当前位置:文档之家› 磁共振屏蔽工程技术参数要求

磁共振屏蔽工程技术参数要求

磁共振屏蔽工程技术参数要求
磁共振屏蔽工程技术参数要求

磁共振屏蔽工程技术参数要求

(一)、技术要求

1. 本项目为 GE PET MRI 系统超导医用磁共振屏蔽系统,所有屏蔽,装饰装修均应满足设备厂家对MRI系统相关屏蔽要求。项目范围包括磁体室射频屏蔽,磁屏蔽(如需要);

2. 屏蔽效能满足GB12190-2006《高性能屏蔽室屏蔽效能的测量方法》;

3. 电磁辐射满足 GB8702-88《电磁辐射防护规定》;

4. 配套电器满足国家《安装工程施工及验收规范》中的配套电器配套装修的相关规定,电器满足3C标准;

5. 射频屏蔽:采用紫铜板焊接工艺,坚固耐用。

6. 增强磁屏蔽:根据设备厂家要求,如果场地需要做增强屏蔽(磁屏蔽),必须采用优质硅钢板材料,杜绝使用普通A3等板材做增强磁屏蔽;

7. 屏蔽观察窗:≧1.5米(宽)×1米(高)(大视野双层紫铜网或不锈钢网结构,透光度大于70%,无条纹反射,视野清晰),玻璃为钢化玻璃;

8. 屏蔽门:推拉式单开铜制MRI屏蔽专用门,门簧片采用铜制进口簧片屏蔽门尺寸1.2米(宽)×2.1米(高)(无磁设计)

9. MRI系统专用电源滤波器:220V 25A滤波器

10. 地面铺设绝缘板,保证壳体与地面绝缘。屏蔽室通过MR系统接地,严禁多点接地。屏蔽室对地绝缘要求大于1000欧姆;

11. 射频屏蔽需要的衰减值:>90 dB ,在频率范围15MHz-150 MHz内。

12. 屏蔽机房内顶部装饰采用铝质网孔板,吸音且无粉尘颗粒掉落隐患。

13.屏蔽机房墙面装饰必须有吸音设计,建议使用木质吸音板,材料需达到环保等级

E1级。

14.屏蔽机房地面采用塑胶地板装饰,须防滑易清洁。

15. 失超管:严格按照磁共振厂家相关要求设计施工,必须有厂家认可的技术实力,能根据现场情况计算失超管压力并出具相应方案。

16、所有屏蔽材料必须原厂出厂统一发货,严禁当地采购。

投标人资质条件(备选)

1、具有独立承担民事责任的能力,具有履行合同所必需的设备和专业技术能力;. 参加本采购活动前三年内,在经营活动中没有重大违法记录;

2、★投标人提供磁共振厂家的授权书。

3、★投标人在川渝地区需具近3年内有相同型号磁共振屏蔽施工经验并提供相关的合同。

4、提供近3年内5家以上川渝地区三级甲等医院磁共振屏蔽客户名单、设备型号、联系方式,备查验。

核磁共振实验报告

核磁共振实验报告 一、实验目的: 1.掌握核磁共振的原理与基本结构; 2.学会核磁共振仪器的操作方法与谱图分析; 3.了解核磁共振在实验中的具体应用; 二、实验原理 核磁共振的研究对象为具有磁矩的原子核。原子核是带正电荷的粒子,其自旋运动将产生磁矩,但并非所有同位素的原子核都有自旋运动,只有存在自选运动的原子核才具有磁矩。原子核的自选运动与自旋量子数I有关。I=0的原子核没有自旋运动。I≠0的原子核有自旋运动。 原子核可按I的数值分为以下三类: 1)中子数、质子数均为偶数,则I=0,如12C、16O、32S等。 2)中子数、质子数其一为偶数,另一为基数,则I为半整数,如: I=1/2;1H、13C、15N、19F、31P等; I=3/2;7Li、9Be、23Na、33S等; I=5/2;17O、25Mg、27Al等; I=7/2,9/2等。 3)中子数、质子数均为奇数,则I为整数,如2H、6Li、14N等。 以自旋量子数I=1/2的原子核(氢核)为例,原子核可当作电荷均匀分布的球体,绕自旋轴转动时,产生磁场,类似一个小磁铁。当置于外加磁场H0中时,相对于外磁场,可以有(2I+1)种取向: 氢核(I=1/2),两种取向(两个能级): a.与外磁场平行,能量低,磁量子数m=+1/2; b.与外磁场相反,能量高,磁量子数m=-1/2;

正向排列的核能量较低,逆向排列的核能量较高。两种进动取向不同的氢核之间的能级差:△E= μH0(μ磁矩,H0外磁场强度)。一个核要从低能态跃迁到高能态,必须吸收△E的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振,简称NMR。三、实验仪器 400MHz超导傅里叶变换核磁共振波谱仪 (仪器型号:AVANCE III 400) 四、仪器构造、组成 1)操作控制台:计算机主机、显示器、键盘和BSMS键盘。 计算机主机运行Topspin程序,负责所有的数据分析和存储。BSMS键盘可以让用户控制锁场和匀场系统及一些基本操作。 2)机柜:AQS(采样控制系统)、BSMS(灵巧磁体系统),VTU(控温单元)、 各种功放。 AQS各个单元分别负责发射激发样品的射频脉冲,并接收,放大,数字化样品放射出的NMR信号。AQS完全控制谱仪的操作,这样可以保证操作不间断从而保证采样的真实完整。BSMS:这个系统可以通过BSMS键盘或者软件进行控制,负责操作锁场和匀场系统以及样品的升降、旋转。3)磁体系统:自动进样器、匀场系统、前置放大器(HPPR)、探头。 本仪器所配置的自动进样器可放置60个样品。磁体产生NMR跃迁所需的

