当前位置:文档之家› 人工神经网络在医学中的应用实例

人工神经网络在医学中的应用实例

人工神经网络在医学中的应用实例
人工神经网络在医学中的应用实例

人工神经网络在医学中的应用实例

人工神经网络

人工神经网络(ANN)又称神经网络,是在现代神经科学研究成果的基础上,对生物神经系统的结构和功能进行数学抽象、简化和模仿而逐步发展起来的一种新型信息处理和计算系统。由于人工神经网络具有自学习、高容错、高度非线性描述能力等优点,现已广泛应用于经济、机器人和自动控制、军事、医疗、化学等领域[l ~ 3],并取得了许多成果。本文简要介绍人工神经网络的原理和特点,论述人工神经网络在高分子科学与工程领域的应用。 橡胶配方是决定橡胶制品性能的关键因素,由于材料配方与制品性能之间存在很复杂的非线性关系,多数情况下无法建立完整精确的理论模型,只能借助于回归方法得到经验公式。 传统的回归方法存在以下局限性: (1)使用不同的回9j方法可获得不同的经验公式,导致经验公式的繁多和不一致; (2)当配方项目及性能指标项目较多时,采用回归公式无法完全再现实验数据; (3)当实验进一步完善,实验数据增多的时候.其他人员再进行回归时,如果无法找到原来的回归方法、程序和实验数据,原来的回归公式将不能被利用,造成一定的浪费。随着计箅机的发展而出现的人工神经网络是人工智能方法.它不像回归方法那样,需预先给定基本函数,而是以实验数据为基础.经过有限次的迭代计算而获得的一个反映实验数据内在联系的数学模型,具有极强的非线性处理、自组织调整、自适应学习及容错抗噪能力,特别适用于研究像材料配方与制品性能之间关系的复杂非线性系统特性【¨】。因此,人们开始将人工神经网络应用于橡胶配方设计”J。 随着橡胶制品在各领域应用的拓展,橡胶配方设计变得越来越重要。人们进行橡胶配方设计主要有3个目的:提高制品的性能;改善加工工艺;降低生产成本。传统的橡胶配方设计方法有全因素设计、正交试验设计n_3]、均匀设计[4‘60等,而这些配方设计试验数据的处理方法无外乎方差分析和回归分析口]。由于材料的配方和性能之问存在非常复杂的非线性关系,回归分析只适合于单目标优化数据处理的模型,对于不同的性能,需要建立不同的模型,因此将其应用于配方设计有一定的局限性。近年来,发展日趋成熟的人工神经网络技术,尤其是BP神经网络凭借其结构简单、收敛速度快、预测精度高等优势越来越多地应用到橡胶配方设计试验中。 1橡胶配方设计 1.1橡胶配方设计概述 配方设计¨J是橡胶工业中的首要技术问题,在橡胶工业中占有重要地位。所谓配方设计,就是根据产品的性能要求和工艺条件,通过试验、优化、鉴定,合理地选用原材料,确定各种原材料的用量配比关系。 橡胶配方人员的主要工作就是要确定一系列变量对橡胶各项性能的定量或定性影响。变量可以是硫化剂、促进剂、填充剂、防老剂等,也可以是加工:[艺条件(如硫化温度、硫化时间等),总之是配方人员可能控制或测得的变量。橡胶各项基本性能包括拉伸强度、撕裂强度、硬度、定伸应力等物理机械性能,以 及加工性能、光洁度、外观等。 橡胶配方设计常常是多变量的试验设计,配方设计理论和试验设计方法对于 配方设计具有重要意义。

人工神经网络原理及实际应用

人工神经网络原理及实际应用 摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。 关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。 1.神经网络的基本原理 因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示: 从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。 对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。 突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。 神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。 神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。 而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。 2.BP神经网络 目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。 这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

