。 (3)扫描算法(SCAN) SCAN算法不仅考虑到欲访问的磁道与当前磁道的距离,更优先考虑的是磁头的当前移动方向。例如,当磁头正在自里向外移动时,SCAN算法所选择的下一个访问对象应是其欲访问的磁道既在当前磁道之外,又是距离最近的。这样自里向外地访问,直到再无更外的磁道需要访问才将磁臂换向,自外向里移动。这时,同样也是每次选择这样的进程来调度,即其要访问的磁道,在当前磁道之内,从而避免了饥饿现象的出现。由于这种算法中磁头移动的规律颇似电梯的运行,故又称为电梯调度算法。 四、实验结果 1、先来先服务调度(FCFS) 2、最短寻道时间优先调度(SSTF)

操作系统实验报告-作业调度

作业调度 一、实验目的 1、对作业调度的相关内容作进一步的理解。 2、明白作业调度的主要任务。 3、通过编程掌握作业调度的主要算法。 二、实验内容及要求 1、对于给定的一组作业, 给出其到达时间和运行时间,例如下表所示: 2、分别用先来先服务算法、短作业优先和响应比高者优先三种算法给出作业的调度顺序。 3、计算每一种算法的平均周转时间及平均带权周转时间并比较不同算法的优劣。

测试数据 workA={'作业名':'A','到达时间':0,'服务时间':6} workB={'作业名':'B','到达时间':2,'服务时间':50} workC={'作业名':'C','到达时间':5,'服务时间':20} workD={'作业名':'D','到达时间':5,'服务时间':10} workE={'作业名':'E','到达时间':12,'服务时间':40} workF={'作业名':'F','到达时间':15,'服务时间':8} 运行结果 先来先服务算法 调度顺序:['A', 'B', 'C', 'D', 'E', 'F'] 周转时间: 带权周转时间:

短作业优先算法 调度顺序:['A', 'D', 'F', 'C', 'E', 'B'] 周转时间: 带权周转时间:1. 响应比高者优先算法 调度顺序:['A', 'D', 'F', 'E', 'C', 'B'] 周转时间: 带权周转时间: 五、代码 #encoding=gbk workA={'作业名':'A','到达时间':0,'服务时间':6,'结束时间':0,'周转时间':0,'带权周转时间':0} workB={'作业名':'B','到达时间':2,'服务时间':50} workC={'作业名':'C','到达时间':5,'服务时间':20} workD={'作业名':'D','到达时间':5,'服务时间':10} workE={'作业名':'E','到达时间':12,'服务时间':40} workF={'作业名':'F','到达时间':15,'服务时间':8} list1=[workB,workA,workC,workD,workE,workF] list2=[workB,workA,workC,workD,workE,workF] list3=[workB,workA,workC,workD,workE,workF] #先来先服务算法 def fcfs(list): resultlist = sorted(list, key=lambda s: s['到达时间']) return resultlist #短作业优先算法 def sjf(list): time=0 resultlist=[] for work1 in list: time+=work1['服务时间'] listdd=[] ctime=0 for i in range(time): for work2 in list: if work2['到达时间']<=ctime: (work2) if len(listdd)!=0: li = sorted(listdd, key=lambda s: s['服务时间']) (li[0]) (li[0]) ctime+=li[0]['服务时间'] listdd=[]

(完整word版)操作系统实验报告 实验一 进程管理

实验一进程管理 一、目的 进程调度是处理机管理的核心内容。本实验要求编写和调试一个简单的进程调度程序。通过本实验加深理解有关进程控制块、进程队列的概念,并体会和了解进程调度算法的具体实施办法。 二、实验内容及要求 1、设计进程控制块PCB的结构(PCB结构通常包括以下信息:进程名(进程ID)、进程优先数、轮转时间片、进程所占用的CPU时间、进程的状态、当前队列指针等。可根据实验的不同,PCB结构的内容可以作适当的增删)。为了便于处理,程序中的某进程运行时间以时间片为单位计算。各进程的轮转时间数以及进程需运行的时间片数的初始值均由用户给定。 2、系统资源(r1…r w),共有w类,每类数目为r1…r w。随机产生n进程P i(id,s(j,k),t),0<=i<=n,0<=j<=m,0<=k<=dt为总运行时间,在运行过程中,会随机申请新的资源。 3、每个进程可有三个状态(即就绪状态W、运行状态R、等待或阻塞状态B),并假设初始状态为就绪状态。建立进程就绪队列。 4、编制进程调度算法:时间片轮转调度算法 本程序用该算法对n个进程进行调度,进程每执行一次,CPU时间片数加1,进程还需要的时间片数减1。在调度算法中,采用固定时间片(即:每执行一次进程,该进程的执行时间片数为已执行了1个单位),这时,CPU时间片数加1,进程还需要的时间片数减1,并排列到就绪队列的尾上。 三、实验环境 操作系统环境:Windows系统。 编程语言:C#。 四、实验思路和设计 1、程序流程图

