当前位置:文档之家› 生化反应工程原理复习提要

生化反应工程原理复习提要

生化反应工程原理复习提要
生化反应工程原理复习提要

生化反应工程原理复习提要

1简述氧传递过程的特征, k L a 测定方法有几种,简述其各种方法的原理 2.阐述好氧发酵过程中氧传递效率的措施。

3一定的搅拌转速和通气(45~65℃)条件下,测定k L a 的结果入下表所示。如果在所试验的温度范围内,气泡直径一定,试比较此条件下氧传递最大速率与温度的关系,从理论的角度说明这种现象的原因。

温度t/℃ k L a /h -1 c */(kg/m 3) m /mPa·s)

45 212 6.65×10-3 0.648 50 222 6.35×10-3 0.591 55 241 - 0.531 60 246 5.93×10-3 0.497 65

255

-

0.463

4描述流体的流变特性的通用表达式为0n

K ττγ=+

,讨论式中自变量0τ、K 、n 参数所表述的物理意义及取值范围适合描述牛顿流体、拟塑性流体、胀塑性流体和汉宾塑性流体的流变特性,画草图描述其基本规律。

5描述流体的剪切作用的来源,评估机械搅拌和气流搅拌所产生剪切力的方法有哪几种? 6叙述机械搅拌反应器的基本结构及通用式机械搅拌发酵罐的标准化尺寸。

7描述搅拌器的输出功率的影响因素,对牛顿流体可得如下的关联式:Re x y P M N K Fr =或

2233

x y

P

nd n d K n d g ρρμ????= ? ?????

,讨论流动性及重力对搅拌功率的影响。

8描述竞争性抑制、非竞争性抑制和反竞争性抑制的普遍化公式为

试述中的相关参数如何变化为竞争性抑制,反竞争性抑制和非竞争性抑制,与描述单底物酶

促反应的Michaelis-Menten 方程, 相关参数r max 及K m 如何变化?

9.在特定温度、pH 值、营养物类型、营养物浓度等条件下,微生物细胞的比生长速率与限

制性营养物的浓度之间关系的Monod 方式

1)限制性营养物的定义是什么? 2)方程的相关参数的物理意义

3)与描述单底物酶促反应的Michaelis-Menten 方程比较,其主要的异同点? 4)建立的基础和实用的范围。

5)描述其底物抑制和产物抑制的动力学的变化特点。

6)是否适合细胞生长的延迟期、稳定期和死亡期的细胞变化规律,有何措施? 7)细胞维持动力学关系如何表示?

10. Gaden 根据产物生成速率与细胞生长速率之间关系,将其分为几个类型,阐述其基本动力学方程及物理意义?

试将r i ~t; q i ~t; c i ~t 关系示意图归类

1111=+++max ()()

s

SI m s IS SI

r c r K c K K ,max p s

p m s

r c r K c =+()

()

m S c s K c s μμ?=+

11.何为积分反应器和微分反应器?

12.细胞生长的非结构模型与结构模型的定义。

13. 叙述细胞生长动力学模型简化的主要步骤。

14根据生物反应器物料的加入和排出方式分为:间歇操作反应器、连续操作反应器和半间歇反应器。

1)描述其底物浓度c s、细胞浓度c x和产物浓度c p随时间的变化规律。

2)间歇操作反应器、连续操作反应器和半间歇反应器的特点及适用的范围。

3)3种典型的(FBC、RFBC和RBC)半间歇半连续操作的共同之处及差别。

15 恒速流加分批培养过程的动态变化关系如图所示(过程特性)描述因变量随自变量(t)的变化规律

16定值控制的流加模型(恒pH法和恒溶氧法)及反复流加操作模型的特点。描述下图的特点。

17以下图为例,比较反复补料分批培养与CSTR和CPFR组合操作的特点。

18.对于Gaden分类III型的发酵过程,以下图为例,比较不同补料分批培养的反应器生产能力的特点。

18.何为停留时间分布? 寿命分布与年龄分布的定义与区别?

19.停留时间分布的定量:停留时间分布密度函数与停留时间分布函数及它们之间的相互关系?

20停留时间分布测定的方法有脉冲法、阶跃法和周期输入法。描述脉冲法、阶跃法的特点。21何为全混流反应器(CSTR)和平推流反应器(CPFR),描述其主要特征,停留时间分布。

22.应用槽列模型即多级CSTR串联模型,模拟一个实际的反应器,证明N=1时为全混反应器,N为无穷大时为活塞流。

23叙述动植物细胞培养的特点。

24叙述生物反应器放大准则。

25经验放大法的理论依据,特点。应用经验放大法遵循的原则及采用的几类方法

26缩小-放大法的特点及同经验放大的区别。

生物反应工程复习资料

生物反应工程原理复习资料 生物反应过程与化学反应过程的本质区别在于有生物催化剂参与反应。 生物反应工程是指将实验室的成果经放大而成为可提供工业化生产的工艺工程。 酶和酶的反应特征 酶是一种生物催化剂,具有蛋白质的一切属性;具有催化剂的所有特征;具有其特有的催化特征。 酶的来源:动物、植物和微生物 酶的分类:氧化还原酶、水解酶、裂合酶、转移酶、连接酶和异构酶 酶的性质:1)催化共性:①降低反应的活化能②加快反应速率③不能改变反应的平衡常数。 2)催化特性:①较高的催化效率 ②很强的专一性 ③温和的反应条件 易变性和失活 3)调节功能:浓度、激素、共价修饰、抑制剂、反馈调节等 固定化酶的性质 固定化酶:在一定空间呈封闭状态的酶,能够进行连续反应,反应后可以回收利用。 与游离酶的区别: 游离酶----一般一次性使用(近来借助于膜分离技术可实现反复使用) 固定化酶--能长期、连续使用(底物产物的扩散过程对反应速率有一定的影响;一般情况下稳定性有所提高;以离子键、物理吸附、疏水结合等法固定的酶在活性降低后,可添加新鲜酶溶液,使有活性的酶再次固定,“再生”活性) 固定化对酶性质的影响:底物专一性的改变 、稳定性增强 、最适pH 值和最适温度变化、动力学参数的变化 单底物均相酶反应动力学 米氏方程 快速平衡法假设:(1)CS>>CE ,中间复合物ES 的形成不会降低CS (2)不考虑 这个可逆反应(3) 为快速平衡, 为整个反应的限速阶段,因此ES 分解成产物不足以 破坏这个平衡 稳态法假设:(1)CS>>CE ,中间复合物ES 的形成不会降低CS (2)不考虑 这个可逆反应(3)中间复合物ES 一经分解,产生的游离酶立即与底物结合,使中间复合物ES 浓度保持衡定,即 P E ES S E k k k +→+?-2 1 1 P E ES +←ES S E ?+P E ES +→P E ES +←0=dt dC ES

