当前位置:文档之家› 甲醇制氢工艺简介

甲醇制氢工艺简介

甲醇制氢工艺简介
甲醇制氢工艺简介

1前言

氢气在工业上有着广泛的用途。近年来,由于精细化工、蒽醌法制双氧水、粉末冶金、油脂加氢、林业品和农业品加氢、生物工程、石油炼制加氢及氢燃料清洁汽车等的迅速发展,对纯氢需求量急速增加。

对没有方便氢源的地区,如果采用传统的以石油类、天然气或煤为原料造气来分离制氢需庞大投资,“相当于半个合成氨”,只适用于大规模用户。对中小用户电解水可方便制得氢气,但能耗很大,每立方米氢气耗电达~6度,且氢纯度不理想,杂质多,同时规模也受到限制,因此近年来许多原用电解水制氢的厂家纷纷进行技术改造,改用甲醇蒸汽转化制氢新的工艺路线。

西南化工研究设计院研究开发的甲醇蒸汽转化配变压吸附分离制氢技术为中小用户提供了一条经济实用的新工艺路线。第一套600Nm3/h制氢装置于1993年7月在广州金珠江化学有限公司首先投产开车,在得到纯度%氢气同时还得到食品级二氧化碳,该技术属国内首创,取得良好的经济效益。此项目于93年获得化工部优秀设计二等奖、94年获广东省科技进步二等奖。

2工艺原理及其特点

本工艺以来源方便的甲醇和脱盐水为原料,在220~280℃下,专用催化剂上催化转化为组成为主要含氢和二氧化碳转化气,其原理如下:

主反应: CH3OH=CO+2H2 + KJ/mol

CO+H2O=CO2+H2 KJ/mol

总反应: CH3OH+H2O=CO2+3H2 + KJ/mol

副反应: 2CH3OH=CH3OCH3+H2O KJ/mol

CO+3H2=CH4+H2O -+mol

上述反应生成的转化气经冷却、冷凝后其组成为

H2 73~74%

CO2 23~%

CO ~%

CH3OH 300ppm

H2O 饱和

该转化气很容易用变压吸附等技术分离提取纯氢。

广州金珠江化学有限公司600Nm3/h制氢装置自93年7月投产后,因后续用户双氧水的扩产,于97年4月扩产1000Nm3/h制氢装置投产,后又扩产至1800Nm3/h,于2000年3月投产。本工艺制氢技术给金珠江化学有限公司带来良好的经济效益。

目前国内应用此技术的企业已近百家,通过几年来的运转证明,本工艺技术成熟、操作方便,运转稳定、无污染。

本工艺技术有下列特点:

1.甲醇蒸汽在专用催化剂上裂解和转化一步完成。

2.采用加压操作,产生的转化气不需要进一步加压,即可直接送入变压吸附分离装置,降低了能耗。

3.与电解法相比,电耗下降90%以上,生产成本可下降40~50%,且氢气纯度高。与煤造气相比则显本工艺装置简单,操作方便稳定。煤造气虽然原料费用稍低,但流程长投资大,且污染大,杂质多,需脱硫净化等,对中小规模装置不适用。

4.专用催化剂具有活性高、选择性好、使用温度低,寿命长等特点。

5.采用导热油作为循环供热载体,满足了工艺要求,且投资少,能耗低,降低了操作费用。

3工艺过程

工艺流程如图所示。

甲醇和脱盐水按一定比例混合后经换热器预热后送入汽化塔,汽化后的水甲醇蒸汽经锅热器过热后进入转化器在催化剂床层进行催化裂解和变换反应,产出转化气含约74%氢气和24%二氧化碳,经换热、冷却冷凝后进入水洗吸收塔,塔釜收集未转化完的甲醇和水供循环使用,塔项气送变压吸附装置提纯。

根据对产品气纯度和微量杂质组分的不同要求,采用四塔或四塔以上流程,纯度可达到~%。设计处理能力为1500 Nm3/h转化气、纯度为%的变压吸附装置,其氢气回收率可达90%以上。

转化气中二氧化碳可用变压吸附装置提纯到食品级,用于饮料及酒类行业。这样可大大降低生产成本。流程设置先经变压吸附装置分离二氧化碳后,富含氢气的转化气经加压送入变压吸附装置提纯。

因气量小,基本上无毒,可直接排入大气。

变压吸附工艺驰放气经阻火器后排入大气,其中含大量的二氧化碳气和少量的氢气及微量的一氧化碳和水汽,对环境不造成污染。

废液:

本工艺仅汽化塔塔底不定期排出少量废水,其中含甲醇%以下,经稀释后可达到GB8978-88中第二类污染物排放标准,直接排入下水。

废渣:

导热油锅炉房有一定量的燃烧煤渣,可集中处理。(只有以煤为燃料的导热油系统有废渣。)

6推广应用情况

现已技术转让或提供成套装置的单位列表如下:西南化工研究院目前可提供20~5000Nm3/h 范围内各种规模的甲醇蒸汽转化制氢装置。可负责设计、安装指导、人员培训、开车等技术工作,也可提供成套工程装置如设备、电气、仪表等的硬件装备。装置投产后,长期实行技术回访等跟踪运行服务,保证装置稳定运行。

7 结论

工业化实践证明本技术工艺先进,技术成熟;装置简单,操作容易,运转稳定。此工艺特别对中小规模需氢用户,有较好的市场前景。

该工艺专用催化剂不断进行改进,不仅保持了高活性、高选择性的优点,在催化剂寿命上亦有较大突破,广州金珠江化学有限公司使用的催化剂寿命已超过4年。

操作程序

1 开车前的准备工作

一般准备和检查

1、检查水、电、汽、软水、仪表空气、氮气、氢气、燃料等的供应情况,并与有关部门联系,落实供应数量和质量要求。

2、关闭所有排液阀、排污阀、放空阀、进料阀、取样阀。开启冷却水、仪表空气等进工段总阀。

3、通知导热油锅炉房准备开车,并联系确定开车的具体时间和质量数量要求(压力、温度、流量等)。

4、通知分析室准备生产控制分析工作。

5、检查动力设备的完好情况,检查所有仪表电源、气源、信号是否正常。

6、落实产品用户。因转化催化剂不希望中途频繁停车,如用户没落实不要急于开车。

7、检查消防和安全设施是否齐备完好。

8、操作人员、分析人员、管理和维修人员经技术培训,并考核合格方能上岗。

2 开车操作程序

投料开车程序应在催化剂还原结束后进行,无时间间隔。开车时序一般为:水冼塔开车、汽化塔开车、转化炉开车、系统升压。还原结束后,关闭还原系统阀,开启转化炉后直到放空管线间所有阀门,关闭有关阀门,准备系统开车。

注意:开车负荷一般采用30%~60%满负荷量,待系统稳定后逐渐加大到满负荷量。

准备

1、检查工具和防护用品是否齐备完好。

2、检查动力设备是否正常,对润滑点按规定加油,并盘车数圈。

3、检查各测量、控制仪表是否失灵,准确完好,并打开仪表电源、气源开关。

4、通知甲醇库和脱盐水站向本装置送原料。使甲醇中间罐和脱盐水中间罐的液位达~90%,停止送料。

5、催化剂还原系统所有阀门、仪表维持原开车状态不变。

6、通知导热油炉工序,做好开车准备。

7、确定开车投料量,明确投料量与各参数间关系。

水冼塔开车

1、开脱盐水中间罐出料阀、脱盐水进料泵进口阀、旁路阀,启动进料泵,使脱盐水泵运转正常。

2、开泵脱盐水进料出口阀,关脱盐水进料旁路阀,用调节阀调节回流量,使流量达要求值。

3、当水洗塔塔釜出现液位后,开塔釜排液调节阀旁路阀,向循环液贮槽送脱盐水,然后开调节阀前后阀,控制水洗塔液位在30~40%。

汽化塔开车

1、开甲醇中间罐出口阀、甲醇流量计前后阀、开循环液贮槽出口阀,使水甲醇混合,开泵甲醇进料泵进口阀,旁路阀,启动泵,使甲醇进料泵运转正常。

2、开甲醇进料泵出口阀,关甲醇进料泵旁路阀,调节进料泵刻度向系统送水甲醇。在取样点取样分析,通过调节原料甲醇的流量,使水甲醇配比达到要求值。

3、当汽化塔塔釜液位达10%时,开启汽化塔顶放空阀,缓慢开启塔釜导热油进口阀旁路阀、前后阀,用调节阀调节进汽化塔导热油量。当塔顶排放气量稳定时,开启过热器底部排污阀,无液珠排出时关闭排污阀,即可转入转化炉开车。

