当前位置:文档之家› 工程热力学基本原理

工程热力学基本原理

热力学第二定律与卡诺定理

工程热力学

目录

1、卡诺的逻辑——卡诺定理

(1.1)卡诺循环

(1.2)卡诺定理

2、伟大的发现——热力学第二定律

(2.1)自然过程的方向性

(2.2)热力学第二定律

3、一种新的世界观——熵

(3.1)克劳修斯熵

(3.2)熵增原理

功勋卓著的科学巨匠

卡诺(1796-1832)克劳修斯(1822-1888) 开尔文(1824~1907)

1、卡诺的逻辑——卡诺定理

1.1卡诺循环1-2等温膨胀,在这个过程中系统

从高温热源中吸收热量,对外

作功;

2-3绝热膨胀,在这卡诺循环t-s图

个过程中系统对环境作功,温度降

低;

3-4等温压缩,在这个过程中系统

向环境中放出热量,体积压缩;

4-1绝热压缩,系统恢复原来状态,

在等温压缩和绝热压缩过程中

系统对环境作负功。

卡诺循环的热效率

通过热力学相关定理我们可以得出,卡诺循环的效率

h

c h c h c h h T T Q Q Q Q Q Q W -=-=-==11η

1.2 卡诺定理

1

21T T -1

21T T -卡诺循环中的每个过程都是准静态过程,所以卡诺循环是理想的可逆循环。有卡诺循环组成的热机叫做可逆机。卡诺在1824年发表的《谈谈火的动力和能发动这种动力的机器》中不仅设想了卡诺循环,而且提出了卡诺定理,其表述如下:

(1)在相同的高温热源和相同的低温热源之间工作的一切可逆热机,其效率都相等,并且等于,与工作物质无关。(2)在相同的高温热源和相同的低温热源之间工作的一切不可逆热机,其效率都小于可逆热机的效率,即小于。

2、伟大的发现——热力学第二定律

2.1自然过程的方向性

通过上面的例子,大家应该清晰的认识到,自然界的过程是有明确的方向性的。

为了概括自然界的这种规律,科学家在热力学第一定律的之外建立了热力学第二定律

2.2 热力学第二定律

克劳修斯表述:

热量不可能自发的从低温物体传向高温物体。开尔文表述:

不可能制成一种循环动作的热机,它只从

一个单一温度的热源吸取热量,并使其全部变

为有用功而不产生其他的影响。

3、一种新的世界观—熵

2

T 1T 1

21T T -≤η克劳修斯把卡诺定理推广,应用于一个任意

的循环过程,得到一个能描述可逆循环和不可逆

循环特征的表达式,叫做克劳修斯不等式。

依据卡诺定理可知,工作于高、低温热源和之间

的热机的效率为而无论循环是否可逆,都有121Q Q Q -=η3.1 克劳修斯熵

2T 1T

将两式结合,可得

02

211≤-T Q T Q 上式中和都是正的,是工作物质所吸收和放出热量的绝对值。如果采用热力学第一定律对热量正负号的规定,则上式可以改为

1Q 2Q 02

211≤+T Q T Q

对于任意可逆循环,一般都可

以将其近似地看成有许多卡诺循环

组成如右图所示,而且所取的卡诺

循环次数越多就越接近实际的循环

过程。因此对任意可逆循环,有

0≤??? ????T Q Q ?为系统从温度为的热源吸收的微小

热量(代数值)。

T

克劳修斯不等式指出,对于任意一个可逆的循环过程,有

0=??? ????T Q 如右图所示,系统从平衡状态A

经过可逆过程变到平衡状态B ,再

由平衡状态B 经可逆过程回到原来

的状态A ,恰好构成一个完整的可

逆循环。

不难发现,系统从平衡态A 分别

经过I 过程和II 过程变到平衡态B ,热

温比的积分不变(可逆过程)。??B A T

Q

这意味着在热力学中,还存在一个与内能有类似性质的态函数,我们称这个新的态函数为克劳修斯熵,用符号S 表示。对任意无限小的可逆过程有T Q dS ?=熵的量纲是能量除以温度,单位是J/K 。

由热力学第一定律可得

pdV

dE Q +=?熵的计算

有以上公式可以导出

0S

T pdV

dE S ++=?0S 为熵常数。

3.2 熵增原理

大量事实表明,一切不可逆过程中熵总是增加的。可逆绝热过程中的熵是不变的。把这两种情况结合在一起就得到了一个用熵来判别过程是可逆还是不可逆的判据——熵增加原理。其表述如下:

热力学系统从一个平衡态绝热地到达另一个平衡态的过程中,它的熵永不减少。若过程是可逆的,则熵不变;若过程是不可逆的,则熵增加。

工程热力学小论文

蒸汽压缩式制冷机 湖南城市学院1002302-10曹登祥 关键词:蒸汽压缩式制冷循环 摘要:蒸汽压缩式制冷系统由压缩机、冷凝器、膨胀阀、蒸发器组成,用管道将它们连接成一个密封系统。制冷剂液体在蒸发器内以低温与被冷却对象发生热交换,吸收被冷却对象的热量并气化,产生的低压蒸汽被压缩机吸入,经压缩后以高压排出。压缩机排出的高压气态制冷剂进冷凝器,被常温的冷却水或空气冷却,凝结成高压液体。高压液体流经膨胀阀时节流,变成低压低温的气液两相混合物,进入蒸发器,其中的液态制冷剂在蒸发器中蒸发制冷,产生的低压蒸汽再次被压缩机吸入。如此周而复始,不断循环。摘自百度文库 1.蒸汽压缩式制冷原理 单级蒸气压缩式制冷系统如下图所示。

它由压缩机、冷凝器、膨胀阀和蒸发器组成。其工作过程如下:制冷剂在蒸发压力下沸腾,蒸发温度低于被冷却物体或流体的温度。压缩机不断地抽吸蒸发器中产生的蒸气,并将它压缩到冷凝压力,然后送往冷凝器,在冷凝压力下等压冷却和冷凝成液体。制冷剂冷却和冷凝时放出的热量传给冷却介质(通常是水或空气)与冷凝压力相对应的冷凝温度一定要高于冷却介质的温度,冷凝后的液体通过膨胀阀或其它节流元件进入蒸发器。 当制冷剂通过膨胀阀时,压力从冷凝压力降到蒸发压力,部分液体气化,剩余液体的温度降至蒸发温度,于是离开膨胀阀的制冷剂变成温度为蒸发温度的两相混合物。混合物中的液体在蒸发器中蒸发,从被冷却物体中吸取它所需要的气化潜热。混合物中的蒸气通常称为闪发蒸气,在它被压缩机重新吸入之前几乎不再起吸热作用。

