当前位置:文档之家› 机械结构分析中的等效载荷与等效结构反求方法

机械结构分析中的等效载荷与等效结构反求方法

机械结构分析中的等效载荷与等效结构反求方法
机械结构分析中的等效载荷与等效结构反求方法

机械结构分析中的等效载荷与等效结构反求方法 摘 要:本文研究分析了机械结构等效载荷反求法与等效结构反求法两种原始参数反求的方法。等效载荷反求法通过应用有限元刚度方程进行解析求解,反求出未知结构对已知结构的作用载荷,获得结构分析所需的原始参数,该方法计算简单可靠。而等效结构法是对原始结构还原的一种方法,结合有限元与优化技术进行迭代求解,该方法能够反求出更多的信息,适用范围更广。

关键词:反求;有限元;优化;等效我荷;等效结构

机械结构分析是机械设计过程中重要的一环。无论在新产品开发还是原产品的改进中,尤其是在模仿设计时,容易存在技术资料缺失的情况,要保证设计的可靠进行,如何获取结构分析所需的原始参数是一个有待研究的问题。原始参数还原是再设计进行的基础,只有通过参数还原才能提炼出再设计需要的基本参考数据。原始设计参数还原受到诸多随机因素的影响,也许无法找到原始值,但可以使反求参数在满足工程需要的精度内接近于原始参数。

目前参数反求集中在材料参数反求与结构参数反求。其反求方法大都采用有限元软件与优化算法相结合,即用优化方法不断调整参数值,最终使一定参数下有限元的计算结果与试验测量值之差在最小二乘意义下最小。对简单问题一般采用基于梯度的优化算法,对复杂而局部最优点多的问题采用遗传算法。文中结合桥吊扩轨改造的工程实际问题,根据结构分析的特点,得出原始参数反求的两种方法:等效载荷反求法和等效结构反求法。等效载荷反求法是通过反求出未知结构对已知结构的等效载荷,从而获得设计所需的原始载荷数据资料。等效结构反求法则是反求出结构的未知几何尺寸,还原结构,为进一步结构分析作准备。文中叙述了这两种反求方法的思路及其特点。

1 等效载荷反求法

该方法实际上反求的是未知结构作用于已知结构上的等效载荷,即未知结构与已知结构间的相互作用力和力偶。把未知的结构力学参数用等效载荷来代替,而未知结构与已知结构问的相互作用载荷可以应用有限元建立刚度方程进行求解。把已知结构的位移分为3类:位移边界条件的节点位移0u 、内部的节点位移e u 与未知结构连接的界面位移j u ;,它们对应的节点荷载分别是0F 、e F 、j F 。将

刚度矩阵也按3类位移相应分块,则已知结构的刚度方程为:

000000

0e j o e ee ej e e j je jj j j k k k u F k k k u F k k k u F ????????????=?????????????

?????

(1) 式(1)中,刚度矩阵、约束反力o F 与已知结构内部节点上的外载荷e F 都是已

知的,未知结构对已知结构的作用载荷j F 是待求的未知量。把约束边界位移条

件0u =0代入方程(I)并展开得:

oe e oj j o K u K u F += (2)

oe e ej j e K u K u F += (3)

je e jj j j K u K u F += (4)

通过上面3个方程,可以求解出3个未知量e u ,j u ,和j F 。求得的j F 就是未知

结构作用于已知结构上的等效载荷。

由式(2)和式(3)可求得:

1e a a j u K F u -??=????

(5) 其中:a K =oe

oj ee ej K K K K ?????? ; a F =e j F F ??????

。 将式(5)代入式(4),得:

1e j je jj je jj a a j u F K K K K K F u -??????==??????

?? (6) 等效载荷反求法应用刚度方程由约束反力反求两部分结构问的相互作用载荷,思路简单,计算可靠。但反求出的等效载荷都是某工况某环境下的载荷,当工作环境发生变化时载荷将发生变化,因而等效载荷反求法具有一定的局限性。 2 等效结构反求法

等效结构反求法是在虚拟环境下构筑一个虚拟结构的反求方法。在充分应用现代分析手段的基础上,根据同类机械的结构,对已有的资料及相关信息分析,

应用计算机技术在虚拟环境下还原出反求对象的结构原型,还原出的结构是反求对象在某种意义上(如受力特征上)的等效结构。反求出了结构原型,就可进行产品的再设计。

目前对正向问题的求解较成熟,也已有很好的计算机软件平台,所以文中反求等效结构时充分利用正向问题的这一优势,将有限元与优化技术相结合。通过对技术资料的分析、推理,确定反求对象的结构方案,建立反求对象的初始有限元模型,有限元模型是结构分析的基础,由此应用正向问题的求解方法可以得到结构的力学特性。但初始结构是根据经验估计的,隐含理想化假定与简化,与结构原型不可避免地存在着差异,应用优化技术,通过迭代对结构参数不断调整,在满足已知条件(包括力学特性)的前提下找到最接近原型的结构,也即力学性能上的等效结构。其计算流程如图l 所示。

图1 等效结构反求法计算流程图

参数优化过程,是将反求对象的结构参数作为设计变量并,已知的力学特性(如变形量或约束反力)作为目标函数以茗),则目标函数是多变量函数:

1()(1,2,...,)f x f i m ==;

式中:12,,...,n x x x ----n 个设计变量,在该桥吊问题中就是机房结构尺寸及位置尺寸、前后拉杆直径等。

目标函数与n 个设计变量间关系可由刚度方程Ku=P 确定。U 是节点位移,也是设计变量的函数,即()u u x =,K 是刚度矩阵,P 是节点力。原始结构必然满足已

知条件,并使得目标函数等于或接近理想值,即0()()f x f x =。

这是多目标函数最优化问题,优化过程可归纳为如下一般形式:

12min (),(),...()T

q f x f x f x ???? x X ∈C R

()0i g x ≤ 1(1,2,...,)

i m = ()0j h x = 2(1,2,...,)i m = (7) 迭代的收敛条件为:

01()q k k k f

f δ=-≤∑ (8)

式中:k f ---q 个目标函数,k=1,2,…,q ;

0k f ---第k 个目标函数的目标值(已知);

()i g x ---1m 个不等式约束函数;

()j h x ---2m 个等式约束函数;

δ---目标函数的公差。

等效结构反求法应用优化技术将反向问题转化成正向同题进行求解.应用成熟的正向问题求解方法和软件的优势,还原出反求对象的结构。

3 算例

境外有一台轨距为24.384 m 、起吊质量为35.6 t 的桥吊(如图2所示)准备移装到内地一码头。由于该码头的轨距为30m .因而必须对原机进行扩轨改造。但是原机上部结构的构造不清楚,只知道原桥吊的门框部分结构参数及6个工况下门框4个立柱的支反力。为了对扩轨改造后的门框进行结构分析,必须先反求原桥吊的原始参数。