2、主要程序代码 //PCB结构体 struct pcb { public int id; //进程ID public int ra; //所需资源A的数量 public int rb; //所需资源B的数量 public int rc; //所需资源C的数量 public int ntime; //所需的时间片个数 public int rtime; //已经运行的时间片个数 public char state; //进程状态,W(等待)、R(运行)、B(阻塞) //public int next; } ArrayList hready = new ArrayList(); ArrayList hblock = new ArrayList(); Random random = new Random(); //ArrayList p = new ArrayList(); int m, n, r, a,a1, b,b1, c,c1, h = 0, i = 1, time1Inteval;//m为要模拟的进程个数,n为初始化进程个数 //r为可随机产生的进程数(r=m-n) //a,b,c分别为A,B,C三类资源的总量 //i为进城计数,i=1…n //h为运行的时间片次数,time1Inteval为时间片大小(毫秒) //对进程进行初始化,建立就绪数组、阻塞数组。 public void input()//对进程进行初始化,建立就绪队列、阻塞队列 { m = int.Parse(textBox4.Text); n = int.Parse(textBox5.Text); a = int.Parse(textBox6.Text); b = int.Parse(textBox7.Text); c = int.Parse(textBox8.Text); a1 = a; b1 = b; c1 = c; r = m - n; time1Inteval = int.Parse(textBox9.Text); timer1.Interval = time1Inteval; for (i = 1; i <= n; i++) { pcb jincheng = new pcb(); jincheng.id = i; jincheng.ra = (random.Next(a) + 1); jincheng.rb = (random.Next(b) + 1); jincheng.rc = (random.Next(c) + 1); jincheng.ntime = (random.Next(1, 5));

实验一 Linux基本操作实验报告

实验一Linux基本操作 一.实验目的: 1. 二.实验环境: 虚拟机+Red Hat Enterprise Server 5.0 三.实验内容: 根据以下的文字提示,调用相应的命令来完成,记录相应的运行结果。一)用户和组基本操作 1.添加一个user01用户,家目录为/home/sub2,并设置密码 2.添加一个group1 组 3.将user01用户添加到group1组中 4.修改group1组名称为group2 5.修改user01的家目录为/home/user01 6.判断/etc/password这个目录是否包含user01这个用户 7.修改user01的shell为/bin/tcsh 8.添加一个group3组,把user01和root用户都添加到该组

https://www.doczj.com/doc/b114786603.html,er01用户从group2组切换到group3组 10.设置user01的密码在2012-5-20过期 11.把/home/user01目录所属的组修改为group3 12.删除user01帐号 13.查看内核版本号 二)进程管理 1.运行cat命令:vi test,输入若干字符如this is a example,挂起vi进程 2.显示当前所有作业 3.将vi进程调度到前台运行

4.将vi进程调度到后台并分别用kill/pkill/killall命令结束该该进程。 三)磁盘管理 1.通过fdisk 将为硬盘增加一个分区(主分区或者逻辑分区)。 2.并格式化ext3系统,

3.检测分区是否有坏道 4.检测分区的完整性 5.加载分区到/mnt目录(或者其他分区)下,并拷贝一些文件到该目录下 6.(选做)为test用户设置磁盘配额(软限制和硬限制参数自行设定) 7.退出/mnt目录后卸载该分区 8.用du查看/usr目录的大小

实验一处理器调度实验报告

处理器调度一、实验内容 选择一个调度算法,实现处理器调度。 二、实验目的 在采用多道程序设计的系统中,往往有若干个进程同时处于就绪状态。 当就绪状态进程 个数大于处理器数时,就必须依照某种策略来决定哪些进程优先占用处理器。本实验模拟在单处理器情况下处理器调度,帮助学生加深了解处理器调度的工作。 三、实验题目 设计一个按优先数调度算法实现处理器调度的程序 提示: (1)假定系统有五个进程,每一个进程用一个进程控制块PCB来代表。进 程控制块的格 式为: 其中,进程名----作为进程的标识,假设五个进程的进程名分别是R, P2, P3, P4,R。 指针—按优先数的大小把五个进程连成队列,用指针指出下一个进程的进程控制块

首地址,最后一个进程中的指针为“ 0”。 要求运行时间-- 假设进程需要运行的单位时间数。 优先数-赋予进程的优先数,调度时总是选取优先数大的进程先执行。 状态-可假设有两种状态,“就绪”状态和“结束“状态,五个进程的初 始状态都为 “就绪“状态,用“ R”表示,当一个进程运行结束后,它的状态变为“结束”, 用“ E”表示。 (2)在每次运行你所设计的处理器调度程序之前,为每个进程任意确定它的“优先数” 和“要求运行时间”。 (3)为了调度方便,把五个进程按给定的优先数从大到小连成队列,用一单元指出队首 进程,用指针指出队列的连接情况。例: 队首标志 (4)处理器调度总是选队首进程运行。采用动态改变优先数的办法,进程每运行一次优 先数就减“ 1”。由于本实验是模拟处理器调度,所以,对被选中的进程并不实际的 启动运行,而是执行: 优先数- 1 要求运行时间-1 来模拟进程的一次运行提醒注意的是:在实际的系统中,当一个进程被选中运