生物反应器

生物反应器 指以活细胞或酶为生物催化剂进行细胞增殖或生化反应提供适宜环境的设备,它是生物反应过程中的关键设备。生物反应器的结构、操作方式和操作条件的选定对生物化工产品的质量、收率(转化率)和能耗有密切关系。生物反应器的设计、放大是生化反应工程的中心内容,也是生物化学工程的重要组成部分。 分类从生物反应过程说,发酵过程用的反应器称为发酵罐;酶反应过程用的反应器则称为酶反应器。另一些专为动植物细胞大量培养用的生物反应器,专称为动植物细胞培养装置。 发酵罐发酵罐若根据其使用对象区分,可有:嫌气发酵罐、好气发酵罐、污水生物处理装置等。其中嫌气发酵罐最为简单,生产中不必导入空气,仅为立式或卧式的筒形容器,可借发酵中产生的二氧化碳搅拌液体。 若以操作方式区分,有分批操作和连续操作两种。前者一般用釜式反应器,后者可用连续搅拌式反应器或管式及塔式反应器。好气发酵罐按其能量输入方式或作用原理区分,可有: ①具有机械搅拌器和空气分布器的发酵罐这类发酵罐应用最普遍,称为通用式发酵罐。所用的搅拌器一般为使罐内物料产生径向流动的六平叶涡轮搅拌器,它的作用为破碎上升的空气泡和混合罐内的物料。若利用上下都装有蔽板的搅拌叶轮,搅拌时在叶轮中心产生的局部真空,以吸入外界的空气,则称为自吸式机械搅拌发酵罐。 ②循环泵发酵罐用离心浆料泵将料液从罐中引出,通过外循环管返入罐内。在循环管顶端再接上液体喷嘴,使之能吸入外界空气的,称喷射自吸发酵罐。 ③鼓泡塔式发酵罐以压缩空气为动力进行液料搅拌,同时进行通气的气升发酵罐。目前,世界所发展的大型发酵罐是英国卜内门化学工业公司的发酵罐,它以甲醇为原料生产单细胞蛋白的压力循环气升发酵罐,其直径为7m,高为60m,总容量为 2300m□,自上至下有5000~8000 个喷嘴进料。目前,还有些发酵产品,如固体曲等,使用专门设计的能调节温、湿度的旋转式固体发酵装置。 生产甲烷(沼气)用的是嫌气发酵罐,也称消化器或沼气发生器,这种发酵罐装有搅拌器,顶部有的有浮顶。 污水生物处理装置中,最简单的是曝气池,装有表面曝气叶轮。为了节省占地面积,开发了一种利用气升式发酵罐原理的深井式污水处理池或大至 20000m□的多循环管式曝气装置。此外,还有生物滤池和生物转盘等装置,把能降解污水中有害物质的菌或原生动物,以生物膜的形式附在填料或转盘上。 酶反应器可分游离酶及固定化酶反应器两大类。 ①游离酶反应器以水溶液状态与底物反应。若为分批釜式反应器,酶就不能回收;若用连续釜式反应器并附有一个能把大分子的酶留在系统内的超滤装置则可使酶连续使用。也可将酶液置于用超滤材料制成的U形管或中空纤维管中,并将其置于釜式或管式反应器进行操作,这样也可使酶连续使用。后者接近连续管式反应器。 ②固定化酶反应器除了和化学反应器类似的固定床反应器和流化床反应器外,还有多种特殊设计。例如:将酶固定在惰性膜片上,再卷成螺旋状置于反应器中,或将酶固定在中空纤维的内壁制成反应器;也可将固定化酶置于金属网框中进行酶反应。在反应中产气(如CO2)严重时,可考虑采用多层酶反应器。采用固定化细胞时的反应器,基本上和固定化酶反应器相同,但在好气培养时要便于空气导入和废气排出。

生化反应工程原理简答题

1补料分批培养主要应用在哪些情况中? ①生长非偶联型产物的生产②高密度培养③产物合成受代谢物阻遏控制④利用营养缺陷型菌株合成产物⑤补料分批培养还适用于底物对微生物具有抑制作用等情况。⑥此外,如果产物黏度过高或水分蒸发过大使传质受到影响时,可以补加水分降低发酵液黏度或浓度。 2比较理想酶反应器CSTR型与CPFR型的性能? 答: A停留时间的比较: 在相同的工艺条件下进行同一反应,达到相同转化率时,两者所需的停留时间不同,CSTR型的比CPFR型反应器的要长,也就是前者所需的反应器体积比后者大。另外,以对两反应器的体积比作图可知,随反应级数的增加,反应器的体积比急剧增加。 B酶需求量的比较: 对一级动力学: 转化率越高,CSTR中所需酶的相对量也就越大。另外,比值还依赖于反应级数,一级反应时其比值最大,0级反应时其比值最小。 C酶的稳定性:0级反应时,CSTR与CPFR内酶活力的衰退没有什么区别。但如果反应从0级增至一级,那么,两种反应器转化率下降的差别就变得明显。CPFR产量的下降要比CSTR快得多,因而CPFR中酶的失活比CSTR中更为敏感。但是,如上所述,在某些场合,操作条件相同,要得到同样的转化率,CSTR所需酶的数量远大于CPFR所需的量。 D反应器中的浓度分布: CSTR与CPFR中的底物浓度分布。由图可知,在CPFR中,虽然出口端浓度较低,但在进口端,底物浓度较高;CSTR中底物总处于低浓度范围。如果酶促反应速率与底物的浓度成正比,那么对于CSTR而言,由于整个反应器处于低反应速率条件下,所以其生产能力也低。

3试着分析目前连续式操作难以大规模应用的原因? 连续培养的工业生产应用的受限原因(连续培养的应用主要集中在研究领域)。 (1)杂菌污染问题。因连续培养以长期、稳定连续运转为前提,在整个培养过程中,必需不断地供给无菌的新鲜培养基,好氧发酵时,必需同时供给大量的无菌空气,这两种供给的过程中极易带来杂菌的污染,长期保持连续培养的无菌状态非常困难。 (2)变异问题。因工业化生产所用菌株大都是通过人工诱变处理的高度变异株,在长期的连续培养过程中容易使回复突变菌株逐渐积累,最后取得生长优势。 (3)成本问题,为降低成本,其一要使原料以最大的转化率和最大的产率转化为产物;是使发酵终了液中含有尽可能高的产物浓度,以缩小产物分离提取系统的规模和操作的费用。一些发酵过程其产物的分离提取费用约占生产总成本的40%以上;而对于大多数抗生素和精细化学品的发酵生产,其本身就是一个高成本分离过程的生产过程。而在连续培养过程中,流出的发酵液中产物浓度一般比分批培养、流加培养的低,结果加重了分离提取的负荷,在生产成本上没有竞争力。 4简述动植物细胞培养的特点难点,并与微生物细胞培养相比较 动植物细胞培养: 是一项将动植物的组织、器官或细胞在适当的培养基上进行无菌培养的技术。 动物细胞培养的特性 许多基因产物不能在原核细胞内表达,它们需要经过真核细胞所特有的翻译后修饰,以及正确的切割、折叠后,才能形成与自然分子一样的功能和抗原性。这就使动物细胞一跃成为一种重要的宿主细胞,用以生成各种各样的生物制品。动物细胞体外培养具有明显的表达产物的优点,为传统微生物发酵所无法取代。