人工神经网络

人工神经网络 1.简介 人工神经网络(ANN)技术是一种信息处理范式,灵感来自于生物神经系统的方式,如大脑、处理信息。这拍拉的DIGM关键的元素是一款新颖的结构的信息处理系统。它是由大量的高度互连处理单元(神经元都)工作在和谐中要解决的具体问题。像人一样,学习结合起来,通过实例说明。一个人工神经网络被配置为某一特定的应用,如模式识别或数据分类,通过一个学习的过程。学习在生物体系需要调整突触连接之间的神经元都存在。结合起来,这是有据可查的。在更多的实际统计数据的模糊神经网络的非线性建模工具。它们能被用于模型复杂的输入-输出关系或发现模式在数据。本文将简要介绍有关知识安和打好基础,为进一步研究。 2.人工神经网络的特点 神经网络模型,拥有的卓越的能力也衍生意义是从复杂的或不精确数据,可被用于提取模式和趋势发现太过于复杂以致难以被任何人类或其它计算机技术注意到。一个受过训练的神经网络可以被认为是一个“专家”在信息范畴内,才能来来作分析。这位专家就可以被用来提供给测感和给定新的有兴趣环境,然后提问“假如如此”的问题。 神经网络的其他优点包括: 自适应学习能力:学习如何做任务的基础上,给出了初始数据训练或经验。 自组织:一个人工神经网络可以创造自己的组织或表示它收到的信息时的学习时间。 实时操作:安计算可以对并联,和特殊的硬件设备被设计和制造,充分利用这一能力。 通过冗余信息容错编码:局部破坏网络导致相应的降解性能。然而,一些网络能力甚至可以保留与主要网络伤害。 3.一个简单的神经元和复杂的神经元 一个简单神经元 一种人工神经元是一种装置与许多输入和一个输出,如图。3-26。神经元的有两种模式的操作:培养模式和使用模式。在训练模式中,神经元可以训练的射击(或没有),为特定的输入方式。在使用模式,当一个教输入模式检测到输入、输出成为其关联的输出电流。如果输入模式不属于这教的名单输入方式、烧成规则是用来确定是否发生火灾或不是。 射击规则是在神经网络的一个重要概念。一个射击规则决定了一个人如何计算一个神经

人工神经网络的发展及应用

人工神经网络的发展与应用 神经网络发展 启蒙时期 启蒙时期开始于1980年美国著名心理学家W.James关于人脑结构与功能的研究,结束于1969年Minsky和Pape~发表的《感知器》(Perceptron)一书。早在1943年,心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型(即M—P模型),该模型把神经细胞的动作描述为:1神经元的活动表现为兴奋或抑制的二值变化;2任何兴奋性突触有输入激励后,使神经元兴奋与神经元先前的动作状态无关;3任何抑制性突触有输入激励后,使神经元抑制;4突触的值不随时间改变;5突触从感知输入到传送出一个输出脉冲的延迟时问是0.5ms。可见,M—P模型是用逻辑的数学工具研究客观世界的事件在形式神经网络中的表述。现在来看M—P 模型尽管过于简单,而且其观点也并非完全正确,但是其理论有一定的贡献。因此,M—P模型被认为开创了神经科学理论研究的新时代。1949年,心理学家D.0.Hebb 提出了神经元之间突触联系强度可变的假设,并据此提出神经元的学习规则——Hebb规则,为神经网络的学习算法奠定了基础。1957年,计算机学家FrankRosenblatt提出了一种具有三层网络特性的神经网络结构,称为“感知器”(Perceptron),它是由阈值性神经元组成,试图模拟动物和人脑的感知学习能力,Rosenblatt认为信息被包含在相互连接或联合之中,而不是反映在拓扑结构的表示法中;另外,对于如何存储影响认知和行为的信息问题,他认为,存储的信息在神经网络系统内开始形成新的连接或传递链路后,新 的刺激将会通过这些新建立的链路自动地激活适当的响应部分,而不是要求任何识别或坚定他们的过程。1962年Widrow提出了自适应线性元件(Ada—line),它是连续取值的线性网络,主要用于自适应信号处理和自适应控制。 低潮期 人工智能的创始人之一Minkey和pape~经过数年研究,对以感知器为代表的网络系统的功能及其局限性从数学上做了深入的研究,于1969年出版了很有影响的《Perceptron)一书,该书提出了感知器不可能实现复杂的逻辑函数,这对当时的人工神经网络研究产生了极大的负面影响,从而使神经网络研究处于低潮时期。引起低潮的更重要的原因是:20世纪7O年代以来集成电路和微电子技术的迅猛发展,使传统的冯·诺伊曼型计算机进入发展的全盛时期,因此暂时掩盖了发展新型计算机和寻求新的神经网络的必要性和迫切性。但是在此时期,波士顿大学的S.Grossberg教授和赫尔辛基大学的Koho—nen教授,仍致力于神经网络的研究,分别提出了自适应共振理论(Adaptive Resonance Theory)和自组织特征映射模型(SOM)。以上开创性的研究成果和工作虽然未能引起当时人们的普遍重视,但其科学价值却不可磨灭,它们为神经网络的进一步发展奠定了基础。 复兴时期 20世纪80年代以来,由于以逻辑推理为基础的人工智能理论和冯·诺伊曼型计算机在处理诸如视觉、听觉、联想记忆等智能信息处理问题上受到挫折,促使人们