作业调度实验报告

实验项 目名称 作业调度 实验目的及要求一、实验目的: 1、通过模拟作业调度算法的设计加深对作业管理基本原理的理解。 2、深入了解批处理系统如何组织作业、管理作业和调度作业。 3、掌握作业调度算法。 二、实验要求: 1、编写程序完成实验内容; 2、对测试数据进行分析; 3、撰写实验报告。 实验内容1、设计可用于该实验的作业控制块; 2、动态或静态创建多个作业; 3、模拟先来先服务调度算法和短作业优先调度算法。 3、调度所创建的作业并显示调度结果(要求至少显示出各作业的到达时间,服务时间,开始时间,完成时间,周转时间和带权周转时间); 3、比较两种调度算法的优劣。 实验原理一、作业 作业(Job)是系统为完成一个用户的计算任务(或一次事物处理)所做的工作总和,它由程序、数据和作业说明书三部分组成,系统根据该说明书来对程序的运行进行控制。在批处理系统中,是以作业为基本单位从外存调入内存的。 二、作业控制块J C B(J o b C o n t ro l B lo c k) 作业控制块JCB是记录与该作业有关的各种信息的登记表。为了管理和调度作业,在多道批处理系统中为每个作业设置了一个作业控制块,如同进程控制块是进程在系统中存在的标志一样,它是作业在系统中存在的标志,其中保存了系统对作业进行管理和调度所需的全部信息。在JCB中所包含的内容因系统而异,通常应包含的内容有:作业标识、用户名称、用户帐户、作业类型(CPU 繁忙型、I/O 繁忙型、批量型、终端型)、作业状态、调度信息(优先级、作业已运行时间)、资源需求(预计运行时间、要求内存大小、要求I/O设备的类型和数量等)、进入系统时间、开始处理时间、作业完成时间、作业退出时间、资源使用情况等。 三、作业调度 作业调度的主要功能是根据作业控制块中的信息,审查系统能否满足用户作业的资源需求,以及

北邮大三交换原理实验一时间表调度

《现代交换原理》实验报告 实验名称时间表的调度实验 班级 学号 姓名

实验1 时间表的调度实验 一、实验目的 驱动交换网络实验用来考查学生对时间表调度原理的掌握情况。 二、实验内容和实验步骤 1、实验原理及设计 在程控数字交换的体系结构中,周期级程序(例如摘挂机检测程序、脉冲识别程序、位间隔识别程序)是由时间表调度实现的。所谓时间表调度,是指每经过交换系统的最短有效时间(这通常是指各周期性程序周期的最大公约数),都会检查调度表的调度要求,如果某个程序在这时需要执行,则调度程序开始执行它。 在我们设计的时间表调度实验中,这个调度表的调度是静态的。所谓静态,是指我们的调度表是在系统初始化的时候就建立起来的,在系统运行的情况下不再改动。实验要求的就是这个调度表的初始化。这个调度表如下:

我们这个交换系统提供了三个周期性调度程度(摘挂机检测程序、脉冲识别程序和位间隔识别程序),它们的调用周期分别为200ms、10ms和100ms,所以我们系统的最小调度时间为10ms。如图所示,每隔10ms,我们就会检查这个表的一行,如果该行上某一列为1,我们就执列所对应的任务,如果为0,就什么都不做。每当执行到这个表的最后一行,调度任务会返回第一行循环执行。而你所要做的就是按照你的理解来填写这个调度表。 2、实验步骤: 了解实验原理及其设计; 了解实验平台的使用及数据结构; 编写C程序实现时间调度表的初始化; 在实验平台上运行程序; 三、源代码 1、实验主要数据结构: 函数功能:完成调度表的初始化; 函数原型:initSchTable(int ScheduleTable[SchTabLen][SchTabWdh]); 其中SchTalLen和SchTabWdh为在中的宏定义: #define SchTabLen 20 //代表这个调度表为20行(相邻行之间的时间间隔为 10ms); #define SchTabWdh 3 //代表三个周期性调度任务 //0:摘挂机检测任务;1:脉冲检测任务; //2:位间隔检测任务; 2、实验代码 #include "" extern "C" _declspec(dllexport) void initSchTable(int ScheduleTable[SchTabLen][SchTabWdh]) { int i; for(i=0;i

相关主题
文本预览
相关文档 最新文档