在整个循环过程中,压缩机起着压缩和输送制冷剂蒸气并造成蒸发器中低压力、冷凝器中高压力的作用,是整个系统的心脏;节流阀对制冷剂起节流降压作用并调节进入蒸发器的制冷剂流量;蒸发器是输出冷量的设备,制冷剂在蒸发器中吸收被冷却物体的热量,从而达到制取冷量的目的;冷凝器是输出热量的设备,从蒸发器中吸取的热量连同压缩机消耗的功所转化的热量的冷凝器中被冷却介质带走。根据热力学第二定律,压缩机所消耗的功(电能)起了补偿作用,使制冷剂不断从低温物体中吸热,并向高温物体放热,从而完整个制冷循环。 2.蒸汽压缩式制冷理论循环的热力计算 在进行制冷循环的热力计算之前,首先需要了解系统中各设备内功和热量的变化情况,然后再对循环的性能指标进行分析和计算。 根据热力学第一定律,如果忽略位能和动能的变化,稳定流动的能量方程可表示为 Q+P=qm(h2-h1)(1)

工程热力学课后习题及答案第六版完整版

2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3) MPa p 1.0=, 500 =t ℃时的摩尔容 积 Mv 。 解:(1)2N 的气体常数 28 8314 0= = M R R =)/(K kg J ? (2)标准状态下2N 的比容和密度 101325 273 9.296?== p RT v =kg m /3 v 1 =ρ=3/m kg (3) MPa p 1.0=,500=t ℃时的摩尔容积Mv Mv =p T R 0 =kmol m /3 2-3.把CO 2压送到容积3m 3 的储气罐里,起始表压力 301=g p kPa ,终了表压力3.02=g p Mpa ,温度由 t1=45℃增加到t2=70℃。试求被压入的CO 2的质量。当地大气压B = kPa 。 解:热力系:储气罐。 应用理想气体状态方程。 压送前储气罐中CO 2的质量 压送后储气罐中CO 2的质量 根据题意 容积体积不变;R = B p p g +=11 (1) B p p g +=22 (2) 27311+=t T (3) 27322+=t T (4) 压入的CO 2的质量 )1 1 22(21T p T p R v m m m -= -= (5) 将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg 2-5当外界为标准状态时,一鼓风机每小时可送300 m 3 的空气,如外界的温度增高到27℃,大气压降低到,而鼓风机每小时的送风量仍为300 m 3 ,问鼓风机送风量的质量改变多少 解:同上题 1000)273 325 .1013003.99(287300)1122(21?-=-= -=T p T p R v m m m =41.97kg 2-6 空气压缩机每分钟自外界吸入温度为15℃、压力 为的空气3 m 3 ,充入容积8.5 m 3 的储气罐内。设开始时罐内的温度和压力与外界相同,问在多长时间内空气压 缩机才能将气罐的表压力提高到设充气过程中气罐内温度不变。 解:热力系:储气罐。 使用理想气体状态方程。 第一种解法: 首先求终态时需要充入的空气质量 288 2875.810722225???==RT v p m kg 压缩机每分钟充入空气量 288 28731015???==RT pv m kg 所需时间 == m m t 2 第二种解法 将空气充入储气罐中,实际上就是等温情况下把初压为一定量的空气压缩为的空气;或者说、 m 3 的空气在下占体积为多少的问题。 根据等温状态方程 、8.5 m 3 的空气在下占体积为 5.591 .05 .87.01221=?== P V p V m 3 压缩机每分钟可以压缩的空气3 m 3 ,则要压缩 m 3 的 空气需要的时间 == 3 5 .59τ

工程热力学小论文

麦克斯韦妖与信息熵 一、麦克斯韦妖的提出 1867年,麦克斯韦在致友人泰特的信中第一次提出了麦克斯韦妖的设想,1871年,麦克斯韦在《热二律局限性》一书中明确提到了麦克斯韦妖。这一个具有神话色彩的思想实验影响了物理学界一百多年,同时也推动了一些新理论的发展。 麦克斯韦的这一个理想实验可以用下面的一个物理模型来解释。一个绝热容器被一块绝热的隔板分割开来,左边的温度为T1,右边的温度为T2,并且假设T1>T2。在这一块绝热隔板上开一个小门,并由一个麦克斯韦妖把守,当他发现右边的容器中有一个速度较快(相对于左边容器平均速度而言)的气体分子接近门时,麦克斯韦妖便会把门打开,让这个气体分子进入左边的容器中去,紧接着便关上这扇门隔绝两边的分子交换,并且这样的工作无需对气体做功。同样的,如果发现左边的容器中由一个速度较慢的气体分子接近门时,麦克斯韦妖便会把门打开,让这个气体分子进入右边的容器中去。经过这样的操作之后,左边的气体分子平均速度会不断增加,而右边气体分子平均速度会不断减小,从宏观上来说,左边容器气体的温度会上升,而右边气体的温度会不断下降。而根据热力学第二定律的原理,热量不可能自发的从低温物体传递到高温物体,而对于麦克斯韦妖的假设,在没有任何外力功的情况下,热量便源源不断的有低温物体转移到了高温物体。从热力学第二定律的另一个角度来说,孤立系统的熵只能增大或不变而不能减小,对于麦克斯韦妖的假设来说,由容器和麦克斯韦妖组成的这样一个孤立系统的熵却是减小的。麦克斯韦妖的出现对热力学第二定律提出了极大的挑战,而后人们也不断的尝试去解决这一问题。 二、西拉德的解释 1922年,西拉德撰写了一篇名为《精灵的干预使热力学系统的熵减少》的论文,论文中分析了麦克斯韦妖对热力学系统干预的本质。在文章中西拉德指出,在对系统进行测量的时候,系统显示了一种记忆能力,如果测量过程本身没有熵的产生,那么这种测量一定会使系统发生熵减,这种由测量引起的熵减少由系统中的信息的增加所补偿。香农在1948年提出的信息论中给出了信息和熵之间的关系: 1ln n i i i I k p p ==?∑;其中k 是玻尔兹曼常量,p i 是几率,I 是信息熵。 公式将信息熵之间做了联系,在一个孤立系统当中,信息的增加就意味着上的减少,系统有序度增加,香农将其总结为信息是用来减少不确定的东西。 将思路回到之前所提到的思想实验当中,麦克斯韦妖在判断他是否应该开启隔板上的门时首先要做的就是观测靠近门的那一个分子的速度,例如麦克斯韦妖发现右边容器中有一个