3.1 等效载荷法求解步骤

桥吊的扩轨改造方案是把门框陆侧(右侧)支腿往外移(如图3所示),而桥吊的上部结构不变,因而改造前后上部结构对门框的作用载荷也不变,故反求出上部结构对门框的等效载荷,就可进行桥吊扩轨改造后门框部分的各项力学性能分析。这样该桥吊的反向问题可简化为:已知各工况下4立柱支反力和门框部分的几何尺寸,反向求解门框所受的载荷,并使门框在满足给定立柱反力情况下,同

时满足强度、刚度条件。所以“等效”是对满足门框部分的强度和刚度条件及立柱支反力而言的。

图2 轨距为24.348m的原桥吊图3 改造后轨距为30m的桥吊门框所受载荷有立柱反力、门框重力、风载、上部结构对门框的等效载荷。边界位移节点就是4个立柱的支承点,则其节点载荷凡就是立柱反力,内部节点载荷,e是门框重力与风载的叠加。求解步骤为:(1)建立门框的有限元模型;(2)施加门框重力和风载;(3)在相应节点施加立柱反力;(4)提取门框的刚度矩阵;

(5)提取各节点力,包括立柱节点力;(6)建立门框的刚度方程;(7)由剐度方程求解门框与上部结构的界面节点力,即等效载荷。

等效载荷反求中,撇开了未知的上部结构细节,只考虑它们对门框部分的作用力,即等效载荷。但改造前后桥吊是在两个不同的码头,工作风速不同,结构所受风载将不同,所以将原桥吊上部结构的等效载荷用于改造后桥吊的力学性能分析必然产生一定的误差。

3.2 等效结构法求解步骤

应用等效结构反求法还原桥吊的上部结构,在分析技术资料的基础上先提出上部结构的结构方案,根据经验选取上部结构的初始值,建立桥吊完整的有限元模型,按此有限元模型施加载荷,计算各工况下原桥吊的立柱反力。该桥吊中的优化反求是以各工况下的立柱反力为目标函数,将上部结构的部分结构几何尺寸参数取为设计变量,同时满足应力约束条件和变形约束条件,应用优化技术找到满足条件的一组最佳结构尺寸,使等效结构的立柱反力与实际的立柱反力的差值为最小,从而反求得到最接近原型的上部结构参数。具体实施时,借助ANSYS有限元分析软件平台进行优化,其计算流程如图4所示。

图4 桥吊的等效结构反求流程

3.3 计算结果对比

该例采用等效载荷法哺。与等效结构法两种方法进行反求,再在这两种反求结果基础上分别对原桥吊进行结构分析,得到原桥吊的最大应力值列于表1。图5与图6分别是用两种反求法求得的原桥吊在工况4下的应力云图。其他工况下两种反求方法得到的应力分布状况也一致。

表1 两种反求结果下原吊桥最大应力值 MPa

图5 等效载荷反求法下原桥吊应力云图图6 等效结构反求法下原桥吊应力云图表l和应力云图表明,两种反求方法在各工况中,最大应力值接近,应力分

布也都一致。只是等效结构法与等效载荷法相比,应力值高,可能是匕部结构风载考虑得更大的缘故。

4 两种方法的特点

4.1 计算误差

由于结构分析中应用有限元方法,所以计算误差有网格的离散误差和计算机的数值运算误差,反求过程与原始设计间还存在因人而异的人工误差,比如风载的计算。除此之外,等效载荷法在再设计中不能考虑工作环境变化引起的载荷差异。等效结构法也由于应用优化技术逼近结构原型,所以还存在优化方法误差。4.2 计算量大小与时间

等效载倚法由于无需进行反复迭代计算,显然计算量小而且所花时间短,而等效结构法相对花费机时。但等效结构法可以在通用有限元程序中实现,而等效载荷法目前还得应用有限元软件建模,从中提取刚度矩阵和节点力,再导入Matlab求解刚度方程。

4.3 适用范围

从适用范围角度来看,等效结构反求法优于等效载荷反求法。由于等效结构法反求出结构,获得的信息量更大,在全部结构已知的基础上,可以进行各种分析,例如结构的动态分析。而等效载荷法反求获得的是特定工况下的等效载荷,当工作情况发生变化时,该等效载荷就不适用了,而且也不便于进行其他形式的结构分析。

5 结论

通过反求未知结构部分的等效载荷与等效结构两种途径,获得结构分析所需的原始参数。等效载荷反求法计算简单可靠,但反求出的等效载荷受工况和环境限制。等效结构反求法由于反求出更多的结构信息,克服了等效载荷法的缺陷,所以有更广泛的发展前景。这两种方法都可推广到结构设计中,用于获得给定条件下的最佳设计,缩短产品设计周期。反求等效载荷或结构的方式有很多,针对不同问题可以有不同的选择。文中在反求等效载荷时综合了有限元与解析法,反求原始结构时综合了有限元与优化技术,目前优化方法种类繁多,有模拟退火算法、遗传算法、神经网络算法等,如何选取合适的优化方法提高计算精度,缩短计算时间,是有待进一步研究的问题。

机械设计 1 机械与结构设计基础知识(简化)

1机械与结构设计基础知识 第一节机械与结构设计(基础)概述 一、机械与结构设计(基础)在工业设计中的地位 工业设计的核心是产品设计,而产品设计离不开机械设计。 随着专业分工的细化,团队工作(team work)已成为产品开发设计的主要工作方式。工业设计师作为团队的一员,需要与其他成员进行交流,特别是要与机械与结构设计工程师就工业产品的原理、结构、材料、工艺及加工设备等方面进行交流与讨论。 一定的工程技术知识,包括机械设计与结构设计知识是团队合作交流的基础,特别是与工程技术人员的交流。 另外,为了使设计具有工程技术、生产加工的可能性、合理性、经济性,工业设计师需要具备一定的工程技术知识,包括机械设计与结构设计知识。 如,设计某种洗衣机时,工业设计师就要首先了解洗衣机的工作原理、结构、材料工艺与加工设备等,并在设计过程中就这方面的问题频繁地与各种工程师,包括机械与结构设计工程师进行切磋与沟通。 本课程(专业基础课)学习目的: 学习机械与结构设计基本知识,帮助同学提高工程技术素养,提高相关能力,力求实现以下目标: 1、初步具备机械与结构基本常识,有能力与机械或结构工程师就相关问题进行一般的交流沟通; 2、使产品设计方案具有更多的工程技术尤其是结构、机构方面的合理性; 3、为进一步深入学习机械与结构设计与其它工程技术知识打下初步的基础。

二、机械与结构设计(基础)研究对象和任务 (一)、机械、机器、机构、构件、零件的概念 机械--- 机器与机构的总称,如工程机械、包装机械、农业机械、矿山机械、化工机械等。机器--- 一种用来转换或传递能量、物料和信息的、能执行机械运动的装置,具有以下特征: 1、人为的实物(机件)的组合体。 2、各个部分间具有确定的相对运动。 3、能够用来转换能量,完成有用功或处理信息等。如电动工具、车辆、计算机等 机构--- 能实现预期的机械运动的各实物的组合体。常用机构:连杆机构、凸轮机构、齿轮机构等。具有以下特征: 1、人为的实物(机件)的组和体。 2、各个部分间具有确定的相对运动。 构件--- 机构中的运动单元或构造单元,由一个或几个零件组成的刚性结构。 零件--- 制造的基本单元。零件又分:通用零件、标准件,专用零件、非标准件等,可以是各种材料制成的。 因此,机械产品(机器)由三个层面构成: 机构、构件、零件 1、内燃机分析示例