转化炉开车

1、开转化炉进口阀,关闭汽化塔顶放空阀,即向转化炉送水甲醇原料气。

2、使导热油炉温度稳定至230℃,检查装置设备、管线、阀门、仪表等运转是否正常,并观察各工艺参数间关系,若无异常现象便可进行系统升压。

系统升压

1、开流量计前后阀,关闭旁路阀,开系统压力调节阀及其前后阀,关闭旁路阀。缓慢关小阀,使系统升压,直至达。

注意:必须保证原料气体适量通过催化剂床层,所以系统调压阀不能处于全关状态。

2、调节系统压力调节阀开度,使系统压力、转化气量稳定。

3、检查原料液进料量及其水甲醇配比,使达要求值;检查转化气量,通过阀调节进下部的导热油流量,控制好塔釜液位在15~40%。

4、调节使进水洗塔脱盐水量稳定并达要求值,使液位稳定。

此时已完成系统投料开车工作。观察全系统运行情况,若无异常现象便可进行下述操作使系统转入正常工作。

系统稳定

1、检查冷却器冷却水量,使进入水洗塔的转化气温度≤40℃。

2、检查缓冲罐出口转化气组成,调整水甲醇配比,控制转化气出口气中一氧化碳、甲醇、水等组份达要求值。

3、全系统操作稳定后,即可向后工段PSA-H2装置输送转化气。

3 正常操作

全系统开车完成后,即可逐步转入正常操作。

7.3.1 正常操作状态的建立和维持

1、根据原料液进料量、转化气流量、水甲醇配比、汽化塔液位、导热油温度、转化气组成、循环液组成及各控制点参数对各控制参数进行适当调整,使系统操作处于正常范围内。

2、根据所需转化气量及水甲醇配比确定甲醇流量,将调节阀投入自动调节。

3、根据所需脱盐水流量,将调节阀投入自动调节

4、根据所需转化气量及水甲醇配比,调节原料液进料泵流量。

5、根据循环液流量,将调节阀投入自动调节。

6、调节冷却器进水阀,使转化气出的温度在40℃以下。

7、当系统转化气流量稳定后,将系统压力调节阀投入自动调节。

8、根据所需转化气量及组成,适当调整进系统导热油温度。

9、由汽化塔下部排液阀连续排出少量废水,排出量控制在~20.0Kg/h。

全系统已处正常稳定运转。

系统处于正常操作时,按时记录各操作参数并巡回检查各控制点、设备、仪表、阀门等是否处正常状态,发现异常现象,应立即查明原因,及时处理,排除故障,维持系统正常操作状态。正常停车操作

1、停止导热油炉加热,维持导热油循环,待反应温度降至200℃以下后,导热油炉房停止向造气装置送导热油,即开启导热油装置内部短路阀。导热油炉停车按导热油炉停车要求进行。

2、在导热油炉降温的同时,手动调节系统压力调节阀,使系统缓慢降压至(或切开气体缓冲罐,转化气可备用转化炉置换,开启水洗塔顶放空阀降压)。

3、关闭进转化炉阀门,缓慢开启汽化塔顶放空阀,汽化塔前系统降压至常压。

4、汽化塔系统降压的同时,停原料进料泵,停止向系统进料。

5、转化炉后系统继续降压,待降至时,关闭转化炉的前后阀、旁路阀。

6、停脱盐水泵,停止向水洗塔送脱盐水。关闭水洗塔釜排液阀。

7、分别用氮气或气体缓冲罐转化气对转化炉前后分段置换,考虑到降温对系统压力的影响,最好系统分段用氮气或氢气保压至。

导热油按要求降至一定温度后,停导热油循环泵。若长期停车,则用加压氮气将导热油从系统压回导热油贮罐。

8、对催化剂实行保护操作或钝化处理。

紧急停车操作

1、凡遇下列情况之一应采取紧急停车操作:

⑴停电。

⑵停冷却水。

⑶设备、管道爆炸断裂、起火。

⑷设备、管道或法兰严重漏气、漏液无法处理。

⑸重要控制仪表失灵。

2、操作步骤

⑴紧急通知导热油装置停止加热,打开导热油装置内部短路阀,停止向造气装置送导热油。

⑵关闭转化炉前阀,切开汽化塔系统与反应系统。转化炉后系统适当卸压。汽化系统可维持压力稳定。

⑶停原料进料泵。

⑷停脱盐水进料泵。

⑸对催化剂实行特殊保护操作。

⑹查明事故原因后再作进一步处理。

CNZ-1甲醇制氢催化剂说明书

CNZ-1型催化剂是一种以铜为活性组份。由铜、锌、铝等的氧化物组成的新型催化剂。其对甲醇蒸汽转化制氢和二氧化碳具有高活性和良好的选择性。

一、催化剂的主要特性

⒈型号:CNZ-1型

⒉外观颜色、外型尺寸和形状:

催化剂为黑色圆柱体。表面光滑,有光泽。

公称尺寸:Ф5×5毫米

⒊化学组成(重量%):

⒋堆密度:~1.25公斤/升

⒌机械破碎强度:≥60牛[顿]/厘米

⒍催化活性

采用模拟反应器测定

反应器:Ф25×1.5 mm

催化剂尺寸:Ф5×5 mm

催化剂装量:60毫升

还原条件:

还原压力:常压

还原温度:110~230℃

还原空速:1000时-1

还原时间:50小时

还原气:含H2~20%的N2气(或脱硫天然气)

测定条件:

反应压力:常压

反应温度:250℃

甲醇流量:30毫升/小时

催化剂活性:

时空产率(转化气)≥ 600Nm3/( m3·cat·h)。

二、催化剂包装、贮存

⒈催化剂用塑料袋包装后装入铁桶内。室内贮存,严防受潮、受震和毒物污染。搬运过程中禁止在地上滚动。禁止从高于0.5米的地方落下,或撞击。

⒉在正常情况下,催化剂可以贮存一年以上,对催化剂的物理性能和活性不会有影响。

三、催化剂的升温、还原和钝化

CNZ-1型催化剂由铜、锌、铝的氧化物组成。使用前应进行还原。

⒈还原条件:

还原压力:常压

还原空速:1000时-1

还原气:含H2~10%的氮气(或脱硫天然气)

⒉还原气质量: O2<%

H2O<%

S<

氯化物<

油雾极微

⒊升温还原程序

该CNZ-1型催化剂使用前须进行升温还原。在不同的温度段分别按15℃/h、10℃/h、5℃/h 升温速度进行,在升温过程中分阶段提高还原气中的氢气含量(~20%)。

⒋开车准备

还原结束后,停止加入氢气,关小还原气量至原流量的80%。准备正常开车投料,建议投料量为正常运转时的30~80%。

⒌催化剂的钝化

卸出催化剂时,必须将催化剂钝化处理。

钝化条件:

钝化气:氧含量(用仪表空气)为~5%的工业纯氮气。

钝化空速:1000时-1

钝化压力:常压

钝化处理后的催化剂便可以卸出。

四、注意事项:

⑴催化剂的还原是十分重要的一步骤,必须小心操作。要保证催化剂充分还原,不可急燥行事。

⑵还原完毕,准备正常投料时,要避免反应器温度下降超过10℃。

⑶ CNZ-1型催化剂可以在230~280℃下操作。催化剂使用前期可维持较低的操作温度,后期可将操作温度提高,以发挥催化剂的最大能力。

⑷铜系催化剂的缺点是耐热性较差,故无论是升温还原或在反应操作中都要避免催化剂淬冷淬热。否则会造成铜晶粒变化,从而影响催化剂的活性和寿命。

工艺过程说明

甲醇催化转化造气生产工艺过程可分为:原料液预热、汽化、过热、转化反应、产品气冷却冷凝、产品气净化等四个过程。

本装置为两套完全独立的系统,在以下叙述过程中设备、阀门、调节阀等位号省去系统。

1 工艺过程

原料液预热、汽化、过热工序

将甲醇和脱盐水按规定比例混和,经泵加压送入系统进行预热、汽化过热至反应温度的过程。其工作范围是:甲醇计量罐、循环液贮槽、原料进料泵、换热器、汽化塔、过热器等设备及其配套仪表和阀门。

催化转化反应工序

在反应温度和压力下,原料蒸汽在转化炉中完成气固相催化转化反应。工作范围是:转化炉一台设备及其配套仪表和阀门。该工序的目的是完成化学反应,得到主要组分为氢气和二氧化碳的转化气。

转化气冷却冷凝工序

将转化炉下部出来的高温转化气经过冷却、冷凝降到40℃以下的过程。其工作范围是:换热器、冷却器二台设备及其配套仪表和阀门。

转化气净化工序

含有氢气、二氧化碳以及少量一氧化碳、甲醇和水的低温转化气,进入水洗塔用脱盐水吸收未反应甲醇的过程。其工作范围是:水洗塔、脱盐水中间罐、气体缓冲罐、脱盐水进料泵

五台设备及其配套仪表和阀门。

工艺过程主要控制指标

原料汽化过热

2.1.1 原料甲醇流量 1134kg/h 2.1.2 原料液流量~ 2590Kg/h 2.1.3 汽化过热塔进料温度~165 ℃2.1.4 汽化过热塔塔釜压力(表压) MPa

转化反应

2.2.1 进料温度 200~260℃2.2.2 反应温度 220~280℃2.2.3 导热油温度 235~290℃2.2.4 换热器出口转化气温度 110~140℃2.2.5 冷却器出口转化气温度<40℃2.2.6 反应压力(表压) ~

水洗分离

2.3.1 进塔脱盐水量 636Kg/h 2.3.2 循环液量(出塔) ~1469Kg/h

循环液组成(wt%):甲醇 0~25%2.3.3 出塔转化气量~3135Nm3/h

转化气组成(V%):氢 73~%

二氧化碳 23~%

一氧化碳~%

甲醇 %

甲烷 %

催化剂还原

2.4.1 还原循环气量 ~2100 Nm3/h

2.4.2还原气氢含量~10%

2.4.3 还原温度 110~230℃

2.4.4 还原压力~ MPa

其它

2.5.1 进工段冷却水压力

2.5.2 进工段仪表空气压力 ~ MPa

2.5.3 导热油流量~160 m3/h

化学反应原理

甲醇与水蒸汽混合物在转化炉中加压催化完成转化反应,反应生成氢气和二氧化碳,其反应式如下:

主反应: CH3OH+H2O=CO2+3H2 + KJ/mol

副反应: CH3OH=CO+2H2 + KJ/mol

2CH3OH=CH3OCH3+H2O -mol

CO+3H2=CH4+H2O -mol

主反应为吸热反应,采用导热油外部加热。转化气经冷却、冷凝后进入水洗塔,塔釜收集未转化完的甲醇和水供循环使用,塔顶转化气经缓冲罐送变压吸附提氢装置分离。

原料和产品性质

原料性质

⑴原料甲醇性质

化学名称为甲醇,别名甲基醇、木醇、木精。分子式CH3OH,分子量。是有类似乙醇气味的无色透明、易燃、易挥发的液体。比重为。熔点-97.80℃,沸点64.7℃,20℃时蒸汽压,粘度厘泊,闪点11.11℃,自燃点385℃,在空气中的爆炸极限为~%。甲醇是最常用的有机溶剂之一,能与水和多种有机溶剂互溶。

甲醇有毒、有麻醉作用,对视神经影响很大,严重时可引起失明。

⑵原料脱盐水性质(省略)

产品性质

本装置生产的产品甲醇催化转化气,其主要组份为氢气和二氧化碳,性质分述如下:

⑴氢气性质

分子式H2,分子量,无色无臭气体。无毒无腐蚀性。气体密度0.0899Kg/m3,熔点-259.14℃,沸点-252.8℃,自燃点400℃,极微溶于水、醇、乙醚及各种液体,常温稳定,高温有催化剂时很活泼,极易燃、易爆,并能与许多非金属和金属化合。

⑵二氧化碳性质

化学名称二氧化碳,别名:碳酸酐、碳酐、碳酸气。分子式CO2,分子量,无色无臭气体。有酸味,气体密度1.977Kg/m3,熔点-56.6℃,沸点-78.5℃(升华),易溶于水成碳酸,可溶于乙醇、甲醇、丙酮、氯仿、四氯化碳和苯,属不燃气体,可作灭火剂。

原料和产品规格

原料规格

甲醇:符合国标GB338-92一级品标准要求。建议用30Kt/y以上规模合成甲醇装置产品,运输过程无污染;严禁使用回收甲醇。

脱盐水:符合国家GB12145-89P(直流炉)要求,且氯离子含量小于或等于3ppm 产品规格

⑴转化气组成:

H2 73~%

CO2 23~%

CO <%

CH3OH 300ppm

H2O 饱和

⑵压力:

⑶温度:<40℃

CNZ-1型甲醇脱氢催化剂升温还原操作要求

1.还原条件

还原压力:常压

还原空速:500——1000时-1

还原气:含H2 ~10%的纯氮气

2.还原气质量

O2<%

H2O<%

S<

氯化物<

油雾极微

3.升温还原程序

分低空速和高空速

升温还原程序索

1 催化剂的使用和保护

转化炉的清洗和准备

1、将转化炉上、下封头拆下,先检查转化炉质量是否符合要求,再将转化炉内上下封头、列管内、板管和花板上的铁锈杂物全部清除干净,必要时可进行酸洗、水洗,再擦净、吹干备用,要求无铁锈、无杂物。

2、下封头花板上按要求规格放2层12目丝网,往花板上堆满已经洗净吹干的Φ10~12mm 的氧化铝瓷球,将瓷球上表面推平,要求瓷球上表面与转化炉下花板面保持有10~15mm高的空间。

3、重新装好下封头和上封头,通气对转化炉再次进行试漏查漏,当确认下封头大法兰不漏气后,方可泄压排气,准备装填催化剂。

催化剂的装卸

1、准备

⑴检查检修工具及防护用品是否齐全完好。

⑵准备好装催化剂专用的量杯、漏斗、标尺等专用工具。

⑶对催化剂开桶进行质量检查,用6~10目的钢网筛将催化剂中的碎粉筛除备用。在

运输或存库中不当受到污染或被水浸泡变质的催化剂一般不能使用。只有确认催化剂质量符合要求时,才能装入转化炉内。

2、装催化剂

⑴卸下转化炉上盖,再次检查转化炉内是否干净,若不符合要求,要重新清扫干净。逐根检查反应管,看有无堵塞等异常现象。

⑵逐根定体积装填催化剂(2.3升/根),并做记号,以免漏装或重装。

⑶装填时不能急于求成,以防出现架桥现象,当出现架桥时应作好标记,及时处理。

⑷定量装填完后,再逐根检查有无漏装,当确认无漏装并已处理了架桥现象。如需要,再补充加装一遍,保证每根管内催化剂量基本相等。

⑸当全部装填完毕后,用仪表空气吹净上管板,装好转化炉上封头及管线。

注:催化剂装填结束后,按要求对转化炉进行气密性试验,确保转化炉封头法兰无泄漏;卸下转化炉下部过滤器,将丝网上杂物清扫干净,装好过滤器;对转化炉已拆卸过的设备和管线等有关部位进行试漏查漏,必要时需再次测试泄漏率达合格。

3、卸催化剂

因各种原因需卸出催化剂,当需卸出已还原过的或使用过的催化剂时,拆卸前必须对催化剂进行钝化处理操作。 (具体操作见催化剂使用说明书)。

⑴打开转化炉上封头。

⑵松动下盖紧固螺栓,用手动葫芦或强度足够的加长拉筋螺栓支固,使下封头法兰与管板离开约80~100mm,必要时使下盖法兰面倾斜10~15°

⑶从宽缝间卸出催化剂。如催化剂还能使用,卸出时应小心操作,尽量减少催化剂破碎。卸完催化剂后,卸氧化铝瓷球。

⑷将催化剂和氧化铝瓷球分别收集好,并将转化炉内清洗干净。

还原系统的置换

因本装置所用原料甲醇和产品氢气均为易燃易爆品,故正式投料开车前必须用氮气置换系统至O2<%以下。而催化剂还原过程用氢气作还原气,为避免系统中氧存在使反复进行还原-氧化过程,所以还原系统必须置换至O2≤%,还原用氮气中氧含量必须低于%。

系统置换可分二步进行。置换前先按置换气流方向逐个开启有关阀门。

1、还原、水洗的置换

氮气由氮气进口V1003阀加入,按下列流向置换系统:→C101→E102→T101→E101→R101→E102→E103→T102→V104,从V104罐后的系统放空管放空。

2、汽化系统及部分管段置换

⑴汽化塔T101系统置换:通过开启T101塔釜排污阀V1034、V1035、V1036排气,从塔釜取气样O2≤%时,关闭T101塔釜排污阀V1034、V1035、V1036。开启泵P101A/B出口排气阀,置换PL104、PL105管道。

⑵ NH101管道的置换:在系统置换合格后,关闭R101出口阀V1065,开启V1079阀,在A104取样口取样,O2≤%后系统置换合格。

⑶气囊的置换:将V102气囊内的气体排净,再用适量氮气置换2~3次,便可将气囊接入系统。

催化剂的还原和钝化操作

1、准备

⑴检查还原系统所有设备、阀门、仪表是否处正常状态,关闭所有阀门,开启仪表,处待用状态。

⑵准备好还原用氮气、氢气,并经质检符合要求。

⑶通知导热油装置、分析室准备开车,通知送冷却水。

2、催化剂还原操作

催化剂使用前须进行还原。由于本催化剂为主要组分为CuO-ZnO-Al2O3,而对转化反应起主要作用的为活性单质铜,还原过程用氢气作还原气,用氮气作载气。还原反应为强放热反应,所以氢氮气配比及还原气空速必须符合要求。

还原反应方程式为:

CuO + H2 —→ Cu + H2O

催化剂含约5%物理水,还原过程会生成少量水,须经冷凝后排出。本工艺罗茨风机为还原气循环提供动力。

还原操作如下:

⑴开启还原系统阀门,催化剂还原气循环气流向如下:NH102→E102→E101→R101→E102

→E103→NH101。打开V1003阀,使气囊V102充氮气至容积的80%。

⑵启动罗茨风机,使系统还原气循环。

⑶开E103冷却水进出口阀。

⑷开转化炉R101导热油进口阀V1063;开T101塔釜导热油进口阀TV101旁路阀V1033、前后阀V1031、V1032,短路阀V1029。手动开启TV101阀,启动导热油循环泵,使导热油系统循环。

⑸检查还原系统、导热油系统运转是否正常。如无异常,则通知导热油系统按催化剂还原程序升温。

⑹导热油温度升至160℃时,关闭T101塔釜导热油进口阀进口阀TV101旁路阀V1033、前后阀V1031、V1032。

⑺还原具体操作按催化剂使用说明书进行。

⑻还原过程中定期在T102釜底排污阀V1083处排放冷凝水。定期向系统补充氮气和氢气。

⑼当催化剂还原结束后,按下列步骤正常停车:

①关外接氢、氮气进口阀。

②停罗茨风机。

③关还原气系统阀V1079、V1053、V1071。

此时便可转入转化炉投料开车操作见

⑽当催化剂还原时,若发生意外事故时需紧急停车。其操作如下:

①停供氢气。

②停导热油加热,维持导热油循环。

③查明原因后再作进一步处理。如属临时性故障,排除后可恢复还原操作;如须长期停车,则视情况用氮气保护或钝化操作。

3、催化剂钝化操作

凡是还原过(包括未还原完全)的催化剂要卸出前,都必须钝化,若生产中要长期停车,为了保护催化剂,也必须作钝化处理。未钝化前反应器必须保持正压,禁止空气进入。

钝化系统与还原系统相同,阀门开或关相同。钝化过程与还原过程同为强放热反应,必须注

意氮、氧气配比及系统循环气量。钝化过程温度低于60℃,不需外界供热。

钝化具体操作按催化剂使用说明书进行。

催化剂的保护

1、在任何情况下,催化剂层温度禁止超过300℃。

2、还原后的催化剂绝对禁止与氧气或空气接触。

3、催化剂使用中应尽量避免中途停车。每停一次车,尽管采取了钝化或氮气保护操作,还是会影响催化剂使用寿命。

4、催化剂的升温和降温都必须缓慢进行,禁止急速升温和降温。

5、在满足生产能力、产率的前提下,催化剂应在低温下操作,有利于延长催化剂使用寿命。

6、绝对禁止含硫、磷、卤素元素等有毒物质混入系统,以免造成催化剂中毒。

7、对装置使用的原料甲醇、脱盐水、氮气、氢气等必须符合要求,严格规范检测程序。

8、如发现有异常特别是反应系统异常,应立即停车分析检查,排除后再开车。

制氢方法

工业制氢方法概述 世界上大多数氢气通过天然气、丙烷、或者石脑油重整制得。经过高温重整或部分氧化重整,天然气中的主要成分甲烷被分解成 H2、 CO2、CO 。这种路线占目前工业方法的 80 %, 其制氢产率为 70 %—90 %。烃类重整制氢技术已经相当成熟,从提高重整效率,增强对负载变换的适应能力,降低生产成本等方面考虑,催化重整技术不断得到发展,产生了不少改进的重整工艺 , 其中包括可再生重整、平板式重整、螺旋式重整、强化燃烧重整等。煤直接液化工艺中一个重要单元就是的单元就是加氢液化,下面着重介绍几种工业上制氢工艺: 一、烃类蒸汽转化法 蒸汽转化法可以采用从天然气到石油脑的所有轻烃为原料。主要利用高温下水蒸气和烃类发生反应。转化生成物主要为氢、一氧化碳和二氧化碳。该过程需要消耗大量的能量,只不过要脱除或分离二氧化碳是件很麻烦的事,虽然目前分离二氧化碳的方法在不断推出,如变压吸附法( PSA)、吸收法( 包括物理吸收和化学吸收法),低温蒸馏法,膜分离法等等,然而,二氧化碳的处理仍是很费脑筋,若是直接排入大气,势必造成环境污染。 二、烃类分解生成氢气和炭黑的制氢方法 该方法是将烃类分子进行热分解,产物为氢气和炭黑,炭黑可用于橡胶工业及其它行业中,同时避免了二氧化碳的排放。目前,主要有如下两种方法用于烃类分解制取氢气和炭黑。 ( 1 ) 热裂解法:将烃类原料在无氧( 隔绝空气),无火焰的条件下,热分解为氢气和炭黑。生产装置中可设置两台裂解炉,炉内衬耐火材料并用耐火砖砌成花格成方型通道,生产时,先通入空气和燃料气在炉内燃烧并加热格子砖,然后停止通空气和燃料气,用格子砖蓄存的热量裂解通入的原料气,生成氢气和炭黑,两台炉子轮流进行蓄热和裂解,循环操作,将炭黑与气相分离后气体经提纯后可得纯氢,其中氢含量依原料不同而异,例如原料为天然气,其氢含量可达 85 % 以上。 天然气高温热裂解制氢技术,其主要优点在于制取高纯度氢气的同时,不向大气排放二氧化碳,而是制得更有经济价值、易于储存且可用于未来碳资源的固体碳,减轻了环境的温室效应。除了间歇反应有人曾做过天然气连续裂解的尝试。天然气催化裂解可以提高裂解速度,生成的纳米碳也能催化甲烷裂解过程。甲烷分解反应吸热 kJ/mol,因此最少需要甲烷燃烧( 887kJ/mol ) 的9 % 来提供反应所需热量。该方法技术较简单 , 经济上也还合适。 ( 2 ) 等离子体法:在反应器中装有等离子体炬,提供能量使原料发生热分解。等离子气是氢气,可以在过程中循环使用,因此,除了原料和等离子体炬所需的电源外不需要额外能量源。用高温产品加热原料使其达到规定的要求,多余的热量可以用来生成蒸汽。在规模较大的装置中,用多余的热量发电也是可行的。由于回收了过程的热量,从而降低了整个过程的能量消耗。等离子体法原料的适应性强,几乎所有的烃类,从天然气到重质油都可作为制氢原料,原料的改变,仅仅会影响产品中的氢气和炭黑的比例,此外,装置的生产规模可大可小。 三、烃类部分氧化法

甲醇转化制氢工艺资料

氢气广泛用于钢铁、冶金、化工、医药、轻工、建材、电子等多种工业部门。由于原料来源的不同、氢气纯度要求不同,制氢装置的投资规模及氢气生产成本相差很大。工业上制氢常用煤焦造气法、烃类蒸汽转化法、电解水法等。在没有富氢原料气的场合下,甲醇裂解制氢是最佳的技术选择,它具有投资低、无污染、成本低的优点。是中小型规模制氢的最佳方法,具有较强的市场竞争能力。本公司开发的甲醇水蒸汽转化-PSA 制氢技术先进,质量稳定可靠,生产成本低,氢气纯度:≥99.9%~99.999%。 一、甲醇转化-PSA制氢技术工艺流程 甲醇水蒸汽转化-PSA制氢是甲醇水蒸汽在TCJ-1催化剂床层转化成主要含二氧化碳和氢气的转化气,转化气再经变压吸附技术提纯得到纯度为99~99.999%的产品氢气的工艺技术。反应式如下:CH3OH → CO+2H2-90.7 KJ/mol (1 CO+H2O → CO2+H2+41.2 KJ/mol (2 总反应式为:CH3OH+ H2O → CO2+3H2-49.5 KJ/mol : 工艺流程图如下 甲醇转化-PSA制氢工艺流程图 工艺流程简述:水甲醇经预热、汽化、过热、在专用催化剂上转化反应并冷却吸收等过程后,得到的含~24%CO2和~75%的H2的转化气,送入变压吸附装置提纯,分离得到纯度为99.9~99.999%的H2。 二、公司的工艺技术特点: 该生产工艺是由本公司的多名研究人员最早开发并率先实现工业化,经多年的生产实践和改进,工艺技术已得到完善,本工艺技术有如下特点: 1.甲醇水蒸汽在专用催化剂直接转化生成CO2和H2;利用转化反应自身加压特点直接送入变压吸附分离装置,节约因压缩而消耗的电能; 2.专用催化剂具有活性高、选择性好、寿命长等特点; 3.反应温度低,能量损失小;工艺过程充分考虑系统能量的回收利用,整体运转能耗费用低; 4.产品H2纯度高,可根据下游用户需要调整产品H2(99.0~99.999%)纯度;% L 5.专用吸附剂性能优良。在强度、寿命、动态吸附量、分离效率等各方面性能达到国内先进水平; 6.专用程序控制阀采用防冲刷、阀杆密封自补偿型的气动专用程序控制阀,具有密封性好、外泄漏量极小、使用寿命长等特点; 7.装置采用微机控制,具有自动化程度高、技术先进、运行可靠、操作方便等特点。 8.采用导热油循环供热,既满足了工艺要求,且投资少,能耗低,降低了操作费用。 9.装副产尾气可回收CO2,用作食品添加剂、烟丝膨化剂、焊接保护气等。 三、TCJ-1催化剂的性能特点: TCJ-1催化剂是一种以铜为主的复合氧化物组成的新型催化剂,催化剂活性高,甲醇单程转化率在>90%,催化剂选择性好,转化气中一氧化碳含量低;催化剂性能稳定;催化剂使用寿命二年以上。 1

甲醇制氢设计工艺

前言 氢气是一种重要的工业产品,它广泛用于石油、化工、建材、冶金、电子、医药、电力、轻工、气象、交通等工业部门和服务部门,由于使用要求的不同,这些部门对氢气的纯度、对所含杂质的种类和含量都有不相同的要求,特别是改革开放以来,随着工业化的进程,大量高精产品的投产,对高纯度的需求量正逐步加大,等等对制氢工艺和装置的效率、经济性、灵活性、安全都提出了更高的要求,同时也促进了新型工艺、高效率装置的开发和投产。 依据原料及工艺路线的不同,目前氢气主要由以下几种方法获得:①电解水法;②氯碱工业中电解食盐水副产氢气;③烃类水蒸气转化法;④烃类部分氧化法;⑤煤气化和煤水蒸气转化法;⑥氨或甲醇催化裂解法;⑦石油炼制与石油化工过程中的各种副产氢;等等。其中烃类水蒸气转化法是世界上应用最普遍的方法,但该方法适用于化肥及石油化工工业上大规模用氢的场合,工艺路线复杂,流程长,投资大。随着精细化工的行业的发展,当其氢气用量在200~3000m3/h时,甲醇蒸气转化制氢技术表现出很好的技术经济指标,受到许多国家的重视。甲醇蒸气转化制氢具有以下特点: (1与大规模的天然气、轻油蒸气转化制氢或水煤气制氢相比,投资省,能耗低。 (2与电解水制氢相比,单位氢气成本较低。 (3所用原料甲醇易得,运输、贮存方便。 (4可以做成组装式或可移动式的装置,操作方便,搬运灵活。 对于中小规模的用氢场合,在没有工业含氢尾气的情况下,甲醇蒸气转化及变压吸附的制氢路线是一较好的选择。本设计采用甲醇裂解+吸收法脱二氧化碳+变压吸附工艺,增加吸收法的目的是为了提高氢气的回收率,同时在需要二氧化碳时,也可以方便的得到高纯度的二氧化碳。 目录 1.设计任务书 (3

