当前位置:文档之家› 高程基准传递

高程基准传递

高程基准传递
高程基准传递

利用全站仪进行高大建筑物高程基准传递

引言

随着建筑总高度的升高,误差累积会加大,如何在温差、日照、风载等外界环境因素影响下迅速、准确地完成平面轴线控制、高程传递已成为影响高大建筑施工的首要因素。目前,建筑工程中施工测量工作一般是将平面和高程分开进行的。对高大

建筑物轴线投测和垂直度的控制测量,在工程施工中已普遍采用“内控法”。采用“内控法”进行轴线投测,可以满足高大建筑物垂直度 F ≤ H/ 1000 , 总偏差值≤±30mm的要求。然而,对高大建筑物精密高程传递测量技术的研究却较少。

测量方法与步骤

1 平面轴线投测

将全站仪安置在室内±0.000楼面某一轴线控制点上,严格对中、整平,然后装上90°弯管目镜;在欲测设轴线楼层的楼板的相应预留孔上放置30cm ×30cm 方形透明毛玻璃板作为标靶;将望远镜固定于竖直角为90°指向天顶,经过调焦,使天顶标靶板成像清晰;仪器操作人员指挥楼上的人员用记号笔将望远镜十字丝交点在标靶板上画点标出,即得到要投测的点位。为了消除仪器视准轴与竖轴不一致的误差,要将仪器照准部依次旋转90°、80°,270°分别将望远镜十字丝交点在标靶板上画点标定出来,取4 个标点的圆心作为最终的投测点位,并用墨线将其引测出去,投测工作即告完毕。同法,可将所有需投测的轴线控制点投测完成。最后丈量相关的尺寸,检查其是否正确。

2 高程传递

上述某轴线控制点投测完成后,仪器不动,精确量取仪器高i ,并将望远镜十字丝交点对准最终的投测点位,此时望远镜视准轴即为一条铅垂线。然后,用记号笔将透明毛玻璃板在楼板上的位置标定出;掀开玻璃板并量取其厚度 d ;量取反射棱镜中心至反射棱镜背面的厚度v ;将反射棱镜的背面中心对准玻璃板上的投测点位,用透明胶带固定好(注意胶带不要覆盖反射棱镜的镜面) 后,再将带有反射棱镜的玻璃板放回原处(反射棱镜在玻璃板的下面) 。此时望远镜十字丝交点应正对反射棱镜的中心。最后,按测量键进行测距,该距离L 即为仪器横轴到反射棱镜中心的铅垂距离。由此可得轴线控制点到玻璃板上表面的高差: h = i + L + v +d , 至此即完成该轴线控制点的高程传递。同法,在投测其它轴线控制点的同时,完成相应的高程传递。

3 高程传递的精度分析

根据误差传播定律,可得全站仪传递高程的中误差为:

m2h = m2i+ m2L + m2v + m2d

式中: mi 、mv 、md 分别为仪器高i 、反射棱镜中心至反射棱镜背面的厚度v 以及玻璃板厚度d 的量取误差; mL 为仪器横轴到反射棱镜中心铅垂距离L 的测量误差。仪器高i、反射棱镜中心至反射棱镜背面的厚度以及玻璃板厚度d 的量取误差,一般可控制在±1mm之内。

由以上传递高程的操作过程可知,仪器横轴到反射棱镜中心铅垂距离L 的测量误差主要来源于光电测距的误差和仪器竖轴的铅垂误差两个方面。

仪器竖轴的铅垂误差, 取决于仪器的整平误差,即[1 ] :

m垂= m平= 0.2τ

式中:τ为全站仪照准部水准管的分划值,一般小于20.″。因此有: m垂= m平≤4″

仪器竖轴倾斜带来的距离差将小于:

Δ = L - Lcos4″= L (1 - cos4″)

目前, 建筑物的高度都低于500m , 即L ≤500m , 因此仪器竖轴倾斜带来的距离差. Δ≤1 ×10- 4mm , 完全可以忽略不计。

可见,仪器横轴到反射棱镜中心铅垂距离L 的测量误差仅取决于光电测距的误差。如选用测

距标称精度为±(2mm + 2ppm?D)的全站仪,当L ≤500m时,仪器横轴到反射棱镜中心铅垂距离L 的测量误差最大为±3mm。

将上述各项误差值代入,可得全站仪传递高程的中误差为:

mh = √m2i+ m2L + m2v + m2d ≤±2.5mm

该误差小于GB50026 - 93《工程测量规范》中对建筑物施工放样的技术要求,即根据起始水准面在施工水准面上测定高程中误差3mm (高度15m以下) 、4mm ( 高度15 ~ 60m) 、5mm ( 高度60 ~100m) 、6mm(高度100~120m) 的要求。

4 结束语

利用全站仪进行高大建筑物高程传递测量的技术,可以实现平面轴线投测和高程传递一次完成。另外,由于仪器高i、反射棱镜中心至反射棱镜背面的厚度v 以及玻璃板厚度d 的量取误差与传递高度无关,以及仪器横轴到反射棱镜中心铅垂距离L 的测量误差在0~500m 之间也以其固定误差为主,所以方法不象传统的沿建筑物外墙、边柱或电梯间等用钢尺直接向上量取或通过悬挂钢尺配合几何水准的方法传递高程那样,随着建筑总高度的升高,误差累积会增大。

(完整word版)1、地面点到高程基准面的垂直距离称为该点的()