生物反应工程期末总结

绪论 1.生物技术产品的生产过程主要由哪四个部分组成? (1)原材料的预处理; (2)生物催化剂的制备; (3)生化反应器及其反应条件的选择和监控; (4)产物的分离纯化。 2.什么是生化反应工程,生化反应工程的研究的主要内容是什么 定义:以生化反应动力学为基础,运用传递过程原理及工程学原理与方法,进行生化反应过程的工程技术分析、开发以及生化反应器的设计、放大、操作控制等综合边缘学科。 主要内容:生物反应动力学和生物反应器的设计,优化和放大 3. 生物反应过程的主要特点是什么? 1.采用生物催化剂,反应过程在常温常压下进行,可用DNA重组及原生质体融合技术制备和改造 2.采用可再生资源 3.设备简单,能耗低 4.专一性强,转化率高,制备酶成本高,发酵过程成本低,应用广,但反应机理复杂,较难控制,反应液杂质较多,给提取纯化带来困难。 4. 研究方法 经验模型法、半经验模型法、数学模型法;多尺度关联分析模型法(因次分析法)和计算流体力学研究法。 第1章 1. 酶作为生物催化剂具有那些催化剂的共性和其独特的催化特性?谈谈酶反应专一性的机制。 催化共性:降低反应的活化能,加快生化反应的速率;反应前后状态不变. 催化特性:高效的催化活性;高度的专一性; 酶反应需要辅因子的参与;酶的催化活性可被调控;酶易变性与失活。 机制:锁钥学说;诱导契合学说 2. 什么叫抑制剂? 某些物质,它们并不引起酶蛋白变性,但能与酶分子上的某些必需基团(主要是指活性中心上的一些基团)发生化学反应,因而引起酶活力下降,甚至丧失,致使酶反应速率降低,能引起这种抑制作用的物质称为抑制剂。 3. 简单酶催化反应动力学(重点之重点) 4.酶动力学参数的求取方法(L-B法、E-H法、H-W法和积分法) L-B法: E-H法: H-W法: 积分法: S S ) (1) S c mI s m s s I I m i K C K ↓ ?++

实用汇总,13种厌氧生物反应器原理

实用汇总,13种厌氧生物反应器原理!目前,厌氧微生物处理是高浓度有机废水处理过程中不可缺少的一个处理阶段。它不仅能耗低,而且可以生产沼气作为二次利用的能源。厌氧反应的容积负荷远大于好氧反应的容积负荷,而处理等量COD厌氧反应的投资较低。 目前常用的厌氧处理方法是:UASB,EGSB,CSTR,IC,ABR,UBF等。其他厌氧处理方法包括:AF,AFBR,USSB,AAFEB,USR,FPR,两相厌氧反应器等。 1。UASB——上流式厌氧污泥床反应器 uasb是一种英文缩写,表示向上流动的、不能吸收的细长床/毯子。称为上游厌氧污泥床反应器,是处理污水的厌氧生物方法,又称升厌氧污泥床。它是由荷兰的Lettinga教授在1977年发明的(Ding Yinian)。 UASB由三部分组成:污泥反应区、气-液-固三相分离器(包括沉淀区)和气室。底部反应区储存了大量的厌氧污泥,沉淀和凝结性能好的污泥在下部形成了一层污泥层。待处理的污水从厌氧污泥床底部流入污泥层与污泥混合接触,污泥中的微生物分解污水中的有机物并转化为沼气。沼气不断地以微小气泡的形式释放出来,在上升的过程中,这些微小的气泡继续合并逐渐形成较大的气泡。在污泥床的上部,由于沼气的搅动,污泥浓度较低的污泥与水一起上升到三相分离器中。当沼气接触到分离器下部的反射器时,它围绕反射器弯曲,然后穿过水层进入气室。浓缩在气室沼气中,经导管输出,固液混合物反射到三相分离器的沉淀区,使污水中的污泥絮凝,颗粒逐渐增多,在重力作用下沉降。斜壁上沉淀的污泥沿斜壁滑回厌氧反应区,使大量污泥在反应区内堆积,从沉淀区溢流堰上部分离出的污水从溢流堰上部溢出,然后排出污泥床。

生化反应工程原理

填空题 1理想的酶反应器主要有两种:CPFR和CSTR 2养的传递有串联模型和并联模型(不好这样说) 3KLa中a大小取决于所设计的空气分布器,空气流动速率,反应器的体积和空气泡的直径等且空气泡的直径越小,越有利于传递 4的物理意义是最大反应速率和最大传质速率之比。Da准数越小,固定化酶表面浓度[S]s越是接近主题浓度[S],辨明最大传质速率越是大于最大反应速率,为反应控制。Da准数越小,越好。 5内部扩散与催化反应是同时进行的,二者相互影响,外扩散通常是先于反应。 6影响固定化酶促反应的蛀牙因素是:分子构象的改变,位阻效应,微扰效应,分配效应和扩散效应 7有效电子数:当1mol碳源完全氧化时,所需要氧的摩尔系数的4倍称为基质的有效电子数若碳源为葡萄糖,其完全燃烧是每摩尔葡萄糖需要 6mol,所以有效电子数是24,氧化一个有效电子伴随着焓值变化109.0KJ.即 8通过对细胞和环境之间能量的交换关系的研究,为培养基中(组分)的选择提供参考 9影响酶催化反应的环境因素有(温度),(pH),浓度等。影响酶催化反应的浓度因素有(底物浓度)和(效应物浓度)。影响酶催化反应的最基本的因素是(浓度)。 10反应器放大的目的是使产品的(质优)和(成本低效益好);必须使菌体在大中小型反应器中所处的外界环境(相同)。 11若要消除外扩散限制效应,最常用的方法是();若是要消除内扩散限制效应,最常用的方法是()。 12影响机械通气搅拌发酵过程中体系溶氧系数的因素有(操作变量),(培养液的理化性质),(反应器的结构)。 13根据Garden模型,如果产物和细胞的速率-时间曲线的变化趋势同步,则该产物的生成模型是()。 15对米氏方程的讨论 当CS<>Km时,,属零级反应。当CS=Km 时,。Km在数量上等于反应速度达到最大反应速度一半时的底物浓度。 16K m值等于酶促反应速度为最大反应速度一半时的底物浓度,单位是mol/L。Km是酶的特性常数:与pH 、温度、离子强度、酶及底物种类有

