当前位置:文档之家› 支持向量机与最小二乘法的关系研究

支持向量机与最小二乘法的关系研究

支持向量机与最小二乘法的关系研究
支持向量机与最小二乘法的关系研究

最小二乘支持向量机

clc clear close all %--------------------------------------------------- % 产生训练样本与测试样本,每一列为一个样本 k=125; m=10; n1=ones(5,125); n2=ones(5,10); n3=[120,150,218,247.7,56,181,0,57,4.32,23.51,24.16,93.5,96,93,910,20,24,26.7,220,33.9,46.9,70 .2,72,128,139,144,159.8,230,679,15.21,20.37,22.1,16,35,73,86,336,82,87,94,121,170,172.9,180, 26.6,70.4,164,25.1,274,3,14,45,60,72,304,22.3,35.1,56,63,68,68,207,236,37,80,82,293,42,220,76 6,10,36.2,105,117,240,851,4072,4.6875,0.962,2,20.443,18.614,4.0787,17.187,17.314,11.299,11. 31,3.7648,2587.2,1565,87.266,85.865,84.333,61.394,57.983,59,57,673.6,32.2,255,707,50.11,56, 121,130.4,300.44,685,174,111,410,574,127,200,1678,162,334,48.155,49.77,45.703,39.216,56.98 2,32.597,26.859,43.737,20.385; 120,60,120.7,148.7,78,262,434,77,193,61.33,261.05,36.7,41,58,1592,41.9,27.8,90.6,230,36.5,16 1.6,70.2,442,419,714,754,438.7,572.4,4992,61.25,59.79,64.1,237,30,520,110,419,81,87,195,69,3 20,334,97,22.7,69.5,244,411.91,376,198,221,168,139,160.3,443.5,7.8,50.6,99.9,149.6,99.2,99.2, 416,410.2,130,243,161,134,98,340,990,4,12.6,169.4,257,676,2802,15850,10.826,15.787,16.667, 17.036,17.972,20.83,21.432,21.731,21.834,21.835,26.818,7.882,98,6.5004,7.0013,8.0593,10.822 ,18.866,28,13,423.5,5.5,48,115,15.97,13,14,2.39,42.14,102,24,58,120,256,107,48,652.9,35,39.9, 1.4272,8.4485,9.1405,9.4118,10.479,15.47,16.887,17.018,17.175; 33,40,126.6,78.7,18,41,226,19,118,45.21,196.13,11.2,12.8,43,801,20.2,24.4,49.2,57,31.5,94.1,17 1.5,221,269.4,351,250,312.4,343,1823,45.94,45.24,44.3,92,10,140,18,105,33,26,14,32,53,172,34 ,22.5,28.9,103,320.9,55,191,199,82,21,63.1,110.9,12.4,16.1,51.4,57.5,35.9,35.9,347,159,91,274. 2,79,52,156,42,115,3,4.4,59.1,92,200,772,9057,17.522,12.299,3.8667,5.6786,6.6865,6.992,5.370 8,5.8304,11.299,11.244,7.2202,4.704,35,5.1647,4.4914,7.2211,4.1623,4.6218,9,0.1,77.6,1.4,8.3, 11,4.66,2.4,3,7.22,3.25,9,9.3,0,18,22,11,14,80.7,5.6,47.8,4.0354,2.1505,2.4557,2.7451,1.2837,4. 9724,3.0902,2.1034,1.7657; 84,70,142.1,192.7,21,28,387,21,125,98.03,201.4,69.5,82.5,37,932,44.2,30,95,110,39.3,193.3,371 .6,461,614.1,634,502,644.6,768.9,3671,81.83,80.49,81.4,470,93,1200,92,1074,224,218,153,268, 520,812.5,271,109,241.2,497,1832.8,1002,701,804,330,430,303.7,946,95.7,93,24.8,276,202.9,20 2.9,1345,817.3,430,1347.7,406,239,610,480,660,33,15.5,347.6,468,818,3521,22621,66.964,70.2 46,76.533,52.811,55.363,67.589,54.936,52.297,53.089,53.146,61.888,1.4,48,1.0686,2.642,0.386 85,10.406,8.6555,70,11,988.9,12.6,33,55,45.37,22,29,1.8,43.18,170,29.3,105,71,503,154,117,10 05.9,30,5.35,22.539,19.355,19.509,22.941,13.571,38.674,39.431,26.219,24.719; 0.55,1,0.9,0.9,0,0,0,0,0,1.01,0.87,1.1,0.6,0,0,0.38,0,0.5,7,0,0.56,0,0.7,0.35,0,1,0.38,0.51,0,0,0,0,0 ,7.1,6,7.4,21,5.4,7.5,15,8,3.2,37.7,8,0,10.4,8.3,18.4,17,0,0,3.1,4.6,0.1,56.1,1.4,1.1,2.3,0,0,0,20,3. 5,2.9,8.4,8.9,2.9,0,14,0,6,0,1.8,4,4,10,535,0,0.7052,0.93333,4.0318,1.3644,0.50983,1.0742,2.826 9,2.4692,2.4646,0.30944,0,0,0,0,0,13.215,9.8739,15,12,344.5,13.2,29.8,81,12.3,22.13,74,4.38,64 .71,367,64.4,201,250,382,224,131,419.1,44,247.6,23.843,20.276,23.192,25.686,17.684,8.2873,1 3.733,10.924,35.955]; for t=1:k