工程热力学课程教案完整版

工程热力学课程教案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

《工程热力学》课程教案 *** 本课程教材及主要参考书目 教材: 沈维道、蒋智敏、童钧耕编,工程热力学(第三版),高等教育出版社,2001.6手册: 严家騄、余晓福着,水和水蒸气热力性质图表,高等教育出版社,1995.5 实验指导书: 华北电力大学动力系编,热力实验指导书,2001 参考书: 曾丹苓、敖越、张新铭、刘朝编,工程热力学(第三版),高等教育出版社,2002.12 王加璇等编着,工程热力学,华北电力大学,1992年。 朱明善、刘颖、林兆庄、彭晓峰合编,工程热力学,清华大学出版,1995年。 曾丹苓等编着,工程热力学(第一版),高教出版社,2002年 全美经典学习指导系列,[美]M.C. 波特尔、C.W. 萨默顿着郭航、孙嗣莹等 译,工程热力学,科学出版社,2002年。 何雅玲编,工程热力学精要分析及典型题精解,西安交通大学出版社,2000.4 概论(2学时) 1. 教学目标及基本要求 从人类用能的历史和能量转换装置的实例中认识理解:热能利用的广泛性和特殊性;工程热力学的研究内容和研究方法;本课程在专业学习中的地位;本课程与后续专业课程乃至专业培养目标的关系。 2. 各节教学内容及学时分配 0-1 热能及其利用(0.5学时) 0-2 热力学及其发展简史(0.5学时) 0-3 能量转换装置的工作过程(0.2学时) 0-4 工程热力学研究的对象及主要内容(0.8学时) 3. 重点难点 工程热力学的主要研究内容;研究内容与本课程四大部分(特别是前三大部分)之联系;工程热力学的研究方法 4. 教学内容的深化和拓宽 热力学基本定律的建立;热力学各分支;本课程与传热学、流体力学等课程各自的任务及联系;有关工程热力学及其应用的网上资源。 5. 教学方式 讲授,讨论,视频片段 6. 教学过程中应注意的问题

工程热力学论文2

工 程 热 力 学 论 文 姓名: 学号:1011011014 序号:05

太阳能热发电热力分析 摘要:从热力学角度出发,研究了太阳能热气流在集热棚、烟囱及风力透平机组内的能 量转换过程,建立了无能量损失的理想热力过程,以及包含各种能量损失的实际热力过程模型.鉴于太阳能热气流发电站的大尺寸特征,采用了一维假设建立了集热棚内热气流的传热模型,采用龙格一库塔方法对温度方程进行数值求解.最后对一个100研级的太阳能热气流发电站进行了试算.其主要参数为集热棚直径3600m,烟囱高950m,设计功率1001,研.给出了该电站的风力透平轴功率随质量流量和太阳能吸收强度的变化规律,集热棚内的温升曲线,以及风力透平机的设计参数. 关键词:太阳能热发电;集热棚;热力分析;轴功率 现状综诉:太阳能是太阳内部连续不断的核聚变反应过程中所产生的能量。据测算,太 阳每秒照于地球上的能量相当于500万t煤。可以说,太阳能就是人类“用之不竭”的可再生能源。根据有关预测,21世纪的全球能源结构将发生重大变化,太阳能和其它可再生能源将替代石油和煤炭,逐渐成为世界能源的主角。到2050年,太阳能、风能和生物质能在各种一次能源构成中所占的比例将高达50%,远高于石油(0%或甚微)、天然气(13%)、煤(20%)、核能(10%),水电(5%)和其它(2%)。 太阳能热发电技术是具有较强竞争力的可再生能源发电技术。太阳能集热器把收集到的太阳辐射能发送至接收器产生热空气或热蒸汽,用传统的电力循环来产生电能,发电运行成本低,并可以与化石燃料形成混合发电系统。太阳能热发电无噪音,无污染,无需燃料,不受地域限制,规模大小灵活,故障率低,建站周期短,这些优势都是用其它能源发电所无法比拟的,对中国等太阳能资源丰富的国家来说是一个很大的机遇。 太阳能热发电技术综合性很强,涉及太阳能利用、储能、新型材料技术、高效汽轮机技术和自动控制系统等问题,不少发达国家已投人大量人力和物力。经过近40年的研究,太阳能热力发电装置的单机容量已从千瓦级发展到了兆瓦级,目前世界上已有几十座MW级的太阳能热电站投入运行。许多科学家纷纷预测,至2l世纪初中期,太阳能热发电的电价极有可能降到与化石能源电价相同的水平。我国学者潘垣等(2003)近年来致力于太阳能热气流技术的研究和推广,对我国太阳能资源分布状况、技术及经济性分析进行了广泛的调研,认为在本世纪,大规模太阳能热气流发电技术与核聚变发电技术,.是使我国从根本上摆脱能源资源“瓶颈”约束的两个重要途径。代彦军(2003)对宁夏地区发展太阳能热气流发电技术进行了理论探索。 原理简述: 本文利用理论及数值方法,对太阳能热气流发电技术的理想及实际热力过程进行分析,考虑了风力透平中的能量损失和烟囱流动损失对系统性能的影响。由于太阳能热气流发电系统具有超大几何尺寸,采用一维换热假设对系统内的传热过程进行建模,所建立的方程

工程热力学课程教学大纲

《工程热力学》课程教学大纲 一、课程的性质和任务 本课程是建筑环境与能源应用工程及能源与动力工程专业必修的一门专业基础课。 本课程的任务是:通过对本课程的学习,使学生掌握有关物质热力性质、热能有效利用以及热能与其它能量转换的基本规律,培养学生运用热力学的定律、定理及有关的理论知识,对热力过程进行热力学分析的能力;初步掌握工程设计与研究中获取物性数据,对热力过程进行相关计算的方法。 二、课程的基本内容及要求 1、绪论 了解热能及其利用,热能装置的基本工作原理。 掌握工程热力学的研究对象、研究内容、研究方法及发展概况。 2、基本概念 了解工程热力学中一些基本术语和概念:热力系、平衡态、准平衡过程、可逆过程等。 掌握状态参数的特征,基本状态参数p,v,T的定义和单位等。 熟练应用热量和功量过程量的特征,并会用系统的状态参数对可逆过程的热量、功量进行计算。 3、气体的热力性质 了解理想气体与实际气体、混合气体的性质、气体常数、通用气体常数、比热容等。 掌握气体的状态方程及其应用。 熟练应用气体状态方程解决气体的变化过程参数的变化。 4、热力学第一定律 了解能量、储存能、热力学能、迁移能、膨胀功、技术功、推动功的概念,深入理解热力学第一定律的实质。 掌握热力学第一定律及其表达式、掌握体积变化功、推动功、轴功和技术功