基于人工神经网络的MATLAB手写数字识别系统

基于人工神经网络的MATLAB手写数字识别系统 一、函数MouseDraw实现手写识别系统GUI界面的建立和鼠标手写的实现。(使用时保存为MouseDraw.m) function MouseDraw(action) % MouseDraw 本例展示如何以Handle Graphics来设定滑鼠事件 % (MouseDraw Events)的反应指令(Callbacks) % 本程序在鼠标移动非常快时,不会造成画“断线” % global不能传矩阵 global InitialX InitialY FigHandle hb2 hb3 hb4 count hb5 hb6 hb7 count='E:\im.jpg'; imSize = 50; if nargin == 0, action = 'start'; end switch(action) %%开启图形视窗 case'start', FigHandle = figure('WindowButtonDownFcn','MouseDraw down','DeleteFcn','save bpnet'); axis([1 imSize 1 imSize]); % 设定图轴范围% set(gca,'Position',[.25 .20 .7 .7]); axis off; grid off; box on; % 将图轴加上图框 title('手写体输入窗'); try evalin('base','load bpnet') catch evalin('base','bpgdtrain'); end % % fprintf('start'); %%设定滑鼠按钮被按下时的反应指令为「MouseDraw down」 % set(gcf, 'WindowButtonDownFcn', 'MouseDraw down'); hb1 = uicontrol('Parent', FigHandle, 'Units', 'Normalized', ... 'Position', [.3 .01 .13 .07], 'String', '保存', ... 'Callback',['exa=rgb2gray(frame2im(getframe(gca)));','imwrite(exa ,''E:\im.jpg'')']); hb2=uicontrol('Parent',FigHandle,'Style','popupmenu','Position',[ 50 50 50 30],... 'String', {'26','24', '22', '20', '18', '16','14','12','10'}); hb3=uicontrol('Parent', FigHandle,'Style','text',...

人工神经网络BP算法简介及应用概要

科技信息 2011年第 3期 SCIENCE &TECHNOLOGY INFORMATION 人工神经网络是模仿生理神经网络的结构和功能而设计的一种信息处理系统。大量的人工神经元以一定的规则连接成神经网络 , 神经元之间的连接及各连接权值的分布用来表示特定的信息。神经网络分布式存储信息 , 具有很高的容错性。每个神经元都可以独立的运算和处理接收到的信息并输出结果 , 网络具有并行运算能力 , 实时性非常强。神经网络对信息的处理具有自组织、自学习的特点 , 便于联想、综合和推广。神经网络以其优越的性能应用在人工智能、计算机科学、模式识别、控制工程、信号处理、联想记忆等极其广泛的领域。 1986年 D.Rumelhart 和 J.McCelland [1]等发展了多层网络的 BP 算法 , 使BP 网络成为目前应用最广的神经网络。 1BP 网络原理及学习方法 BP(BackPropagation 网络是一种按照误差反向传播算法训练的多层前馈神经网络。基于 BP 算法的二层网络结构如图 1所示 , 包括输入层、一个隐层和输出层 , 三者都是由神经元组成的。输入层各神经元负责接收并传递外部信息 ; 中间层负责信息处理和变换 ; 输出层向 外界输出信息处理结果。神经网络工作时 , 信息从输入层经隐层流向输出层 (信息正向传播 , 若现行输出与期望相同 , 则训练结束 ; 否则 , 误差反向进入网络 (误差反向传播。将输出与期望的误差信号按照原连接通路反向计算 , 修改各层权值和阈值 , 逐次向输入层传播。信息正向传播与误差反向传播反复交替 , 网络得到了记忆训练 , 当网络的全局误差小于给定的误差值后学习终止 , 即可得到收敛的网络和相应稳定的权值。网络学习过程实际就是建立输入模式到输出模式的一个映射 , 也就是建立一个输入与输出关系的数学模型 :

人工神经网络题库

人工神经网络 系别:计算机工程系 班级: 1120543 班 学号: 13 号 姓名: 日期:2014年10月23日

人工神经网络 摘要:人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成,由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。 关键词:神经元;神经网络;人工神经网络;智能; 引言 人工神经网络的构筑理念是受到生物(人或其他动物)神经网络功能的运作启发而产生的。人工神经网络通常是通过一个基于数学统计学类型的学习方法(Learning Method )得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。 一、人工神经网络的基本原理 1-1神经细胞以及人工神经元的组成 神经系统的基本构造单元是神经细胞,也称神经元。它和人体中其他细胞的关键区别在于具有产生、处理和传递信号的功能。每个神经元都包括三个主要部分:细胞体、树突和轴突。树突的作用是向四方收集由其他神经细胞传来的信息,轴突的功能是传出从细胞体送来的信息。每个神经细胞所产生和传递的基本信息是兴奋或抑制。在两个神经细胞之间的相互接触点称为突触。简单神经元网络及其简化结构如图2-2所示。 从信息的传递过程来看,一个神经细胞的树突,在突触处从其他神经细胞接受信号。 这些信号可能是兴奋性的,也可能是抑制性的。所有树突接受到的信号都传到细胞体进行综合处理,如果在一个时间间隔内,某一细胞接受到的兴奋性信号量足够大,以致于使该细胞被激活,而产生一个脉冲信号。这个信号将沿着该细胞的轴突传送出去,并通过突触传给其他神经细胞.神经细胞通过突触的联接形成神经网络。 图1-1简单神经元网络及其简化结构图 (1)细胞体 (2)树突 (3)轴突 (4)突触