(完整版)支持向量机(SVM)原理及应用概述

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

支持向量机算法

支持向量机算法 [摘要] 本文介绍统计学习理论中最年轻的分支——支持向量机的算法,主要有:以SVM-light为代表的块算法、分解算法和在线训练法,比较了各自的优缺点,并介绍了其它几种算法及多类分类算法。 [关键词] 块算法分解算法在线训练法 Colin Campbell对SVM的训练算法作了一个综述,主要介绍了以SVM为代表的分解算法、Platt的SMO和Kerrthi的近邻算法,但没有详细介绍各算法的特点,并且没有包括算法的最新进展。以下对各种算法的特点进行详细介绍,并介绍几种新的SVM算法,如张学工的CSVM,Scholkopf的v-SVM分类器,J. A. K. Suykens 提出的最小二乘法支持向量机LSSVM,Mint-H suan Yang提出的训练支持向量机的几何方法,SOR以及多类时的SVM算法。 块算法最早是由Boser等人提出来的,它的出发点是:删除矩阵中对应于Lagrange乘数为零的行和列不会对最终结果产生影响。对于给定的训练样本集,如果其中的支持向量是已知的,寻优算法就可以排除非支持向量,只需对支持向量计算权值(即Lagrange乘数)即可。但是,在训练过程结束以前支持向量是未知的,因此,块算法的目标就是通过某种迭代逐步排除非支持向时。具体的做法是,在算法的每一步中块算法解决一个包含下列样本的二次规划子问题:即上一步中剩下的具有非零Lagrange乘数的样本,以及M个不满足Kohn-Tucker条件的最差的样本;如果在某一步中,不满足Kohn-Tucker条件的样本数不足M 个,则这些样本全部加入到新的二次规划问题中。每个二次规划子问题都采用上一个二次规划子问题的结果作为初始值。在最后一步时,所有非零Lagrange乘数都被找到,因此,最后一步解决了初始的大型二次规划问题。块算法将矩阵的规模从训练样本数的平方减少到具有非零Lagrange乘数的样本数的平方,大减少了训练过程对存储的要求,对于一般的问题这种算法可以满足对训练速度的要求。对于训练样本数很大或支持向量数很大的问题,块算法仍然无法将矩阵放入内存中。 Osuna针对SVM训练速度慢及时间空间复杂度大的问题,提出了分解算法,并将之应用于人脸检测中,主要思想是将训练样本分为工作集B的非工作集N,B中的样本数为q个,q远小于总样本个数,每次只针对工作集B中的q个样本训练,而固定N中的训练样本,算法的要点有三:1)应用有约束条件下二次规划极值点存大的最优条件KTT条件,推出本问题的约束条件,这也是终止条件。2)工作集中训练样本的选择算法,应能保证分解算法能快速收敛,且计算费用最少。3)分解算法收敛的理论证明,Osuna等证明了一个定理:如果存在不满足Kohn-Tucker条件的样本,那么在把它加入到上一个子问题的集合中后,重新优化这个子问题,则可行点(Feasible Point)依然满足约束条件,且性能严格地改进。因此,如果每一步至少加入一个不满足Kohn-Tucker条件的样本,一系列铁二次子问题可保证最后单调收敛。Chang,C.-C.证明Osuna的证明不严密,并详尽地分析了分解算法的收敛过程及速度,该算法的关键在于选择一种最优的工