第一章:绪论 一、单选题 1、地面点到高程基准面的垂直距离称为该点的()。 A.相对高程B.绝对高程C.高差 D.高度 2、地面点的空间位置是用()来表示的。 A.地理坐标B.平面直角坐标 C.坐标和高程 D.高差和角度 3、绝对高程的起算面是()。 A.水平面B.大地水准面C.假定水准面 D.水准面 4、测量工作的基准线是()。 A 法线 B 铅垂线 C 经线 D 任意直线 5、测量工作的基准面是()。 A 水准面 B 大地水准面 C 水平面 D 假定水准面 6、测量工作主要包括测角、测距和测()。 A 高差 B 方位角 C 等高线 D 地貌 7、 ( )的基准面是大地水准面。 A. 竖直角 B. 高程 C. 水平距离 D. 水平角 8、工程测量是一门测定()的科学。 A平面位置 B高程 C A、B都不是 D A、B都是 9、测量工作的计算基准面是()。 A.参考椭球面 B.高斯投影面 C.大地水准面 D.水平面10、大地水准面是()。 A.计算工作的基准面 B.一个规则的平面 C.测量工作的基准面 D.一个规则的曲面 11、水准面处处与铅垂线() A.垂直 B.平行 C.重合 D.斜交 12、同一范围内,用水准面代替水准面影响最大的是() A.水平距离 B.水平角度 C.高程 D.竖直角度 13、大地水准面是通过()的水准面。 A 赤道 B 地球椭球面 C 平均海水面 D 中央子午线 14、水准面是通过() A 赤道面的平面 B平均海水面向陆地延伸形成的封闭曲面 C 海水面向陆地延伸形成的封闭曲面 D 中央子午线的平面 15、相对高程的起算面是()。

A.水平面B.大地水准面C.假定水准面 D.椭球面 16、已知某地面点的高斯坐标为(3427321.34m,36548475.43m),则该点位于第()带内 A. 34 B. 36 C. 35 D. 18 17、已知某地面点的高斯坐标为(3427321.34m,36548475.43m),则该点坐标自然值为() A. (3427321.34m,548475.43m)B. (3427321.34m,48475.43m) C. (27321.34m,36548475.43m) D. (27321.34m, 548475.43m) 18、已知某点位于东经119°,按高斯6°投影计算它位于()带 A. 20 B. 19 C. 21 D. 18 19、按高斯3°投影带中第18带的中央子午线位于() A. 东经55°B. 东经51°C. 东经57° D. 东经54° 20、测量工作应遵循的基本原则是() A. 先控制后碎部B. 由整体后局部 C. 由高级后低级 D. 由高级后低级,由整体后局部,先控制后碎部 21、对测量坐标系和数学坐标系,下列说法错误的是() A. 坐标轴互换B. 象限顺序相反 C. 数学计算公式不能一样使用 D. 数学计算公式能一样使用 22、大地坐标系是以()作为基准线 A. 椭球法线B. 铅垂线C. 重力线 D. 水平线 23、在高斯平面直角坐标系中,纵轴为( )。 A.x轴,向东为正 B.y轴,向东为正 C.x轴,向北为正 D.y轴,向北为正 24、大地水准面具有()。 A.对称性 B. 规则性 C.唯一性 D.不确定性 25、80国家坐标系的原点位于() A.前苏联境内 B. 山东青岛 C.陕西西安 D.北京 26、54坐标系的原点位于() A.前苏联境内 B. 山东青岛 C.陕西西安 D.北京 27、国家水准原点位于() A.前苏联境内 B. 山东青岛 C.陕西西安 D.北京 名词解释 大地水准面、水准面、高程、高差、相对高程、绝对高差、大地高程、铅垂线、中央子午线、天文地理坐标系、大地地理坐标系 简答题

各种高程的换算关系

港口水利工程高程、水位关系转换 56黄海高程基准和85国家高程基准的关系 国家85高程基准其实也是黄海高程基准,只不过老的叫“1956年黄海高程系统”,新的叫“1985国家高程基准”,新的比旧的低0.029m 我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面。但由于计算这个基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,并用精密水准测量接测位于青岛的中华人民共和国水准原点,得出1985年国家高程基准高程和1956年黄海高程的关系为: 1985年国家高程基准高程=1956年黄海高程-0.029m。 1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。 各高程系统之间的关系 56黄海高程基准:+0.000 85高程基准(最新的黄海高程):56高程基准-0.029 吴淞高程系统:56高程基准+1.688 珠江高程系统:56高程基准-0.586 我国目前通用的高程基准是:85高程基准

一直没搞清楚56黄海高程基准和85高程基准的关系!总算搞明白了!还不明白的看一下吧! 标高/绝对标高/高度/建筑标高/结构标高 绝对标高:相对对海平面的高度, 海平面的标高规定为0,在以上的为正值, 以下的为负值,相平的为0,也叫海拔高度,高程 相对标高:对于一个地区, 通常市政国土部门会测量出某个特定的、固定的点的绝对标高, 其他的测点相对于绝对标高的高度,其上为正,下为负; 建筑标高:建筑标高和结构标高差别在于装修,通常情况下,施工放线会在结构高度上作出而不是装修高度,一些地区经常忽略掉建筑标高和结构标高的差别。 以上的量单位只能是米(m)高度,值具体的、竖直方向上的距离 只能为正或者0,不能为负数,单位是毫米(mm) 在生产建设和手工计算习惯意识里, 标高;是在建筑房屋时所用的一个术语,一般都是建筑第一层地面是0点,在建筑方线时以这一平面为基点,向下或向上算高度! 高程;通俗地讲,就是某一水平面或一点,与相对照的海平面平均高度的高差,其高程即海拔为多少米,称为水准点。 从某一指定基准面起算的地面点的高度,称为高程。由于选用的基准面的不同,因而可产生不同的高程系统。采用平均海平面,即大地水准面作为高程起算面建立起来的高程系统,称为绝对高程或海拔。这