基于人工神经网络的图像识别

本文首先分析了图像识别技术以及bp神经网络算法,然后详细地阐述了人工神经网络图像识别技术。 【关键词】人工神经网络 bp神经网络图像识别识别技术 通常而言,所谓图像处理与识别,便是对实际图像进行转换与变换,进而达到识别的目的。图像往往具有相当庞大的信息量,在进行处理图像的时候要进行降维、数字化、滤波等程序,以往人们进行图像识别时采用投影法、不变矩法等方法,随着计算机技术的飞速发展,人工神经网络的图像识别技术将逐渐取代传统的图像识别方法,获得愈来愈广泛的应用。 1 人工神经网络图像识别技术概述 近年来,人工智能理论方面相关的理论越来越丰富,基于人工神经网络的图像识别技术也获得了非常广泛的应用,将图像识别技术与人工神经网络技术结合起来的优点是非常显著的,比如说: (1)由于神经网络具有自学习功能,可以使得系统能够适应识别图像信息的不确定性以及识别环境的不断变化。 (2)在一般情况下,神经网络的信息都是存储在网络的连接结构以及连接权值之上,从而使图像信息表示是统一的形式,如此便使得知识库的建立与管理变得简便起来。 (3)由于神经网络所具有的并行处理机制,在处理图像时可以达到比较快的速度,如此便可以使图像识别的实时处理要求得以满足。 (4)由于神经网络可增加图像信息处理的容错性,识别系统在图像遭到干扰的时候仍然能正常工作,输出较准确的信息。 2 图像识别技术探析 2.1 简介 广义来讲,图像技术是各种与图像有关的技术的总称。根据研究方法以及抽象程度的不同可以将图像技术分为三个层次,分为:图像处理、图像分析以及图像理解,该技术与计算机视觉、模式识别以及计算机图形学等学科互相交叉,与生物学、数学、物理学、电子学计算机科学等学科互相借鉴。此外,随着计算机技术的发展,对图像技术的进一步研究离不开神经网络、人工智能等理论。 2.2 图像处理、图像识别与图像理解的关系 图像处理包括图像压缩、图像编码以及图像分割等等,对图像进行处理的目的是判断图像里是否具有所需的信息并滤出噪声,并对这些信息进行确定。常用方法有灰度,二值化,锐化,去噪等;图像识别则是将经过处理的图像予以匹配,并且对类别名称进行确定,图像识别可以在分割的基础之上对所需提取的特征进行筛选,然后再对这些特征进行提取,最终根据测量结果进行识别;所谓图像理解,指的是在图像处理与图像识别的基础上,根据分类作结构句法分析,对图像进行描述与解释。所以,图像理解包括图像处理、图像识别和结构分析。就图像理解部分而言,输入是图像,输出是对图像的描述解释。 3 人工神经网络结构和算法 在上个世纪八十年代,mcclelland与rumelhant提出了一种人工神经网络,截止现在,bp神经网络已经发展成为应用最为广泛的神经网络之一,它是一种多层前馈神经网络,包括输入层、输出层和输入层输出层之间隐藏层,如图1所示,便是一种典型的bp神经网络结构。 bp神经网络是通过不断迭代更新权值使实际输入与输出关系达到期望,由输出向输入层反向计算误差,从而通过梯度下降方法不断修正各层权值的网络。 bp神经网络结构算法如下所述: (1)对权值矩阵,学习速率,最大学习次数,阈值等变量和参数进行初始化设置; (2)在黑色节点处对样本进行输入;

人工神经网络的发展及应用

人工神经网络的发展及应用 西安邮电学院电信系樊宏西北电力设计院王勇日期:2005 1-21 1 人工神经网络的发展 1.1 人工神经网络基本理论 1.1.1 神经生物学基础生物神经系统可以简略地认为是以神经元为信号的处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞,即神经元(neuron) 。 (1)神经元具有信号的输人、整合、输出三种主要功能作用行为,结构如图1 所示: (2)突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。 (3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.1.2 建模方法神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型;②神 经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后冉与真实对象作比较(仿真处理方法)。1.1.3 概