实验室技术参数

第一部分实验台及基础设施部分 一、全钢实验台、中央台 1).台面:采用上海威盛亚实芯理化板,标准12.7mm厚,抗酸碱和有机试剂,抗刻刮性能好,不易弯曲变形,使用寿命长。颜色:黑色光面。台面四周 2×2mm倒角处理,边框加厚至25.4mm,台面拼接处采用环氧树脂胶粘合处理。 2).全钢柜体:采用1.0mm净厚宝钢冷轧钢板,经过数控冲压、数控折弯、 酸洗磷化、表层经环氧树脂静电粉末喷涂,喷塑采用环氧树脂(进口阿克苏粉末)厚度0.05-0.12mm。要柔韧性好,承重力强,抗冲击力强,长期暴露于空气中也不易生锈,经久耐用,且防火、防腐蚀性好。 3)柜门、抽屉面板:采用双层钢板折弯制作,中间加加强筋,以增加柜门抽屉抗撞击的能力。接缝处无焊点,表面平整光滑,每个箱体后挡板均可拆卸,便于维修,并在箱体内可调节地脚高度,在底板处设置4个可调口,并配有堵盖。 4).试剂架:试剂架立柱采用 1.0mm厚宝钢冷轧钢板经折弯成100*40mm方 钢经过化学防锈处理,表面经环氧树脂静电粉末喷涂;活动可拆卸式,可调节层板高度。要求焊接后表面平整,柔韧性好,承重力强,抗冲击力强,长期 暴露于空气中也不易生锈,经久耐用,且防火、防腐蚀性好。隔板材质用 12mm厚钢化玻璃。立柱电器部分采用西门子防尘防溅万用插座。 5)拉手:全钢暗式一体拉手 6)附属配件 a、铰链:采用DTC实验室专用铰链;铰链必须做环氧树脂粉末处理,达到防腐蚀、耐酸碱作用,无噪音,不回弹,强度好,与柜体面水平角度小于15度时,柜门可自动关闭。 b、抽屉滑轨:DTC优质三节承重、静音滑轨。抽送轻滑无噪音,强度高, 长期负重不变形,并有自动归位设计。 c、水嘴:采用上海台雄实验室专用铜制化验水嘴,表面环氧树脂粉末喷涂。水阀为瓷质铜芯水阀。防酸、防碱,耐腐蚀,耐热,防紫外线辐射。给水管及管接头螺口为1/2″接头。配设防堵水封防臭装置。(提供检测报告) d、水槽:采用上海台雄高密度PP新料,台下托底式安装,壁厚 5mm,平整,

顺磁共振实验报告

近代物理实验报告 顺磁共振实验 学院 班级 姓名 学号 时间 2014年5月10日

顺磁共振实验 实验报告 【摘要】 电子顺磁共振又称电子自旋共振。由于这种共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和固体中的磁矩主要是自旋磁矩的贡献所以又被称为电子自旋共振。简称“EPR ”或“ESR ”。由于电子的磁矩比核磁矩大得多,在同样的磁场下,电子顺磁共振的灵敏度也比核磁共振高得多。在微波和射频范围内都能观察到电子顺磁现象,本实验使用微波进行电子顺磁共振实验。 【关键词】 顺磁共振,自旋g 因子,检波 【引言】 顺磁共振(EPR )又称为电子自旋共振(ESR ),这是因为物质的顺磁性主要来自电子的自旋。电子自旋共振即为处于恒定磁场中的电子自旋在射频场或微波场作用下的磁能级间的共振跃迁现象。顺磁共振技术得到迅速发展后广泛的应用于物理、化学、生物及医学等领域。电子自旋共振方法具有在高频率的波段上能获得较高的灵敏度和分辨率,能深入物质内部进行超低含量分析,但并不破坏样品的结构,对化学反应无干扰等优点,对研究材料的各种反应过程中的结构和演变,以及材料的性能具有重要的意义。研究了解电子自旋共振现象,测量有机自由基DPPH 的g 因子值,了解和掌握微波器件在电子自由共振中的应用,从矩形谐振长度的变化,进一步理解谐振腔的驻波。 【正文】 一、实验原理 (1)电子的自旋轨道磁矩与自旋磁矩 原子中的电子由于轨道运动,具有轨道磁矩,其数值为: 2l l e e P m μ=- ,负号表示方向同l P 相反。在量子力学中(1)l P l l =+,因而 (1)(1)2l B e e l l l l m μμ=+=+,其中2B e e m μ=称为玻尔磁子。电子除了轨道运动外

物理实验报告_铁磁共振

铁磁共振 摘 要 本实验观察了速调管的振荡模式,谐振腔的谐振曲线,单晶样品的共振曲线,用逐点法测量了多晶样品的共振曲线.实验测得谐振腔的有效品质因数为861.24,测得单晶样品共振线宽H D =224.5A/m,旋磁比g =11 2.1810′Hz·m/A,朗德因子g=2.4,弛豫时间t =7 2.1410 -′s.测得多晶样品H D =31847.5A/m,g =11 2.3610′Hz· m/A,g=2.6,t =10 2.110 -′s . 关键词 铁磁共振,共振曲线,谐振曲线,品质因数,微波 一、引言 共振是自然界中普遍存在的一种客观现象.共振技术被广泛应用于机械、化学、力学、电磁学、光学、原子与分子物理学、工程技术等几乎所有的科技领域.磁共振是发生在既有角动量又有磁矩的系统在磁场作用下形成的塞曼能级间的共振感应跃迁,它不但具有共振的共性,还有其自身的特点.在目前可得到的磁感应强度的条件下,磁共振所涉及的共振频率通常处于射频和微波频段. 铁磁共振是于20世纪40年代发展起来的一种研究物质宏观性能和微观结构的重要实验手段,是指铁磁体材料在受到相互垂直的稳恒磁场和交变磁场的共同作用时发生的共振现象.利用铁磁共振现象可以测量体磁体材料的g 因子、共振线宽、弛豫时间等性质.该项技术在微波铁氧体器件的制造、设计等方面有着重要的应用价值.通过本实验,熟悉微波传输中常用的元件及其作用,掌握传输式谐振腔的工作特性,了解谐振腔观察铁磁共振的基本原理和实验条件. 二、实验原理 1、铁磁共振 当铁磁体材料同时受到两个相互垂直的磁场,即恒定磁场0H 和微波交变磁场h ,在0H 的作用下,铁磁体的磁化强度将围绕0H 进动,进动频率为: 00H w g = (1)