支持向量机的实现

模式识别课程大作业报告——支持向量机(SVM)的实现 姓名: 学号: 专业: 任课教师: 研究生导师: 内容摘要

支持向量机是一种十分经典的分类方法,它不仅是模式识别学科中的重要内容,而且在图像处理领域中得到了广泛应用。现在,很多图像检索、图像分类算法的实现都以支持向量机为基础。本次大作业的内容以开源计算机视觉库OpenCV为基础,编程实现支持向量机分类器,并对标准数据集进行测试,分别计算出训练样本的识别率和测试样本的识别率。 本报告的组织结构主要分为3大部分。第一部分简述了支持向量机的原理;第二部分介绍了如何利用OpenCV来实现支持向量机分类器;第三部分给出在标准数据集上的测试结果。 一、支持向量机原理概述

在高维空间中的分类问题实际上是寻找一个超平面,将两类样本分开,这个超平面就叫做分类面。两类样本中离分类面最近的样本到分类面的距离称为分类间隔。最优超平面指的是分类间隔最大的超平面。支持向量机实质上提供了一种利用最优超平面进行分类的方法。由最优分类面可以确定两个与其平行的边界超平面。通过拉格朗日法求解最优分类面,最终可以得出结论:实际决定最优分类面位置的只是那些离分类面最近的样本。这些样本就被称为支持向量,它们可能只是训练样本中很少的一部分。支持向量如图1所示。 图1 图1中,H是最优分类面,H1和H2别是两个边界超平面。实心样本就是支持向量。由于最优超平面完全是由这些支持向量决定的,所以这种方法被称作支持向量机(SVM)。 以上是线性可分的情况,对于线性不可分问题,可以在错分样本上增加一个惩罚因子来干预最优分类面的确定。这样一来,最优分类面不仅由离分类面最近的样本决定,还要由错分的样本决定。这种情况下的支持向量就由两部分组成:一部分是边界支持向量;另一部分是错分支持向量。 对于非线性的分类问题,可以通过特征变换将非线性问题转化为新空间中的线性问题。但是这样做的代价是会造成样本维数增加,进而导致计算量急剧增加,这就是所谓的“维度灾难”。为了避免高维空间中的计算,可以引入核函数的概念。这样一来,无论变换后空间的维数有多高,这个新空间中的线性支持向量机求解都可以在原空间通过核函数来进行。常用的核函数有多项式核、高斯核(径向基核)、Sigmoid函数。 二、支持向量机的实现 OpenCV是开源计算机视觉库,它在图像处理领域得到了广泛应用。OpenCV 中包含许多计算机视觉领域的经典算法,其中的机器学习代码部分就包含支持向量机的相关内容。OpenCV中比较经典的机器学习示例是“手写字母分类”。OpenCV 中给出了用支持向量机实现该示例的代码。本次大作业的任务是研究OpenCV中的支持向量机代码,然后将其改写为适用于所有数据库的通用程序,并用标准数据集对算法进行测试。本实验中使用的OpenCV版本是,实验平台为Visual