生化项目测定方法整理

生化项目的基本分析方法 1.终点法检测 1.1定义 完全被转化成产物,不再进行反应达到终点,取反应终点的吸光度来计算被测物质的浓度。生化检验中除酶和BUN、CRE外几乎都用终点法来进行检测。 被测物质(反应底物)在化学反应过程中完全被消耗或转换,即反应达到平衡(终点),通 过测定产物(反应生成物)的多少来定量测定被测底物的含量。终点法一般用来检测代谢物 的浓度,通过测定标准液(校准液)的反应吸光度,建立一条浓度与吸光度变化的标准曲线。通过检测标本的吸光度与标准液的吸光度进行比较,计算出该标本中待测物的浓度。 1.2检测流程 一点终点法:取反应达终点时的一个点的吸光度来计算结果。对于单一试剂,在加入标本后,反应即可进行,在反应达到终点后,读取反应点(吸光度),故一般选用一点终点法。 以试剂和样品混合之前的空气空白(GB)、水空白(WB)或试剂空白(RB)的吸光度值为测定计算基点,以反应终点的吸光度读数减去空白读数,得到反应吸光度。通过与相同条件下校准液 反应吸光度的比较,求得测定结果。常与一点校准法配合使用,即采用一个校准浓度,校准 曲线通过零点且成线性。也应用多点校准。 ?计算公式: C=(Am-Ab)*K Am----终点读数点的吸光度 Ab----试剂空白吸光度 K----校正系数

二点终点法:加入第一试剂,主要起缓冲或者消除干扰等作用,此时可读取初始反应点,加入第二试剂后,在反应达到终点后,读取结束反应点。 取反应尚未开始时读取一个点的吸光度,待反应达终点时再取第二点的吸光度,用第二点吸光度减去第一点吸光度的差值来计算结果。以试剂和样品混合之后的某一时间点作为始点,以反应终点的吸光度读数减去始点读数。一定条件下可降低样品对反应或反应本身的特异性于扰(主要指色度干扰)。常采用双试剂,多以加R2前某一点作测定始点;某些情况下,也可以加R2后一点作测定始点。若使用单试剂,主反应启动太快或仪器起始读数点受限时难以运用。主要用于扣除试剂和样品空白,保证结果的准确性,一般双试剂用。 ?计算公式: C=(An-K0*Am)*K K0---体积校正因子 K0=(Sv+R1)/(Sv+R1+R2)

课程名称:生化反应工程课程代码:288

XX市高等教育自学考试课程考试大纲课程名称:生化反应工程课程代码:3283 第一部分课程性质与目标 一、课程性质与特点 《生化反应工程》是高等教育自学考试生物技术(生物制药方向)专业的一门专业课,是在完成生物化学、微生物学、物理化学和化工原理等课程后开设的必修课程之一。本课程的学习对全面掌握生物技术进行生化工程的研究开发起着重要的作用。 本课程重点论述了生化反应过程动力学和生化反应器两个方面。前者着重论述了均相酶催化反应、固定化酶催化反应和细胞反应过程的基本动力学规律,并重点探讨了传递因素对反应动力学的影响及处理方法;对于生化反应器的设计和分析,则重点讨论了三种理想反应器,并适当介绍了对非理想流动反应器的处理方法。通过学习可以使学生对于生化反应工程有较系统的认识,达到熟悉并掌握该课程的基本任务、内容、研究对象和研究方法。本大纲是根据国家教育部制定的高等教育自学考试生物技术专业本科生培养目标编写的,立足于培养高素质人才,适应生物制药专业的培养方向。本大纲叙述的内容尽可能简明,便于自学。 二、课程目标与基本要求 本课程的目标和任务是使学生通过本课程的自学和辅导考试,进行有关生化反应工程的基础理论、基本知识的考察和训练,并了解现代生化反应的进展,为今后的学习和工作打下坚实的基础。 课程基本要求如下: 1、了解生化反应工程的特点、任务、研究的对象及研究的内容和方法。 2、掌握均相酶催化反应、固定化酶催化反应动力学的规律和动力学方程、传递因素对反应动力学的影响及其处理方法。 3、掌握细胞反应过程计量学、细胞反应过程动力学的规律及动力学方程。 4、了解生化反应器的种类、基本设计方程和动物细胞培养反应器的种类。掌握三种理想生化反应器、半间歇半连续反应器的设计式和相关的计算。 5、学习生化反应器的流动模型与放大,了解停留时间的定量描述和理想流动模型。掌握停留时间分布密度、分布密度函数及统计特征值的计算,熟悉三种非理想流动模型及相应的计算。 三、与本专业其他课程的关系 本课程在生物制药专业的教学计划中被列为专业课,在生物化学、微生物学、物理化学和化工原理课程与生物制药工程等学科之间有着承前启后的相互联系作用,本课程的学习对全面掌握生物技术专业各学科的知识起着重要作用。 第二部分考核内容与考核目标 第一章绪论(一般) 一、学习目的与要求 通过本章的学习,了解生化工程与生化反应工程。 二、考核知识点与考核目标

膜生物反应器原理结构

膜生物反应器原理结构 时间:2007年12月14日 膜生物反应器 (Membrane Bioreactor,简称MBR)是将生物降解作用与膜的高效分离技术结合而成的一种新型高效的污水处理与回用工艺。它利 用膜分离设备将生化反应池中的活性污泥和大分子物质截留住,省掉二沉池。活性污泥浓度因此大大提高,水力停留时间(HRT)和污泥停留时间(SRT) 可以分别控制,而难降解的物质在反应器中不断反应、降解。因此,膜生物 反应器工艺通过膜分离技术大大强化了生物反应器的功能。下面是作用原理 基本图例 1.前言 随着全球范围经济的快速发展和人口的膨胀,水资源短缺已成为全球人类共同面临的严峻挑战。为解决困扰人类发展的水资源短缺问题,开发新的可利用水源是世界各国普遍关注的课题。世界上不少缺水国家把污水再生利用作为解决水资源短缺的重要战略之一。这不仅可以消除污水对水环境的污染,而且可以减少新鲜水的使用,缓解需水和供水之间的矛盾,给工农业生产的发展提供新的水源,取得显著的环境、经济和社会效益。开展新型高效污水处理与回用技术的研究对于推进污水资源化的进程具有十分重要的意义。 膜-生物反应器是近年新开发的污水处理与回用技术。该技术由于具有诸多传统污水处理工艺所无法比拟的优点,在世界范围受到普遍关注。本文将对近年来膜-生物反应器污水处理与回用技术的研究与应用进行介绍。