核磁共振实验报告

1、前言和实验目的 核磁共振是指受电磁波作用的原子核系统在外磁场中磁能级之间发生共振跃迁的现象。本实验的样品在外磁场中,外磁场使样品核能级因核自旋不同的取向而分裂,在数千高斯外磁场下核能级的裂距一般在射频波段,样品在射频电磁波作用下,粒子吸收电磁波的能量,从而产生核能级的跃迁。1932年发现中子后,才认识到核自旋是质子自旋和中子自旋之和,质子和中子都是自旋角动量为2 的费米子,只有质子数和中子数两者或其一为奇数时,核才有非零的核磁矩,正是这种磁性核才能产生核磁共振。 核磁共振信号可提供物质结构的丰富信息,如谱线的宽度、形状、面积、谱线在频率或磁场刻度上的准确位置、谱线的精细结构、超精细结构、弛豫时间等,加之是对样品的无损测量,广泛的应用于分子结构的确定、液相和固相的动力学研究、医用诊断、固体物理学、分析化学、分子生物学等领域,是确定物质结构、组成和性质的重要实验方法。核磁共振还是磁场测量和校准磁强计的标准方法之一,其不确定度可达001.0±%。 实验目的: (1)掌握核磁共振的实验原理和方法 (2)用核磁共振方法校准外磁场B ,测量氟核的F g 因子以及横向驰豫时间2T 2、实验原理 如原子处在磁场中会发生能级分裂一样,许多原子核处在磁场中也会发生能级的分裂,因为 原子核也存在自旋现象。质子和中子都是自旋角动量等于2 的费米子,当质子数和中子数都为偶数时原子核的磁矩为0,当其一为奇数时原子核磁矩为半整数,当两个都为奇数时核磁矩为整数。只有具有核磁矩的原子核才有核磁共振现象。 我们知道在微观世界里物理量都只能取分立的值,即都是量子化的。原子核的角动量也只能取分立的值 )1(+= I I p ,I 为自旋量子数,取分立的值。对于本实验用到的H 1和F 19,自旋量 子数I 都为1/2。沿z 方向的角动量为 m p z =,在这里m 只能取1/2或-1/2。而自旋角动量不为0的核具有核磁矩p m e g p 2F =,考虑沿z 轴方向则有N z p Z mgF p m e G F ==2,其中以 γ== p z m e F 2为原子核磁矩的基本单位,p m e 2=γ。 在没有磁场作用时,原子核的能量时一样的,但处于磁场中则会发生能级分裂, B m γ-B -F B F E Z =?=?-=,本实验中1=?m ,故有B E γ=?。外加一射频场,当满足一定 的条件时就会发生共振吸收,条件为πγγυ2hB B E h = =?= ,从而有共振频率B π γ υ2= 。通过

铁磁共振

用传输式谐振腔观测铁磁共振 铁磁共振在磁学和固体物理学中都占有重要地位。它是微波铁氧体物理学的基础,而微波铁氧体在现代雷达和微波通信方面都有重要应用。 铁磁共振和核磁共振、电子自旋共振一样,成为研究物质宏观性能和微观结构的有效手段。早在1935年,著名苏联物理学家兰道(Lev Davydovich Landau 1908—1968)等就提出铁磁性物质具有铁磁共振特性。经过若干年在超高频技术发展起来后,才观察到铁磁共振现象。多晶铁氧体最早的铁磁共振实验发表于1948年。以后的工作则多采用单晶样品。 实验目的 1.了解微波谐振腔的工作原理,学习微波装置调整技术。 2.通过观测铁磁共振,进一步认识磁共振的一般特性和实验方法。 实验原理 1.微波谐振腔 在微波技术中谐振腔是一个非常重要的部分。所谓微波谐振腔就是一个封闭的金属导体空腔,一般为矩形或圆柱形。腔壁反射电磁波辐射,使电磁波局限在空腔内部。谐振腔的入射端开一小孔,使电磁波进入谐振腔。电磁波在腔内连续反射。若波形和频率与谐振腔匹配,可形成驻波,也即发生谐振现象。如谐振腔无损耗,则腔内振荡便可持续下去。(1)矩形波导管 矩形截面的空心导体管构成矩形波导,它是传播微波最常用的传输线。矩形谐振腔实际上是一段封闭的矩形波导,即在波导入射端和出射端加装了反射电磁波的金属片。理论分析表明:在波导管中不存在电场纵向分量和磁场纵向分量同时为零的电磁波。在波导管中传播的电磁波可以分为两大类:(1)横电波又称为磁波。简写为TE波或H波;磁场可以有纵向和横向分量,但电场只有横向分量。矩形波导管传播的基本波形是TE10波。(2)横磁波又称为电波,简写为TM波或E波;电场可以有纵向和横向分量,但磁场只有横向分量。至于电场和磁场的纵向分量都不为零的电磁波,则可以看成横电波和横磁波迭加而成。 在实际应用中,总是把波导管设计成只能传播单一波形。我们使用的矩形波导管只能传播TE10波。

最新核磁共振实验报告

一、实验目的与实验仪器 1.实验目的 (1)了解核磁共振的基本原理; (2)学习利用核磁共振校准磁场和测量因子g 的方法: (3)掌握利用扫场法创造核磁共振条件的方法,学会利用示波器观察共振吸收信号; (4)测量19F 的g N 因子。 2.实验仪器 NM-Ⅱ型核磁共振实验装置,水 样品和聚四氟乙烯样品。 探测装置的工作原理:图一中绕 在样品上的线圈是边限震荡器电路 的一部分,在非磁共振状态下它处在 边限震荡状态(即似振非振的状态), 并把电磁能加在样品上,方向与外磁 场垂直。当磁共振发生时,样品中的 粒子吸收了震荡电路提供的能量使振荡电路的Q 值发生变化,振荡电路产生显著的振荡,在示波器上产生共振信号。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 原子核自旋角动量不能连续变化,只能取分立值即: P = 其中I 称为自旋量子数,I=0,1/2,1,3/2,2,5/2,…本实验涉及的质子和氟核 F 19 的自旋量子数I 都等于1/2。类似地原子核的自旋角动量在空间某一方向,例如z 方向的分量不能连续变化,只能取分立的数值 自旋角动量不为零的原子核具有与之相联系的核自旋磁矩, 其大小为: P 2M e g =μ 核磁共振 实验报告

其中e 为质子的电荷,M 为质子的质量,g 是一个由原子核结构决定的因子,对不同种类的原子核g 的数值不同,g 成为原子核的g 因子。由于核自旋角动量在任意给定的z 方向的投影只可能取(2I+1)个分立的数值,因此核磁矩在z 方向上的投影也只能取(2I+1)个分立的数值: 2M e g p 2M e g m z z ==μ 原子核的磁矩的单位为: 2M e N =μ 当不存在外磁场时,原子核的能量不会因处于不同的自旋状态而不同。通常把B 的方向规定为z 方向,由于外磁场B 与磁矩的相互作用能为: B B P B B E z z m γγμμ-=-=-=?-= 核磁矩在加入外场B 后,具有了一个正比于外场的频率。量子数m 取值不同,则核磁矩的能量也就不同。原来简并的同一能级分裂为(2I+1)个子能级。不同子能级的能量虽然不同,但相邻能级之间的能量间隔 却是一样的,即: B E γ=? 而且,对于质子而言,I=1/2,因此,m 只能取m=1/2和m= -1/2两个数值。简并能级在磁场中分开。其中的低能级状态,对应E 1=-mB ,与场方向一致的自旋,而高的状态对应于E 2=mB ,与场方向相反的自旋。当核自旋能级在外磁场B 作用下产生分裂以后,原子核在不同能级上的分布服从玻尔兹曼分布。 若在与B 垂直的方向上再施加一个高频电磁场(射频场),且射频场的频率满足一定条件时,会引起原子核在上下能级之间跃迁。这种现象称为共振跃迁(简称共振)。 发生共振时射频场需要满足的条件称为共振条件: B π γν2= 如果用圆频率ω=2πν 表示,共振条件可写成:B γω=