念人工神经网络用物理町实现系统采模仿人脑神经系统的结构和功能,是一门新兴的前沿交义学科,其概念以T.Kohonen.Pr 的论述 最具代表性:人工神经网络就是由简单的处理单元(通常为适应性神经元,模型见图2)组成的并行互联网络,它的组织能够模拟生物神 经系统对真实世界物体所作出的交互反应。 1.2 人工神经网络的发展 人工神经网络的研究始于40 年代初。半个世纪以来,经历了兴起、高潮与萧条、高潮及稳步发展的较为曲折的道路。1943 年,心理学家W.S.Mcculloch 和数理逻辑学家W.Pitts 提出了M—P 模型, 这是第一个用数理语言描述脑的信息处理过程的模型,虽然神经元的功能比较弱,但它为以后的研究工作提供了依据。1949 年,心理学家D. O. Hebb提出突触联系可变的假设,根据这一假设提出的学习规律为神经网络的学习算法奠定了基础。1957 年,计算机科学家Rosenblatt 提出了著名的感知机模型,它的模型包含了现代计算机的一些原理,是第一个完整的人工神经网络。1969 年,美国著名人工智能学者M.Minsky 和S.Papert 编写了影响很大的Perceptron 一书,从理论上证明单层感知机的能力有限,诸如不能解决异或问题,而且他们推测多层网络的感知能也不过如此,在这之后近10 年,神经网络研究进入了一个缓慢发展的萧条期。美国生物物理学家J.J.Hopfield 于1982年、1984 年在美国科学院院刊发表的两篇文章,有力地推动了神经网络的研究,引起了研究神经网络的

人工神经网络及其应用实例_毕业论文

人工神经网络及其应用实例人工神经网络是在现代神经科学研究成果基础上提出的一种抽 象数学模型,它以某种简化、抽象和模拟的方式,反映了大脑功能的 若干基本特征,但并非其逼真的描写。 人工神经网络可概括定义为:由大量简单元件广泛互连而成的复 杂网络系统。所谓简单元件,即人工神经元,是指它可用电子元件、 光学元件等模拟,仅起简单的输入输出变换y = σ (x)的作用。下图是 3 中常用的元件类型: 线性元件:y = 0.3x,可用线性代数法分析,但是功能有限,现在已不太常用。 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -6 -4 -2 0 2 4 6 连续型非线性元件:y = tanh(x),便于解析性计算及器件模拟,是当前研究的主要元件之一。

离散型非线性元件: y = ? 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6 ?1, x ≥ 0 ?-1, x < 0 ,便于理论分析及阈值逻辑器件 实现,也是当前研究的主要元件之一。 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6

每一神经元有许多输入、输出键,各神经元之间以连接键(又称 突触)相连,它决定神经元之间的连接强度(突触强度)和性质(兴 奋或抑制),即决定神经元间相互作用的强弱和正负,共有三种类型: 兴奋型连接、抑制型连接、无连接。这样,N个神经元(一般N很大)构成一个相互影响的复杂网络系统,通过调整网络参数,可使人工神 经网络具有所需要的特定功能,即学习、训练或自组织过程。一个简 单的人工神经网络结构图如下所示: 上图中,左侧为输入层(输入层的神经元个数由输入的维度决定),右侧为输出层(输出层的神经元个数由输出的维度决定),输入层与 输出层之间即为隐层。 输入层节点上的神经元接收外部环境的输入模式,并由它传递给 相连隐层上的各个神经元。隐层是神经元网络的内部处理层,这些神 经元在网络内部构成中间层,不直接与外部输入、输出打交道。人工 神经网络所具有的模式变换能力主要体现在隐层的神经元上。输出层 用于产生神经网络的输出模式。 多层神经网络结构中有代表性的有前向网络(BP网络)模型、

人工神经网络作业MATLAB仿真(共3篇)

人工神经网络作业M A T L A B 仿真(共3篇) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

人工神经网络仿真作业(3篇) 人工神经网络仿真作业1: 三级倒立摆的神经网络控制 人工神经网络仿真作业2: 基于模型整体逼近的机器人RBF网络自适应控制 人工神经网络仿真作业3: 基于RBF的机械手无需模型自适应控制研究