最新整理机械结构设计基础知识复习过程

机械结构设计基础知识 1前言 1.1机械结构设计的任务 机械结构设计的任务是在总体设计的基础上,根据所确定的原理方案,确定并绘出具体的结构图,以体现所要求的功能。是将抽象的工作原理具体化为某类构件或零部件,具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之间关系等问题。所以,结构设计的直接产物虽是技术图纸,但结构设计工作不是简单的机械制图,图纸只是表达设计方案的语言,综合技术的具体化是结构设计的基本内容。 1.2机械结构设计特点 机械结构设计的主要特点有:(1)它是集思考、绘图、计算(有时进行必要的实验)于一体的设计过程,是机械设计中涉及的问题最多、最具体、工作量最大的工作阶段,在整个机械设计过程中,平均约80%的时间用于结构设计,对机械设计的成败起着举足轻重的作用。(2)机械结构设计问题的多解性,即满足同一设计要求的机械结构并不是唯一的。(3)机械结构设计阶段是一个很活跃的设计环节,常常需反复交叉的进行。为此,在进行机械结构设计时,必须了解从机器的整体出发对机械结构的基本要求 2机械结构件的结构要素和设计方法 2.1结构件的几何要素 机械结构的功能主要是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。零部件的几何形状由它的表面所构成,一个零件通常有多个表面,在这些表面中有的与其它零部件表面直接接触,把这一部分表面称为功能表面。在功能表面之间的联结部分称为联接表面。 零件的功能表面是决定机械功能的重要因素,功能表面的设计是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。 2.2结构件之间的联接 在机器或机械中,任何零件都不是孤立存在的。因此在结构设计中除了研究零件本身的功能和其它特征外,还必须研究零件之间的相互关系。 零件的相关分为直接相关和间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关和运动相关两类。位置相关是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以保证齿轮的正常啮合。运动相关是指一零件的运动轨迹与另一零件有关,如车床刀架的运动轨迹必须平行于于主轴的中心线,这是靠床身导轨和主轴轴线相平行来保证的,所以,主轴与导轨之间位置相关;而刀架与主轴之间为运动相关。 多数零件都有两个或更多的直接相关零件,故每个零件大都具有两个或多个部位在结构上与其它零件有关。在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理地选择材料的热处理方式、形状、尺寸、精度及表面质量等。同时还必须考虑满足间接相关条件,如进行尺寸链和精度计算等。一般来说,若某零件直接相关零件愈多,其结构就愈复杂;零件的间接相关零件愈多,其精度要求愈高。例如,轴毂联接见图1。 2.3结构设计据结构件的材料及热处理不同应注意的问题 机械设计中可以选择的材料众多,不同的材料具有不同的性质,不同的材料对应不同的加工工艺,结构设计中既要根据功能要求合理地选择适当的材料,又要根据材料的种类确定适当的加工工艺,并根据加工工艺的要求确定适当的结构,只有通过适当的结构设计才能使所选择的材料最充分的发挥优势。 设计者要做到正确地选择材料就必须充分地了解所选材料的力学性能、加工性能、使用成本等信息。结构设计中应根据所选材料的特性及其所对应的加工工艺而遵循不同的设计原则。

机械创新设计较完整版

第一讲 1、机械创新设计与现代设计、常规设计有什么差异和关联?创新设计方法:充分发挥设计者的创造力,利用人类现有相关科学技术知识,实现创新构思,获得新颖性、创造性、实用性成果.特点:强调发挥创造性,提出新方案,提供新颖。独特的设计方法,获得具有创新性、新颖性、实用性的成果。现代设计:以计算机为工具,运用各类工程应用软件及现代设计理念进行的机械设计。 常规设计:常规设计是以应用公式、图标为先导,已成熟的技术为基础,借助设计经验等常规方法进行设计 关联: 机械常规设计始终是最基本的机械设计方法,在强调现代设计、创新设计时不可忽视其重要性。 创新设计的基础——常规、现代设计方法的综合、灵活运用。现代设计方法仅仅借助了先进、高效的计算机应用手段,提高了设计过程的效率,但没有脱离常规设计的思维。 2.现代创新人才应具备那些基本素质? (1) 具备必须的基础知识和专业知识 (2) 不断进取与追求的精神 (3) 合理的创新思维方式(突破传统定式) (4) 善于捕捉瞬间的灵感(创新的必备条件) (5) 掌握一定的创新技法 3.学习机械创新设计的内容有那些? 1.机构的创新设计 2.机构应用创新设计 3.机构组合设计产生新机构系统 4.机械结构的创新设计 5.利用反求原理进行创新设计 6.利用仿生原理进行创新设计 第二讲 1简述创造性思维四大特性

(方法的开放性;过程的自觉性;解决问题的顿悟性;结果的独特性)。 影响创造性思维形成与发展的主要因素包括哪些? (1)天赋能力:与生俱来的所有神经元 (2)生活实践:后天实践活动具有的重大意义 (3)科学地学习与训练科学、简单易行的专业学习与训练 2.了解和阐述创造性思维、创造活动、创造能力三者的关系。3.理解综合、分离创造原理的特性和基本实施途径。 概念:有目的的将复杂对象分解,提取核心技 术,并利用于其他新事物。 特征:1)与综合创造原理对立,但不矛盾; 2)冲破事物原有形态的限制,在分离中产生新的技术价值; 3)实质上综合法与分离法两者无明显界限,实践中常常相互贯穿,共同促成新事物。 实施途径:1)基于结构的分解;2)基于特性、原理的列举分离 第三讲 1.学习创造原理的基础知识有什么实际意义? 2.物场三要素是指什么?(两个物与一个场)比较完全物场(三个要素齐全的场)、不完全物场(三要素中有两个要素存在的场)、非物场(三要素中仅有一个要素的场)的异同。 3.列举三种所熟悉的创造理论,简述其实施的基本途径。 (1)物场要素变换:电磁场取代机械场 (2)物场要素补建:超声波加工(特种加工工艺) 第四讲 1、实施群体集智法应遵循哪些原则?提出自己运用此法的技巧。(要求从不同角度提两点) 1.自由思考原则:解放思想、消除顾虑 2.延迟评判原则:过早的结论会压制不同的 想法,可能扼杀有创造性的萌芽 3.以量求质原则:相关统计表明,一批设想 的价值含量与总数量成非线性正比。 4.综合改善原则:充分利用信息的增值。 2.为什么设问探求法特别强调“善于提问”?简述所学的九种基本提问。 ●学习者的基本技能 ●创造者分析、解决问题的基础 ①有无其他用途;②能否借用(直接);③能否改变使用(间接);④能否扩大(改良); ⑤能否缩小(改良);⑥能否代用;⑦能否重新调整;⑧能否颠倒;⑨能否组合