常用的高程系统

程测量中常用的高程系统有哪些? 高程系统的换算是令人困扰的一个重要问题。我国历史上形成了多个高程系统,不同部门不同时期往往都有所区别。可以查到的资料相当匮乏。先收集整理如下。 (1) 波罗的海高程 波罗的海高程十0.374米=1956年黄海高程 中国新疆境内尚有部分水文站一直还在使用“波罗的海高程”。 (2) 黄海高程 系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。原点设在青岛市观象山。该原点以“1956年黄海高程系”计算的高程为72.289米。 (3) 1985国家高程基准 由于计算这个基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,并用精密水准测量接测位于青岛的中华人民共和国水准原点,得出1985年国家高程基准高程和1956年黄海高程的关系为: 1985年国家高程基准高程=1956年黄海高程-0.029m。 1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。 (5) 广州高程及珠江高程 广州高程=1985国家高程系+4.26(米) 广州高程=黄海高程系+4.41(米) 广州高程=珠江高程基准+5.00(米) (6)大连零点 入侵中国东北期间,在大连港码头仓库区内设立验潮站,并以多年验潮资料求得的平均海面为零起算,称为“大连零点”。该高程系的基点设在辽宁省大连市的大连港原一号码头东转角处,该基点在大连零点高程系中的高程为3.765米。原点设在吉林省长春市的人民广场内,已被毁坏。该系统于1959年以前在中国东北地区曾广泛使用。1959年中国东北地区精密水准网在山海关与中国东南部水准网连接平差后,改用1956年黄海高程系统。大连基点高程在1956年黄海高程系的高程为3.790米。 (7) 废黄河零点 江淮水利测量局,以民国元年11月11日下午5时废黄河口的潮水位为零,作为起算高程,称“废黄河口零点”。后该局又用多年潮位观测的平均潮水位确定新零点,其大多数高程测量均以新零点起算。“废黄河口零点”高程系的原点,已湮没无存,原点处新旧零点的高差和换用时间尚无资料查考。在“废黄河口零点”系统内,存在“江淮水利局惠济闸留点”和“蒋坝船坞西江淮水利局水准标”两个并列引据水准点。 (8)坎门零点 民国期间,军令部陆地测量局根据浙江玉环县坎门验潮站多年验潮资料,以该站高潮位的平均值为零起算,称“坎门零点”。在坎门验潮站设有基点252号,其高程为6.959米。该高程系曾接测到浙江杭州市、苏南、皖北等地,在军事测绘方面应用较广。 原黄河流域采用的高程系统 黄河流域高程系统较为紊乱,目前使用的高程系统有9种之多(大沽、黄海、假定、冻结、1985国家高程基准、引据点III、导渭、坎门中潮值、大连葫芦岛)。目前已经全部统一为1985国家高程基准

我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位, 它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大 地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我 国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m短轴6356863,扁率1/298.3 ; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。 为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐 标系,又简称西安大地原点。基准面采用青岛大港验潮站1952- 1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m短轴6356755,扁率1/298.25722101 3、W G-84坐标系 WG—84坐标系(WorldGeodeticSystem )是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,丫轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS^播星历是以WGS-84坐标系为根据的。 WGS8坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。 4、2000国家大地坐标系 英文缩写为CGCS200O 2000国家大地坐标系是全球地心坐标系在我国的具体体现,其原点为包括海洋和大气的整个地球的质量中心。2000国家大地坐标系采用的地球椭球参数如下:长半轴a=6378137m 扁率f=1/298.257222101, 地心引力常数GM=3.986004418< 1014m3s2 自转角速度3 =7.292115 < 10-5rads-1 我国常用高程系 “ 1956年黄海高程系”,是在1956年确定的。它是根据青岛验潮站1950年到1956年的黄海验潮资料,求出该站验潮井里横按铜丝的高度为 3.61米,所以就确定这个钢丝以下3.61米处为黄海平均海水面。从这个平均海水面起,于1956年推算出青岛水准原点的高程为72.289米。 国家85高程基准其实也是黄海高程基准,只不过老的叫“1956年黄海高程系统”,新的叫“ 1985国家高程基准”,新的比旧的低0.029m 我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,为中国第一个国家高程系

海拔高程换算

1956黄海高程水准原点的高程是72.289米。 1985国家高程系统的水准原点的高程是72.260米。 废黄河零点高程”=吴凇高程基准-1.763(米)[南海] 废黄河零点高程”=1956年黄海高程+0.161(米) 废黄河零点高程”=1985国家高程基准+0.19(米) 1956年黄海高程”=1985年国家高程基准+0.029(米) 1956年黄海高程”=吴凇高程基准-1.688(米) 1956年黄海高程”=珠江高程基准+0.586(米) 1985年国家高程基准=1956年黄海高程-0.029(米) 1985年国家高程基准=吴凇高程基准-1.717(米) 1985年国家高程基准=珠江高程基准+0.557(米) 高程基准是推算国家统一高程控制网中所有水准高程的起算依据,它包括一个水准基面和一个永久性水准原点。国家高程基准是根据验潮资料确定的水准原点高程及其起算面。目前我国常见的高程系统主要包括“1956年黄海高程”、“1985国家高程基准”、“吴凇高程基准”和“珠江高程基准”等四种。 1.“1956年黄海高程” 我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,叫

“1956年黄海高程”系统,为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面。该高程系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。原点设在青岛市观象山。1956黄海高程水准原点的高程是72.289米。该高程系与其他高程系的换算关系为:“1956年黄海高程”=“1985年国家高程基准”+0.029(米) “1956年黄海高程”=“吴凇高程基准”-1.688(米) “1956年黄海高程”=“珠江高程基准”+0.586(米) 2.“1985国家高程基准” 由于“1956年黄海高程”计算基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,叫“1985国家高程基准”,并用精密水准测量位于青岛的中华人民共和国水准原点。1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。1985国家高程系统的水准原点的高程是72.260米。习惯说法是“新的比旧的低0.029m”,黄海平均海平面是“新的比旧的高”。该高程系与其他高程系的换算关系为: “1985年国家高程基准”=“1956年黄海高程”-0.029(米) “1985年国家高程基准”=“吴凇高程基准”-1.717(米) “1985年国家高程基准”=“珠江高程基准”+0.557(米) 3.“吴凇高程基准” “吴凇高程基准”采用上海吴淞口验潮站1871~1900年实测的最低潮位所确定的海面作为基准面,该系统自1900年建立以来,一直为长江的