甲醇转化制氢和保护气技术样本

甲醇转化制氢和保护气技术 江一蛟陶鹏万 西南化工研究设计院, 成都 610225 1.前言 氢气在工业上具有广泛的用途。传统大规模制氢工艺都采用以天然气、 轻油、煤焦等为原料造气, 再用深冷式吸收吸附法分离提取纯氢气, 工艺复杂, 投资大, 能耗高, 只适用于大规模用户。中小用户采用电解水制氢, 其最大缺 点是电耗大, 且氢气纯度低, 杂质较多。近年来由于变压吸附技术的迅速发展, 从氨厂、炼厂或其它石油化工过程产生的含氢气体中回收氢气已成为氢气的重要来源, 但这要受到具体条件的限制。 近年来, 由于电子工业、玻璃工业、油脂加氢、林产品和农产品加工、精细化工、生物工程、气象等工业的迅速发展, 对纯氢的需求量急速增加。另外, 粉末冶金、机械和钢铁淬火、灯泡制造等工业对含氢保护气的需 求量在迅速增多。由于这些行业比较分散, 量多面广, 且单台用氢量不大 ( 20~1000 Nm3/h) , 迫切需要解决来源方便的中小型氢源。甲醇转化制氢和 保护气技术是一条可供选择的重要途径, 受到国内外的普遍关注, 这是因为甲 醇转化制氢有其独特的优点: 与以轻油煤焦等为原料的大规模制氢工艺相比, 工艺流程短, 设备简单, 故投资和能耗低, 同规模相比可节能50%; 与电解水 制氢相比, 甲醇转化制氢电耗可降低90%以上, 生产成本可降低 30~50%, 氢气质量远优于电解氢。而且, 甲醇转化造气具有很大的灵活性, 用纯甲醇分 解可制取组成为H 2 :CO=2:1 合成气, 不含任何有毒物, 适合精细化工和科研单 位之用。用甲醇和水一起反应转化, 可制取组成为H 2:CO 2 =3:1的转化气, 可用

南京工业大学甲醇制氢生产装置设计论文

南京工业大学Array机械学院 2.过程装备与控制工程专业 综合课程设计任务书 设计题目:生产能力为2400 m3/h 甲醇制氢生产装置设计 设计人:陈侃 班级:控制0701 学号: 27 设计时间: 2010年12月21日—2011年1月15日

1.前言 氢气是一种重要的工业产品,它广泛用于石油、化工、建材、冶金、电子、医药、电力、轻工、气象、交通等工业部门和服务部门,由于使用要求的不同,这些部门对氢气的纯度、对所含杂质的种类和含量都有不相同的要求,特别是改革开放以来,随着工业化的进程,大量高精产品的投产,对高纯度的需求量正逐步加大,等等对制氢工艺和装置的效率、经济性、灵活性、安全都提出了更高的要求,同时也促进了新型工艺、高效率装置的开发和投产。 依据原料及工艺路线的不同,目前氢气主要由以下几种方法获得:①电解水法;②氯碱工业中电解食盐水副产氢气;③烃类水蒸气转化法;④烃类部分氧化法;⑤煤气化和煤水蒸气转化法;⑥氨或甲醇催化裂解法;⑦石油炼制与石油化工过程中的各种副产氢;等等。其中烃类水蒸气转化法是世界上应用最普遍的方法,但该方法适用于化肥及石油化工工业上大规模用氢的场合,工艺路线复杂,流程长,投资大。随着精细化工的行业的发展,当其氢气用量在200~3000m3/h时,甲醇蒸气转化制氢技术表现出很好的技术经济指标,受到许多国家的重视。甲醇蒸气转化制氢具有以下特点: (1)与大规模的天然气、轻油蒸气转化制氢或水煤气制氢相比,投资省,能耗低。(2)与电解水制氢相比,单位氢气成本较低。 (3)所用原料甲醇易得,运输、贮存方便。 (4)可以做成组装式或可移动式的装置,操作方便,搬运灵活。 对于中小规模的用氢场合,在没有工业含氢尾气的情况下,甲醇蒸气转化及变压吸附的制氢路线是一较好的选择。本设计采用甲醇裂解+吸收法脱二氧化碳+变压吸附工艺,增加吸收法的目的是为了提高氢气的回收率,同时在需要二氧化碳时,也可以方便的得到高纯度的二氧化碳。

甲醇制氢工艺简介

甲醇制氢工艺简介 1前言 氢气在工业上有着广泛的用途。近年来,由于精细化工、蒽醌法制双氧水、粉末冶金、油脂加氢、林业品与农业品加氢、生物工程、石油炼制加氢及氢燃料清洁汽车等的迅速发展,对纯氢需求量急速增加。 对没有方便氢源的地区,如果采用传统的以石油类、天然气或煤为原料造气来分离制氢需庞大投资,“相当于半个合成氨”,只适用于大规模用户。对中小用户电解水可方便制得氢气,但能耗很大,每立方米氢气耗电达~6度,且氢纯度不理想,杂质多,同时规模也受到限制,因此近年来许多原用电解水制氢的厂家纷纷进行技术改造,改用甲醇蒸汽转化制氢新的工艺路线。 西南化工研究设计院研究开发的甲醇蒸汽转化配变压吸附分离制氢技术为中小用户提供了一条经济实用的新工艺路线。第一套600Nm3/h制氢装置于1993年7月在广州金珠江化学有限公司首先投产开车,在得到纯度99、99%氢气同时还得到食品级二氧化碳,该技术属国内首创,取得良好的经济效益。此项目于93年获得化工部优秀设计二等奖、94年获广东省科技进步二等奖。 2工艺原理及其特点 本工艺以来源方便的甲醇与脱盐水为原料,在220~280℃下,专用催化剂上催化转化为组成为主要含氢与二氧化碳转化气,其原理如下: 主反应: CH3OH=CO+2H2 +90、7 KJ/mol CO+H2O=CO2+H2 -41、2 KJ/mol 总反应: CH3OH+H2O=CO2+3H2 +49、5 KJ/mol 副反应: 2CH3OH=CH3OCH3+H2O -24、9 KJ/mol CO+3H2=CH4+H2O -+206、3KJ/mol 上述反应生成的转化气经冷却、冷凝后其组成为 H2 73~74% CO2 23~24、5% CO ~1、0% CH3OH 300ppm H2O 饱与 该转化气很容易用变压吸附等技术分离提取纯氢。 广州金珠江化学有限公司600Nm3/h制氢装置自93年7月投产后,因后续用户双氧水的扩产,于97年4月扩产1000Nm3/h制氢装置投产,后又扩产至1800Nm3/h,于2000年3月投产。本工艺制氢技术给金珠江化学有限公司带来良好的经济效益。 目前国内应用此技术的企业已近百家,通过几年来的运转证明,本工艺技术成熟、操作方便,运转稳定、无污染。 本工艺技术有下列特点: 1、甲醇蒸汽在专用催化剂上裂解与转化一步完成。 2、采用加压操作,产生的转化气不需要进一步加压,即可直接送入变压吸附分离装置,降低了能耗。 3、与电解法相比,电耗下降90%以上,生产成本可下降40~50%,且氢气纯度高。与煤造气相比则显本工艺装置简单,操作方便稳定。煤造气虽然原料费用稍低,但流程长投资大,且污染大,杂质多,需脱硫净化等,对中小规模装置不适用。 4、专用催化剂具有活性高、选择性好、使用温度低,寿命长等特点。 5、采用导热油作为循环供热载体,满足了工艺要求,且投资少,能耗低,降低了操作费用。 3工艺过程

甲醇制氢生产装置设计

生产能力为2800 m3/h 甲醇制氢生产装置设计

前言 氢气是一种重要的工业用品,它广泛用于石油、化工、建材、冶金、电子、医药、电力、轻工、气象、交通等工业部门和服务部门,由于使用要求的不同,这些部门对氢气的纯度、对所含杂质的种类和含量也有着不同的要求。近年来随着中国改革开放的进程,随着大量高精产品的投产,对高纯氢气的需求量正在逐渐扩大。 烃类水蒸气转化制氢气是目前世界上应用最普遍的制氢方法,是由巴登苯胺公司发明并加以利用,英国ICI公司首先实现工业化。这种制氢方法工作压力为2.0-4.0MPa,原料适用范围为天然气至干点小于215.6℃的石脑油。近年来,由于转化制氢炉型的不断改进。转化气提纯工艺的不断更新,烃类水蒸气转化制氢工艺成为目前生产氢气最经济可靠的途径。 甲醇蒸气转化制氢技术表现出很好的技术经济指标,受到许多国家的重视。它具有以下的特点: 1、与大规模天然气、轻油蒸气转化制氢或水煤气制氢比较,投资省,能耗低。 2、与电解水制氢相比,单位氢气成本较低。 3、所用原料甲醇易得,运输储存方便。而且由于所用的原料甲醇纯度高,不需要在净化处理,反应条件温和,流程简单,故易于操作。 4、可以做成组装式或可移动式的装置,操作方便,搬运灵活。

前言 ----------------------------------------------- 2 目录 ----------------------------------------------- 3 摘要 ----------------------------------------------- 3 设计任务书 ----------------------------------------- 4 第一章工艺设计 ------------------------------------------ 5 1.1.甲醇制氢物料衡算 -------------------------------------- 1.2.热量恒算 ---------------------------------------------- 第二章设备设计计算和选型:塔、换热设备、反应器 ----- 8 2.1.解析塔的选择 ------------------------------------------ 2.2.换热设备的计算与选型 ---------------------------------- 2.3.反应器的设计与选型 ------------------------------------ 第三章机器选型------------------------------------------ 13 3.1.计量泵的选择 ------------------------------------------ 15 3.2.离心泵的选型 第四章设备布置图设计---------------------------------- 15 4.1.管子选型 ---------------------------------------------- 17 4.2.主要管道工艺参数汇总一览表 ---------------------------- 8 4.3.各部件的选择及管道图 ---------------------------------- 第五章管道布置设计 ------------------------------- 16 5.1.选择一个单参数自动控制方案 ---------------------------- 21 5.2.换热器温度控制系统及方块图 课设总结 ------------------------------------------- 28