2.膜-生物反应器的技术原理与特点 在膜-生物反应器中,由于用膜组件代替传统活性污泥工艺中的二沉池,可以进行高效的固液分离,克服了传统活性污泥工艺中出水水质不够稳定、污泥容易膨胀等不足,从而具有下列优点[1]: (1)能高效地进行固液分离,出水水质良好且稳定,可以直接回用; (2)由于膜的高效截留作用,可使微生物完全截留在生物反应器内,实现反应器水力停留时间(HRT)和污泥龄(SRT)的完全分离,使运行控制更加灵活稳定; (3)生物反应器内能维持高浓度的微生物量,处理装置容积负荷高,占地面积省;...... MBR膜生物反应器 2003-06-17 技术概况 ·由于采用了先进的膜生物反应器技术,使系统出水水质在各个方面均优于传统的污水处理设备,出水水质在感官上已接近于自来水的情况,可以作为中水回用。 ·由于膜的高效分离作用,不必设立沉淀、过滤等固液分离设备,不需反冲洗,且出水悬浮物浓度远低于传统固液分离设备,使整个系统流程简单,易于集成,系统占地大为缩小。·生物膜反应器可以滤除细菌、病毒等有害物质,不需设消毒设备,不需加药,不需控制余氯,使管理和操作更为方便,并可节省加药消毒所带来的长期运行费用。 ·生物膜反应器内生物污泥在运行中可以达到动态平衡,不需污泥回流和排放剩余污泥。·整个系统自动化程度高,运行管理简单方便。 ·采用先进的日本进口中空纤维膜,膜使用寿命长,单位体积膜面积高,膜具有自修复能力,从而减少了设备维护工作。 ·通过独特的运行方式,使膜表面不易堵塞,洗膜间隔时间长,且洗膜方式简单易行。·独特的膜组件运行方式使水处理所需能耗很低。 技术原理 MBR膜生物反应器技术将超滤膜与生物反应器有机地结合起来,克服了传统污水处理工艺的流程冗长、占地面积大、操作管理复杂等缺点,稳定可靠,出水水质优于一般中水水质标准。 适用范围中水回用 应用实例清华中水 北京汇联食品废水处理工程 膜生物反应器(MBR)是一种由膜过滤取代传统生化处理技术中二次沉淀池和砂滤池的水处理技术。与传统的污水处理生物处理技术相比,MBR具有以下主要特点:^出水水质好; 由于膜的高效截留,出水中悬浮固体的浓度基本为零;对游离菌体和一些难降解的大分子颗粒状物质巨头截留作用,生物反应器内生物相丰富,如,世代时间较长的

临床常用生化检验项目参考区间 第5部分:血清尿素、肌酐(标准状

I C S11.100 C50 中华人民共和国卫生行业标准 W S/T404.5 2015 临床常用生化检验项目参考区间 第5部分:血清尿素二肌酐 R e f e r e n c e i n t e r v a l s f o r c o m m o n c l i n i c a l b i o c h e m i s t r y t e s t s P a r t5:S e r u mu r e a a n d c r e a t i n i n e 2015-04-21发布2015-10-01实施

前言 W S/T404‘临床常用生化检验项目参考区间“分为8个部分: 第1部分:血清丙氨酸氨基转移酶二天门冬氨酸氨基转移酶二碱性磷酸酶和γ-谷氨酰基转移酶; 第2部分:血清总蛋白二白蛋白; 第3部分:血清钾二钠二氯; 第4部分:血清总胆红素二直接胆红素; 第5部分:血清尿素二肌酐; 第6部分:血清总钙二无机磷二镁二铁; 第7部分:血清乳酸脱氢酶二肌酸激酶; 第8部分:血清淀粉酶三 本部分为W S/T404的第5部分三 本部分按照G B/T1.1 2009给出的规则起草三 本部分主要起草单位:中国医科大学附属第一医院二复旦大学附属中山医院二北京大学第三医院二四川大学华西医院二中国人民解放军第四军医大学附属第一医院二广东省中医院二北京医院三本部分起草人:尚红二潘柏申二张捷二王兰兰二郝晓柯二黄宪章二陈文祥二张传宝二申子瑜二穆润清二赵敏三

临床常用生化检验项目参考区间 第5部分:血清尿素二肌酐 1范围 W S/T404的本部分规定了中国成年人群血清尿素二肌酐的参考区间及其应用三 本部分适用于医疗卫生机构实验室血清尿素二肌酐检验结果的报告和解释,相关体外诊断产品生产厂商也可参照使用三 2规范性引用文件 下列文件对于本文件的应用是必不可少的三凡是注日期的引用文件,仅注日期的版本适用于本文件三凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件三 W S/T402临床实验室检验项目参考区间的制定 3术语和定义 W S/T402界定的术语和定义适用于本文件三 4参考区间建立 4.1中国成年人群(20~79岁)血清尿素二肌酐参考区间见表1三 表1中国成年人群血清尿素二肌酐参考区间 项目单位分组参考区间 血清尿素(U r e a)mm o l/L 男(20~59岁)3.1~8.0男(60~79岁)3.6~9.5女(20~59岁)2.6~7.5女(60~79岁)3.1~8.8 血清肌酐(C r e a)μm o l/L 男(20~59岁)57~97男(60~79岁)57~111女(20~59岁)41~73女(60~79岁)41~81 4.2中国成年人群血清尿素二肌酐参考区间建立过程的相关信息参见附录A三5参考区间应用 5.1一般原则 5.1.1临床实验室应首先考虑引用本文件的参考区间三

生化反应工程考试大纲

生化反应工程考试大纲 生物反应过程动力学和生物反应器是生物反应工程的核心内容。生物反应过程动力学则包括酶催化反应动力学、细胞反应过程动力学和固定化生物催化反应过程动力学;生物反应器则包括理想生物反应器操作模型、工业生物反应器传的传递特性、混合特性和反应器的设计和放大。 一、酶催化反应过程动力学 M-M方程的动力学特征:速率与酶浓度、底物浓度的关系、动力学参数的含义及求法; 可逆抑制的酶催化反应动力学:竞争,非竞争和反竞争三种可逆抑制的动力学特点、表示方法及如何区分; 不可逆抑制动力学的特点; 底物抑制与活化(变构酶催化)的动力学特点和其主要参数; 酶失活动力学的主要特征。 二、细胞生长及反应动力学 细胞得率系数、最大得率系数和呼吸商得概念和求法; 描述细胞生长的黑箱模型、结构模型和非结构模型的概念; Monod模型的动力学特征,μ、μmax和Ks的物理意义; 细胞不同生长阶段时μ的变化; 产物生成动力学的三种分类及其动力学特点; 底物消耗动力学的描述方法,Y X/S 与Y G 的关系; 三、固定化生物催化反应过程动力学 弄清空间效应、分配效应、扩散效应(包括外扩散和内扩散)、本征反应动力学和表观反应动力学的概念; 描述外扩散影响的无量纲数Da的物理意义以及用Da值判断反应过程的控制步骤;消除外扩散影响的方法; 描述内扩散影响的主要参数De、ф和η的定义,一级反应时ф1、η1的求法,用ф值大小判断反应的控制步骤;内扩散的消除方法; 表观梯勒模数Ф的定义;对一级M-M反应时Ф值的表示,用Ф值判断反应