微波铁磁共振

微波铁磁共振 实验仪器:(注明规格和型号) 微波铁磁共振实验系统;三厘米固态信号源;示波器;微安表;特斯拉计 实验目的: 1. 熟悉、掌握微波实验系统的调试和测试方法 2. 了解用谐振腔法观测铁磁共振的基本原理和实验方法 3. 通过观察铁磁共振现象和测定有关的物理量,认识铁磁共振的一般特性 实验原理简述: 铁磁共振(FMR )观察的对象是铁磁介质的未偶电子,因此可以说是铁磁介质中的电子自旋共振。 铁磁介质的磁导率主要由电子自旋所决定的,按经典力学原理电子自旋角动量m J 与自旋磁矩m P 有如下关系: m m J P γ= 其中, /B g μγ= 称为磁旋比。在外磁场B 中自旋电子将受到一个力矩T 的作用 B P T m ?= 因而角动量m J 将发生变化,其运动方程为 T dt dJ m = 计算得: )(B P dt dP m m ?=γ 若在铁氧体中单位体积内有N 个自旋电子,则磁化强度M 为 m NP M = 因此有 )(B M dt dM ?=γ 若磁矩M 按t i y x e m M 0,ω=规律进动,而稳恒磁场z i B B 0=,代入解此方程,得00B γω= 这就是通常称为拉莫尔进动的运动方式,从量子力学的观点来看,共振吸收现象发生在电磁场的量子ω 恰好等于系统M 的两相邻塞曼能级间的能量差,即 m B g E B ?=?=0μω 吸收过程中产生1±=?m 的能级跃迁,因此这一条件等同于 00ωγω==B ,与经典力学的结论一致。 在外加恒定磁场B 0的作用下,磁矩M 将围绕着磁场B 0进动。实际上这种进动是不会延续很久的,因为磁介质内部有损耗存在。如图4-3-2所示。 这个过程就是磁化过程,磁性介质所以能被磁化就说明其内部存在有阻尼损耗。图中T D 表示阻尼力,其方向指向B 0。磁矩M 受阻尼力的作用很快转向B 0方向,其周期为,如果要维持其进动,必须另外提供能量。这个能量通常由微波磁场提供。系统从微波磁场中吸收的能量恰好补充铁磁样

铁磁共振实验报告

一、实验背景 早在1935年,著名苏联物理学家兰道(Lev Davydovich Landau 1908—1968)等就提出铁磁性物质具有铁磁共振特性.经过十几年,在超高频技术发展起来后,才观察到铁磁共振吸收现象,后来波耳得(Polder )和侯根(Hogan )在深入研究铁磁体的共振吸收和旋磁性的基础上,发明了铁氧体的微波线性器件,使得铁磁共振技术进入了一个新的阶段.自20世纪40年代发展起来后,铁磁共振和核磁共振、电子自旋共振等一样,成为研究物质宏观性能和用以分析其微观结构的有效手段. 微波铁磁共振现象是指铁磁介质处在频率为?0的微波电磁场中,当改变外加恒定磁场H 的大小时,发生的共振吸收现象.通过铁磁共振实验,我们可以测量微波铁氧体的共振线宽、张量磁化率、饱和磁化强度、居里点等重要参数.该项技术在微波铁氧体器件的制造、设计等方面有着重要的应用价值. 二、实验目的 1.了解微波谐振腔的工作原理,学习微波装置调整技术. 2.掌握铁磁共振的基本原理,观察铁磁共振现象. 3.测量微波铁氧体的共振磁场B ,计算g 因子. 三、实验原理 1.磁共振 自旋不为零的粒子,如电子和质子,具有自旋磁矩.如果我们把这样的粒子放入稳恒的外磁场中,粒子的磁矩就会和外磁场相互作用使粒子的能级产生分裂,分裂后两能级间的能量差为: 02B h E πγ=? (1) (其中,γ为旋磁比,h 为普朗克常数,0B 为稳恒外磁场). 又有e m e g 2=γ,故0022B g B h m e g E B e μπ =?=?.(其中,g 即为要求的朗德g 因子,其值约为2.πμe B m eh 4=为玻尔磁子, 其值为1241074.29--??T J ) 若此时再在稳恒外磁场的垂直方向加上一个交变电磁场,该电磁场的能量为

实验室常用技术参数资料 试剂配方分解

验室常用技术参数资料一、核酸及蛋白质常用数据 1.核苷三磷酸的物理常数 化合物分 子 量 λmax(pH7.0) 1摩尔溶液(pH7.0)中λmax时的 最大吸收值 OD280/OD260 ATP 507 259 15400 0.15 CTP 483 271 9000 0.97 GTP 523 253 13700 0.66 UTP 484 262 10000 0.38 dATP 494 259 15200 0.15 dCTP 467 271 9300 0.98 dGTP 507 253 13700 0.66 dTTP 482 267 9600 0.71 2.常用核酸的长度与分子量 核酸核苷酸数分子量 λDNA48502(双链环状) 3.0×107 pBR322 4363(双链) 2.8×106 28SrRNA 4800 1.6×106 23SrRNA 3700 1.2×106 18SrRNA 1900 6.1×105 19SrRNA 1700 5.5×105 5SrRNA 120 3.6×104 tRNA(大肠杆菌)75 2.5×104 3.常用核酸蛋白换算数据