甲醇制氢工艺设计

前言 氢气是一种重要的工业产品,它广泛用于石油、化工、建材、冶金、电子、医药、电力、轻工、气象、交通等工业部门和服务部门,由于使用要求的不同,这些部门对氢气的纯度、对所含杂质的种类和含量都有不相同的要求,特别是改革开放以来,随着工业化的进程,大量高精产品的投产,对高纯度的需求量正逐步加大,等等对制氢工艺和装置的效率、经济性、灵活性、安全都提出了更高的要求,同时也促进了新型工艺、高效率装置的开发和投产。 依据原料及工艺路线的不同,目前氢气主要由以下几种方法获得:①电解水法;②氯碱工业中电解食盐水副产氢气;③烃类水蒸气转化法;④烃类部分氧化法;⑤煤气化和煤水蒸气转化法;⑥氨或甲醇催化裂解法;⑦石油炼制与石油化工过程中的各种副产氢;等等。其中烃类水蒸气转化法是世界上应用最普遍的方法,但该方法适用于化肥及石油化工工业上大规模用氢的场合,工艺路线复杂,流程长,投资大。随着精细化工的行业的发展,当其氢气用量在200~3000m3/h时,甲醇蒸气转化制氢技术表现出很好的技术经济指标,受到许多国家的重视。甲醇蒸气转化制氢具有以下特点: (1)与大规模的天然气、轻油蒸气转化制氢或水煤气制氢相比,投资省,能耗低。(2)与电解水制氢相比,单位氢气成本较低。 (3)所用原料甲醇易得,运输、贮存方便。 (4)可以做成组装式或可移动式的装置,操作方便,搬运灵活。 对于中小规模的用氢场合,在没有工业含氢尾气的情况下,甲醇蒸气转化及变压吸附的制氢路线是一较好的选择。本设计采用甲醇裂解+吸收法脱二氧化碳+变压吸附工艺,增加吸收法的目的是为了提高氢气的回收率,同时在需要二氧化碳时,也可以方便的得到高纯度的二氧化碳。

甲醇制氢操作规程完整

400Nm3/h甲醇制氢 操作规程

目录 目录 .................................................................................................................................................. I 操作规程. (1) 一岗位管辖及任务 (1) 1.1岗位管辖围 (1) 1.2岗位任务: (1) 二、工艺说明及流程示意图: (1) 2.1工艺说明 (1) 2.2流程示意图 (4) 三岗位工艺指标: (5) 3.1温度指标: (5) 3.2流量指标: (5) 3.3压力指标:MPa (5) 3.4液位: (6) 3.5分析指标 (6) 四:装置启动初次开车及停车后的再启动 (6) 4.1管道的试漏、保压 (6) 4.2催化剂的装填 (6) 4.3设备、仪表的调校 (9) 4.6投料启动 (10) 4.7停车后再启动 (10) 4.8催化剂的卸出 (12) 五正常停车步骤和紧急停车: (12) 5.1正常停车 (12) 5.2紧急停车 (14) 5.3临时停车 (14)

六常见故障及处理方法: (14) 6.1外界供给条件失常 (14) 6.2操作失调 (15) 6.3 PLC故障 (16) 5.4操作注意事项 (17) 七巡回检查制度: (17) 八岗位责任制: (17) 九设备维护保养制度: (18) 十设备润滑管理制度: (19) 十一安全注意事项: (19)

操作规程 一岗位管辖及任务 1.1岗位管辖围 界区所有管道、设备、阀门、电气及仪表等均属于岗位管辖围。 1.2岗位任务: 利用甲醇和水的重整反应制氢,重整气组成为氢气约75%,二氧化碳约25%,还有微量的甲烷,二乙醚的等杂质,之后在通过变压吸附分离提氢,改变变压吸附(PSA)操作条件可生产不同纯度的氢气,氢气纯度最好可达99.999%以上。 二、工艺说明及流程示意图: 2.1工艺说明 2.1.1重整工段 甲醇进入界区后直接进入混配罐中,通过液位控制甲醇进料量,无离子水进入界区后直接进入混配罐中,通过控制液位控制无离子水进料量,两台混配罐一台陪料,一台使用。混配罐甲醇、水混合液体能维持一个班八小时的工作用量。混配罐中的混合液经计量泵输送到换热器中。本工艺现场配备三台计量泵,其中一台输送混合液体,一台给水洗塔输送无离子水,另一台备用,三台泵型号、结构完全相同,开二备一。甲醇、水混合液体进入换热器与由反应器出来的重整气进行换热,换热后混合液温度由室温升至140℃,并呈现部分气化的气液胶着状态,然后接着进入气化过热器,被过热器下部管壳高温导热油加热气化,气化后的甲醇、水混合蒸气通过气化过热器上部列管被管壳中的高温导热油进一步加热到240~300℃围,然后进入反应器中。进入反应器的甲醇、水混合蒸气由上而下通过催化剂床层,在催化剂的作用下发生甲醇、水蒸气重整反应,生成产物为二氧化碳和氢气—重整气。由反应器出来的重整气进入换热器中与原料甲醇、水液体进行换热,完成热量交换后,重整气的温度由240~300℃降为160℃左右,然后进入水冷却器进一步冷却至室温,经冷却后的

小型甲醇制氢机、制氢公司发生器

说起氢气,氢气在工业上有着广泛的用途。近年来,由于精细化工、蒽醌法制双 氧水、粉末冶金、油脂加氢、林业品和农业品加氢、生物工程、石油炼制加氢及氢燃 料清洁汽车等的迅速发展,对纯氢需求量急速增加。 利用天然气制氢,存在成本低,规模效应显著等优点,研究和开发更为先 进的天然气制氢新工艺技术是解决廉价氢源的重要保证。天然气作为优质、洁 净的工业能源,在我国能源发展过程中具有重要的战略意义。因为天然气不仅是人们日常生活的重要燃料,同时也是众多化工次产品的基础性原料。很多厂家想要购买制氢设备,一定要选好厂家,因为涉及到安全和各种售后服务问题。 近年来,以风力和太阳能发电为主的新能源发展势头强劲,以化石能源 为主的能源开发利用方式面临挑战,一场历史性的能源变革正在全球范围内 孕育。与人类历史上的前两次能源变革不同,中国有能力成为这轮能源革命 的主要推动者。 人们希望找到将电能储存起来的办法,即在电力富余的时候将其存储, 在电力短缺的时候再释放出来,以满足供需之间实时平衡的需要。 甲醇是最佳的战略储能方式之一 首先,甲醇可以通过传统化石能源清洁化生产制得,也可以通过太阳能、风能等间歇式可再生能源转换获得,还可以利用农作物秸秆、动物粪便和有 机物发酵获得,是可再生以及重复利用,转换氢能的最佳媒介,也是实现国

家中长期储能的大宗化工原料。未来可以直接用空气中的二氧化碳或工厂排 放的二氧化碳生产甲醇。 其次,甲醇对石油的替代使用功能也是足够强大的。甲醇可以以不同成 分混入汽油使用,或者经过简单脱水反应生成二甲醚及甲醇与植物油进行酯 交换反应合成生物柴油,两者都是清洁的柴油代用燃料。所以甲醇基本上可 替代石油加工成为车、船、飞机的动力燃料的补充,而且成本更低。另外, 甲醇可以替代石油,加工成为多种石油化工产品,通过甲醇裂解工艺(MTO 工艺)可以生产混合低碳烯烃(乙烯、丙烯、丁烯等),也可以通过MTP 工艺单独合成丙烯,而低碳烯烃是石油化工的龙头产品,甚至用于生产芳烃(苯、甲苯、二甲苯等)的MTA技术也在研发中,满足现有石油化工的需求。而且甲醇可以直接加工成多种产品,如可以直接作为燃料电池的燃料或 氢的中间储存燃料,它也是传统用来加工甲醛、醋酸、碳酸二甲酯、1,4-丁 二醇、乙炔二醇等大宗化学品的原料,是制造氯甲烷、有机硅产品的中间化 合物,作为溶剂、黏合剂等也有重要作用。 第三,从安全性考虑,甲醇从本质上将对人体是安全可控的。在毒理学中,半数致死量简称LD50,指引起一群实验对象50%个体死亡所需的剂量。LD50的数值越小,表示毒性越强。甲醇的LD50为5628mg/kg,汽油的 LD50为2500mg/kg,由此可见我们随处可见的汽油的毒性是甲醇的2倍以上。甲醇自然存在于人体,含量为0.6毫克/公斤体重,长期在200~ 250ppm甲醇含量的环境中工作无害,甲醇挥发性较低,仅是汽油的30%~60%。甲醇对人体主要的毒害在于误食饮用,对于视力损害严重。但比较容易控制,误饮中毒可以用碳酸氢钠、叶酸、酒精等降低它在体内代谢,所以人们普遍对甲醇为剧毒物质的印象是一种误导。甲醇在环境中也是安全的,甲醇造成火灾、爆炸的可能性远小于汽、柴油,其着火的极限浓度是汽 油的四倍;甲醇泄露的危害也比汽、柴油小,且易于稀释、扑救和降解,长 期储存不易变质。 第四,就环境保护而言,甲醇的环保效能较高。利用甲醇作为燃料的水 氢汽车,实现了零污染物排放,只排放纯净水和少量的二氧化碳,而二氧化 碳又是制甲醇的原料,真正实现了碳循环。