神经网络仿真作业1:三级倒立摆的神经网络控制 摘要:建立了基于人工神经网络改进BP 算法的三级倒立摆的数学模型,并给 出了BP 网络结构,利用Matlab 软件进行训练仿真,结果表明,改进的BP 算法控制倒立摆精度高、收敛快,在非线性控制、鲁棒控制等领域具有良好的应用前景。 1.引言 倒立摆系统的研究开始于19世纪50年代,它是一个典型的非线性、高阶次、多变量、强耦合和绝对不稳定系统.许多抽象的控制概念,如系统的稳定性、可控性、系统的收敛速度和抗干扰能力都可以通过倒立摆直观地表现出来。随着现代控制理论的发展,倒立摆的研究对于火箭飞行控制和机器人控制等现代高科技的研究具有重要的实践意义。目前比较常见的倒立摆稳定控制方法有线性控制,如LQR,LQY 等;智能控制,如变论域自适应模糊控制,遗传算法,预测控制等。 2.系统的数学模型 2.1三级倒立摆的模型及参数 三级倒立摆主要由小车,摆1、摆2、摆3组成,它们之间自由链接。小车可以在水平导轨上左右平移,摆杆可以在铅垂平面内运动,将其置于坐标系后如图1 所示: 规定顺时针方向的转角和力矩均为正。此外,约定以下记号:u 为外界作用力,x 为小车位移,i (i =1,2,3)为摆i 与铅垂线方向的夹角, i O 分别为摆i 的链接点位置。其它的系统参数说明如下:

人工神经网络应用实例

人工神经网络在蕨类植物生长中的应用 摘要:人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)是目前国际上一门发展迅速的前沿交叉学科。为了模拟大脑的基本特性,在现代神经科学研究的基础上,人们提出来人工神经网络的模型。根据此特点结合蕨类植物的生长过程进行了蕨类植物生长的模拟。结果表明,人工神经网络的模拟结果是完全符合蕨类植物的生长的,可有效的应用于蕨类植物的生长预测。 关键词:人工神经网络;蕨类植物;MATLAB应用 一人工神经网络的基本特征 1、并行分布处理:人工神经网络具有高度的并行结构和并行处理能力。这特别适于实时控制和动态控制。各组成部分同时参与运算,单个神经元的运算速度不高,但总体的处理速度极快。 2、非线性映射:人工神经网络具有固有的非线性特性,这源于其近似任意非线性映射(变换)能力。只有当神经元对所有输入信号的综合处理结果超过某一门限值后才输出一个信号。因此人工神经网络是一种具有高度非线性的超大规模连续时间动力学系统。 3、信息处理和信息存储合的集成:在神经网络中,知识与信息都等势分布贮存于网络内的各神经元,他分散地表示和存储于整个网络内的各神经元及其连线上,表现为神经元之间分布式的物理联系。作为神经元间连接键的突触,既是信号转换站,又是信息存储器。每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。信息处理的结果反映在突触连接强度的变化上,神经网络只要求部分条件,甚至有节点断裂也不影响信息的完整性,具有鲁棒性和容错性。 4、具有联想存储功能:人的大脑是具有联想功能的。比如有人和你提起内蒙古,你就会联想起蓝天、白云和大草原。用人工神经网络的反馈网络就可以实现这种联想。神经网络能接受和处理模拟的、混沌的、模糊的和随机的信息。在处理自然语言理解、图像模式识别、景物理解、不完整信息的处理、智能机器人控制等方面具有优势。 5、具有自组织自学习能力:人工神经网络可以根据外界环境输入信息,改变突触连接强度,重新安排神经元的相互关系,从而达到自适应于环境变化的目的。 二人工神经网络的基本数学模型 神经元是神经网络操作的基本信息处理单位(图1)。神经元模型的三要素为: (1) 突触或联接,一般用,表尔神经元和神经元之间的联接强度,常称之为权值。 (2) 反映生物神经元时空整合功能的输入信号累加器。 图1 一个人工神经元(感知器)和一个生物神经元示意图 (3) 一个激活函数用于限制神经元输出(图2),可以是阶梯函数、线性或者是指数形式的

介绍人工神经网络的发展历程和分类.

介绍人工神经网络的发展历程和分类 1943年,心理学家W.S.McCulloch 和数理逻辑学家W.Pitts 建立了神经网络和数学模型,称为MP 模型。他们通过MP 模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络的到了进一步发展,更完善的神经网络模型被提出。其中包括感知器和自适应线性元件等。M.Minsky 等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron 》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究,加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐振理论(ART 网)、自组织映射、认知机网络,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield 提出了Hopfield 神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984年,他又提出了连续时间Hopfield 神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究,1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。1986年进行认知微观结构地研究,提出了并行分布处理的理论。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。在日本的“真实世界计算(RWC )”项目中,人工智能的研究成了一个重要的组成部分。 人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。按照网络拓朴结构分类网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。层次型结构的神经网络将神经