中国高程系统

高程系统 高程系统的换算是令人困扰的一个严重问题。我国历史上形成了多个高程系统,例外部门例外时期往往都有所区别。可以查到的资料相当匮乏。先收集整理如下。 一.常用高程系统 (1) 1956黄海高程系统 以青岛验潮站1950—1956年验潮资料算得的平衡海面为零的高程系统。原点设在青岛市观象山。该原点以“1956年黄海高程系”计算的高程为72.289米。 (2) 1985国家高程基准 由于计算这个基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定从头计算黄海平衡海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,并用精细水准测量接测位于青岛的中华人民共和国水准原点。 (3)吴淞(口)高程系统 清咸丰十年(1860年),海关巡工司在黄浦江西岸张华浜建立信号站,设置水尺,观测水位。光绪九年(1883年)巡工司根据咸丰十年至光绪九年在张华浜信号站测得的最低水位作为水尺零点。后又于光绪二十六年,根据同治十年至光绪二十六年(1871~1900年)在该站观测的水位资料,制定了比实测最低水位略低的高程作为水尺零点,并正式确定为吴淞零点(W.H.Z)。以吴淞零点计算高程的称为吴淞高程系,上海历来采用这个系统。民国11年(1922年),扬子江水利委员会技术委员会确定长江流域均采用吴淞高程系。1951年,华东水利部规定,华东区水准测量暂时以吴淞零点为高程起算基准。吴淞高程系与1956年黄海高程系的基面差。江苏省水利厅于1953年以精细水准测量方法施测了佘苏线(佘山—苏州)、佘高线(佘山—金丝娘桥—高桥—张华浜)和佘张线(佘山—张华浜)等3条水准路线,观测高差纳入华东地区高程

海图基准面、深度基准、标高等常用参考标准

1.平均海平面(mean sea level) 计算平均海面最简单的方法是算术平均方法。可分为日平均、月平均、年平均和多年平均海平面等。一般以多年的年平均海面的平均值作为长期的平均海面。 2.高程基准 目前,我国采用的是“1985国家高程基准”。它采用了1952-1979年的资料,对青岛验潮站的平均海面重新计算,以19年的资料为一组,滑动步长为一年,得到10组以19年作为一个周期的平均海面,然后再取其平均值作为高程基准。吴淞零点是以比实测最低水位略低的高程作为水尺零点。系根据吴淞站(现东海船厂内)1871年至1900年实测资料,于1901年确定一个略低于最低潮位作为吴淞零点,并于1920年引测到松江佘山,建立永久性测量标志,吴淞零点比全国统一基准面黄海平均海面(青岛)低1.63米(又说低1.717米)1985年国家高程基准高程=1956年黄海高程-0.029m。 3.深度基准 就大地测量而言,采用平均海面作为水深测量的基准面,可以使水深与陆地高程得以统一。但在海图编制中,常采用一个低于平均海面的参考面作为深度基准面。 4.理论深度基准面(theoretical sea level datum) 1956年起,海军司令部海道测量部在全国海洋测绘中,统一采用理论深度基准面作为深度基准面,同时也作为潮水位高度和潮汐预报水位的起算面。 根据1990年12月1日开始实施的国家标准《海道测量规范》(GB12327-90)规定,原来作为海洋测绘深度基准面的理论深度基准面改名为理论最低潮面。同时规定,在计算理论最低潮面时,增加2个长周期分潮进行长周期改正,因此计算理论最低潮面的分潮从11个增加到13个。 5.海图基准面(chart datum) 即海图所载水深的起算面,又叫深度基准面。 定义1:海图及各种水深资料所载深度的起算面。 定义2:海图及港口航道图中水深的起算水平面。 水深测量通常在随时升降的水面上进行,因此不同时刻测量同一点的水深是不相同的,这个差数随各地的潮差大小而不同,在一些海域十分明显。为了修正测得水深中的潮高,必须确定一个起算面,把

我国常见高程系统及转换关系

高程基准是推算国家统一高程控制网中所有水准高程的起算依据,它包括一个水准基面和一个永久性水准原点。国家高程基准是根据验潮资料确定的水准原点高程及其起算面。目前我国常见的高程系统主要包括“1956年黄海高程”、“1985国家高程基准”、“吴凇高程基准”和“珠江高程基准”等四种。 1.“1956年黄海高程” 我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,叫“1956年黄海高程”系统,为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面。该高程系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。原点设在青岛市观象山。1956黄海高程水准原点的高程是72.289米。该高程系与其他高程系的换算关系为: “1956年黄海高程”=“1985年国家高程基准”+0.029(米) “1956年黄海高程”=“吴凇高程基准”-1.688(米) “1956年黄海高程”=“珠江高程基准”+0.586(米) 2.“1985国家高程基准” 由于“1956年黄海高程”计算基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,叫“1985国家高程基准”,并用精密水准测量位于青岛的中华人民共和国水准原点。1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。1985国家高程系统的水准原点的高程是72.260米。习惯说法是“新的比旧的低0.029m”,黄海平均海平面是“新的比旧的高”。该高程系与其他高程系的换算关系为: “1985年国家高程基准”=“1956年黄海高程”-0.029(米) “1985年国家高程基准”=“吴凇高程基准”-1.717(米) “1985年国家高程基准”=“珠江高程基准”+0.557(米) 3.“吴凇高程基准” “吴凇高程基准”采用上海吴淞口验潮站1871~1900年实测的最低潮位所确定的海面作为基准面,该系统自1900年建立以来,一直为长江的水位观测、防汛调度以及水利建设所采用。在上海地区,“吴淞高程基准”=“1956年黄海高程”-1.6297(米)=“1985年国家高程基准”-1.6007(米),远离上海的地区,