的概念及计算式。注意焓的引出及其定义式。 熟练应用热力学第一定律表达式来分析计算工程实际中的有关问题。 5、理想气体的热力过程及气体压缩 了解理想气体热力学能、焓和熵的变化。了解活塞式压气机的余隙影响及多级压缩的过程 掌握正确应用理想气体状态方程式及4种基本过程以及多变过程的初终态基本状态参数p,v,T之间的关系。 熟练应用4种基本过程以及多变过程系统与外界交换的热量、功量的计算。能将各过程表示在p-v图和T-s图上,并能正确地应用在p-v图和T-s图判断过程的特点。 6、热力学第二定律 了解用可用能、有效能的概念及其计算。在深刻领会热力学第二定律实质的基础上,认识能量不仅有"量"的多少,而且还有"质"的高低。 掌握热力学第二定律的表述和实质,掌握熵的意义、计算和应用;掌握孤立系统和绝热系统熵增的计算,从而明确能量损耗的计算方法。 熟练应用孤立系统熵增原理、可用能的损失及计算对热力过程进行热工分析,认识提高能量利用经济性的方向、途径和方法。 7、水蒸气 了解水蒸相变过程、蒸气图表的结构及有关蒸气的各种术语及其意义。例如:汽化、凝结、饱和状态、饱和蒸气、饱和液体、饱和温度、饱和压、三相点、临界点、汽化潜热等。 掌握水蒸汽的定压汽化过程及水蒸汽的P—V图和T—S图。 熟练应用水蒸气图表分析水蒸气基本热力过程中热量及功量的变化。 8、湿空气 了解湿空气的组成,及焓湿图的绘制方法、了解实际应用的湿空气过程。 掌握湿空气状态参数的意义及其计算方法,并能区别哪些参数是独立参数,哪些参数存在相互关系。熟练掌握相对湿度、绝对湿度、含湿量等概念。 熟练应用含湿图分析湿空气的状态变化过程。 9、气体和蒸汽的流动

工程热力学第四版课后思考题答案

1.闭口系与外界无物质交换,系统内质量保持恒定,那么系统内质量保持恒定的热力系一定是闭口系统吗? 不一定,稳定流动系统内质量也保持恒定。 2.有人认为开口系统内系统与外界有物质交换,而物质又与能量不可分割,所以开口系统不可能是绝热系。对不对,为什么?不对,绝热系的绝热是指热能单独通过系统边界进行传递(传热量),随物质进出的热能(准确地说是热力学能)不在其中。 3.平衡状态与稳定状态有何区别和联系?平衡状态一定是稳定状态,稳定状态则不一定是平衡状态。 4.倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?绝对压力计算公式 p =p b +p g (p > p b ), p = p b -p v (p < p b ) 中,当地大气压是否必定是环境大气 压? 当地大气压p b 改变,压力表读数就会改变。当地大气压 p b 不一定是环境大气压。 5.温度计测温的基本原理是什么? 6.经验温标的缺点是什么?为什么? 不同测温物质的测温结果有较大的误差,因为测温结果 依赖于测温物质的性质。 7.促使系统状态变化的原因是什么? 举例说明。 有势差(温度差、压力差、浓度差、电位差等等)存在。 8.分别以图1-20所示的参加公路自行车赛的运动员、运动手枪中的压缩空气、杯子里的热水和正在运行的电视机为研究对象,说明这些是什么系统。 参加公路自行车赛的运动员是开口系统、运动手枪中的压缩空气是闭口绝热系统、杯子里的热水是开口系统(闭口系统——忽略蒸发时)、正在运行的电视机是闭口系统。 9.家用电热水器是利用电加热水的家用设备,通常其表面散热可忽略。取正在使用的家用电热水器为控制体(但不包括电加热器),这是什么系统?把电加热器包括在研究对象内,这是什么系统?什么情况下能构成孤立系统? 不包括电加热器为开口(不绝热)系统(a 图)。包括电加热器则为开口绝热系统(b 图)。 将能量传递和质量传递(冷水源、热水汇、热源、电源等)全部包括在内,构成孤立系统。或者说,孤立系统把所有发生相互作用的部分均包括在内。 4题图 9题图

工程热力学论文

目录 太阳能热机发电 (2) 前言 (2) 一、太阳能发电类型 (2) 1.1. 太阳光发电(亦称太阳能光发电) (2) 1.2. 发电(亦称太阳能热发电) (2) 二、太阳能热机发电原理 (2) 2.1.能热机发电系统 (2) 三、热力学分析 (3) 四、前景展望 (9)

太阳能热机发电 前言 太阳能是一种干净的可再生的新能源,越来越受到人们的亲睐,在人们生活、工作中有广泛的作用,其中之一就是将太阳能转换为电能,太阳能电池就是利用太阳能工作的。而太阳能热电站的工作原理则是利用汇聚的太阳光,把水烧至沸腾变为水蒸气,然后用来发电。 一、太阳能发电类型 1.1.太阳光发电(亦称太阳能光发电) 太阳能光发电是将太阳能直接转变成电能的一种发电方式。它包括光伏发电、 光化学发电、光感应发电和光生物发电四种形式,在光化学发电中有电化学光伏电 池、光电解电池和光催化电池。 1.2.发电(亦称太阳能热发电) 太阳能热发电是先将太阳能转化为热能,再将热能转化成电能,它有两种转化方式。一种是将太阳热能直接转化成电能,如半导体或金属材料的温差发电,真空器件中的热电子和热电离子发电,碱金属热电转换,以及磁流体发电等。另一种方式是将太阳热能通过热机(如汽轮机)带动发电机发电,与常规热力发电类似,只不过是其热能不是来自燃料,而是来自太阳能。今天我们主要来看一下太阳能热能发电的第二种情况——通过热机发电。 二、太阳能热机发电原理 2.1.能热机发电系统 2.1.1.太阳能蒸发器太阳能真空管、联集箱、导管、控制阀、安全阀、保温箱体、冷却器; 热机(活塞式发动),主要包括发动机箱体、活塞、连杆、曲轴、进排气阀、控制凸轮、发电机等。 2.1.2.原理 太阳能集热器内装有介质,集热管吸收太阳辐射使介质蒸发,产生高温高压蒸汽,这种高温高压蒸汽