(1)重量换算 1μg=10-6g 1pg=10-12g 1ng=10-9g 1fg=10-15g (2)分光光度换算: 1A260双链DNA=50μg/ml 1A260单链DNA=30μg/ml 1A260单链RNA=40μg/ml (3)DNA摩尔换算: 1μg 100bp DNA=1.52pmol=3.03pmol末端1μg pBR322 DNA=0.36pmol 1pmol 1000bp DNA=0.66μg 1pmol pBR322=2.8μg 1kb双链DNA(钠盐)=6.6×105道尔顿1kb单链DNA(钠盐)=3.3×105道尔顿1kb单链RNA(钠盐)=3.4×105道尔顿(4)蛋白摩尔换算: 100pmol分子量100,000蛋白质=10μg 100pmol分子量50,000蛋白质=5μg 100pmol分子量10,000蛋白质=1μg 氨基酸的平均分子量=126.7道尔顿(5)蛋白质/DNA换算: 1kb DNA=333 个氨基酸编码容量 =3.7×104MW蛋白质 10,000MW蛋白质=270bp DNA 30,000MW蛋白质=810bp DNA 50,000MW蛋白质=1.35kb 100,000MW蛋白质=2.7kb DNA 4.常用蛋白质分子量标准参照物 (1)高分子量标准参照(2)中分子量标准参照(3)低分子量标准参照 肌球蛋白分子量磷酸化酶B 97,400 碳酸酐酶31,00 肌球蛋白212,000 牛血清白蛋白66,200 大豆脻蛋白酶21,500 β-半乳糖甘酶 B 116,000 谷氨酶脱氢酶55,000 抑制剂 磷酸化酶B 97,400 卵白蛋白42,700 马心肌球蛋白16,900 牛血清白蛋白66,200 醛缩酶40,000 溶菌酶14,400 过氧化氢酶` 57,000 碳酸酐酶31,000 肌球蛋白(F1)8,100 醛缩酶40,000 大豆脻蛋白酶21,500 肌球蛋白(F2)6,200 抑制剂肌球蛋白(F3)2,500 溶菌酶14,400 5.常用DNA分子量标准参照物 λDNA/HindⅢλDNA/EcoRⅠλ/HindⅢ+EcoRⅠpBR322/HaeⅢ23130 21226 21227 587 123 9416 7421 5148 405 104 6557 5804 4973 504 89 4361 5643 4268 458 80

近代物理实验报告—铁磁共振

铁磁共振 【摘要】本实验利用调速管产生微波,观察了谐振腔的谐振曲线,测得谐振腔的有效品质因数为1507, 并进一步利用谐振腔研究了单晶和多晶样品的铁磁共振性质,得到了单晶样品和多晶样品的的共振线宽,旋磁比,朗德因子以及弛豫时间,并用逐点法测量了多晶样品的共振曲线。 【关键词】微波、铁磁共振、品质因数 一、引言 早在1935年,著名苏联物理学家朗道就提出铁磁性物质具有铁磁共振特性。经过十几年,在超高频技术发展起来后,才观察到铁磁共振吸收现象,后来波耳得(Polder )和侯根(Hogan )在深入研究铁磁体的共振吸收和旋磁性的基础上,发明了铁氧体的微波线性器件,使得铁磁共振技术进入了一个新的阶段。自20世纪40年代发展起来后,铁磁共振和核磁共振、电子自旋共振等一样,成为研究物质宏观性能和用以分析其微观结构的有效手段。 铁磁共振是指铁磁体材料在受到相互垂直的稳恒磁场和交变磁场的共同作用时发生的共振现象。它可以用于测量体磁体材料的g 因子、共振线宽、弛豫时间等性质。通过本实验熟悉微波传输中常用的元件及其作用,掌握传输式谐振腔的工作特性,了解谐振腔观察铁磁共振的基本原理和实验条件。 二、实验原理 1、铁磁共振原理 当铁磁体材料同时受到两个相互垂直的磁场,即恒定磁场0H 和微波交变磁场h ,在0H 的作用下,铁磁体的磁化强度将围绕0H 进动,进动频率为: 00H γω=(1) 其中γ为铁磁体材料的旋磁比,即: m e g 20μγ= (2) 其中g 为朗德因子,0μ为真空磁导率,e 、m 分别电子电量和电子质量。 由于阻尼作用,磁化强度将趋向于0H ,但是如果当微波频率0w w =时,进动的磁矩从微波场中吸收的能量刚好抵消阻尼所损耗的能量,则进动会稳定地进行,发生共振吸收现象,即铁磁共振现象。此时,铁磁体的磁导张量可表示为

生物实验室常用技术参数资料

实验室常用技术参数资料一、核酸及蛋白质常用数据 1.核苷三磷酸的物理常数 2.常用核酸的长度与分子量 3.常用核酸蛋白换算数据(1)重量换算 1μg=10-6g1pg=10-12g 1ng=10-9g 1fg=10-15g

(2)分光光度换算: 1A260双链DNA=50μg/ml 1A260单链DNA=30μg/ml 1A260单链RNA=40μg/ml (3)DNA摩尔换算: 1μg 100bp DNA=1.52pmol=3.03pmol末端 1μg pBR322 DNA=0.36pmol 1pmol 1000bp DNA=0.66μg 1pmol p BR322=2.8μg 1kb双链DNA(钠盐)=6.6×105道尔顿 1kb单链DNA(钠盐)=3.3×105道尔顿 1kb单链RNA(钠盐)=3.4×105道尔顿 (4)蛋白摩尔换算: 100pmol分子量100,000蛋白质=10μg 100pmol分子量50,000蛋白质=5μg 100pmol分子量10,000蛋白质=1μg 氨基酸的平均分子量=126.7道尔顿 (5)蛋白质/DNA换算: 1kb DNA=333 个氨基酸编码容量=3.7×104MW蛋白质10,000MW蛋白质=270bp DNA 30,000MW蛋白质=810bp DNA

50,000MW蛋白质=1.35kb 100,000MW蛋白质=2.7kb DNA 4.常用蛋白质分子量标准参照物 5.常用DNA分子量标准参照物 续上表

二、常用缓冲液 1.分子克隆常用缓冲液 2.磷酸缓冲液 (1)25℃下0.1mol/L磷酸钾缓冲液的配制※ (2)25℃下0.1mol/L磷酸钠缓冲液的配制※

近代物理实验报告

近代物理实验报告

2019/8/9 18:29:00近代物理实验报告2 实验名称:铁磁共振 指导教师:鲍德松 专业:物理 班级:求是物理班1401 姓名:朱劲翔 学号:3140105747 实验日期:2016.10.19

实验目的: 1. 初步掌握用微波谐振腔方法观察铁磁共振现象。 2.掌握铁磁共振的基本原理和实验方法。 3.测量铁氧体材料的共振磁场r B ,共振线宽B ?,旋磁比γ以及g 因子和弛豫时间 τ。 实验原理: 根据磁学理论可知,物质的铁磁性主要来源于原子或离子的未满壳层中存在的非成对电子自旋磁矩。一块宏观的铁磁体包含有许多磁畴区域,在每一个区域中,自旋磁矩在交换作用的耦合下彼此平行排列,产生自发磁化,但各个磁畴之间的取向并不完全一致,只有在外磁场的作用下,铁磁体内部的所有自旋磁矩才保持同一方向,并围绕 着外磁场方向作进动。当铁磁物质同时受到两个相互垂直的磁场即恒磁场0B ρ 和微波磁 场1B ρ的作用后,磁矩的进动情况将发生重要的变化。一方面,恒磁场0B ρ 使铁磁场物质 被磁化到饱和状态,当磁矩M ρ 原来平衡方向与0B ρ有夹角θ时,0B ρ使磁矩绕它的方向作进动,频率为h B g B H μν=;另一方面,微波磁场1B ρ强迫进动的磁矩M ρ随着1B ρ的作用