(完整版)机械原理知识点归纳总结

第一章绪论 基本概念:机器、机构、机械、零件、构件、机架、原动件和从动件。 第二章平面机构的结构分析 机构运动简图的绘制、运动链成为机构的条件和机构的组成原理是本章学习的重点。 1. 机构运动简图的绘制 机构运动简图的绘制是本章的重点,也是一个难点。 为保证机构运动简图与实际机械有完全相同的结构和运动特性,对绘制好的简图需进一步检查与核对(运动副的性质和数目来检查)。 2. 运动链成为机构的条件 判断所设计的运动链能否成为机构,是本章的重点。 运动链成为机构的条件是:原动件数目等于运动链的自由度数目。 机构自由度的计算错误会导致对机构运动的可能性和确定性的错误判断,从而影响机械设计工作的正常进行。 机构自由度计算是本章学习的重点。 准确识别复合铰链、局部自由度和虚约束,并做出正确处理。 (1) 复合铰链 复合铰链是指两个以上的构件在同一处以转动副相联接时组成的运动副。 正确处理方法:k个在同一处形成复合铰链的构件,其转动副的数目应为(k-1)个。 (2) 局部自由度 局部自由度是机构中某些构件所具有的并不影响其他构件的运动的自由度。局部自由度常发生在为减小高副磨损而增加的滚子处。 正确处理方法:从机构自由度计算公式中将局部自由度减去,也可以将滚子及与滚子相连的构件固结为一体,预先将滚子除去不计,然后再利用公式计算自由度。 (3) 虚约束 虚约束是机构中所存在的不产生实际约束效果的重复约束。 正确处理方法:计算自由度时,首先将引入虚约束的构件及其运动副除去不计,然后用自由度公式进行计算。 虚约束都是在一定的几何条件下出现的,这些几何条件有些是暗含的,有些则是明确给定的。对于暗含的几何条件,需通过直观判断来识别虚约束;对于明确给定的几何条件,则需通过严格的几何证明才能识别。 3. 机构的组成原理与结构分析 机构的组成过程和机构的结构分析过程正好相反,前者是研究如何将若干个自由度为零的基本杆组依次联接到原动件和机架上,以组成新的机构,它为设计者进行机构创新设计提供了一条途径;后者是研究如何将现有机构依次拆成基本杆组、原动件及机架,以便对机构进行结构分类。 第三章平面机构的运动分析 1.基本概念:速度瞬心、绝对速度瞬心和相对速度瞬心(数目、位置的确定),以及“三心定理”。 2.瞬心法在简单机构运动分析上的应用。 3.同一构件上两点的速度之间及加速度之间矢量方程式、组成移动副两平面运动构件在瞬时重合点上速度之间和加速度的矢量方程式,在什么条件下,可用相对运动图解法求解? 4.“速度影像”和“加速度影像”的应用条件。 5.构件的角速度和角加速度的大小和方向的确定以及构件上某点法向加速度的大小和方向的确定。 6.哥氏加速度出现的条件、大小的计算和方向的确定。 第四章平面机构的力分析 1.基本概念:“静力分析”、“动力分析”及“动态静力分析” 、“平衡力”或“平衡力矩”、“摩擦角”、“摩擦锥”、“当量摩擦系数”和“当量摩擦角”(引入的意义)、“摩擦圆”。 2.各种构件的惯性力的确定: ①作平面移动的构件; ②绕通过质心轴转动的构件;

机械结构设计知识

机械结构设计 一、机械结构设计的内容 具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之间关系等问题。 二、机械结构设计特点 机械结构设计的主要特点有:(1)它是集思考、绘图、计算(有时进行必要的实验)于一体的设计过程,是机械设计中涉及的问题最多、最具体、工作量最大的工作阶段,在整个机械设计过程中,平均约80%的时间用于结构设计,对机械设计的成败起着举足轻重的作用。(2)机械结构设计问题的多解性,即满足同一设计要求的机械结构并不是唯一的。(3)机械结构设计阶段是一个很活跃的设计环节,常常需反复交叉的进行。 三、结构件的几何要素 在功能表面之间的联结部分称为联接表面。零件的功能表面是决定机械功能的重要因素,功能表面的设计是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。 四、结构件之间的联接 零件的相关分为直接相关和间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关和运动相关两类。位置相关是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以保证齿轮的正常啮合。运动相关是指一零件的运动轨迹与另一零件有关,如车床刀架的运动轨迹必须平行于于主轴的中心线. 在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理

地选择材料的热处理方式、形状、尺寸、精度及表面质量等。同时还必须考虑满足间接相关条件,如进行尺寸链和精度计算等。 五、结构件的材料及热处理 设计者要做到正确地选择材料就必须充分地了解所选材料的力学性能、加工性能、使用成本等信息。结构设计中应根据所选材料的特性及其所对应的加工工艺而遵循不同的设计原则。 如:钢材受拉和受压时的力学特性基本相同,因此钢梁结构多为对称结构。铸铁材料的抗压强度远大于抗拉强度,因此承受弯矩的铸铁结构截面多为非对称形状,以使承载时最大压应力大于最大拉应力. 对于需要热处理加工的零件,在进行结构设计时的要求有如下几点:(1)零件的几何形状应力求简单、对称,理想的形状为球形。(2)具有不等截面的零件,其大小截面的变化必须平缓,避免突变。如果相邻部分的变化过大,大小截面冷却不均,必然形成内应力。(3)避免锐边尖角结构,为了防止锐边尖角处熔化或过热,一般在槽或孔的边缘上切出2~3mm的倒角。(4)避免厚薄悬殊的截面,厚薄悬殊的截面在淬火冷却时易变形,开裂的倾向较大。 六、机械结构设计的基本要求 下面就机械结构设计的三个不同层次来说明对结构设计的要求:1. 功能设计 满足主要机械功能要求,在技术上的具体化。如工作原理的实现、工作的可靠性、工艺、材料和装配等方面。 2. 质量设计 兼顾各种要求和限制,提高产品的质量和性能价格比,它是现代工程设计的特征。具体为操作、美观、成本、 安全、环保等众多其它要求和限制。 在现代设计中,质量设计相当重要,往往决定产品的竞争力。那种只满足主要技术功能要求的机械设计时代已经过去,统筹兼顾各种要求,提高产品的质量,是现代机械设计的关键所在。与考虑工作原理相比,兼顾各种要求似乎只是设计细节上的问题,然而细节的总和是质量,产品质量问题不仅是工艺和材料的问题,提高质量应始于设