控制步骤; 对一级反应,内外扩散同时存在时Bi、Da和ф1之间的关系,总有效因子的求法; 在扩散影响下的表观反应级数、表观化能和表观稳定性与其本征值有何变化及其变化原因。 四、生物反应器的操作模型 分批式、连续式和半分批式(流加操作)各自有何操作特点,流加操作对细胞反应有何特殊意义; 对BSTR,反应时间和辅助时间、反应时间的确定、反应器有效体积的确定; 对单级CSTR,D与τm的关系,D、Dopt、Dc和Cx、Cs、DCx的定义式及求的确定; 法,τm与V R 对循环的单级CSTR,R和β的定义,D与μ的关系; 对CPFR,模型的特征,τp的求法,CPFR与CSTR的比较,CPFR与CSTR相串联的特征; 对流加操作,其操作过程中主要特征、恒速流加与指数流加各有何特点; 反应-分离相耦合对细胞反应的意义。 五、生物反应器的传递与混合特性 牛顿型流体与非牛顿型流体的主要差别; 氧在细胞反应中的传递阻力如何确定,大多情况下氧的传递阻力是什么; 细胞反应中供氧速率与耗氧速率的关系,即OTR与OUR的关系,Col、Col*、Colc之区别,Kla的动态测定法; 混合程度与混合尺度、宏观混合与微观混合,宏观流体与微观流体,混合过程主要机理; 2的意义,CSTR和CPFR的宏观混合特宏观混合模型:E(t)、F(t)、E和σ t 征参数值;多重串联模型的模型参数; 微观混合的混合程度和混合时间的概念。 六、生物反应器的设计和放大 生物反应器具备的主要特点;

临床常用生化检验项目参考区间第6部分_ 血清总钙、无机磷、镁、铁

临床常用生化检验项目参考区间 第6部分:血清总钙二无机磷二镁二铁 1 范围 W S /T404的本部分规定了中国成年人群血清总钙二 无机磷二镁二铁的参考区间及其应用三本部分适用于医疗卫生机构实验室血清总钙二无机磷二镁二铁检验结果的报告和解释,相关体外诊断产品生产厂商也可参照使用三2 规范性引用文件 下列文件对于本文件的应用是必不可少的三凡是注日期的引用文件,仅注日期的版本适用于本文件三凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件三 W S /T402 临床实验室检验项目参考区间的制定 3 术语和定义 W S /T402界定的术语和定义适用于本文件三4 参考区间建立 4.1 中国成年人群(20~79岁) 血清总钙二无机磷二镁二铁参考区间见表1三表1 中国成年人群血清总钙二无机磷二镁二铁参考区间 项目单位分组参考区间血清总钙(C a )mm o l /L 男/女2.11~2.52血清无机磷(I P ) mm o l /L 男/女0.85~1.51血清镁(M g )mm o l /L 男/女0.75~1.02血清铁(I r o n )μ m o l /L 男10.6~36.7女 7.8~32.2 4.2 中国成年人群血清总钙二无机磷二镁二铁参考区间建立过程的相关信息参见附录A 三5 参考区间应用 5.1 一般原则 5.1.1 临床实验室应首先考虑引用本文件的参考区间三 注1:参考区间建立研究工作量和成本巨大,临床实验室引用参考区间比自己建立参考区间更为现实二可行三 注2:本参考区间基于中国成年人群多中心研究结果,研究中的检验结果可溯源至国际公认参考方法或标准物质, 参见附录B 三 1 W S /T 404.6 2015

大肠杆菌生化实验

细菌常用生理生化反应实验结果观察 一结果观察 1葡萄糖发酵实验 直接观察试管, 试管变黄者为葡萄糖发酵阳性菌,不变者为阴性菌. 左边为恶臭假单胞菌,有气泡并变为黄色;右边为大肠杆菌, 2V. P. 反应和甲基红试验: 将培养好的液体培养基分装于两个干净的小试管中,在一管中滴入2-3滴甲基红试剂, 溶液变红的为甲基红阳性菌,不变的为甲基红阴性菌. 在另一管中加入V. P. 试剂,在37℃保温15分钟, 变红者为阳性菌,不变者为阴性菌. VP,图为右边为大肠杆菌,溶液变红,为阳性菌。 3吲哚实验 在培养好的液体培养基中加入1厘米高的乙醚,振荡,静置分层,加入2-4滴吲哚试剂,在掖面交界出现红色者为吲哚反应阳性菌,不变者为阴性菌.

左边为大肠杆菌,出现红色阳性菌;右边为产气杆菌,颜色不变,阴 性菌。 4硝酸盐还原实验 在点滴板上滴入革里斯试剂A液和B液,如过溶液变红说明有亚硝酸盐,为硝酸盐还原阳性菌,如果不变色需要再倒出部分培养基在另外的小孔中再滴如耳苯胺试剂,如果变蓝,说明此菌为阴性菌;如果不变色,说明此菌为硝酸盐还原强阳性菌. 右下方恶臭假单胞菌,加入革里斯试剂A、B后不变色,再加入二苯 胺试剂后变蓝,为阴性菌;左上方大肠杆菌为红色。 5柠檬酸盐实验 直接观察斜面,斜面变兰色者为柠檬酸盐利用阳性菌,不变者为阴性菌.

左边产生蓝色,产气杆菌阳性;右边为大肠杆菌,阴性。 6明胶水解 向培养好的明胶培养基中加入酸性氯化汞或三氯乙酸溶液,并铺满平板,菌落周围出现透明圈的菌为明胶水解阳性菌,没有透明圈的菌为阴性菌. 左边为大肠杆菌,出现透明圈,阳性;右边为枯草杆菌,阴性菌。 7 淀粉水解实验 向培养好的淀粉培养基平板上加入碘液,并铺满平板,菌落周围出现透明圈的菌为淀粉水解阳性菌,没有透明圈的菌为阴性菌.

生化反应工程试卷

XX研究生课程考试试卷 ( XXXX 学年第 1 学期) 考试科目: 生物反应工程 (A卷) 考试班级: XXXXX 考试形式: 开 (开/闭卷) 考试时间: 120 分钟 考试人数: 命题人签名: 系分管领导签名: 1、请列出下列物理量的数学表达式 (5’) 停留时间 \ 呼吸商 \ 稀释率 \Da准数 \转化率 2、判断题(5’) 1、单罐连续培养稳态下,D=μ。( ) 2、流加培养达到拟稳态时,D=μ。( ) 3、单罐连续培养,在洗出稀释率下,稳态时罐内底物浓度为零。( ) 4、Da准数是决定固定化酶外扩散效率的唯一参数,Da准数越大,外扩散效率越高。( ) 5.酶经固定化后,稳定性增加,活性增大。( ) 3、简答题 (每题10’) 1.实验测得分配系数KP 分别为(a) KP > 1,(2) KP = 1,(3)KP < 1,试从概念上说明载体颗粒与反应液之间的固液界面处底物浓度的变化情况。 2.CSTR、PFR代表什么含义?比较CSTR型和PFR型酶反应器的性能。 3.莫诺方程与米氏方程的区别是什么? 4、计算题(每题20’) 1.在甘露醇中培养大肠杆菌,其动力学方程为 g/(L·min),已知cso =6 g/L, Yx/s=0.1。试求: (1)当甘露醇溶液以1L/min的流量进入体积为5L的连续操作搅拌槽式反应器(CSTR)中进行反应时,其反应器内细胞的浓度及其生长速率为多少? (2)如果要求大肠杆菌在CSTR内的生长速率达到最大,最佳的加料速率应为多少?大肠杆菌的生长速率为多大?