我国常见的高程系统及其换 算关系

我国常见的高程系统及其换算关系高程基准是推算国家统一高程控制网中所有水准高程的起算依据,它包括一个水准基面和一个永久性水准原点。国家高程基准是根据验潮资料确定的水准原点高程及其起算面。目前我国常见的高程系统主要包 括“1956年黄海高程”、“1985国家高程基准”、“吴凇高程基准”和“珠江高程基准”等四种。 1.“1956年黄海高程” 我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,叫“1956年黄海高程”系统,为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面。该高程系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。原点设在青岛市观象山。1956黄海高程水准原点的高程是72.289米。该高程系与其他高程系的换算关系为: “1956年黄海高程”=“1985年国家高程基准”+0.029(米) “1956年黄海高程”=“吴凇高程基准”-1.688(米) “1956年黄海高程”=“珠江高程基准”+0.586(米) 2.“1985国家高程基准” 由于“1956年黄海高程”计算基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,叫“1985国家高程基准”,并用精密水准测量位于青岛的中华人民共和国水准原点。1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。1985国家高程系统的水准原点的高程是72.260米。习惯说法是“新的比旧的低0.029m”,黄海平均海平面是“新的比旧的高”。该高程系与其他高程系的换算关系为: “1985年国家高程基准”=“1956年黄海高程”-0.029(米) “1985年国家高程基准”=“吴凇高程基准”-1.717(米) “1985年国家高程基准”=“珠江高程基准”+0.557(米) 3.“吴凇高程基准”

各水准高程起算基准面关系

各水准高程起算基准面关系 一、高程系统的一般意义 变化曲线基面是指计算水位和高程的起始面。在水文资料中涉及的基面有:绝对基面、假定基面、测站基面、冻结基面等四种。 (1)绝对基面。是将某一海滨地点平均海水面的高程定义为零的水准基面。我国各地沿用的水准高程基面有大连、大沽、黄海、废黄河口、吴淞、珠江等基面。 (2)假定基面。为计算测站水位或高程而暂时假定的水准基面。常在水文测站附近没有国家水准点,而一时不具备接测条件的情况下使用。 (3)测站基面。是水文测站专用的一种假定的固定基面。一般选为低于历年最低水位或河床最低点以下0.5m~1.0m。 (4)冻结基面。也是水文测站专用的一种固定基面。一般测站将第一次使用的基面冻结下来,作为冻结基面。 二、常用高程系统 高程系统的换算是令人困扰的一个重要问题。我国历史上形成了多个高程系统,不同部门不同时期往往都有所区别。可以查到的资料相当匮乏。先收集整理如下。 (1)波罗的海高程 波罗的海高程十0.374米=1956年黄海高程 中国新疆境内尚有部分水文站一直还在使用“波罗的海高程”。

2)黄海高程 系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。原点设在青岛市观象山。该原点以“1956年黄海高程系”计算的高程为72.289米。 (3)1985国家高程基准 由于计算这个基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,并用精密水准测量接测位于青岛的中华人民共和国水准原点,得出1985年国家高程基准高程和1956年黄海高程的关系为: 1985年国家高程基准高程=1956年黄海高程-0.029m。 1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。 (4)吴凇(口)高程系统 该高程系统比较混乱,不同地区采用数值不一,如采用,需要仔细核对。 宁波:“1985国家高程基准”注记点=“吴淞高程系统”注记点-1.87 嘉兴::“1985国家高程基准”注记点=“吴淞高程系统”注记点-1.828(?) (5)广州高程及珠江高程 广州高程= 1985国家高程系+ 4.26(米) 广州高程=黄海高程系+ 4.41(米) 广州高程=珠江高程基准+ 5.00(米) (6)大连零点 入侵中国东北期间,在大连港码头仓库区内设立验潮站,并以多年验潮资料求得的平均海面为零起算,称为“大连零点”。该高程系的基点设在辽宁省大连市的大连港原一号码头东转角处,该基点在大连零点高程系中的高程为 3.765米。原点设在吉林省长春市的人民广场内,已被毁坏。该系统于1959年以前在中国东北地区曾广泛使用。1959年中国东北地区精密水准网在山海关与中国东南部水准网连接平差后,改用1956年黄海高程系统。大连基点高程在1956年黄海高程系的高程为3.790米。

理论深度基准面

海洋调查方法上定义:理论深度基准面是根据本站多年多年潮位资料算得理论上可能的最低水深作为理论深度基准面;而潮高基准面是相当于当地最低低潮面。 潮高基准面大多采用理论最低潮面,但不同部门的潮位记录也可能会采用一些其他高程基准面作为潮高基准面,如公开发行的潮汐表中的潮高基准面一定是理论基面,但水文局内部整编的潮位记录的潮高基准面有可能是其他基面,如长江口区会存在85基面、吴淞基面(也有很多基准点)、理论基面,闽江口附近则有可能还会有罗星塔基面等。 大潮升,小潮升,平均海平面这些,潮信表,海图都是以理论深度基准面计,现在叫理论最低潮面 理论深度基准面与可能最低潮面是相差无几的,可以把他们当成一个概念来对待 深度基准面 目录

深度基准面 中文名称:深度基准面 英文名称:datum for sounding reduction 海图所载水深的起算面,又称海图基准面。水深测量通常在随时升降的水面上进行,因此不同时刻测量同一点的水深是不相同的,这个差数随各地的潮差大小而不同,在一些海域十分明显。为了修正测得水深中的潮高,必须确定一个起算面,把不同时刻测得的某点水深归算到这个面上,这个面就是深度基准面,深度基准面通常取在当地多年平均海面下深度为L 的位置。求算深度基准面的原则,是既要保证舰船航行安全,又要考虑航道利用率。由于各国求L值的方法有别,因此采用的深度基准面也不相同。 中国在1956年以后采用理论深度基准面(即理论最低潮面)。 编辑本段发展 深度基准面 一、特大潮低潮面 清宣统三年(1911年)以前,英海军制定采用特大潮低潮面,以后海关海务处承袭使用。30年代初期,国民政府海军和美海军在引用海关海务处资料时,也使用特大潮低潮面。民国35年(1946年)英国出版的长江口1602号海图仍继续采用特大潮低潮面。 二、寻常大潮低潮面 宣统三年以前,上海开浚黄浦工程总局曾采用过寻常大潮低潮面为深度基准面,同时也作为黄浦江航道整治工程的整治零点。在吴淞,寻常大潮低潮面高于特大潮低潮面0.61米,高于吴淞零点0.43米。 三、略最低低潮面 抗日战争以前,日海军已经采用略最低低潮面为深度基准面。抗日战争期间,汪伪海军水路测量局在测量江阴至河口的长江河道图时,也采用