人工神经网络概述及其在分类中的应用举例

人工神经网络概述及其在分类中的应用举例 人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)是目前国际上一门发展迅速的前沿交叉学科。为了模拟大脑的基本特性,在现代神经科学研究的基础上,人们提出来人工神经网络的模型。人工神经网络是在对人脑组织结构和运行机智的认识理解基础之上模拟其结构和智能行为的一种工程系统。 神经网络在2个方面与人脑相似: (1) 人工神经网络获取的知识是从外界环境中学习得来的。 (2) 互连神经元的连接强度,即突触权值,用于存储获取的信息。他既是高度非线性动力学系统,又是自适应组织系统,可用来描述认知、决策及控制的智能行为。神经网络理论是巨量信息并行处理和大规模并行计算的基础。 一人工神经网络的基本特征 1、并行分布处理:人工神经网络具有高度的并行结构和并行处理能力。这特别适于实时控制和动态控制。各组成部分同时参与运算,单个神经元的运算速度不高,但总体的处理速度极快。 2、非线性映射:人工神经网络具有固有的非线性特性,这源于其近似任意非线性映射(变换)能力。只有当神经元对所有输入信号的综合处理结果超过某一门限值后才输出一个信号。因此人工神经网络是一

种具有高度非线性的超大规模连续时间动力学系统。 3、信息处理和信息存储合的集成:在神经网络中,知识与信息都等势分布贮存于网络内的各神经元,他分散地表示和存储于整个网络内的各神经元及其连线上,表现为神经元之间分布式的物理联系。作为神经元间连接键的突触,既是信号转换站,又是信息存储器。每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。信息处理的结果反映在突触连接强度的变化上,神经网络只要求部分条件,甚至有节点断裂也不影响信息的完整性,具有鲁棒性和容错性。 4、具有联想存储功能:人的大脑是具有联想功能的。比如有人和你提起内蒙古,你就会联想起蓝天、白云和大草原。用人工神经网络的反馈网络就可以实现这种联想。神经网络能接受和处理模拟的、混沌的、模糊的和随机的信息。在处理自然语言理解、图像模式识别、景物理解、不完整信息的处理、智能机器人控制等方面具有优势。 5、具有自组织自学习能力:人工神经网络可以根据外界环境输入信息,改变突触连接强度,重新安排神经元的相互关系,从而达到自适应于环境变化的目的。 6、软件硬件的实现:人工神经网络不仅能够通过硬件而且可借助软件实现并行处理。近年来,一些超大规模集成电路的硬件实现已经问世,而且可从市场上购到,这使得神经网络具有快速和大规模处理能力的实现网络。许多软件都有提供了人工神经网络的工具箱(或软件包)如Matlab、Scilab、R、SAS等。 二人工神经网络的基本数学模型

人工神经网络评价法.

人工神经网络评价法 第一节思想和原理 在当今社会,面临许许多多的选择或决策问题。人们通过分析各种影响因素,建立相应的数学模型,通过求解最优解来得到最佳方案。由于数学模型有较强的条件限制,导致得出的最佳方案与现实有较大误差。只有重新对各种因素进行分析,重新建立模型,这样存在许多重复的工作,而且以前的一些经验性的知识不能得到充分利用。为了解决这些问题,人们提出模拟人脑的神经网络工作原理,建立能够“学习”的模型,并能将经验性知识积累和充分利用,从而使求出的最佳解与实际值之间的误差最小化。通常把这种解决问题的方法称之为人工神经网络(Artificial Neural Network)。 人工神经网络主要是由大量与自然神经细胞类似的人工神经元互联而成的网络。各种实验与研究表明:人类的大脑中存在着由巨量神经元细胞结合而成的神经网络,而且神经元之间以某种形式相互联系。人工神经网络的工作原理大致模拟人脑的工作原理,它主要根据所提供的数据,通过学习和训练,找出输入与输出之间的内在联系,从而求取问题的解。人工神经网络反映了人脑功能的基本特性,但并不是生物神经系统的逼真描述,只是一定层次和程度上的模仿和简化。强调大量神经元之间的协同作用和通过学习的方法解决问题是人工神经网络的重要特征。 人工神经网络是模仿生物神经网络功能的一种经验模型,首先根据输入的信息建立神经元,通过学习规则或自组织等过程建立相应的非线性数学模型,并不断进行修正,使输出结果与实际值之间差距不断缩小。人工神经网络通过样本的“学习和培训”,可记忆客观事物在空间、时间方面比较复杂的关系,它能够把问题的特征反映在神经元之间相互联系的权值中,所以,把实际问题特征参数输入后,神经网络输出端就能给出解决问题的结果。 神经网络的特点是,神经网络将信息或知识分布储存在大量的神经元或整个系统中。它具有全息联想的特征,具有高速运算的能力,具有很强的适应能力,具有