而改变进动状态,M ρ 的进动频率再不是H ν了,而是以某一频率绕着恒磁场0B ρ作进动,同时由于进动过程中,磁矩受到阻尼作用,进动振幅逐渐衰减,如图(8—1)所示,微波磁场对进动的磁矩起到不断的补充能量的作用。当维持微波磁场作用时,且微波 频率ν=H ν时,耦合到M ρ的能量刚好与M ρ 进动时受到阻尼消耗的能量平衡时,磁矩就维持稳定的进动,如图(8—2)所示。铁磁共振的原理图如图(8—3)所示。 在恒磁场0B ρ(即0H ρ )和微波磁场1B ρ(即h ρ)的作用下,其进动方程可写为: dt M d ρ = -γ(M ρ×H ρ)+ T ρ (8-1) 上式中e m e g 2=γ为旋磁比,g 为朗德因子,B ρ(即H ρ)为恒磁场0B ρ(即0H ρ)和微波 磁场1B ρ(即h ρ)合成的总磁场,T ρ 为阻尼力矩,此系统从微波磁场1B ρ中所吸收的全部 能量,恰好补充铁磁样品通过某机制所损耗的能量。阻尼的大小还意味着进动角度θ减少的快慢,θ减少得快,趋于平衡态的时间就短,反之亦然。因此这种阻尼可用弛豫时间τ来表示,τ的定义是进动振幅减小到原来最大振幅的e 1所需要的时间。 图(8—1)进动振幅逐渐衰减 图(8—2)微波磁场作用抵消阻尼,趋于平衡

铁磁共振实验报告

一、实验背景 早在1935年,著名苏联物理学家兰道(Lev Da vydovich Landa u 1908—1968)等就提出铁磁性物质具有铁磁共振特性.经过十几年,在超高频技术发展起来后,才观察到铁磁共振吸收现象,后来波耳得(Polder )和侯根(Ho gan )在深入研究铁磁体的共振吸收和旋磁性的基础上,发明了铁氧体的微波线性器件,使得铁磁共振技术进入了一个新的阶段.自20世纪40年代发展起来后,铁磁共振和核磁共振、电子自旋共振等一样,成为研究物质宏观性能和用以分析其微观结构的有效手段. 微波铁磁共振现象是指铁磁介质处在频率为?0的微波电磁场中,当改变外 加恒定磁场H 的大小时,发生的共振吸收现象.通过铁磁共振实验,我们可以测量微波铁氧体的共振线宽、张量磁化率、饱和磁化强度、居里点等重要参数.该项技术在微波铁氧体器件的制造、设计等方面有着重要的应用价值. 二、实验目的 1.了解微波谐振腔的工作原理,学习微波装置调整技术. 2.掌握铁磁共振的基本原理,观察铁磁共振现象. 3.测量微波铁氧体的共振磁场B,计算g 因子. 三、实验原理 1.磁共振 自旋不为零的粒子,如电子和质子,具有自旋磁矩.如果我们把这样的粒子放入稳恒的外磁场中,粒子的磁矩就会和外磁场相互作用使粒子的能级产生分裂,分裂后两能级间的能量差为: 02B h E πγ=? ????(1) (其中,γ为旋磁比,h 为普朗克常数,0B 为稳恒外磁场). 又有e m e g 2=γ,故0022B g B h m e g E B e μπ =?=?。(其中,g 即为要求的朗德g 因子,其值约为2.πμe B m eh 4=为玻尔磁子, 其值为1241074.29--??T J ) 若此时再在稳恒外磁场的垂直方向加上一个交变电磁场,该电磁场的能量为

顺磁共振实验报告

近代物理实验报告顺磁共振实验 学院 班级 姓名 学号 时间2014 年 5 月10 H

顺磁共振实验实验报告 【摘要】 电子顺磁共振又称电子自旋共振。由于这种共振跃迁只能发生在原子的周有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和周体中的磁矩主要是自旋磁矩的贡獻所以又被称为电子自旋共振。简称“EPR”或“ESR”。由于电子的磁矩比核磁矩大得多,在同样的磁场下,电子顺磁共振的灵敏度也比核磁共振高得多。在微波和射频范围内都能观察到电子顺磁现象,本实验使用微波进行电子顺磁共振实验。 【关键词】 顺磁共振,自旋兰闵子,检波 【引言】 顺磁共振(EPR)又称为电子肖旋共振(ESR),这是冈为物质的顺磁性主要来自电子的自旋。电子自'旋共振即为处于恒定磁场中的电子自旋在射频场或微波场作用下的磁能级间的共振跃迁现象。顺磁共振技术得到迅速发展后广泛的应用于物理、化学、生物及医学等领域。电子肖旋共振方法具有在高频率的波段上能获得较高的灵敏度和分辨率,能深入物质内部进行超低含量分析,但并不破坏样品的结构,对化学反应无干扰等优点,对研究材料的各种反应过程中的结构和演巫,以及材料的性能具有重要的意义。研究了解电子自旋共振现象,测量有机自由基DPPH的g闵子值,了解和掌握微波器件在电子自由共振中的应用,从矩形谐振长度的变化,进一步理解谐振腔的驻波。

【正文】 一、实验原理 (1)电子的肖旋轨道磁矩与肖旋磁矩 原子中的电子由于轨道运动,具有轨道磁矩,其数值为:刀儿,负 号表示方向同E相反。在量子力学中E=』(/+1)方,因而均=屮Q+1)-^― = Jo + “B = 4r~ -九,其中2叫称为玻尔磁子。电子除了轨道运动外 “、= y]s(S+\) —还具有自旋运动,因此还具有肖旋磁矩,其数值表示为:m 叫。 由于原子核的磁矩可以忽略不计,原子中电子的轨道磁矩和自旋磁矩合成原子 少 _ & 丄号&=] + 旳+Ta+i)+s(w) 的总磁矩:2他,其中弐是朗德闵子:2山+ 1) 。 在外磁场中原子磁矩要受到力的作用,其效果是磁矩绕磁场的方向作旋进,也e 就是巧绕着磁场方向作旋进,引入回磁比2叫,总磁矩可表示成H严泻。同 时原子角动量巧和原子总磁矩"丿取向是量子化的。勺在外磁场方向上的投影为: Pj =斤谄,m = jJ-\J-2,...-j o其中m称为磁量子数,相应磁矩在外磁场方向 上的投影为:“丿=ymh=-mg“B ; m = j,j-Xj-2、??.一j。 (2)电子顺磁共振