建筑结构选型实例分析报告

建筑结构选型实例分析 第一章 悬挑结构:现代MOMA 1.工程概况: 当代MOMA位于东直门迎宾国道北侧,拥有首都北京的地标优势,项目规划建筑面积22万平方米,其中住宅为13.5万平方米,配套商业面积达8.5万平方米,包括多厅艺术影院,画廊,图书馆等文化展览设施,还包括了精品酒店,国际幼儿园,顶级餐饮,顶级俱乐部及健身房、游泳池、网球馆等生活设施与体育休闲设施。 当代MOMA由纽约的哥伦比亚大学教授StevenHoll设计,项目规划概念是BEIJINGLINKEDHYBRID,在建筑艺术方面实现了世界的唯一,更加充分的发掘城市空间的价值,将城市空间从平面、竖向的联系进一步发展为立体的城市空间。当代MOMA也是当代置业科技主题地产的延续与发展,在万国城Moma实现高舒适度、微能耗的基础上,将大规模使用可再生的绿色能源。从可持续的观点出发,当代MOMA适当的高密度(强度)开发利用土地与大规模使

用可再生的绿色能源是大城市发展的方向,是真正“节能省地型”的项目。 在当代MOMA的规划设计中,更多考虑了未来城市的生活模式,引入了复合功能的概念,实现开放功能的城市社区,在这里不单是居住功能,而且能够和谐的工作,娱乐、休闲消费、交通,作为一个汇集精品商业与国际文化的开放社区,充满生气与活力,将创造更和谐的国际化生活氛围,不仅为社区创造更舒适的环境,更多的交往机会,也将完善城市区域功能,为北京的城市形象,为北京奥运会增添光彩。项目计划2005年初开始建设,在2008年奥运会之前建成使用。 2.结构形式: 为减轻自重,梁柱采用H型钢,并且设置了受拉的钢斜撑,提高悬挑结构的刚度和承载力.为承受悬挑部分重力荷载产生的倾覆力矩,在悬挑部分增设钢斜撑,将倾覆力矩传递到塔楼上;在塔楼相应的部位增设钢管斜撑。使塔楼整体承受倾覆力矩。在塔楼内除设置核心筒外。还设置了十字型剪力墙,提高塔楼整体的刚度和抗倾覆能力。长悬挑是本工程主要设计难点之一,目前主体结构竖向构件采用了中震不屈服的性能目标,对于悬挑结构这样更加重要的部分,设计中采用了中震弹性设计的更高的性能目标,即悬挑部分的构件验算时,按中震弹性地震力(水平地震和竖向地震)与竖向荷载进行组合,考虑荷载分项系数,材料强度取设计值。经中震弹性设计验算,悬挑部位构件的应力比基本上都控制在0.9以下。 3.施工情况: 物业公司:第一物业服务有限公司 建筑面积:220000平方米 绿化率:34% 使用率:80% 容积率:2.64 建设规模:地上21层、地下两层

机械结构设计课程教学大纲

《机械结构设计》课程教学大纲 执笔人:陈建毅编撰日期:2009年8月30日 一、课程概述 《机械结构设计》是工业设计专业的职业核心课程(属于B类),它包括理论力学、材料力学和机械设计基础三部分内容。计划时数为68学时,本课程4学分。 通过本课程的学习,使学生掌握工程力学和机械设计有关的基本概念、基本理论和基本方法。会对物体进行正确的受力分析,会分析计算一些简单力学问题。培养学生对工程设计中的强度、刚度和稳定性问题有明确的基本概念,必要的基础知识和比较熟练的计算能力、分析能力和初步的实验分析能力。使学生学会应用工程力学的基本理论和方法分析与解决机械工程中的一些简单实际问题。掌握一般机械中常用机构和通用零件的工作原理、性能特点,及其使用、维护的基础知识。掌握常用机构的基本理论和设计方法,常用零部件失效形式、设计准则和设计方法。在本课程的学习,注意培养学生正确的设计思想和严谨的工作作风。 教学对象:工业设计专业大二上学期的高职学生。 二、教学内容描述 教学内容分成两个模块:工程力学基础和机械设计基础。工程力学主要内容分为静力分析和强度分析;机械设计基础分为机械零件基础、常用机构、机械传动基础。 第一篇工程力学基础 第一章工程力学的基本概念 教学内容: 第一节工程力学与工业设计 第二节工程力学的研究对象与基本内容 第三节工程力学的基本概念 第四节静力学公理 第五节约束与约束反力 第六节分离体与受力图 教学要求:了解力与力系的基本概念,掌握静力学的基本公理和各种常见约束的性质,对简单的物体系统,能熟练地取分离体,画受力图。 第二章构件与产品的静力分析 教学内容: 第一节平面力系的简化与合成 第二节平面力系平衡问题的求解 第三节空间力系简介超静定的概念

建筑结构选型案例分析(1)

1 混合结构体系 混合结构体系概述 混合结构是指承重的主要构件是用钢筋混凝土和砖木建造的。如一幢房屋的梁是用钢筋混凝土制成,以砖墙为承重墙,或者梁是用木材建造,柱是用钢筋混凝土建造。由两种或两种以上不同材料的承重结构所共同组成的结构体系均为混合结构。混合结构,又可以说是砖混结构.虽然也用钢筋浇柱\梁,但墙体具是承重功能,不能乱拆. 特点:质量较框架略差,质量较好,寿命较长.造价略低,适合6层以下,横向刚度大,整体性好,但平面灵活性差。 分类:型钢柱+混凝土梁+混凝土筒归入混凝土结构 型钢柱/钢管混凝土+钢梁+混凝土筒归入型钢框架混凝土核心筒结构 实例工程项目概况 金茂大厦(JinMaoTower),又称金茂大楼,位于上海浦东新区黄浦江畔的陆家嘴金融贸易区,楼高米,是上海目前第2高的摩天大楼(截至2008年)、中国大陆第3高楼、世界第8高楼。大厦于1994年开工,1999年建成,有地上88层,若再加上尖塔的楼层共有93层,地下3层,楼面面积27万8,707平方米,有多达130部电梯与555间客房,现已成为上海的一座地标,是集现代化办公楼、五星级酒店、会展中心、娱乐、商场等设施于一体,融汇中国塔型风格与西方建筑技术的多功能型摩天大楼,由著名的美国芝加哥SOM设计事务所的设计师Adrian Smith设计。因为中国人喜欢塔所以中国才把金茂大厦设计成这样。 实例工程项目结构选型与结构布置分析 其结构体系为巨型型钢混凝土翼柱+ 内筒混合结构体系。这种混合结构体系的巨型型钢混凝土柱和钢筋混凝土内筒通过刚性大梁构成一个整体的抗侧力体系, 而且其抗侧力体系的力矩很大, 效率很高。这种体系还可提供较大的使用空间, 其外围洞口可以做得很大。 2框架结构体系 框架结构体系概述 框架结构是利用梁柱组成的纵、横向框架,同时承受竖向荷载及水平荷载的