甲醇蒸汽转化制氢技术

甲 醇 蒸 汽 转 化 制 氢 技 术 郝树仁 李言浩 程玉春 王志亮 ( 齐鲁石化公司研究院, 淄博, 255400) 摘要 介绍了甲醇蒸汽转化制氢技术的工艺及所采用的双功能催化剂 Q M H - 01 的特点。 该技术可广泛用于精 细化工等行业。 关键词 甲醇 制氢工艺 双功能催化剂 蒸汽转化 8k W ·h ?m 3 ·H 2 (标准) 〕等因素的影响, 其单位 氢 气 成 本 较 高。 据 笔 者 测 算, 一 套 规 模 为 1 000m 3 ?h (标准) 的甲醇蒸汽转化制氢装置的单 位氢气成本不高于 2 元?m 3 ·H 2 (标准) , 这比电 解水制氢要低得多。 (3) 由于所用的原料甲醇纯度高, 不需要再 进行净化处理, 反应条件温和, 流程简单, 故易 于 操作。 1 前 言 氢气是精细化工、冶金等行业的重要原料, 它 在电子、仪表、军事设施等方面也有重要的应用。 传 统的制氢方法一般是电解水, 但其规模较小 〔200m 3 ?h (标准) 以下〕。目前, 工业上大规模的 制氢方法有: 天然气转化制氢, 烃类 (轻油) 转 化制氢, 水煤气转化制氢等; 也有从炼油或其它 化工过程中产生的各种含氢气体中回收氢气, 但 这要受到具体条件的限制。 近年来, 甲醇蒸汽转 化制氢已经成为制取氢气的重要途径, 受到许多 国家的重视。 甲醇蒸汽转化制氢技术具有以下特 点: (1) 与大规模的天然气、 轻油等转化制氢或 水煤气制氢相比, 投资省、能耗低。众所周知, 由 于目前工业上所采用的大规模的制氢工艺, 须在 高温下 (约 800℃) 进行, 所采用的炉子等设备需 要特殊材质, 同时还要考虑转化用的蒸汽、 燃烧 空气预热、 氢气纯化所需的热源, 又必须考虑副 产蒸汽的回收利用等问题, 故如规模过小就不经 济。而甲醇蒸汽转化制氢由于反应温度低 (260~ 300℃) , 就不存在以上问题。同时由于温度低, 也 不需要考虑废热回收, 燃料消耗也低。 文献 〔1〕 认为, 与同等规模的天然气或轻油转化制氢装置 相比, 甲 醇 蒸 汽 转 化 制 氢 的 能 耗 仅 是 前 者 的 50% 。 (2) 与电解水制氢相比, 单位氢气成本较低。 (4) (5) 作方便, 甲醇原料易得, 运输、 贮存方便。 可以做成组装式或可移动式的装置, 操 搬运灵活。 齐鲁石化公司研究院, 继成功地开发了轻油 转化制氢等技术及催化剂后, 又成功地开发了甲 醇 蒸 汽 转 化 制 氢 技 术 及 双 功 能 催 化 剂 QM H - 3 01, 采用该技术建成的 1 000m ?h (标准) 的制氢 装置已于 1995 年 11 月投产, 至今运行良好。 下 面介绍这一技术及催化剂的特点。 2 工艺流程 该技术的工艺流程简图见图 1。 脱盐水及甲 醇按一定比例在进料罐中混合, 然后经进料泵加 压至约 210M P a 后进入换热器, 经与反应产物换 热后进入汽化器, 接着进入反应器。 在反应器中 收稿日期: 1997- 07- 30。 作者简介: 郝树仁, 男, 高级工程师, 副总工程师。1969 年 7 月毕业于山东大学化学系, 长期从事化肥和炼油行业所需的制 氢催化剂及工艺技术开发研究, 先后获得中石化总公司科技进步 一等奖 2 项, 国家科技进步三等奖 1 项。现任中石化制氢技术联 络站和中国石化情报学会大氮肥分会秘书长。 电解水制氢 〔规模一般小于 200m 3 ?h (标准) 〕是 比较成熟的制氢方法, 但由于它的电耗高〔约 5~

甲醇裂解制氢资料

甲醇裂解制氢技术综述 【关键词】甲醇裂解制氢 【摘要】氢气在工业上有着广泛的用途。近年来,由于精细化工、蒽醌法制双氧水、粉末冶金、油脂加氢、林业品和农业品加氢、生物工程、石油炼制加氢及氢燃料清洁汽车等的迅速发展,对纯氢需求量急速增加。 甲醇蒸汽转化制氢和二氧化碳技术 1前言 氢气在工业上有着广泛的用途。近年来,由于精细化工、蒽醌法制双氧水、粉末冶金、油脂加氢、林业品和农业品加氢、生物工程、石油炼制加氢及氢燃料清洁汽车等的迅速发展,对纯氢需求量急速增加。 对没有方便氢源的地区,如果采用传统的以石油类、天然气或煤为原料造气来分离制氢需庞大投资,“相当于半个合成氨”,只适用于大规模用户。对中小用户电解水可方便制得氢气,但能耗很大,每立方米氢气耗电达~6度,且氢纯度不理想,杂质多,同时规模也受到限制,因此近年来许多原用电解水制氢的厂家纷纷进行技术改造,改用甲醇蒸汽转化制氢新的工艺路线。 西南化工研究设计院研究开发的甲醇蒸汽转化配变压吸附分离制氢技术为中小用户提供了一条经济实用的新工艺路线。第一套600Nm3/h制氢装置于1993年7月在广州金珠江化学有限公司首先投产开车,在得到纯度99.99%氢气同时还得到食品级二氧化碳,该技术属国内首创,取得良好的经济效益。此项目于93年获得化工部优秀设计二等奖、94年获广东省科技进步二等奖。 2工艺原理及其特点 本工艺以来源方便的甲醇和脱盐水为原料,在220~280℃下,专用催化剂上催化转化为组成为主要含氢和二氧化碳转化气,其原理如下: 主反应:CH3OH=CO+2H2 +90.7 KJ/mol CO+H2O=CO2+H2 -41.2 KJ/mol 总反应:CH3OH+H2O=CO2+3H2 +49.5 KJ/mol 副反应:2CH3OH=CH3OCH3+H2O -24.9 KJ/mol CO+3H2=CH4+H2O -+206.3KJ/mol 上述反应生成的转化气经冷却、冷凝后其组成为 H2 73~74% CO2 23~24.5% CO ~1.0% CH3OH 300ppm H2O 饱和

甲醇制氢展望

甲醇催化制氢技术展望 甲醇是优质、洁净的可再生能源,我国拥有丰富的盛产甲醇的资源,随着现代化进程的加快和石油能源的紧缺,我国已开始重视和发展基础设施的建设来利用可再生资源,为大力推广甲醇的应用提供了条件。常州市蓝博净化科技有限公司的自主研发甲醇制氢装置能将甲醇高效转化为氢能,氢能具有热值高、反应速度快、易于储存、零排放等优点,在交通运输领域潜力巨大。当前,各国大力推进氢能产业发展,产业链逐渐完善;各大企业也纷纷布局。随着排放要求的提升、储氢技术的进步、燃料电池技术的成熟,氢能商业化利用的设想或将逐渐成为现实。 作为重要生产原料,氢气2019年全球消费量约8550万吨,其中炼化领域的消费占90%以上,未来仍将进一步增长。中国是最大的氢气生产国和消费国,2019年产量和消费量约1920万吨,其中93%以上用于合成氨、合成甲醇和炼油。随着炼厂加氢装置的增加,氢气的需求量逐年增大。作为高效的能源载体,氢气的应用逐渐由传统航天领域向汽车领域拓展。国家能源集团预计2050年后电能及氢能将成为车用能源的主要形式。美国、日本及欧洲等发达国家和地区不断加大研发投入和政策支持力度,目标指向2040年实现氢能社会。氢能利用在交通领域持续升温,正迈向商业化进程。 一、常见的氢气储存技术 A.高压储氢:氢质量含量1~5.8wt%,压力为35/45/70/90MPa,目前已经商业化。对于氢能汽车中的高压储罐,一般有35Mpa

和70Mpa两种,采用碳纤维复合材料组成铝内胆外面缠绕碳纤维材料。日本通过将减少碳纤维强化树脂的用量,使重量效率比原来提高了20%,储氢重量密度达到了5.7wt%。 B.液化储氢:氢质量含量>5wt%,将纯氢冷却至-253℃储存,超低温消耗能量大,成本高,优势在于储氢密度高,多用于航天、军工领域。 C.固态吸附储氢:氢质量含量5.3~9wt%,使用以碳材料为主进行物理储氢,环境为77k、4MPa,纳米碳材料储氢性能好,还处于实验阶段。 D.液态有机化合物储氢:氢质量含量6~8wt%,常温常压,储氢容量大,目前还处于实验阶段。 E.金属氢化物储氢:氢质量含量1.4~3.6wt%,常温常压,安全性好,但是储氢合金存在易粉化、能量衰减和变质,目前还处于实验阶段。 F.自然储氢:包括水储氢、甲醇储氢等。其中,水储氢的氢质量含量为11.1wt%,常温常压,能量比度高,成本高,以电解水制氢为主。甲醇储氢的氢质量含量为12.5wt%,常温常压,能量密度高,低成本,大规模甲醇制氢技术早已实现商业化,常州市蓝博净化科技有限公司的微型化甲醇制氢技术已实现突破,商业化价值极高。以上的六种氢储能方法中,甲醇的储氢质量分数是最高的了。并且,甲醇利用热重整、质量占比12.5%的氢会成为氢单质。而甲醇的能量密度是20MJ/KG,经过热重整后得到的氢能量。