黄海高程与吴淞高程的换算

吴淞与废黄河、黄海、八五基准点的关系: 1、吴淞=废黄河+1.763m; 2、吴淞=黄海+1.924m; 3、吴淞=八五基准+1.953m。 一、吴淞零点和吴淞高程系:清咸丰十年(1860年),海关巡工司在黄浦江西岸张华浜建立信号站,设置水尺,观测水位。光绪九年(1883年)巡工司根据咸丰十年至光绪九年在张华浜信号站测得的最低水位作为水尺零点。后又于光绪二十六年,根据同治十年至光绪二十六年(1871~1900年)在该站观测的水位资料,制定了比实测最低水位略低的高程作为水尺零点,并正式确定为吴淞零点(W.H.Z)。以吴淞零点计算高程的称为吴淞高程系,上海历来采用这个系统。民国11年(1922年),扬子江水利委员会技术委员会确定长江流域均采用吴淞高程系。1951年,华东水利部规定,华东区水准测量暂时以吴淞零点为高程起算基准。 2:吴淞高程系与1956年黄海高程系的基面差。江苏省水利厅于1953年以精密水准测量方法施测了佘苏线(佘山—苏州)、佘高线(佘山—金丝娘桥—高桥—张华浜)和佘张线(佘山—张华浜)等3条水准路线,观测高差纳入华东地区高程控制网,参加国家测绘总局主持的1957年中国东南部地区精密水准网平差。平差后的水准点高程均为1956年黄海高程系,佘山水准基点既有黄海高程(44.4350米),又有吴淞高程(46.0647米),两者之差为1.6297米,即在上海地区吴淞高程系基面比1956年黄海高程系基面低1.6297米,远离上海的地区,同一点的两个高程值之差会略有不同。 3:1956黄海高程水准原点的高程是72.289米。1985国家高程系统的水准原点的高程是72.260米。

中国高程系统知识

我国常见的高程系统及其换算关系 空间基准2010-11-10 18:49:37 阅读111 评论0 字号:大中小订阅 高程基准是推算国家统一高程控制网中所有水准高程的起算依据,它包括一个水准基面和一个永久性水准原点。国家高程基准是根据验潮资料确定的水准原点高程及其起算面。目前我国常见的高程系统主要包括“1956年黄海高程”、“1985国家高程基准”、“吴凇高程基准”和“珠江高程基准”等四种。 1.“1956年黄海高程系” 我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,叫“1956年黄海高程”系统,为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面。该高程系以青岛验潮站1950—1956年验潮资料算得的平均海面为零的高程系统。原点设在青岛市观象山。1956黄海高程水准原点的高程是72.289米。该高程系与其他高程系的换算关系为:“1956年黄海高程”=“1985年国家高程基准”+0.029(米) “1956年黄海高程”=“吴凇高程基准”-1.688(米) “1956年黄海高程”=“珠江高程基准”+0.586(米) 2.“1985国家高程基准” 由于“1956年黄海高程”计算基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,叫“1985国家高程基准”,并用精密水准测量位于青岛的中华人民共和国水准原点。1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。1985国家高程系统的水准原点的高程是72.260米。习惯说法是“新的比旧的低0.029m”,黄海平均海平面是“新的比旧的高”。该高程系与其他高程系的换算关系为: “1985年国家高程基准”=“1956年黄海高程”-0.029(米) “1985年国家高程基准”=“吴凇高程基准”-1.717(米) “1985年国家高程基准”=“珠江高程基准”+0.557(米) 3.“吴凇高程基准” “吴凇高程基准”采用上海吴淞口验潮站1871~1900年实测的最低潮位所确定的海面作为基准面,该系统自1900年建立以来,一直为长江的水位观测、防汛调度以及水利建设所采用。在上海地区,“吴淞高程基准”=“1956年黄海高程”-1.6297(米)=“1985年国家高程基准”-1.6007(米),远离上海的地区,此值又有不同。该高程系与其他高程系的换算关系为: “吴凇高程基准”=“1956年黄海高程”+1.688(米) “吴凇高程基准”=“1985年国家高程基准”+1.717(米) “吴凇高程基准”=“珠江高程基准”+2.274(米) 4.“珠江高程基准” 珠江高程基准是以珠江基面为基准的高程系,在广东地区应用较为广泛。该高程系与其他高程系的换算关系为: “珠江高程基准”=“1956年黄海高程”-0.586(米) “珠江高程基准”=“1985年国家高程基准”-0.557(米) “珠江高程基准”=“吴凇高程基准”-2.274(米) 以上四种高程基准之间的差值为各地区精密水准网点之间的差值平均值,以上差值数据取自《城市用地竖向规划规范》(CJJ83-1989)。 除以上四种高程系统外,在我国的不同历史时期和不同地区曾采用过多个高程系