建筑结构选型案例分析

1 混合结构体系 1.1混合结构体系概述 混合结构是指承重的主要构件是用钢筋混凝土和砖木建造的。如一幢房屋的梁是用钢筋混凝土制成,以砖墙为承重墙,或者梁是用木材建造,柱是用钢筋混凝土建造。由两种或两种以上不同材料的承重结构所共同组成的结构体系均为混合结构。混合结构,又可以说是砖混结构.虽然也用钢筋浇柱\梁,但墙体具是承重功能,不能乱拆. 特点:质量较框架略差,质量较好,寿命较长.造价略低,适合6层以下,横向刚度大,整体性好,但平面灵活性差。 分类:型钢柱+混凝土梁+混凝土筒归入混凝土结构 型钢柱/钢管混凝土+钢梁+混凝土筒归入型钢框架混凝土核心筒结构 1.2 实例工程项目概况 金茂大厦(JinMaoTower),又称金茂大楼,位于上海浦东新区黄浦江畔的陆家嘴金融贸易区,楼高420.5米,是上海目前第2高的摩天大楼(截至2008年)、中国大陆第3高楼、世界第8高楼。大厦于1994年开工,1999年建成,有地上88层,若再加上尖塔的楼层共有93层,地下3层,楼面面积27万8,707平方米,有多达130部电梯与555间客房,现已成为上海的一座地标,是集现代化办公楼、五星级酒店、会展中心、娱乐、商场等设施于一体,融汇中国塔型风格与西方建筑技术的多功能型摩天大楼,由著名的美国芝加哥SOM设计事务所的设计师Adrian Smith设计。因为中国人喜欢塔所以中国才把金茂大厦设计成这样。 1.3 实例工程项目结构选型与结构布置分析 其结构体系为巨型型钢混凝土翼柱+ 内筒混合结构体系。这种混合结构体系的巨型型钢混凝土柱和钢筋混凝土内筒通过刚性大梁构成一个整体的抗侧力体系, 而且其抗侧力体系的力矩很大, 效率很高。这种体系还可提供较大的使用空间, 其外围洞口可以做得很大。 2框架结构体系 2.1框架结构体系概述 框架结构是利用梁柱组成的纵、横向框架,同时承受竖向荷载及水平荷载的

机械结构优化设计

机械结构优化设计 ——周江琛2013301390008 摘要:机械优化设计是一门综合性的学科,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。本文重点介绍机械优化设计方法的同时,对其原理、优缺点及适用范围进行了总结,并分析了优化方法的最新研究进展。关键词:优化方法约束特点函数 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立

目标函数和约束条件,并使目标函数获得最优值一种现代设计方法,目前机械优化设计已广泛应用于航天、航空和国防等各部门。优化设计是20世纪60年代初发展起来的,它是将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新方法,就可以寻找出最佳设计方案,从而大大提高设计效率和质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门。优化方法的发展经历了数值法、数值分析法和非数值分析法三个阶段。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始,近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益所以今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 优化设计方法多种多样,主要有以下几种:1无约束优化设计法;无约束优化设计是没有约束函数的优化设计,无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算

重庆大学机械原理结构分析习题3第二章 平面机构的结构分析

第二章平面机构的结构分析 1.填空题: (1)机构具有确定运动的条件是;根据机构的组成原理,任何机构都可看成是由和组成的。 (2)由M个构件组成的复合铰链应包括个转动副。 (3)零件是机器中的单元体;构件是机构中的单元体。 (4)构件的自由度是指;机构的自由度是指。 (5)在平面机构中若引入一个高副将引入个约束,而引入一个低副将引入个约束,构件数、约束数与机构自由度的关系是。 (6)一种相同的机构组成不同的机器。 A.可以 B.不可以 (7)Ⅲ级杆组应由组成。 A.三个构件和六个低副; B.四个构件和六个低副; C.二个构件和三个低副。(8)内燃机中的连杆属于。 A.机器 B.机构 C.构件 (9)有两个平面机构的自由度都等于1,现用一个有两铰链的运动构件将它们串成一个平面机构,这时自由度等于。 A .0 B.1 C.2 (10)图1.10所示的四个分图中,图所示构件系统是不能运动的。 2.画出图1.11所示机构的运动简图。

3.图1.12所示为一机构的初拟设计方案。试求: (1)计算其自由度,分析其设计是否合理?如有复合铰链,局部自由度和虚约束需说明。(2)如此初拟方案不合理,请修改并用简图表示。 4.计算图1.13所示机构的自由度,判断是否有确定运动;若不能,试绘出改进后的机构简图。修改的原动件仍为AC杆(图中有箭头的构件)。 5.计算图1.14所示机构的自由度。 6.计算图1.15所示机构的自由度。

7.计算图1.16所示机构的自由度。 8.判断图1.17所示各图是否为机构。 9.计算图1.18所示机构的自由度。 10.计算图1.19所示机构的自由度。

机械设计的基础知识点详解

机械设计基础知识点详解 绪论 1、机器的特征: (1)它是人为的实物组合; (2)各实物间具有确定的相对运动; (3)能代替或减轻人类的劳动去完成有效的机械功或转换机械能。 第一章平面机构的自由度和速度分析 要求:握机构的自由度计算公式,理解的基础上掌握机构确定性运动的条件,熟练掌握机构速度瞬心数的求法。 1、基本概念 运动副:凡两个构件直接接触而又能产生一定相对运动的联接称为运动副。低副:两构件通过面接触组成的运动副称为低副。 高副:两构件通过点或线接触组成的运动副称为高副。 复合铰链:两个以上的构件同时在一处用回转副相联构成的回转副。 局部自由度:机构中常出现的一种与输出构件运动无关的自由度,称为局部自由度或多余自由度。 虚约束:对机构运动不起限制作用的重复约束称为虚约束或称消极约束。 瞬心:任一刚体相对另一刚体作平面运动时,其相对运动可看作是绕某一重合点的转动,该重合点称为瞬时回转中心或速度瞬心,简称瞬心。如果两个刚体都是运动的,则其瞬心称为相对速度瞬心;如果两个刚体之一是静止的,则其瞬心

称为绝对速度瞬心。 2、平面机构自由度计算 作平面运动的自由构件具有三个自由度,每个低副引入两个约束,即使构件失去两个自由度;每个高副引入一个约束,使构件失去一个自由度。 计算平面机构自由度的公式: F=3n-2P L-P H 机构要具有确定的运动,则机构自由度数必须与机构的原动件数目相等。即,机构具有确定运动的条件是F>0,且F等于原动件个数。 3、复合铰链、局部自由度和虚约束 (a)K个构件汇交而成的复合铰链应具有(K-1)个回转副。 (b)局部自由度虽然不影响整个机构的运动,但滚子可使高副接触处的滑动摩擦变成滚动摩擦,减少磨损,所以实际机械中常有局部自由度出现。 (c)虚约束对机构运动虽不起作用,但是可以增加构件的刚性和使构件受力均衡,所以实际机械中虚约束随处可见。 4、速度瞬心 如果一个机构由K个构件组成,则瞬心数目为 N=K(K-1)/2 瞬心位置的确定: (a)已知两重合点相对速度方向,则该两相对速度向量垂线的交点便是两 构件的瞬心。 (b)两构件组成回转副时,回转副的中心便是它们的瞬心。 (c)两构件组成移动副时,由于所有重合点的相对速度方向都平行于移动