工程热力学教学大纲-山东大学课程中心

山东大学 “工程燃烧学I”课程教学大纲 课程号:0183100310 课程名称:工程燃烧学I 英文名称:Engineering CombustionⅠ 总学分:2 总学时:34 授课学时:30 实验学时:4 上机学时:0 适用对象:热能与动力工程专业 先修课程:大学物理高等数学热工学流体力学 使用教材及参考书: 1、汪军,工程燃烧学,中国电力出版社,2008.7 2、霍然等,工程燃烧概论,中国科学技术大学出版社,2001.9 3、岑可法等,高等燃烧学,浙江大学出版社,2002.12 4、严传俊,范玮等,燃烧学(第2版),西北工业大学出版社,2008.7。 5、刘联胜,燃烧理论与技术,化学工业出版社,2008.6 6、黄勇,燃烧与燃烧室,北京航空航天大学出版社,2009.9 7、(美)特纳斯著,姚强,李水清,王宇译,燃烧学导论:概念与应用(第2版),清华大学出版社,2009.4 8、C. K. Law, Combustion Physics, Cambridge University Press, 2006. 9、Poinsot, T. and Veynante, D., Theoretical and Numerical Combustion, 2005. 10、Irvin Glassman, Richard A. Yetter, Combustion, 4th Edition- Elsevier,2008 11、徐通模,燃烧学,机械工业出版社,2010.7 * 在教材及主要参考资料中第1项为教材,其它为主要参考资料。 一、课程教学目的 工程燃烧学是热能与动力工程专业的一门重要的技术基础课,也是该专业的必修主干课。本课程的授课对象是热能与动力工程专业本科生,属热动类专业基础必修课。课程主要任务是通过各个教学环节,运用各种教学手段和方法,使学生对燃烧现象和基本理论的认识。通过本课程的学习掌握燃烧技术中所必须的热化学、燃烧动力学及燃烧过程的基本知识与基本理论。掌握热能与动力机械工程中典型燃料的特性、燃烧特点和规律,包括着火的形式和条件、火焰的传播、燃烧产物的生成机理、新型燃烧技术等。通过本课程的学习,能对锅炉、内燃机、涡轮机、火灾、家用炉灶、焊枪等燃烧现象从宏观上能有所认识,微观上能有所解释。为改进燃烧设备、提高能源利用率、分析有害排放物的生成机理和过程、避免不正常的燃烧现象、控制和降低有害排放物的生成,具有一定的基本理论知识。为今后从事工程技术工作、科学研究及开拓新技术领域,打下坚实的基础。 二、课程教学基本内容和要求 本课程由燃烧热力学、燃烧反应动力学、着火理论、火焰传播与稳定性、煤燃烧原理与技术、燃烧污染物控制技术、新型燃烧技术等部分组成。学完本大纲规定的内容后,应达到下列基本要求:

工程热力学课后答案

《工程热力学》沈维道主编第四版课后思想题答案(1?5章)第1章基本概念 1.闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。 2.有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。这种观点对不对,为什么? 答:不对。"绝热系”指的是过程中与外界无热量交换的系统。热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。物质并不“拥有”热量。一个系统能否绝热与其边界是否对物质流开放无关。 3.平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系? 答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。 4.倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式 P 二P b P e (P P b) ;P = P b - P v (P :: P b) 中,当地大气压是否必定是环境大气压? 答:可能会的。因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。 “当地大气压”并非就是环境大气压。准确地说,计算式中的Pb应是“当地环境介质”的压力,而不是随便任何其它 意义上的“大气压力",或被视为不变的“环境大气压力”。 5.温度计测温的基本原理是什么? 答:温度计对温度的测量建立在热力学第零定律原理之上。它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。 6.经验温标的缺点是什么?为什么? 答:由选定的任意一种测温物质的某种物理性质,采用任意一种温度标定规则所得到的温标称为经验温标。由于经验温标依赖于测温物质的性质,当选用不同测温物质制作温度计、采用不同的物理性质作为温度的标志来测量温度时,除选定的基准点外,在其它温度上,不同的温度计对同一温度可能会给出不同测定值(尽管差值可能是微小的),因而任何一种经验温标都不能作为度量温度的标准。这便是经验温标的根本缺点。 7.促使系统状态变化的原因是什么?举例说明答:分两种不同情况:⑴若系统原本不处于平衡状态,系统内各部分间存在着不平衡势差,则在不平衡势差的作用下,各个部分发生相互作用, 系统的状态将发生变化。例如,将一块烧热了的铁扔进一盆水中,对于水和该铁块构成的系统说来,由于水和铁块之间存在着温度差别,起初系统处于热不平衡的状态。这种情况下,无需外界给予系统任何作用,系统也会因铁块对水放出热量而发生状态变化:铁块的温度逐渐降低,水的温度逐渐升高,最终系统从热不平衡的状态过渡到一种新的热平衡状态;⑵若系统原处于平衡状态,则只有在外界的作用下(作功或传热)系统的状态才会发生变。 &图1-16a、b所示容器为刚性容器:⑴将容器分成两部分。一部分装气体, 一部分抽 成真空,中间是隔板。若突然抽去隔板,气体(系统)是否作功?⑵设真空部分装 有许多隔板,每抽去一块隔板让气体先恢复平衡再抽去一块, 问气体係统)是否作功? 图1-16 .吾苦翹E附團 ⑶上述两种情况从初态变化到终态,其过程是否都可在P-V图上表示? 答:⑴;受刚性容器的约束,气体与外界间无任何力的作用,气体(系统)不对外界作功; ⑵b情况下系统也与外界无力的作用,因此系统不对外界作功;

工程热力学论文

工程热力学课程论文 柴油机实际循环的传热分析 姓名:______________________________________ 班级:______________________________________ 教学号:____________________________________ 任课老师:__________________________________

目录 前言 一、柴油机实际循环的组成 (1) 二、实际循环的特点 (2) 三、实际循环理想化 (2) 四、传热的相关基础知识 (3) 五:柴油发动机的传热分析 (4) 六:参考文献 (7)