海图基准面、深度基准、标高等常用参考标准

计算平均海面最简单地方法是算术平均方法.可分为日平均、月平均、年平均和多年平均海平面等.一般以多年地年平均海面地平均值作为长期地平均海面. .高程基准 目前,我国采用地是“国家高程基准”.它采用了年地资料,对青岛验潮站地平均海面重新计算,以年地资料为一组,滑动步长为一年,得到组以年作为一个周期地平均海面,然后再取其平均值作为高程基准.吴淞零点是以比实测最低水位略低地高程作为水尺零点.系根据吴淞站(现东海船厂内)年至年实测资料,于年确定一个略低于最低潮位作为吴淞零点,并于年引测到松江佘山,建立永久性测量标志,吴淞零点比全国统一基准面黄海平均海面(青岛)低米(又说低米)个人收集整理勿做商业用途 年国家高程基准高程年黄海高程. .深度基准 就大地测量而言,采用平均海面作为水深测量地基准面,可以使水深与陆地高程得以统一.但在海图编制中,常采用一个低于平均海面地参考面作为深度基准面.个人收集整理勿做商业用途 . 理论深度基准面() 年起,海军司令部海道测量部在全国海洋测绘中,统一采用理论深度基准面作为深度基准面,同时也作为潮水位高度和潮汐预报水位地起算面.个人收集整理勿做商业用途 根据年月日开始实施地国家标准《海道测量规范》(-)规定,原来作为海洋测绘深度基准面地理论深度基准面改名为理论最低潮面.同时规定,在计算理论最低潮面时,增加个长周期分潮进行长周期改正,因此计算理论最低潮面地分潮从个增加到个.个人收集整理勿做商业用途 . 海图基准面() 即海图所载水深地起算面,又叫深度基准面. 定义:海图及各种水深资料所载深度地起算面. 定义:海图及港口航道图中水深地 起算水平面. 水深测量通常在随时升降地水面上 进行,因此不同时刻测量同一点地 水深是不相同地,这个差数随各地 地潮差大小而不同,在一些海域十 分明显.为了修正测得水深中地潮 高,必须确定一个起算面,把不同 时刻测得地某点水深归算到这个面 上,这个面就是深度基准面.深度基准面通常取在当地多年平均海面下深度为地位置.求算深

水文的高程基准

水文的高程基准 水文资料的利用不会仅限于单站,因此站网观测资料就一定需要有系统性,各项要素也需要具有技术上的一致性。水面相对于某个起算面的自由高度即是水位。因此在水文站网实施水文测验,水位观测必须要有统一的高程基准,由于历史等原因,我国各地曾经采用各自的高程基准,以致不同测站的水位无法直接相互衡量、比较,给资料的使用带来不少麻烦。由此可见,高程基准的控制不仅是水位观测的重要基础也是整个水文测验最重要的基础,水位起算基准面、水尺零点基准等就成为关键的技术内容之一 1 基面与高程控制系统 1.1 基面 静止的水面所形成的曲面被称之为水准面,水准面是重力等位面。水准面的重要物理特征是曲面上各处重力相等,物体在水准面上作平移运动时重力不做功,也可以说水准面上水面是静止不流动的。以水为平,海拔为高,水准面就是用以衡量高度的参照面。为了得到可以普遍适用的高程基准面,需要一个能符合整个地球物理性质的统一的水准面,这个环绕地球的封闭的水准面被称之为大地水准面。因为客观条件不同,人们实际确定的大地水准面就会有所不同,把经过某一个特定位置点的大地水准面称为基面,作为高程的起算基准面。例如经过青岛验潮站平均海平面的“黄海基面”。 1.2 高程及其方向 在很多水文测验和测量教材中都给出了高程的定义:高程是地面点到高度起算面的垂直距离。但是,都没有细说高程的方向和从起算面出发去往某地面点的高程增长路径。测绘学意义上,高程是某地面点在地球重力方向上的高度。由于地球内部质量分布的不均匀,致使地球重力场不是一个简单和规则变化的力场,水准面也就呈现为不规则起伏的曲面。空间上每一个高度都可以有一个水准面,水准面之间的距离就是高差,俗话说“水往低处流”,其实所谓高低,虽然表现出是空间落差,实际上是重力位差。高程既然沿重力线为方向增减,那么某一地点精确的高程,其方向线是曲线。因此,椭球体的地球表面上每个点高程其方向都是不同的。某一位置点沿着地球重力线(曲线),相对于大地水准面的距离,称

高程系统

正高系统 正高系统以大地水准面为高程基准面,地面上任一点的正高是指该点沿垂线方向至大地水准面的距离。要推算这种平均重力值,必须知道地面和大地水准面之间岩层的密度分布,这是不能用简单方法来推求的。所以过去都是采用近似的数据,只能求得正高的近似值。 高程系统正常高系统 1945年前苏联的M.C.莫洛坚斯基提出了“正常高”的概念,即将正高系统中的分母gm 改用平均正常重力值γm来代替,γm是可以精确计算的,因此正常高也可以精确地计算出来。由各地面点沿正常重力线向下截取各点的正常高,所得到的点构成的曲面,称为似大地水准面,它是正常高的基准面。似大地水准面很接近于大地水准面,在海洋上两者是重合的,在平原地区两者相差不过几厘米,在高山地区两者最多相差2米。 似大地水准面不是等位面,没有明确的物理意义。它是由各地面点按公式计算的正常高来定义的,这是正常高系统的缺陷,其优点是可以精确计算,不必引入人为的假定。中国《大地测量法式》规定采用正常高系统。 高程系统大地高程 地面点在三维大地坐标系中的几何位置,是以大地经度、大地纬度和大地高程表示的。大地高程以椭球面为基准面,是由地面点沿其法线到椭球面的距离。大地高程可直接由卫星大地测量方法测定,也可由几何和物理大地测量相结合来测定。采用前一种方法时,直接由卫星定位技术测定地面点在一全球地心坐标系中的大地高程;采用后一种方法时,大地高程分为两段来测定,其中由地面点至大地水准面或似大地水准面的一段由水准测量结果加上重力改正而得,由大地水准面或似大地水准面至椭球面的一段由物理大地测量方法求得。当以大地水准面为过渡面时,则:H =Hg+N,式中N为大地水准面至椭球面的差距,称为大地水准面起伏。如以似大地水准面为过渡面,则:H =H r+ζ,式中ζ为似大地水准面至椭球面的距离,称为高程异常。由于正高Hg是由地面点沿垂线至大地水准面的距离, 而正常高H r 是由地面点沿正常重力线至似大地水准面的距离,所以由上述两种方法计算得出的大地高程有差异,差数约为十分之几毫米。 高程系统力高系统 由于同一水准面上的各点在正高或正常高系统中的高程值不同,因而对于大规模的水利工程来说,使用很不方便。为了使同一水准面上各点有相同的高程值,可以采用力高系统。地面点的力高定义为通过该点的水准面上纬度嗘0处的正高,即一个水准面上各点的力高都等于该面上纬度τ0处的正高。力高一般不作为国家的高程系统,只用于解决局部地区有关水利建设的问题。