铁磁共振

实验题目:铁磁共振 实验目的:学习用传输式谐振腔法研究铁磁共振现象,测量YIG小球(多晶)的共振线宽和g因子。 实验仪器:微波发生器,隔离器,定向耦合器,晶体检波器,微安计,谐振腔,铁氧体小球,精密衰减器,磁铁,示波器。 实验原理:(点击跳过实验原理和实验内容) 铁磁共振:在微波波段,只有铁氧体对微波吸收最小。当满足一定条件时,铁磁性物质从微波磁场中强烈吸收能量的现象称为铁磁共振。 当外加稳恒磁场B时,铁氧体对微波的吸收剧烈变化,在处吸收最强烈,成为共振吸收,此现象极为铁磁共振。这里为微波磁场的角频率,为铁磁物质的磁旋比: 铁磁共振试验通常采用谐振腔法,该法灵敏度高,但测量频率较窄。本试验用传输式谐振腔,其传输系数与样品共振吸收的关系简单,便于计算,但难以用抵消法提高灵敏度。 将铁氧小球置于谐振腔微波磁场的最大处,使其处于相互垂直的稳恒磁场B和微波磁场Hm 中,保持微波发生器输出功率恒定,调节谐振腔或微波发生器,使谐振腔的频率与微波磁场的频率相等,当改变B的大小时,由于铁磁共振,在谐振腔始终调谐时,在输入功率不变的情况下,输出功率为: (为腔的品质因数)。因而的变化可通过的变化来测量。然后通过P-B曲线可得。 必须注意的是,当B改变时,磁导率的变化会引起谐振腔谐振频率的变化(频散效应),故实验时,每改变一次B都要调节谐振腔(或微波发生器频率),使它与输入微波磁场的频率调谐,以满足上式的关系,这种测量称逐点调谐,可以获得真实的共振吸收曲线,如图2.3.2-5,此时,对应于B1、B2的输出功率为: 式中P0、P r、和P1/2分别是远离共振点、共振点和共振幅度半高处对应的输出功率。因此根据测得曲线,计算出P1/2,既能确定出。 试验时直接测量的不是功率,而是检波电流I。

核磁共振实验报告

关于核磁共振现象的实验研究与讨论 崔泽轮0942024018 物理学院核工程与核技术专业 摘要:利用连续波法观察了核磁共振现象,测定了H核的核磁共振频率,计算了H核的核磁共振参数,研究了H核在扫场频率和振荡幅度分别作用下的饱和现象。 关键词:核磁共振;共振频率;共振信号;饱和现象;匀强磁场 引言 核磁共振是指具有磁矩的原子核在恒定磁场中,由电磁波引起的共振跃迁现象。1945年12月,珀塞尔等人首先在石蜡样品中观察到核磁共振吸收信号,之后核磁共振领域得到广泛关注,许多物理学家进入这个领域,并取得了丰硕成果。目前,核磁共振技术已经广泛应用于物理、化学、生物、医学等各个领域并发挥着日益重要的作用。它在测定原子核磁矩以及研究原子核结构方面是直接而且准确的方法,也是精确测量磁场的重要方法之一。 虽然产生核磁共振的原理是相同的,但对核磁共振现象的观察与研究的试验方法却有很多,其中连续波的方法易于操作和观察[1],结果直观易得,故本实验采用这种方法。关于实验原理,本实验并不深究。本实验重点在于观察核磁共振现象,并验证核磁共振原理的若干相关推论,而后对实验中的一些现象作一些分析和讨论,探明这些现象的原因。 1 实验部分 1.1 使用试剂 本实验主要探究H原子核,即质子,在不同化学环境中的共振现象,以及F核在原子状态下的核磁共振现象。关于H核,实验试剂选择了五种:1%的Mn Cl2溶液、1%的CuSO4溶液、1%的FeCl3溶液三种试剂属于弱酸性,且酸性依次增强;纯水呈中性;丙三醇属于有机物。关于F核,实验选择以原子状态存在的F为研究对象。 2.2 实验方法 本实验采用连续波的方法。首先有用此帖产生一个恒定匀强磁场B01,再由扫场线圈在B01上叠加一个旋进磁场B02= Asinω0t叠加后的匀强磁场为B0=B01+Asinω0t,即其在一定范围内做正弦运动。有信号检测器在探头内产生一个与B0垂直的正弦运动的磁场B1=2Asinω0t 其中B1的角频率ω可调。设Bω=ω/γ,则每当B1在运动过程中扫过Bω时,产生一次共振。故共振现象随扫场频率周期性发生。由示波器可观察共振信号。 1.3 设备与规格 ZKY-HG-Ⅱ型专业级边限振荡器核磁共振实验仪:包括边限振荡器、频率计、扫场电源部分、信号检测器以及匀强磁场等部分构成。其中边限振荡器用以产生横向磁场B1;频率计用以调节和显示信号检测器振荡线圈中的信号频率大小和信号幅度;扫场电源部分用以在匀强磁场B01上叠加一个旋进磁场B02,用以控制共振周期性发生,从而减小饱和对信号强度的影响;信号检测器是对振荡线圈频率控制和对试剂共振信号的检测和处理的装置;匀强磁场由两块永磁铁产生。 数字双踪示波器,用以观测共振信号。 1.4实验过程 1.4.1 观察硫酸铜中H核的共振图像