人工神经网络与其发展和应用的介绍

人工神经网络与其发展和应用的介绍 发表时间:2018-05-02T11:39:29.337Z 来源:《科技中国》2017年11期作者:卓一凡 [导读] 摘要:人工神经网络是人工智能的重要分支,自其创始伊始便成为了人工智能领域的研究热点。本文从人工神经网络的发展历史开始,介绍了其在医学,信息,控制等方面的应用及其现状,对其中的优缺点进行了简要的分析。并对人工神经网络未来的发展作简要的展望。 摘要:人工神经网络是人工智能的重要分支,自其创始伊始便成为了人工智能领域的研究热点。本文从人工神经网络的发展历史开始,介绍了其在医学,信息,控制等方面的应用及其现状,对其中的优缺点进行了简要的分析。并对人工神经网络未来的发展作简要的展望。关键词:人工神经网络,应用,优缺点,发展 1:人工神经网络的发展 纵观整个人工神经网络发展,大体经历了四个时期:启蒙,低潮,振兴,发展。 1.1:启蒙时期 人工神经网络和数学模型于1943年由W.S.McCulloch和W.Pitts建立,称为MP模型,证明了单个神经元能执行逻辑功能,人工神经网络的研究由此开始。1951年,心理学家 Donala O. Hebb提出了Hebb 法则:在神经网络中,信息在连接权中进行储存,突触之间的联系强度是可以变化的,而这种变化建立起了神经元间的连接。Hebb法则成为了构造具有学习功能的神经网络模型的基础。1954 年,生物学家Eccles提出了真实突触的分流模型,为神经网络模拟突触的功能提供了原理和生理学的依据。1956 年,Uttley 发明了一种由处理单元组成的推理机,用于模拟行为及条件反射。1958年,Rosenblatt将学习机制增加到了原有的MP模型上,首次把神经网络理论付诸实现。正是由于他的成功,引起了学者们对人工神经网络的研究兴趣。 1.2:低潮时期 当许多学者抱着极大的热忱去研究人工神经网络的时候,Minsky 和Papert 从数学角度对以感知器为代表的网络系统功能及其局限性进行了深入的研究,并在1969年出版《Percep2trons》一书。该书提出当前的网络只能对简单的线性问题进行解决,而对复杂的多层神经网络无能为力。这一结论使得许多国家的此类项目被暂停资助,自此开始了神经网络的低潮期。但不久后,转机出现。就在1972年,欧洲和美洲的两位学者:芬兰的Kohonen教授,美国的Anderson分别提出了自组织映射SOM(Self2Organizingfeature map)理论和一个名叫“交互存储器 ”的理论。而两者之间竟有着许多相似之处,不由得让人惊讶。但Kohonen的研究是目前所使用神经网络的主要依据。正是由于这些研究,引导了以后人工神经网络的振兴。 1.3:振兴时期 1982年,美国物理学家Hopfield博士发表了Hopfield模型理论,对人工神经网络的研究产生了深远的影响。如下图 Hopfield模型理论证明:神经网络并非不能达到稳定的状态,只是需要一定条件。而他的研究也让许多学者对人工神经网络的研究重新产生了兴趣。1986年,由美国的 Rumelhart 和 McCkekkand主编并撰写的《Parallel Distributed Processing : Ex2ploration in the Microstructures of Cognition》一书出版,提出了 PDP(Parallel Distributed Processing)网络思想,再一次推动了神经网络的发展。20世纪 90 年代, Edelman提出Darwinism 模型。1995 年,Jenkins等人进行了光学神经网络(PNN)的研究 .神经网络的研究重回人们的视野。 1.4:发展时期 20世纪80年代,人工神经网络在世界范围内全面复苏,这也引起了国家对神经网络的重视。“中国神经网络首届学术会议”于1990年2月由国内8个顶尖学会联合在北京召开。 1992年举办了中国第二届神经网络学术大会,中国神经网络学会便由此诞生。我国的“863”计划,“攀登”计划中,都有关于人工神经网络研究的内容。国际上,1987 年,在美国加洲举行了首届国际神经网络学会. 此后每年召开两次.至此,人工神经网络的研究得到了长足的发展。 2.人工神经网络的基本原理 自生物学发展伊始,大脑便是无数科学家研究的重点,人们想要弄清楚大脑是如何运作的?其机理是什么?人工神经网络便应运而生,它的目的是想要对人类神经网络进行开发与测试 2.1:人工神经网络的生物学基础 人工神经网络是人类神经网络的仿生学模拟。我们如果想要了解人工神经网络,就要先了解生物的神经元,如下图:

相关主题
文本预览
相关文档 最新文档