我国常用的高程系统

我国常用的高程系统 (2012-04-15 16:31:57) 转载▼ 分类:测天量地 标签: 教育Array 高程基准是推算国家统一高程控制网中所有水准高程的起算依据,它包括一个水准基面和一个永久性水准原点。国家高程基准是根据验潮资料确定的水准原点高程及其起算面。目前我国常见的高程系统主要包括“1956年黄海高程”、“1985国家高程基准”、“吴凇高程基准”和“珠江高 程基准”等四种。

1.“1956年黄海高程” 我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面, 叫“1956年黄海高程”系统,为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面。该高程系以青岛验潮站1950—1956年验潮资 料算得的平均海面为零的高程系统。原点设在青岛市观象山。1956黄海高程水准原点的高程是72.289米。该高程系与其他高程系的换算关系为:“1956年黄海高程”=“1985年国家高程基准”+0.029(米) “1956年黄海高程”=“吴凇高程基准”-1.688(米) “1956年黄海高程”=“珠江高程基准”+0.586(米) 2.“1985国家高程基准” 由于“1956年黄海高程”计算基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄 海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,叫“1985国家高程基准”,并用精密水准测量位于青岛的中华人民共和国水准原点。1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。1985国家高程系统的水准原点的高程是72.260米。习惯说法是“新的比旧的低0.029m”,黄海平均海平面是“新的比旧 的高”。该高程系与其他高程系的换算关系为: “1985年国家高程基准”=“1956年黄海高程”-0.029(米) “1985年国家高程基准”=“吴凇高程基准”-1.717(米) “1985年国家高程基准”=“珠江高程基准”+0.557(米)

大沽高程基准

大沽高程比黄海高程要高1.163米 大沽高程是由高程基准面起算的地面点高度。由于选用的基准面不同,会有不同的高程。如其基准面在海洋上与平均海水面相吻合,就称为绝对高程。由平均海水面起算的地面点高度,称为海拔。我国以黄海平均海面作为水准基面。为了将水准基面可靠地标定在地面上,须设置永久性水准原点,由精密水准测量测定这一原点对于验潮站平均海面的高程。我国的水准基点设在青岛观象山上,相对黄海平均海面的高程为72.289米。由按国家统一规范测定高程的一系列水准点构成的网,称为国家高程控制网或国家水准网,可为国家经济建设、国防建设、地形测量和有关科学研究等提供地面点高程。 由于历史原因,计量河水、洪水水位的海拔基准也有所不同。2003年9月,黄河最大支流渭河发生特大洪灾,华县水文站出现的342.76米这一历史最高水位,即指大沽高程基准。大沽高程比黄海高程要高1.163米。 近代,西方列强在华享有诸多特权。为确保外国船只在中国沿海和内河航行的安全,由其控制的海关在海港、河港码头设置水尺,观测潮水位和江河水位,掌握了许多水文资料。《辛丑条约》签订后,海河干流由各国驻津领事团共管。为便于列强船只通行,1902年,英国海军驻华舰队派炮船“兰勃勒”号测量大沽浅滩,绘制了水下地形图。海河工程局以大沽口北炮台处寻常高潮的最低海面为零,作为高程基准面,称“大沽零点”,高程是大沽浅滩外潮标(水尺)的53.34厘米。当时,在大沽口北炮台院内埋有标石,其顶高为大沽高程16.1英尺。该标石后被毁。海河工程局还成立测水机构,1902年起在海河干流陆续设置十余处潮水位站,1904年在德国码头测流量。 1917年海河流域暴发特大洪水。北洋政府派熊希龄负责水灾善后。1918年3月20日,顺直水利委员会在意租界五马路成立,熊任会长,有外籍人士3人,曾任印度工务部长的英国人罗斯,被聘为技术部长,负责水文技术。该会以整治直隶河道为主要任务,实施了一些建设和测量工程,1925年编制了《顺直河道治本计划书》。还负责海河、黄河流域的水利行政。 1928年9月26日,该会被改组为华北水利委员会,初由内务部管辖,1931年又归内政部。著名水利专家李仪祉任主席兼总工程师。该会下设总务、技术等处,以华北各河湖流域及沿海区域为管辖范围,开展防洪、灌溉、航运、水力及水利工程。该会有“以科学方法设计水利建设之新式机关”之称,聚集了一大批掌握近代西方水利科技的年富力强专家,如李书田、曾世英、徐世大、高镜莹、须恺、张含英、王华棠、彭济群、李赋都等。该会编制完成了海河流域第一部河系规则———《永定河治本计划》,在天津筹建了中国第一个水工试验所,还对海河水系各河实施了整治,完成了海河放淤等一批水利工程。该会还制订了十年水利实施计划,由于抗日战争爆发,未及全面实施,内迁重庆后,各项工程呈停滞状态。抗战胜利后,华北水利委员会迁回天津,组建华北水利工程总局。1948年,华北解放区宣布成立华北水利委员会,成为如今水利部海河水利委员会前身。 大沽高程是华北水利委员会于1931年在该会院内设立永久性水准基点,并与全国大地测量高程网连接后形成的。华北、西北等地所测地形图曾多使用此高程系统。受天津市区地面沉降的影响,1978年,天津测绘部门将水准原点移建至宝坻县境内的岩基上,其大沽高程为6.226米。

相关主题
文本预览
相关文档 最新文档