甲醇转化制氢分析规程

新疆乌苏华泰石化2000Nm3/h甲醇转化制氢装置 分析规程

目录 9.0 分析规程 ------------------------------------------------------ 22

9.0 分析规程(编号:1120-32-202) 本装置以甲醇和脱盐水为原料,在催化剂作用下,进行甲醇转化制得转化气,经变压吸附分离制得纯氢。 本规程包括催化剂还原分析、原料液分析、甲醇转化过程的控制分析以及产品氢中杂质分析。 分析要求: 正常开车时,每八小时至少对原料液浓度、循环液浓度、转化气组份分析一次,并将分析结果交给工艺人员,确保装置正常运行。 在催化剂还原期间,每半小时分析一次还原气组份,并将分析结果交给工艺人员。 9.1 开车前的准备工作 9.1.1仪器调试 按仪器使用说明书对仪器各项指标进行调试,检查仪器是否正常。 9.1.2色谱柱的处理 将两条内径3毫米,长2米的色谱柱分别用10%NaOH及10%HCl溶液清洗,再用水清洗,最后用无水乙醇冲洗,并用真空泵抽干,备用。 9.1.3色谱柱的装填 将色谱柱一端用玻璃棉和金属网堵上接于真空泵,在轻轻振动下分别填入所需的担体,即TDX-01和改性GDX,要求尽量装填均匀,然后用玻璃棉塞上另一端,接于色谱仪上。 9.1.4 色谱柱的老化 接上色谱柱通载气经检漏合格,在柱温180℃下老化8小时。 9.2 催化剂还原过程的分析 按工艺要求,催化剂还原过程使用的H 2、N 2 混合气,氢的含量从0.5%逐渐增 至10%,最后达到转化炉进出口氢含量相等,还原结束,此过程约54小时。 对H 2、N 2 混合气的要求:要求使用的氢气和氮气中的氧含量<0.2%,因此首先 要对所用的氢气和氮气分别测定其氧含量及工艺系统置换过程中的测定。 按工艺要求,催化剂还原过程也可使用水和甲醇,甲醇含量从0.5%逐渐增到5% 9.2.1氢、氮气中及系统置换过程中的氧含量测定

甲醇制氢工艺简介

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 甲醇制氢工艺简介 甲醇制氢工艺简介1前言氢气在工业上有着广泛的用途。 近年来,由于精细化工、蒽醌法制双氧水、粉末冶金、油脂加氢、林业品和农业品加氢、生物工程、石油炼制加氢及氢燃料清洁汽车等的迅速发展,对纯氢需求量急速增加。 对没有方便氢源的地区,如果采用传统的以石油类、天然气或煤为原料造气来分离制氢需庞大投资,“相当于半个合成氨”,只适用于大规模用户。 对中小用户电解水可方便制得氢气,但能耗很大,每立方米氢气耗电达~6 度,且氢纯度不理想,杂质多,同时规模也受到限制,因此近年来许多原用电解水制氢的厂家纷纷进行技术改造,改用甲醇蒸汽转化制氢新的工艺路线。 西南化工研究设计院研究开发的甲醇蒸汽转化配变压吸附分离制氢技术为中小用户提供了一条经济实用的新工艺路线。 第一套 600Nm /h 制氢装置于 1993 年 7 月在广州金珠江化学有限公司首先投产开车,在得到纯度 99.99%氢气同时还得到食品级二氧化碳,该技术属国内首创,取得良好的经济效益。 此项目于 93 年获得化工部优秀设计二等奖、 94 年获广东省科技进步二等奖。 2工艺原理及其特点本工艺以来源方便的甲醇和脱盐水为原料,在 220~280℃下,专用催化剂上催化转化为组成为主要含氢和 1/ 30

二氧化碳转化气,其原理如下:主反应: CH3OH=CO+2H2 CO+H2O =CO2+H2 总反应: CH3OH+H2O=CO2+3H2 副反应: 2CH3OH=CH3OCH3+H2O CO+3H2=CH4+H2O H2 CO2 CO CH3OH H2O 73~74%23~24.5%~1.0% 300ppm 饱和 3 3+90.7 KJ/mol -41.2 KJ/mol +49.5 KJ/mol -24.9 KJ/mol -+206.3KJ/mol上述反应生成的转化气经冷却、冷凝后其组成为该转化气很容易用变压吸附等技术分离提取纯氢。 广州金珠江化学有限公司 600Nm /h 制氢装置自 93 年 7 月投产后,因后续用户双氧水的扩产,于 97 年 4 月扩产 1000Nm /h 制氢装置投产,后又扩产至 1800Nm /h,于 2000 年 3 月投产。 本工艺制氢技术给金珠江化学有限公司带来良好的经济效益。 目前国内应用此技术的企业已近百家,通过几年来的运转证明,本工艺技术成熟、操作方便,运转稳定、无污染。 本工艺技术有下列特点: 1.甲醇蒸汽在专用催化剂上裂解和转化一步完成。 2.采用加压操作,产生的转化气不需要进一步加压,即可直接送入变压吸附分离装置,降低了能耗。 3.与电解法相比,电耗下降 90%以上,生产成本可下降 40~50%,且氢气纯度高。 与煤造气相比则显本工艺装置简单,操作方便稳定。 煤造气虽然原料费用稍低,但流程长投资大,且污染大,杂质多,需脱硫净化等,对中小规模装置不适用。

1800Nm3-h甲醇制氢装置设计依据

1800Nm3/h甲醇制氢装置设计依据 甲醇蒸汽转化制氢和二氧化碳技术 1前言 氢气在工业上有着广泛的用途。近年来,由于精细化工、蒽醌法制双氧水、粉末冶金、油脂加氢、林业品和农业品加氢、生物工程、石油炼制加氢及氢燃料清洁汽车等的迅速发展,对纯氢需求量急速增加。 对没有方便氢源的地区,如果采用传统的以石油类、天然气或煤为原料造气来分离制氢需庞大投资,“相当于半个合成氨”,只适用于大规模用户。对中小用户电解水可方便制得氢气,但能耗很大,每立方米氢气耗电达~6度,且氢纯度不理想,杂质多,同时规模也受到限制,因此近年来许多原用电解水制氢的厂家纷纷进行技术改造,改用甲醇蒸汽转化制氢新的工艺路线。 西南化工研究设计院研究开发的甲醇蒸汽转化配变压吸附分离制氢技术为中小用户提供了一条经济实用的新工艺路线。第一套600Nm3/h制氢装置于1993年在广州金珠江化学有限公司首先投产开车,在得到纯度%氢气同时还得到食品级二氧化碳,该技术属国内首创,取得良好的经济效益。此项目于93年获得化工部优秀设计二等奖94年获广东省科技进步二等奖。

2工艺原理及其特点 本工艺以来源方便的甲醇和脱盐水为原料,在220~280℃下,专用催化剂上催化转化为组成为主要含氢和二氧化碳转化气,其原理如下: 主反应:CH3OH=CO+2H2+ KJ/mol CO+H2O=CO2+H2KJ/mol 总反应:CH3OH+H2O=CO2+3H2+ KJ/mol 副反应:2CH3OH=CH3OCH3+H2O KJ/mol CO+3H2=CH4+H2O -+mol 上述反应生成的转化气经冷却、冷凝后其组成为 H2 73~74% CO2 23~% CO ~% CH3OH 300ppm H2O 饱和 该转化气很容易用变压吸附等技术分离提取纯氢。 广州金珠江化学有限公司600Nm3/h制氢装置自93年7月投产后,因后续用户双氧水的扩产,于97年4月扩产1000Nm3/h 制氢装置投产,后又扩产至1800Nm3/h,于2000年3月投产。本工艺制氢技术给金珠江化学有限公司带来良好的经济效益。 目前国内应用此技术的企业已近百家,通过几年来的运转证明,

最新甲醇制氢汽化塔设计精品版

2020年甲醇制氢汽化塔设计精品版

甲醇制氢生产装置 计 算 书 姓名:丁仕勇 单位:机械学院控制0704

前言 氢气是一种重要的工业产品,它广泛用于石油、化工、建材、冶金、电子、医药、电力、轻工、气象、交通等工业部门和服务部门,由于使用要求的不同,这些部门对氢气的纯度、对所含杂质的种类和含量都有不相同的要求,特别是改革开放以来,随着工业化的进程,大量高精产品的投产,对高纯度的需求量正逐步加大,等等对制氢工艺和装置的效率、经济性、灵活性、安全都提出了更高的要求,同时也促进了新型工艺、高效率装置的开发和投产。 依据原料及工艺路线的不同,目前氢气主要由以下几种方法获得:①电解水法;②氯碱工业中电解食盐水副产氢气;③烃类水蒸气转化法;④烃类部分氧化法;⑤煤气化和煤水蒸气转化法;⑥氨或甲醇催化裂解法;⑦石油炼制与石油化工过程中的各种副产氢;等等。其中烃类水蒸气转化法是世界上应用最普遍的方法,但该方法适用于化肥及石油化工工业上大规模用氢的场合,工艺路线复杂,流程长,投资大。随着精细化工的行业的发展,当其氢气用量在200~3000m3/h时,甲醇蒸气转化制氢技术表现出很好的技术经济指标,受到许多国家的重视。甲醇蒸气转化制氢具有以下特点: (1)与大规模的天然气、轻油蒸气转化制氢或水煤气制氢相比,投资省,能耗低。 (2)与电解水制氢相比,单位氢气成本较低。 (3)所用原料甲醇易得,运输、贮存方便。 (4)可以做成组装式或可移动式的装置,操作方便,搬运灵活。

对于中小规模的用氢场合,在没有工业含氢尾气的情况下,甲醇蒸气转化及变压吸附的制氢路线是一较好的选择。本设计采用甲醇裂解+吸收法脱二氧化碳+变压吸附工艺,增加吸收法的目的是为了提高氢气的回收率,同时在需要二氧化碳时,也可以方便的得到高纯度的二氧化碳。 目录 1. 前言 2. 设计任务书 3. 甲醇制氢工艺设计 3.1 甲醇制氢工艺流程 3.2 物料衡算 3.3 热量衡算 4. 汽化塔设计 4.1 工艺计算 4.1.1 填料段工艺计算 4.2 结构设计 1.管道设计 2.自控设计 3.技术经济评价、环境评价 4.结束语

相关主题
文本预览
相关文档 最新文档