前言 在工程热力学中,我们将柴油机实际循环理想化为绝热压缩过程;定容加热过程;定压加热过程;绝热膨胀过程;定容放热过程。这样几个理想过程,而理想化的模型忽略了很大部分传热的能量损失问题,故在此讨论柴油机实际循环中的传热损失。 在研究传热损失之前,有必要了解一下了解了柴油机的各个实际循环过程。 一、柴油机实际循环的组成 柴油机有四冲程机与二冲程机二种, 一个工作循环都由进气、压缩、燃烧膨 胀、排气过程组成。如果一个工作循环 在活塞连续的四个行程中完成,称为四 冲程机;如果一个工作循环在活塞连续 的二个行程中完成,称为二冲程机。所 以本节的讨论对四、二冲程内燃机都适 用。下面以现代机械喷射四冲程柴油机 的p-V图为例,介绍其工作循环。 0-1为吸气过程:吸气过程中,由于 流动阻力,缸内气体压力略低于大气压 图9-1 四冲程柴油机示功图 力。 l-2为压缩过程:压缩早期,空气从气 缸壁吸热,q>0;压缩后期,空气向气缸壁放热,q<0。压缩过程的平均多变指数n=1.34~1.37。压缩终点空气温度约600℃~700℃,压力约3~5Mpa,超过柴油自燃点(335 ℃左右)。 2-3-4为燃烧过程:现代柴油机采用喷油泵和喷油器,将燃油在压缩冲程上止点前(2′点)喷进气缸,由于高压燃油(供油压力80~150MPa)经细小如针孔的喷孔挤出时受到强烈的摩擦、扰动以及气缸内压缩空气的阻力,被粉碎成雾状,细微的燃油被高温压缩空气加热而蒸发,与空气形成可燃混合气,当某处燃油达到自燃点燃烧,放出热量而引燃所有可燃混合气。燃油在上止点前喷入气缸到火苗出现的这段时间,称为“滞燃期”,滞燃期内积累的燃油量在活塞位于上止点附近的一瞬间燃烧放热,工质压力在一瞬间上升到6~8Mpa,使理想循环可以认为这部分热量是在定容下加入的;而火苗出现后喷入的燃油由于随喷随烧,此时活塞已向下止点方向运动,燃烧放热量使气缸

工程热力学基础简答题

工程热力学基础简答题

————————————————————————————————作者:————————————————————————————————日期:

1、什么是叶轮式压气机的绝热效率? 答: 2、压缩因子的物理意义是什么? 它反映了实际气体与理想气体的偏离 程度,也反映了气体压缩性的大小,Z>1表示实际气体较理想气体难压缩,Z<1表示实际气体较理想气体易压缩。 3、准平衡过程和可逆过程的区别是什么? 答:无耗散的准平衡过程才是可逆过程,所以可逆过程一定是准平衡过程,而准平衡过程不一定是可逆过程。 4、什么是卡诺循环?如何求其效率? 答:卡诺循环包括四个步骤:等温吸热,绝热膨胀,等温放热,绝热压缩。 5、余隙容积对单级活塞式压气机的影响? 答:余隙容积的存在会造成进气容积减少,所需功减少。余隙容积过大会使压缩机的生产能力和效率急剧下降,余隙容积过小会增加活塞与气缸端盖相碰撞的危险性 6、稳定流动工质焓火用的定义是如何表达的?

答:定义:稳定物流从任意给定状态经开口系统以可逆方式变化到环境状态,并只与环境交换热量时所能做的最大有用 功。 7、写出任意一个热力学第二定律的数学表达式、 答: 8、理想气体经绝热节流后,其温度、压力、热力学能、焓、熵如何变化? 答:温度降低,压力降低,热力学能减小、焓不变、熵增加。 9、冬季室内采用热泵供暖,若室内温度保持在20度,室外温度为-10度时,热泵的供暖系数理论上最高可达到多少? 答: 10、对于简单可压缩系统,实现平衡状态的条件是什么?热力学常用的基本状态参数有哪些? 答:热平衡、力平衡、相平衡;P、V、T 11、简述两级压缩中间冷却压气机中,中间冷却的作用是什么?如何计算最佳中间压力? 答:减少高压缸耗功,利于压气机安全运行,提高容积效率, 降低终了温度;中间压力: 12、混合理想气体的分体积定律是什么?写出分体积定律 的数学表达式。

工程热力学课后答案..

《工程热力学》 沈维道主编 第四版 课后思想题答案(1~5章) 第1章 基本概念 ⒈ 闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。 ⒉ 有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。这种观点对不对,为什么? 答:不对。“绝热系”指的是过程中与外界无热量交换的系统。热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。物质并不“拥有”热量。一个系统能否绝热与其边界是否对物质流开放无关。 ⒊ 平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系? 答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。 ⒋ 倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式 b e p p p =+ ()b p p >; b v p p p =- ()b p p < 中,当地大气压是否必定是环境大气压? 答:可能会的。因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。 “当地大气压”并非就是环境大气压。准确地说,计算式中的Pb 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。 ⒌ 温度计测温的基本原理是什么? 答:温度计对温度的测量建立在热力学第零定律原理之上。它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。 ⒍ 经验温标的缺点是什么?为什么? 答:由选定的任意一种测温物质的某种物理性质,采用任意一种温度标定规则所得到的温标称为经验温标。由于经验温标依赖于测温物质的性质,当选用不同测温物质制作温度计、采用不同的物理性质作为温度的标志来测量温度时,除选定的基准点外,在其它温度上,不同的温度计对同一温度可能会给出不同测定值(尽管差值可能是微小的),因而任何一种经验温标都不能作为度量温度的标准。这便是经验温标的根本缺点。 ⒎ 促使系统状态变化的原因是什么?举例说明。 答:分两种不同情况: ⑴ 若系统原本不处于平衡状态,系统内各部分间存在着不平衡势差,则在不平衡势差的作用下,各个部分发生相互作用,系统的状态将发生变化。例如,将一块烧热了的铁扔进一盆水中,对于水和该铁块构成的系统说来,由于水和铁块之间存在着温度差别,起初系统处于热不平衡的状态。这种情况下,无需外界给予系统任何作用,系统也会因铁块对水放出热量而发生状态变化:铁块的温度逐渐降低,水的温度逐渐升高,最终系统从热不平衡的状态过渡到一种新的热平衡状态; ⑵ 若系统原处于平衡状态,则只有在外界的作用下(作功或传热)系统的状态才会发生变。 ⒏ 图1-16a 、b 所示容器为刚性容器:⑴将容器分成两部分。一部分装气体, 一部分抽成真空,中间是隔板。若突然抽去隔板,气体(系统)是否作功? ⑵设真空部分装有许多隔板,每抽去一块隔板让气体先恢复平衡再抽去一块, 问气体(系统)是否作功? ⑶上述两种情况从初态变化到终态,其过程是否都可在P-v 图上表示? 答:⑴;受刚性容器的约束,气体与外界间无任何力的作用,气体(系统)不对外界作功; ⑵ b 情况下系统也与外界无力的作用,因此系统不对外界作功;