实验8--铁磁共振

实验八 铁磁共振 0 前言 铁磁共振(FMR)是指铁磁介质在恒定外磁场中,对微波电磁场的共振吸收现象。是铁磁物质中未偶电子,也即是铁磁物质中的电子自旋共振。铁磁共振不仅在实验中已可以观察到,而且在研究铁磁体的共振吸收和旋磁性的基础上,人类发明了铁氧体的微波线性器件;铁磁共振也是研究铁磁体宏观性能与微观结构的有效手段。 1 实验目的 1. 初步掌握用微波谐振腔方法观察铁磁共振现象。 2.掌握铁磁共振的基本原理和实验方法。 3.测量铁氧体材料的共振磁场r B ,共振线宽B ?,旋磁比γ以及g 因子和弛豫时间τ。 2 实验原理 根据磁学理论可知,物质的铁磁性主要来源于原子或离子的未满壳层中存在的非成对电子自旋磁矩。一块宏观的铁磁体包含有许多磁畴区域,在每一个区域中,自旋磁矩在交换作用的耦合下彼此平行排列,产生自发磁化,但各个磁畴之间的取向并不完全一致,只有在外磁场的作用下,铁磁体内部的所有自旋磁矩才保持同一方向,并围绕着外磁场方向作进动。当铁磁物 质同时受到两个相互垂直的磁场即恒磁场0B 和微波磁场1B 的作用后,磁矩的进动情况将发生 重要的变化。一方面,恒磁场0B 使铁磁场物质被磁化到饱和状态,当磁矩M 原来平衡方向与0 B 有夹角θ时,0B 使磁矩绕它的方向作进动,频率为h B g B H 0μν=;另一方面,微波磁场1B 强迫进动的磁矩M 随着1B 的作用而改变进动状态,M 的进动频率再不是H ν了,而是以某一频率绕着恒磁场0B 作进动,同时由于进动过程中,磁矩受到阻尼作用,进动振幅逐渐衰减,如图(8—1)所示,微波磁场对进动的磁矩起到不断的补充能量的作用。当维持微波磁场作用时, 且微波频率ν=H ν时,耦合到M 的能量刚好与M 进动时受到阻尼消耗的能量平衡时,磁矩就 维持稳定的进动,如图(8—2)所示。铁磁共振的原理图如图(8—3)所示。 在恒磁场0B (即0H )和微波磁场1B (即h )的作用下,其进动方程可写为: dt M d = -γ(M ×H )+ T ------------------------------- (8-1) 上式中e m e g 2=γ为旋磁比,g 为朗德因子,B (即H )为恒磁场0B (即0H )和微波

实验室常用洗液的配置

实验室常用洗液的配制方法及使用 在分析工作中,洗涤玻璃仪器不仅是一项必须做的实验前的准备工作,也是一项技术性的工作。仪器洗涤是否符合要求,对检验结果的准确和精密度均有影响。不同的分析工作有不同的仪器洗净要求,一般定量化学分析所用的洗液配制及洗涤要求如下: 一、铬酸洗液 1、配置 称取5g重铬酸钾粉末,置于250mL 烧杯中,加5mL 水使其溶解,然后慢慢加入100mL 浓硫酸,溶液温度将达80℃,待其冷却后贮存于磨口玻璃瓶内。 2、洗涤范围及注意事项 主要用于洗除被有机物质和油污玷污的玻璃器皿,是强氧化性洗液,不适用于对铬的微量分析洗涤。具有强腐蚀性,防止烧伤皮肤、衣物;用毕回收,可反复使用。若洗液变成墨绿色则失效,可加入浓硫酸将Cr3+氧化后继续使用。 千万不能将水或溶液加入H2SO4中,配制时要边倒边用玻璃棒搅拌,并注意不要溅出,混合均匀,待冷却后,装入洗液瓶备用。防止洗液溅到身上,以防“烧”破衣服和损伤皮肤。洗液倒入要洗的仪器中,应使仪器周壁全浸洗后稍停一会再倒回洗液瓶。 二、碱性乙醇洗液 1、配制

溶解120克氢氧化钠固体于120ml水中,用95%乙醇稀释至1L。 2、洗涤范围 在铬酸洗液洗涤无效时,用于清洗各种油污 3、由于碱对玻璃的腐蚀,玻璃磨口不能长期在该洗液中浸泡;须存放于胶塞瓶中,防止挥发、防火。注意:失效洗涤时间不宜过长,使用时应小心慎重。 三、碱性洗液 1、配制 (1)4克高锰酸钾固体溶于少量水中,再加入100mL10%氢氧化 钠溶液。 (2) 碳酸钠液(Na2CO3,即纯碱),碳酸氢钠(Na2HCO3,小苏打),磷酸钠(Na3PO4,磷酸三钠)液,磷酸氢二钠(Na2HPO4)液等。 2、使用范围及注意事项 主要除去有机物质,用碱性高锰酸钾浸泡后器壁上会析出一层二氧化锰,需用盐酸或盐酸加过氧化氢除去。碱性洗液用于洗涤有油污物的仪器,用此洗液是采用长时间(24小时以上)浸泡法,或者轻微浸煮法。从碱洗液中捞取仪器时,要戴乳胶手套,以免烧伤皮肤。 五、洗涤剂 常用的洁净剂是肥皂,肥皂液(特制商品),洗衣粉,去污粉,

核磁共振实验报告

核磁共振实验报告 一、实验目的与实验仪器 1.实验目的 (1)了解核磁共振的基本原理; (2)学习利用核磁共振校准磁场和测量因子g的方法: (3)掌握利用扫场法创造核磁共振条件的方法,学会利用示波器观察共振吸收信号; (4)测量19F的g N因子。 2.实验仪器 NM-Ⅱ型核磁共振实验 装置,水样品和聚四氟乙烯 样品。 探测装置的工作原理: 图一中绕在样品上的线圈是边限震荡器电路的一部分,在非磁共振状态下它处在边限震荡状态(即似振非振的状态),并把电磁能加在样品上,方向与外磁场垂直。当磁共振发生时,样品中的粒子吸收了震荡电路提供的能量使振荡电路的Q值发生变化,振荡电路产生显著的振荡,在示波器上产生共振信号。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式)

原子核自旋角动量不能连续变化,只能取分立值即: P = 其中I 称为自旋量子数,I=0,1/2,1,3/2,2,5/2,…本实验涉及的质子和氟核 F 19 的自旋量子数I 都等于1/2。类似地原子核的自旋角动量在空间某一方向,例如z 方向的分量不能连续变化,只能取分立的数值 自旋角动量不为零的原子核具有与之相联系的核自旋磁矩, 其大小为: P 2M e g =μ 其中e 为质子的电荷,M 为质子的质量,g 是一个由原子核结构决定的因子,对不同种类的原子核g 的数值不同,g 成为原子核的g 因子。由于核自旋角动量在任意给定的z 方向的投影只可能取(2I+1)个分立的数值,因此核磁矩在z 方向上的投影也只能取(2I+1)个分立的数值: 2M e g p 2M e g m z z ==μ 原子核的磁矩的单位为: 2M e N = μ 当不存在外磁场时,原子核的能量不会因处于不同的自旋状态而不同。通常把B 的方向规定为z 方向,由于外磁场B 与磁矩的相互作用能为: B B P B B E z z m γγμμ-=-=-=?-= 核磁矩在加入外场B 后,具有了一个正比于外场的频率。量子数

相关主题
文本预览
相关文档 最新文档