2.假设通过实验测定,反应底物十六烷烃中有2/3的碳转化为细胞中的碳。 计算下述反应的计量系数 (1) C16H34+aO2+bNH3→c(C4.4H7.3O0.86N1.2)+dH2O+eCO2 (2) 计算上述反应的得率系数Y X/S(g干细胞/g底物)和Y X/O(g干细胞/g 氧) 5、文献阅读归纳(20’) 用100-200字简述所附文献提及课题研究和发展情况。

生物乳腺反应器的原理及进展

动物乳腺生物反应器的原理及进展 摘要: 动物乳腺生物反应器技术是转基因技术的应用,于上世纪80年代提出,其目的是利用动物乳腺产生目的蛋白。利用该技术生产的蛋白具有低成本,高活性,易提取纯化的优点。虽然该技术尚处于发展时期,但具有广阔的应用前景和巨大地商业潜力,是许多公司大力发展的对象。 关键词:动物乳腺生物反应器、原理、进展、优点

动物乳腺生物反应器(mammary gland reactor)是指利用动物 乳腺特异性启动子调控元件指导外源基因在乳腺中特异性表达,并能从转基因动物乳汁中获取重组蛋白的一种生物反应器。1生物反应器(bioreactor) 经历了3 个发展阶段:细菌基因工程、细胞基因工程、转基因动物生物反应器。细菌基因工程产物往往不具备生物活性,必 须经过糖基化、羟基化等一系列修饰加工后, 才能成为有效的药物, 而细胞基因工程又因为哺乳动物细胞的培养条件要求相当苛刻,成本 太高,限制了规模生产。动物生物反应器具有产品质量高,容易提纯的特点,弥补了其它各类基因表达系统的缺陷。它是在转基因技术体系基础上发展起来的。7自从上世纪80年代出现以来,已经取得了许多 突破,现己成为生物技术研究的热点。并向商业化阶段转变,显示 了广阔的应用前景。并且利用转基因动物乳腺生物反应器生产饮用奶,以期望获得既能满足蛋白质需要,又能增加抵抗力的品质全面的奶,为人类服务。2 1、动物乳腺生物反应器的原理 乳腺生物反应器的原理是应用重组DNA 技术和转基因技术,将目的基因转移到尚处于原核阶段的动物胚胎中,经胚胎移植得到转基因乳腺表达的个体。1 外源基因在乳腺特异性表达需要乳蛋白基因的一 个启动子和调控区,即需要一个引导泌乳期乳蛋白基因表达的序列,这样才能将外源基因置于乳腺特异性调节序列控制之下,使其在乳腺中表达再通过回收奶获得具有生物活性的目的蛋白。它是一个专门化的分泌腺体,可以生产出具完全生物活性的药用重组蛋白质,其纯化

常用生化检验项目的名称

常用生化检验项目的名称、缩写及组合情况

注:ADA,腺苷脱氨酶; PA,前白蛋白; MYO,肌红蛋白; FRA,果糖胺; LPS,脂肪酶; CHE,胆碱酯酶; P-AMY,胰腺淀粉酶; hs-CRP,超敏C反应蛋白 临床生化检验中常见套餐组合模式 肝功能检测项目: 肝功能五项:谷丙转氨酶、谷草转氨酶、总胆红素、r-谷氨酰转移酶、碱性磷酸酶 肝功能十四项:谷丙转氨酶、谷草转氨酶、总胆红素、r-谷氨酰转移酶、碱性磷酸酶、总蛋白、白蛋白、球蛋白、白/球比、直接胆红素、间接胆红素、腺苷脱氨酶、总胆汁酸、胆碱脂酶 肝功能十八项:谷丙转氨酶、谷草转氨酶、总胆红素、r-谷氨酰转移酶、碱性磷酸酶、总蛋白、白蛋白、球蛋白、白/球比、直接胆红素、间接胆红素、腺苷脱氨酶、总胆汁酸、前白蛋白、甲胎蛋白、5-核苷酸酶、胆碱脂酶、a-L-岩藻糖苷酶 肾功能检测项目: 肾功能五项:肌酐、尿素氮、尿酸、二氧化碳、β2-微球蛋白 肾功能九项:肌酐、尿素氮、尿酸、二氧化碳、β2-微球蛋白、胱胺酸蛋白酶抑制剂C、尿微量白蛋白、视黄醇结合蛋白、a1微球蛋白。 血脂检测项目: 血脂七项:甘油三酯、胆固醇、血糖、高密度脂蛋白、低密度脂蛋白、载脂蛋白A、载脂蛋白B。 血脂八项:甘油三酯、胆固醇、血糖、高密度脂蛋白、低密度脂蛋白、载脂蛋白A、载脂蛋白B、脂蛋白a。 心血管疾病检测项目: 血管紧张素转换酶、全量C反应蛋白、肌酸激酶、肌酸激酶同工酶、乳酸脱氢酶、α-羟丁酸、肌红蛋白、肌钙蛋白、同型半胱胺酸。

血脂类及心血管类检测项目: 甘油三酯、胆固醇、血糖、高密度脂蛋白、低密度脂蛋白、载脂蛋白A、载脂蛋白B、脂蛋白a、全量程c反应蛋白、同型半胱胺酸、血管紧张素转换酶。 糖尿病检测项目: 葡萄糖、果糖胺、糖化血红蛋白、β-羟丁酸。 胰腺疾病检测项目: 淀粉酶、脂肪酶 血栓与止血检测项目: D-二聚体 风湿三项: 抗‘O’、类风湿、C-反应蛋白 微量元素及电解质: 铜、铁、锌、无机磷、镁、钙、CO2-CP 其他项目: 免疫球蛋白IgG、免疫球蛋白IgM、免疫球蛋白IgA、补体C3、补体C4