机械结构分析与课程设计说明书

机械结构分析与设计课程设计 设计说明书 设计题目设计一级直齿圆柱齿轮 学生姓名学号 班级 专业 分院 指导教师 完成时间

目录 分析和拟定传动方案 (1) 电动机的选择 (3) 计算传动装置的运动和动力参数 (4) 传动件的设计计算 (5) 轴的设计计算 (8) 滚动轴承的选择及计算 (9) 键联接的选择及校核计算 (9) 联轴器的选择 (10) 减速器附件的选择 (11) 润滑与密封 (14) 参考文献 (14) 设计小结 (14)

分析和拟定传动方案 1.1设计背景: 机器通常由原动机,传动装置和工作机三部分组成。传动装置用来传递原 动机的运动和力,变换其运动形式以满足工作机的需要,是机器的重要组 成部分。传动装置的传动的传动方案是否合理将直接影响机器的工作性 能、重量和成本。合理的传动方案除了满足工作机的功能外,还要求结构 简单、制造方便、成本低廉、传动效率高和使用维护方便。拟定一个合理 的传动方案,除了综合考虑工作装置的载荷、运动及机器的其他要求外, 还应熟悉各种传动机构的特点,以便选择一个合适的传动机构。 (1) 带传动承载能力较低,在传递相同转矩时,结构尺寸较其他形式大, 但传动平稳,能缓冲吸振,宜布置在传动系统的高速级,以降低传动 的转矩,减少带传动的结构尺寸。 (2) 链传动平稳性差,宜布置在低速级。 (3) 斜齿轮传动较直齿轮传动平稳,相对应用于高速级。 综上各条件考虑宜选用带传动和齿轮传动 1.2原始数据: (1) 工作装置的阻力 W F =5500N (2) 工作装置的线速度 W V =1.35s m (3) 输送机滚筒直径 D=250mm (4) 卷筒效率 w =0.98 二、电动机的选择 2.1 选择电动机的类型 按工作要求和条件选取Y 系列一般用途的全封闭自扇冷笼型三相异步电 动机 2.2 选择电动机的功率

结构选型大作业(各种结构建筑实例分析)

结构选型大作业 ————09城规 一、砖混结构 ⑴工程名称:麻省理工学院学生宿舍贝克大楼 ⑵工程概况: 所在地:美国波士顿 设计师:阿尔瓦·阿尔托 时间:1947~1948 地点:麻省理工学院 楼层高度:七层 (1946年,阿尔托接受委托在临近查尔 斯河繁华的海岸线的地方设计一栋学生宿 舍楼。他希望使宿舍尽可能多的房间面向太 阳和河流,而不是面向聚集的车流,所以解 决这一问题的方案就是把宿舍楼设计成蜿 蜒曲折的形式,形成一种倾斜着流动的风景。西面主要是一些次要的空间,例如公用房间、走廊以及位于大厅一层入口处以扇形方式向外发散的楼梯。为了避免走廊的光线昏暗,他将小卖部和自助餐厅的高度降低了一些。宿舍的表面用的是粗糙的红色石砖,而低矮的餐厅部分使用的是灰色大理石。西面是一个常青藤缠绕的藤架和一座大型露

天花园。 这座有着红色石砖墙、外形蜿蜒曲折的宿舍楼,跟其他建筑相比是那么与众不同,从而成为一座标志性建筑。这种北欧浪漫主义的建筑手法使得当时的国际先锋派大为震惊。同时这种理性主义原则下的反理性形式,体现了阿尔托对现代主义独裁专断的否定。希契柯克称它有“表现主义”倾向。因当时建筑材料仍受管制,只好用砖砌承重墙,高七层,平面作弯来弯去的蛇形,这样就可使宿舍每人都能看窗外的查里斯河风景,同时,曲线布置也可以冲散一般宿舍特有的单调冷漠气氛。) ⑶结构形式分析 ①结构形式:砖砌承重墙 ②受力特点:砖墙既是承重结构,又是围护结构。墙体、 基础等竖向承重构件采用砖砌体结构,楼 盖、屋盖等水平承重构件采用装配式或现浇 钢筋混凝土结构 ⑷施工方案:(平面图)

⑸建筑结构特点:建筑平面灵活,使用方便,结构构件 巧妙转化为精致的装饰。 二、框架结构 ⑴工程名称:萨伏伊别墅(the Villa Savoye) ⑵工程概况:萨伏伊别墅是现代主义建筑的经典作品之一,位于巴黎近郊的普瓦西(Poissy),由现 经典别墅设计案例 代建筑大师勒柯布西耶于1928年设计,1930年建成,使用钢筋混凝土框架结构。这幢白房子表面看来平淡无奇,简单的柏拉图形体和平整的白色粉刷的外墙,简单到几乎没有任何多余装饰的

