Instanton Strings and HyperKaehler Geometry
- 格式:pdf
- 大小:317.53 KB
- 文档页数:33
arXiv:hep-th/9810210v1 26 Oct 1998October1998
hep-th/9810210
utfa-98/26
spin-98/4
InstantonStringsandHyperK¨ahlerGeometry
RobbertDijkgraaf∗
DepartmentsofMathematicsandPhysics
UniversityofAmsterdam,1018TVAmsterdam
&
SpinozaInstitute
UniversityofUtrecht,3508TDUtrecht
Abstract
Wediscusstwo-dimensionalsigmamodelsonmodulispacesofinstantonsonK3surfaces.
TheseN=(4,4)superconformalfieldtheoriesdescribethenear-horizondynamicsof
theD1-D5-branesystemandaredualtostringtheoryonAdS3.Wederiveaprecise
maprelatingthemodulioftheK3typeIIBstringcompactificationtothemoduliof
theseconformalfieldtheoriesandthecorrespondingclassicalhyperk¨ahlergeometry.We
concludethatintheabsenceofbackgroundgaugefields,themetricontheinstanton
modulispacesdegeneratesexactlytotheorbifoldsymmetricproductofK3.Turningon
aself-dualNSB-fielddeformsthissymmetricproducttoamanifoldthatisdiffeomorphic
totheHilbertscheme.Wealsocommentonthemathematicalapplicationsofstring
dualitytotheglobalissuesofdeformationsofhyperk¨ahlermanifolds.1.Introduction
Recentlyinstringtheorytherehasbeengreatinterestinaparticularclassoftwo-
dimensionalconformalfieldtheorieswithN=(4,4)supersymmetryandcentralcharge
c=6kwithkapositiveinteger.Theseconformalfieldtheoriesarisebyconsideringacer-
tainlow-energylimitofboundstatesofD5-branesandD1-branesintypeIIBstringtheory
andinvariousotherdualincarnations.Theyhavebeeninstrumentalinthemicroscopic
descriptionofthequantumstatesoffive-dimensionalblackholesasintheground-breaking
computationofStromingerandVafa[1].Thesamesigmamodelshaveappearedinthequantizationofthesix-dimensionalworld-volumetheoryoftheNSfivebrane,thatcanbeusedtodescribeblackholesin
matrixtheory[2,3,4,5,6,7].Inthiscontextonesometimesreferstothesemodelsas
second-quantizedmicrostrings,littlestringsorinstantonstrings.
Morerecently,intheworkofMaldacenaondualitiesbetweenspace-timeconformal
fieldtheoriesandsupergravitytheoriesonanti-deSitterspaces,thesemodelswereidenti-
fiedwiththedualdescriptionofsix-dimensionalstringtheoryonAdS3×S3[8].Theholo-
graphiccorrespondencebetweentheseAdSquantumgravitytheoriesandtwo-dimensional
conformalfieldtheorieswiththeirrichalgebraicstructure,seemstobeafertileproving
groundforvariousconceptionalissuesingravityandstringtheory,seee.g.therecentpa-
pers[9,10,11,12,13]andreferencesthereintothealreadyextensiveliterature.Finally,
thereisafascinatingrelationbetweentheworld-sheetCFTofastringmovinginthis
AdS3backgroundandthespace-timec=6kCFTthatwestudyinthispaper[14].
ThisparticularclassofN=(4,4)SCFTwithcentralcharge6kcanbeidentified
withsigmamodelsonmodulispacesofinstantonsonK3orT4[1].Withtheright
characteristicclassesandcompactification,thesemodulispacesaresmooth,compact4k
dimensionalhyperk¨ahlermanifolds.Independentofthedevelopmentsinstringtheory
therehasbeenrecentlymathematicalinterestinthesehigher-dimensionalcompacthy-
perk¨ahler(orholomorphicsymplectic)manifoldsandtheirdeformationspaces,following
theimportantworkofMukaionmodulispacesofsheavesonabelianandK3surfaces
[15,16,17].Seeforexample[18]foragoodreviewoftherecentdevelopments.