工程热力学小论文

工程热力学小论文Revised on November 25, 2020

工程热力学论文 学院_________________ 专业_________________ 姓名_________________ 学号_________________ 浅析电冰箱压缩制冷循环 一、前言 随着科学技术进步以及人们生活水平的提高,电冰箱已经成为日常生活中越来越不可或缺的必需品。 电冰箱的制冷循环系统是电冰箱的核心部分,其节能、环保等改进也主要围绕着制冷循环系统进行。因此,了解和熟知电冰箱制冷循环系统的过程和原理,是我们参与该领域并对其实施改进的重要基础。 目前最普遍的电冰箱的制冷循环方式是压缩制冷循环,本文将对压缩制冷循环过程进行简单的描述与分析。 二、电冰箱的压缩制冷循环过程 从低于环境温度的物体中吸取热量,并将其转移给环境介质的过程,称为制冷。 由于热量只能自动地从高温物体传给低温物体,因此实现制冷必须包括消耗能量(如电能,机械能等)的补偿过程。 借助制冷系统消耗电能,利用物态变化过程中的吸热(液态→气态),放热(气态→液态)物理过程,强制热量由低温物体转至高温物体从而达到制冷的目的。

除少数环保冰箱外,现在普通家用冰箱的制冷剂大多还是氟利昂(主要是二氯二氟甲烷),它储存在冰箱的专用容器中。由于氟利昂会破坏臭氧层,现在已经被逐渐淘汰,改用其他的制冷剂,但它们制冷的原理是一样的。 家用电冰箱制冷系统循环过程,压缩机将低温低压的制冷剂气体吸入气缸,经过压缩机压缩,变成高温高压的气态,并排到冷凝器内,在冷凝器内,高温高压的气体与温度较低的环境进行交换,温度降低并冷凝为液体;液体通过毛细管节流,降低压力后进入蒸发器,在蒸发器内吸热汽化,(未汽化的暂留在储液管里),汽化后被吸回压缩机,重新压缩。如此周而复始,不断循环,使柜内温度降低。 三、压缩制冷循环过程的分析 1.逆向卡诺循环 冰箱的制冷是一个热泵的原理,就是利用机械能,在冰箱保温的条件下,将热量从冰箱里面移出,这些热量在冰箱外面散去。而热泵的工作原理可以用逆卡诺循环来表示。 在一定的冷库温度及环境温度下工作的最简单的 制冷循环是逆向卡诺循环。工质先经绝热膨胀过程1-2 而降温至冷库温度T2,接着在定温吸热过程2-3从低 温物体系热,然后经绝热压缩过程3-4,工质的温度升 高至环境温度T1,接着在定温放热过程4-1向环境放 热,从而完成卡诺循环。 q2=T2(s3-s2) |q1|=T1(s4-s1) |0|=|q1|-q2 逆卡诺循环的制冷系数与工质的性质无关,只取决于冷源(即被冷却物体)的温度T2和热源(即环境介质)的温度T1;降低T1,提高T2,均可提高制冷系数。此外,由热力学第二定律还可

工程热力学课程

高等职业教育教学课程标准工程热力学 适用专业:化工机械 2006年4月

一、课程性质与任务 工程热力学课程是化工机械专业的一门专业基础课,是研究物质的热力性质、热能与其它能量之间相互转换规律的科学,是培养化机专业技术人员的一门重要技术基础课,它以热力学基本作为基础,通过物质的压力、温度、比容等宏观参数和受热、冷却、膨胀、收缩等整体行为,对宏观现象和热力过程进行研究,同时探讨各种热力过程的特性,达到提高热能利用率和热功转换效率的最终目的。 本课程的任务是使学生掌握能量转换与利用的基本定律及其运用,掌握工质的热力性质分析,了解工程中节能技术的热力学原理及其分析方法,以实现能量转换的高效性和经济性,并为学习其他有关课程及从事有关生产技术工作打下必要的基础。 二、课程教学目标 工程热力学是研究热能与其他形式的能量(尤其是机械能)之间相互转换规律的一门学科。通过热能利用在整个能源利用中地位的阐述,使学生认识研究热能利用和学习工程热力学的重要性, 并注意渗透思想教育,逐步培养学生的辩证思维能力,加强学生的职业道德观念,向学生渗透爱课程、爱专业教育。通过对我国能源及其利用现状的介绍,增强学生对我国能源问题的忧患意识和责任意识,激发学生为解决我国能源问题而努力学习的热情。初步形成解决实际问题的能力,为学习专业知识和职业技能打下基础。 三、理论教学内容和要求 1 教学内容体系结构 课程体系结构为:

(1) 研究能量转化的宏观规律,即热力学第一定律与第二定律。这是工程热力学的理论基础。其中热力学第一定律从数量上描述了热能和机械能相互转换时的关系;热力学第二定律从质量上说明了热能和机械能之间的差别,指出能量转换的方向性。 (2) 研究工质(能量转换所凭借的物质)的基本热力性质。 (3) 研究常用典型热工设备中的工作过程。即应用热力学基本定律,分析工质在各种热工设备中经历的状态变化过程和循环,并探讨和分析影响能量转换效果的因素,以其提高转换效果的途径。 从工程应用角度,全部教学内容紧紧围绕热能与机械能的相互转换规律和提高转换效率途径的研究主题。 2 课程要求 通过本课程的学习,学生应达到下列基本要求: (1) 掌握热力学基本定律及其运用; (2)理解工质的热力性质及各种机械装置中热力过程和热力循环的基本原理,正确运用各种公式和图表。 (3) 从课程内容的角度,学生在学习了热力学第一定律与第二定律,初步了解和掌握了理想气体热力性质和过程基本规律之后,可以应用这些基本知识分析、解决一些实际问题,达到对所学知识的第一次初步理解和应用。然后,在进一步学习了实际气体热力性质和过程之后,更深层次的应用前面所学的基本知识,深入分析实际装置中的热力过程和多种循环,从而达到能在更高的认知层面上进一步综合、灵活应用工程热力学的知识去解决实际问题。 (4) 从研究方法的角度,像其他学科一样,在工程热力学中,普遍采用抽象、概括、理想化和简化的方法。这种略去细节、抽出共性、抓住主要矛盾的处理问题的方法,这种科学的抽象,不但不脱离实际,而且更深刻地反映了事物的本质,是科学研究的重要方法。