创新设计在机械结构设计中的应用李作宏

创新设计在机械结构设计中的应用李作宏 发表时间:2019-11-27T09:39:47.260Z 来源:《中国西部科技》2019年第23期作者:李作宏 [导读] 随着社会经济的快速发展,各类设计技术等都在持续创新,机械结构类也不例外。在追求创新改革,提高技能的同时,对设计人员的挑选和培训不能忽略,增加他们的创新理念。在原有的传统机械设计基础上做出一定程度的修改,并对其应用开展研究和探索。 李作宏 深圳市卓视达科技信息有限责任公司 摘要:随着社会经济的快速发展,各类设计技术等都在持续创新,机械结构类也不例外。在追求创新改革,提高技能的同时,对设计人员的挑选和培训不能忽略,增加他们的创新理念。在原有的传统机械设计基础上做出一定程度的修改,并对其应用开展研究和探索。 关键词:创新设计;机械结构设计;应用 引言 机械结构设计对机械产品的实用性及可靠性有着较大的影响作用,也体现着我国机械制造水平的高低,在机械制造业的发展中占有重要地位。进行机械结构设计时,需要充分考虑到机械构件的尺寸、形状或位置及材料等各方面因素,而创新设计能够实现对传统机械结构设计的优化,使机械结构设计的整体水平得到提高,进而促进机械制造业的可持续发展。通过深入分析创新设计在机械结构设计中的运用,有利于发挥创新设计的运用价值,为机械结构设计业的发展提供有利支持。 1概述 机械结构设计是保证机械产品质量的根基。机械结构设计的内容主要包括机械产品材料的选择、机械产品的外形设计、机械产品的尺寸型号设计、机械零件的连接方式设计及机械功能的设计等。随着社会和科技的飞速发展,机械结构设计的创新迫在眉睫。机械结构创新应建立在科学理论和实践之上,利用科学技术对现有的机械结构设计进行合理优化,完善机械产品的各部分零件和结构。 2机械结构设计的关键因素 2.1保障机械产品的最优质量 质量是机械产品的重要价值体现,只有过硬的质量才可保证机械产品的长远发展。因此,设计者在进行机械结构设计时,首先,要考虑机械产品的结构、硬度、精确度是否合格。其次,在实现最大化经济效益的前提下,对机械产品的造型、环保节能性能、操作简便性进行合理设计,保障产品质量的优质性。 2.2保障机械产品的创新和优化 机械结构设计的创新和优化可通过产品的独特性、外型的吸引力、操作的便捷度等方面表现。结构设计的创新决定了产品的畅销度和竞争力,是机械结构设计的核心内容。 3创新设计在机械结构设计中的应用 3.1产品数量变元法 机械零件是构成机械产品的最小单位,为提高零件的实用性能,机械设计师需对零件进行优化和选择。首先,设计师应制定机械产品零件测定方案,对每一个机械零件的使用频率、精确度、安全性、节能性等进行综合测评。其次,针对综合测评指数对零件进行优胜劣汰,合理调整产品的零件组成数量,优化产品结构,提高产品的性价比。 3.2部位变元 机械是由各种各样的零件部件所组成的,每个零件部位都各有作用,之前相互关联。安装部位的不同,导致其发挥作用的效果也不同。所以说,将每个零件安装在最合适的部位是最为重要的。在设计中,让每个零件都在不同部位进行测试检验,调整它们到最佳位置,这样才能实现最终优化方案。举个例子,在对元器件进行处理的时候,把连接部位固定在相对对称轴的地方,这能合理有效地确保元器件的完整性,避免其发生弯曲,保障了整体的协调和外形稳定,正确的借助余下空间,摆放剩余零件。 3.3材料变元 材料是机械结构中最基础也是最重要的部分,为最终整体结构质量奠定基矗材料的不同也决定着功能和最后呈现效果的不同。所以说,选用正确合理的材料对机械结构尤为重要。在创新设计工作开展时,对材料的选择不能忽略懈怠,要根据实际情况从各种各样的材料中找出最符合标准和要求的,从而来保障工作顺利进行和结构质量的良好。假设以钢材为选中材料用于机械结构,那么务必需要提升结构的稳定性和刚硬度,这样才能充分的将其钢材的特点发挥出来,实现最优结构质量。如果要完成这一想法,必须需要对钢材进行和截面积的加大工作,这样才能把它的优势发挥到最大。铸铁材料与钢材相比,刚硬度有一点不足,并且深受原先传统设计的影响,导致它的优点优势不能发挥到位,确保不了结构的质量和安全。为了改善这一问题,可以将强筋或其他类似材料加入到铸铁中,这对质量和性质都有质的提高。充分利用变元法,将材料进行改变,选用最优材料设计方案,以保障效果最佳。 3.4产品制造工艺变元法 机械结构设计和制造工艺共同决定了机械产品质量。设计师应根据每个零件的基本性能、精确度、安全标准,为零件设计科学合理的的结构方案。严格按照制造工艺的相关准则,确保零件的精准和美观,从根本上保障机械产品的质量和品质。 3.5部位变元 机械是由各种各样的零件部件所组成的,每个零件部位都各有作用,之前相互关联。安装部位的不同,导致其发挥作用的效果也不同。所以说,将每个零件安装在最合适的部位是最为重要的。在设计中,让每个零件都在不同部位进行测试检验,调整它们到最佳位置,这样才能实现最终优化方案。举个例子,在对元器件进行处理的时候,把连接部位固定在相对对称轴的地方,这能合理有效地确保元器件的完整性,避免其发生弯曲,保障了整体的协调和外形稳定,正确的借助余下空间,摆放剩余零件。 4机械结构设计的优化创新方法 4.1保障结构的社会效益与系统可行性 目前,对机械结构的创新设计采用的是变元法的方式。通过改变和调整机械结构设计的相关因素,来获得新的机械结构设计方法。但在利用变元法的结构设计时,必须基于市场应用的实际需求,在性能、经济上进行充分考虑。变元法研究的内容包括机械结构设计的数

机械设计基础知识点总结

1.构件:独立的运动单元/零件:独立的制造单元 机构:用来传递运动和力的、有一个构件为机架的、用构件间能有确定相对运动的连接方式组成的构件系统(机构=机架(1个)+原动件(≥1个)+从动件(若干)) 机器:包含一个或者多个机构的系统 注:从力的角度看机构和机器并无差别,故将机构和机器统称为机械 1. 机构运动简图的要点:1)构件数目与实际数目相同2)运动副的种类和数目与实际数目相同3)运动副之间的相对位置以及构件尺寸与实际机构成比例(该项机构示意图不需要) 2. 运动副(两构件组成运动副):1)高副(两构件点或线接触) 2)低副(两构件面接触组成),例如转动副、移动副 3. 自由度(F )=原动件数目,自由度计算公式: 为高副数目)(为低副数目) (为活动构件数目)(H H L L P P P P n n F --=23 求解自由度时需要考虑以下问题:1)复合铰链2)局部自由度3)虚约束 4. 杆长条件:最短杆+最长杆≤其它两杆之和(满足杆长条件则机构中存在整转副) I ) 满足杆长条件,若最短杆为机架,则为双曲柄机构 II ) 满足杆长条件,若最短杆为机架的邻边,则为曲柄摇杆 机构 III ) 满足杆长条件,若最短杆为机架的对边,则为双摇杆机

构 IV ) 不满足杆长条件,则为双摇杆机构 5. 急回特性:摇杆转过角度均为摆角(摇杆左右极限位置的夹角)的大小,而曲柄转过角度不同,例如:牛头刨床、往复式输送机 急回特性可用行程速度变化系数(或称行程速比系数)K 表示 1 1180180180//21211221+-?=?-?+?=====K K t t t t K θθθ??ψψωω θ为极位夹角(连杆与曲柄两次共线时,两线之间的夹角) 6. 压力角:作用力F 方向与作用点绝对速度c v 方向的夹角α 7. 从动件压力角α=90°(传动角γ=0°)时产生死点,可用飞轮或者构件本身惯性消除 8. 凸轮机构的分类及其特点:I)按凸轮形状分:盘形、移动、圆柱凸轮(端面) II )按推杆形状分:1)尖顶——构造简单,易磨损,用于仪表机构(只用于受力不大的低速机构)2)滚子——磨损小,应用广3)平底——受力好,润滑好,用于高速转动,效率高,但是无法进入凹面 III )按推杆运动分:直动(对心、偏置)、摆动 IV)按保持接触方式分:力封闭(重力、弹簧等)、几何形状封闭(凹槽、等宽、等径、主回凸轮) 9. 凸轮机构的压力角:从动件运动方向与凸轮给从动件的力的方向之间所夹的锐角α(凸轮给从动件的力的方向沿接触点的法线方向) 压力角的大小与凸轮基圆尺寸有关,基圆半径越小,压力角

相关主题
文本预览
相关文档 最新文档