Inthispaperwewillseehowtheinsightsfromstringtheoryandfromhyperk¨ahler
geometrycombinenicelyandallowustomakeapreciseidentificationbetweenthemoduli
ofthestringcompactificationandthoseofthe(space-time)CFT.Roughlywefindtwo
setofcanonicalidentifications:
(1)betweenthemoduliofaspecial(attractor)familyofworld-sheetK3sigmamodel
andtheclassicalhyperk¨ahlergeometryoftheinstantonmodulispace;
(2)betweenthemoduliofaspecialfamilyofnon-perturbativeIIBstringtheorycom-
pactificationonK3andthe(4,4)superconformalfieldtheoryontheinstantonmoduli
space.
2WewillseeindetailhowboththemetricandB-fieldonK3areusedtodetermine
themetriconthecompactifiedinstantonmodulispace.TheRRfieldsthenencodethe
B-fieldofthesigmamodel.Furthermore,non-perturbativeU-dualitiesoftheIIBstring
compactificationtranslateintoT-dualitiesofthehyperk¨ahlersigmamodel.
Theoutlineofthispaperisasfollows.In§2weintroducetheD5-braneworld-volume
theoryanditsrelationtoasigmamodelontheinstantonmodulispace.In§3wewill
describeindetailthemoduliofK3compactificationsinstringtheory.Thenin§4wewill
usethisexplicitdescriptiontodeterminethevalueofthesemodulionD-branebound
statesthatminimalizetheBPSmassthroughtheso-calledattractormechanism.Wewill
treatindetailtheexamplesoftheD0-D4-branesystemandD2-branesinIIAtheory(or
equivalentlyD1-D5andD3inIIBtheory).In§5wewillreviewsomeofdiscussionof
hyperk¨ahlermanifoldsandtheirdeformationspacesinthemathematicalliterature.Then
in§6wewillusethesemathematicalfactstogiveanexplicitmapbetweentheK3moduli
andthehyperk¨ahlerstructuresontheinstantonmodulispace,amapthatwewillthen
extendin§7tostringtheorymoduliandthemodulioftheN=(4,4)SCFT.Wewill
endwithsomecommentsonglobalissuesofthesemodulispaces.
2.D5-branesandinstantonstrings
2.1.Somemathematicalpreliminaries
Inthispaperwewillbestudyingsigmamodelswithtargetspacethemodulispace
Mofinstantonsonafour-manifoldX.So,mathematicallyspeaking,weareinterested
inthequantumcohomologyormoregenerallytheGromov-WitteninvariantsofM.The
classicalcohomologyofMisessentiallyequivalenttotheDonaldsoninvariantsofX,
sothesigmamodelonMdefinesa“stringy”generalizationoftheseinvariants—we
willrefertothemasinstantonstrings.However,weshouldhastentoaddthatforthe
particularcaseofaK3orT4manifold,onwhichwewillmostlyconcentrateinthis
paper,themodulispaceisahyperk¨ahlermanifold,andthequantumcohomologyreduces
totheordinarycohomology.Sooneshouldturninthiscasetomorerefinedstringtheory
invariantssuchastheellipticgenus[1,19].ThequantumcohomologyofthemodulispaceofvectorbundlesonaRiemannsurface
iswell-knowntoplayanimportantroleinthestudyofinstantonson4-manifoldsthat
canbewrittenastheproductoftwoRiemannsurfacesor,moregenerallyfibrationsof
thisform[20,21].IfXisoftheformΣ×Σ′,intheadiabaticlimitwherethevolume
ofΣ′isverysmallcomparedtoΣ,instantonsonXreducetoholomorphicmapsof
ΣintothemodulispaceofholomorphicvectorbundlesonΣ′.Inasimilarspiritthe
quantumcohomologyofinstantonmodulispacesonafour-manifoldXshouldberelated
3