1细菌培养接种、常用生化反应及细菌生长方式

实验报告 课程名称: 医学微生物学 指导老师:________________成绩:__________________ 实验名称: 细菌培养接种、常用生化反应及细菌生长方式 实验类型:_____同组学生姓名:_____ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1. 了解细菌常用培养基 2. 掌握细菌的分离培养技术及纯种移种法 3. 熟悉细菌各种生长现象 4. 熟悉细菌常用生化反应 二、实验材料 生理盐水、大肠杆菌液、白色葡萄球菌液、痢疾杆菌液,接种环、酒精灯以及多种培养基。 三、操作方法 1. 细菌接种法 1) 分离培养法——平板划线法(葡萄球菌/大肠埃希菌) 2) 纯种培养法 ① 斜面培养基接种法(葡萄球菌/大肠埃希菌) a) 用左手握住菌种管和斜面培养基管,右手持接种环或接种针。 b) 用右手小指与手掌、小指与无名指分别拔出两管的棉塞,将管口通过火焰灭菌。 c) 用接种环或接种针伸入菌种管内,挑取用来接种的菌苔。 d) 伸入斜面培养管内,先从斜面底部到顶端拖一条接种线,再自下而上蜿蜒划线。 e) 接种完成之后,用火焰灭菌培养管口,并塞上棉塞,置于37℃培养。 ② 半固体培养基接种法 --- 穿刺接种法(大肠埃希菌/痢疾杆菌) a) 用左手握住菌种管和半固体培养管,右手持接种针 b) c) 用接种针伸入菌种管内,挑取用来接种的菌苔。 d) 垂直刺入半固体中心,至近管底部,然后沿穿刺线退出。 e) 塞回棉塞,接种针重新灭菌。接种完毕,于37℃培养18—24h ③ 液体培养基接种法 (葡萄球菌/大肠埃希菌/痢疾杆菌) a) 用灭菌接种环挑取用来接种的菌苔。 b)

(完整word版)生物反应工程原理

1.微生物反应与酶促反应的主要区别? 答:微生物反应与酶促反应的最主要区别在于,微生物反应是自催化反应,而酶促反应不是。此外,二者还有以下区别: (1)酶促反应由于其专一性,没有或少有副产物,有利于提取操作,对于微生物反应而言,基质不可能全部转化为目的产物,副产物的产生不可避免,给后期的提取和精制带来困难,这正是造成目前发酵行业下游操作复杂的原因之一。 (2)对于微生物反应,除产生产物外,菌体自身也可是一种产物,如果其富含维生素或蛋白质或酶等有用产物时,可用于提取这些物质。 (3)与微生物反应相比,酶促反应体系较简单,反应过程的最适条件易于控制。 微生物反应是利用活的生物体进行目的产物的生产,因此,产物的获得除受环境因素影响外,也受细胞因素的影响,并且微生物会发生遗传变异,因此,实际控制有一定难度。 (4)酶促反应多限于一步或几步较简单的生化反应过程,与微生物反应相比,在经济上有时并不理想。微生物反应是生物化学反应,通常是在常温、常压下进行;原料多为农产品,来源丰富。 (5)微生物反应产前准备工作量大,相对化学反应器而言,反应器效率低。对于好氧反应,需氧,故增加了生产成本,且氧的利用率不高。 (6)相对于酶反应,微生物反应废水有较高BOD值。 2. 何为连续培养的稳定状态?当时,一定是微生物连续培养的稳定状态吗? 答:连续培养是将细胞接种于一定体积的培养基后,为了防止衰退期的出现,在细胞达最大密度之前,以一定速度向生物反应器连续添加新鲜培养基;与此同时,含有细胞的培养物以相同的速度连续从反应器流出,以保持培养体积的恒定。 连续培养的稳定状态时,此时反应器的培养状态可以达到恒定,细胞在稳定状态下生长。在稳定状态下细胞所处的环境条件如营养物质浓度、产物浓度、pH值可保持恒定,细胞浓度以及细胞比生长速率可维持不变。稳定状态可有效的延长分批培养中的对数生长期。理论上讲,该过程可无限延续下去。细胞很少受到培养环境变化带来的生理影响,特别是生物反应器的主要营养物质葡萄糖和谷氨酰胺,维持在一个较低的水平,从而使他们的利用效率提高,有害产物积累有所减少。 当时,不一定是连续培养的稳定状态。最主要的是菌种易于退化。可以设想,处于如此长期高速繁殖下的微生物,即使其自发突变几率极低,也无法避免变异的发生,尤其发生比原生产菌株生长速率高、营养要求低和代谢产物少的负变类型。其次是易遭杂菌污染。可以想象,在长期运转中,要保持各种设备无渗漏,尤其是通气系统不出任何故障,是极其困难的。在高的稀释率下,虽然死细胞和细胞碎片及时清除,细胞活性高,最终细胞密度得到提高;可是产物却不断在稀释,因而产物浓度并未提高;尤其是细胞和产物不断的稀释,

临床生化常规检验项目及其临床意义

常规生化检验项目各项指标参考范围及临床意义(1) 1、谷丙转氨酶——ALT:正常参考值0-40IU/L 增高:常见于急慢性肝炎,药物性肝损伤,脂肪肝,肝硬化,心梗,胆道疾病等。 2、谷草转氨酶——AST:正常参考值0-40I/L 增高:常见于心梗,急慢性肝炎,中毒性肝炎,心功能不全,皮肌炎等。 3、转肽酶——GGT:正常参考值0-40IU/L 增高:常见于原发性或转移性肝癌,急性肝炎,慢性肝炎活动期,肝硬化,急性胰腺炎及心力衰竭等。 4、碱性磷酸酶——ALP:正常参考值30-115IU/L 增高:常见于肝癌,肝硬化,阻塞性黄疸,急慢性黄疸型肝炎,骨细胞瘤,骨折及少年儿童。 5、乳酸脱氢酶——LDH:正常参考值90-245U/L 增高:急性心肌梗塞发作后12-48小时开始升高,2-4天可达高峰,8-9天恢复正常。另外,肝脏疾病恶性肿瘤可引起LDH增高 6、总胆红素——TBIL:正常参考值 4.00-17.39umol/L 增高:原发生胆汁性肝硬化急性黄疸型肝炎,慢性活动期肝炎,病毒性肝炎。肝硬化,溶血性黄疸,新生儿黄疸,胆石症等。TBIL=DBIL+IBIL 7、直接胆红素——DBIL:正常参考值0.00-6.00umol/L 增高:常见于阻塞性黄疸,肝癌,胰头癌,胆石症等。 8、游离胆红素——IBIL:正常参考值0.00-17.39umol/L 增高:见于溶血性黄疸,新生儿黄疸,血型不符的输血反应 9、总蛋白——TP:正常参考值55.00-85.00g/L 增高:常见于高度脱水症(腹泄、沤吐、休克、高热)及多发性骨髓瘤。 降低:常见于恶性肿瘤,重症结核,营养及吸收障碍,肝硬化,肾病综合症,烧伤,失血。TP=ALB+GLB 10、白蛋白——ALB:正常参考值35.00-55.00g/L 增高:常见于严重失水而导致血浆浓缩,使白蛋白浓度上升。降低:基本与总蛋白相同,特别是肝脏,肾脏疾病更为明显,见于慢性肝炎、肝硬化、肝癌、肾炎等。如白蛋白30g/L,则预后较差。

相关主题
文本预览
相关文档 最新文档