大学物理热力学论文

《大学物理》课程论文 热力学基础 摘要: 热力学第一定律其实是包括热现象在内的能量转换与守恒定律。热力学第二定律则是指明过程进行的方向与条件的另一基本定律。热力学所研究的物质宏观性质,特别是气体的性质,经过气体动理论的分析,才能了解其基本性质。气体动理论,经过热力学的研究而得到验证。两者相互补充,不可偏废。人们同时发现,热力学过程包括自发过程和非自发过程,都有明显的单方向性,都是不可逆过程。但从理想的可逆过程入手,引进熵的概念后,就可以从熵的变化来说明实际过程的不可逆性。因此,在热力学中,熵是一个十分重要的概念。关键词: (1)热力学第一定律(2)卡诺循环(3)热力学第二定律(4)熵 正文: 在一般情况下,当系统状态变化时,作功与传递热量往往是同时存在的。如果有一个系统,外界对它传递的热量为Q,系统从内能为E1 的初始平衡状态改变到内能为E2的终末平衡状态,同时系统对外做功为A,那么,不论过程如何,总有: Q= E2—E1+A 上式就是热力学第一定律。意义是:外界对系统传递的热量,一部分

是系统的内能增加,另一部分是用于系统对外做功。不难看出,热力学第一定律气其实是包括热量在内的能量守恒定律。它还指出,作功必须有能量转换而来,很显然第一类永动机违反了热力学第一定律,所以它根本不可能造成的。 物质系统经历一系列的变化过程又回到初始状态,这样的周而复始的变化过程称为循环过程,或简称循环。经历一个循环,回到初始状态时,内能没有改变,这是循环过程的重要特征。卡诺循环就是在两个温度恒定的热源(一个高温热源,一个低温热源)之间工作的循环过程。在完成一个循环后,气体的内能回到原值不变。卡诺循环还有以下特征: ①要完成一次卡诺循环必须有高温和低温两个热源: ②卡诺循环的效率只与两个热源的温度有关,高温热源的温 度越高,低温热源的温度越低,卡诺循环效率越大,也就 是说当两热源的温度差越大,从高温热源所吸取的热量Q1 的利用价值越大。 ③卡诺循环的效率总是小于1的(除非T2 =0K)。 那么热机的效率能不能达到100%呢?如果不可能到达100%,最大可能效率又是多少呢?有关这些问题的研究就促进了热力学第二定律的建立。 第一类永动机失败后,人们就设想有没有这种热机:它只从一个热源吸取热量,并使之全部转变为功,它不需要冷源,也没有释放热量。这种热机叫做第二类永动机。经过无数的尝试证明,第二类永动

工程热力学史的感想

热力学发展史 15041054 陈思远热力学发展史,其实就是热力学与统计力学的发展史,从热量概念的演变到热力学三个定律的形成,凝聚了众多科学家的心血,从一次次的推论,试验然后得出结论,这是一段艰辛的历史,也是人类认识自然,改造自然的历史。热力学是专门探讨能量内涵、能量转换以及能量与物质间交互作用的科学,早期物理中,把研究热现象的部分称为热物理,后来称为热学,近代则称之为热力学。顾名思义,热力学和“热”有关,和“力”也有关,热是一种传送中的能量。物体的原子或分子通过随机运动,把能量由较热的物体传往较冷的物体。 人类很早就对热有所认识,并加以应用,但是将热力学当成一门科学且定量地研究,则是由十七世纪末开始,也就是在温度计制造技术成熟,并知道如何精密地测量温度以后,才真正开启了热力学的研究.十七世纪时伽利略曾利用气体膨胀的性质制造气体温度计,波义耳在 1662 年发现在定温下,定量气体的压力与体积成反比;十八世纪,经由准确的实验建立了摄氏及华氏温标,其标准目前我们仍在使用;1781 年查理发现了在定压下气体体积会随着温度改变的现象,但对于热本质的了解则要等到十九世纪以后。焦耳自 1843 年起经过一连串的实验,证实了热是能量的另一种形式,并定出了热能与功两种单位换算的比值,此一能量守恒定律被称为热力学第一定律,自此人类对于热的本质才算了解。1850 年凯尔文及克劳修斯说明热机输出的功一定少于输入的热能,称为热力学第二定律。这两条定律再加上能士特在 1906 年所提出的热力学第三定律:即在有限次数的操纵下无法达到绝对零度,构成了热力学的基本架构。综观而言,所谓热力学发展史,其实就是热力学与统计力学的发展史,基本上约可划分成四个阶段。 第一阶段开始于十七世纪末到十九世纪中叶,这个时期累积了大量的实验和观察,并制造出蒸汽机,关于“热”的本质展开了研究和争论,为热力学理论的建立做了准备。在十九世纪前半叶首先出现的卡诺理论、热机理论(第二定律的前身)和热功相当互换的原理(第一定律的基础)已经包含了热力学的基本思想,这一阶段的热力学还留在热力学的现象描述,并未引进任何数学算式。 第二阶段是十九世纪中到十九世纪末。这个时期发展了热力学和分子运动论,这些理论的诞生与热功相当原理有关。热功相当原理奠定了热力学第一定律的基础,而第一定律和卡诺理论结合,又导致热力学第二定律的形成;热功相当原理跟微粒说结合则导致了分子运动论的建立,另一方面,以牛顿力学为基础的气体动力论也开始发展,而在这段时期内人们并不了解热力学与气体动力论之间的关连,热力学和分子运动论彼此还是隔绝的。 第三阶段是十九世纪七十年代末到二十世纪初,这个时期内,波兹曼结合热力学与分子动力学的理论,从而导致统计热力学的诞生,同时他也提出非平衡态的理论基础,至二十世纪初吉布斯提出系统理论建立了统计力学。这一时期的汤姆逊为热力学也做出了重大贡献。他研究卡诺循环也提出第二定律,同时更由此订定绝对温标,又称凯氏温标 K。他利用卡诺循环建立绝对温标,他重新设定水的冰点为 273.7 度;沸点为 373.7 度,为了纪念他的贡献,绝对温度的单位以凯尔文来命名。他在 1851 年发表题为《热动力理论》的论文,写出热力学第二定律的凯尔文表述:我们不可能从单一热源取热,使它完全变为有用的功而不产生其它影响。第三定律的发现普朗克在能士特提出的“在 0 K 时任何化学

相关主题
文本预览
相关文档 最新文档