支持向量机算法学习总结

题目:支持向量机的算法学习 姓名: 学号: 专业: 指导教师:、 日期:2012年6 月20日

支持向量机的算法学习 1. 理论背景 基于数据的机器学习是现代智能技术中的重要方面,研究从观测数据 (样本) 出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。迄今为止,关于机器学习还没有一种被共同接受的理论框架,关于其实现方法大致可以分为三种: 第一种是经典的(参数)统计估计方法。包括模式识别、神经网络等在内,现有机器学习方法共同的重要理论基础之一是统计学。参数方法正是基于传统统计学的,在这种方法中,参数的相关形式是已知的,训练样本用来估计参数的值。这种方法有很大的局限性,首先,它需要已知样本分布形式,这需要花费很大代价,还有,传统统计学研究的是样本数目趋于无穷大时的渐近理论,现有学习方法也多是基于此假设。但在实际问题中,样本数往往是有限的,因此一些理论上很优秀的学习方法实际中表现却可能不尽人意。 第二种方法是经验非线性方法,如人工神经网络(ANN。这种方法利用已知样本建立非线性模型,克服了传统参数估计方法的困难。但是,这种方法缺乏一种统一的数学理论。 与传统统计学相比,统计学习理论( Statistical Learning Theory 或SLT) 是一种专门研究小样本情况下机器学习规律的理论。该理论针对小样本统计问题建立了一套新的理论体系,在这种体系下的统计推理规则不仅考虑了对渐近性能的要求,而且追求在现有有限信息的条件下得到最优结果。V. Vapnik 等人从六、七十年代开始致力于此方面研究[1] ,到九十年代中期,随着其理论的不断发展和成熟,也由于神经网络等学习方法在理论上缺乏实质性进展,统计学习理论开始受到越来越广泛的重视。 统计学习理论的一个核心概念就是VC维(VC Dimension)概念,它是描述函数集或学习机器的复杂性或者说是学习能力(Capacity of the machine) 的一个重要指标,在此概念基础上发展出了一系列关于统计学习的一致性(Consistency) 、收敛速度、推广性能(GeneralizationPerformance) 等的重要结论。 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy) 和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以

最小二乘支持向量机的自编代码和安装SVM工具箱方法

最小二乘支持向量机的自编代码 clear all; clc; N=35; %样本个数 NN1=4; %预测样本数 %********************随机选择初始训练样本及确定预测样本 ******************************* x=[]; y=[]; index=randperm(N); %随机排序N个序列 index=sort(index); gama=23.411; %正则化参数 deita=0.0698; %核参数值 %thita=; %核参数值 %*********构造感知机核函数************************************* %for i=1:N % x1=x(:,index(i)); % for j=1:N % x2=x(:,index(j)); % K(i,j)=tanh(deita*(x1'*x2)+thita); % end %end %*********构造径向基核函数************************************** for i=1:N x1=x(:,index(i)); for j=1:N x2=x(:,index(j)); x12=x1-x2; K(i,j)=exp(-(x12'*x12)/2/(deita*deita)); end end %*********构造多项式核函数**************************************** %for i=1:N % x1=x(:,index(i)); % for j=1:N % x2=x(:,index(j)); % K(i,j)=(1+x1'*x2)^(deita); % end %end %*********构造核矩阵************************************ for i=1:N-NN1 for j=1:N-NN1 omeiga1(i,j)=K(i,j); end

支持向量机

支持向量机 支持向量机模型选择研究 摘要:统计学习理论为系统地研究有限样本情况下的机器学习问题提供了一套 比较完整的理论体系。支持向量机 (suPportvectorMachine,SVM)是在该理论体系下产生的一种新的机器学习方法,它能较好地解决小样本、非线性、维数灾难和局部极小等问题,具有很强的泛化能力。支持向量机目前已经广泛地应用于模式识别、回归估计、概率密度估计等各个领域。不仅如此,支持向量机的出现推动了基于核的学习方法(Kernel-based Learning Methods) 的迅速发展,该方法使得研究人员能够高效地分析非线性关系,而这种高效率原先只有线性算法才能得到。目前,以支持向量机为主要代表的核方法是机器学习领域研究的焦点课题之一。 众所周知,支持向量机的性能主要取决于两个因素:(1)核函数的选择;(2)惩罚 系数(正则化参数)C的选择。对于具体的问题,如何确定SVM中的核函数与惩罚系 数就是所谓的模型选择问题。模型选择,尤其是核函数的选择是支持向量机研究的中心内容之一。本文针对模型选择问题,特别是核函数的选择问题进行了较为深入的研究。其中主要的内容如下: 1.系统地归纳总结了统计学习理论、核函数特征空间和支持向量机的有关理论与算法。 2.研究了SVM参数的基本语义,指出数据集中的不同特征和不同样本对分类结 果的影响可以分别由核参数和惩罚系数来刻画,从而样木重要性和特征重要性的考察可以归结到SVM的模型选择问题来研究。在

对样本加权SVM模型(例如模糊SVM)分析的基础上,运用了特征加权SVM模型,即FWSVM,本质上就是SVM与特征加权的结合。 3,在系统归纳总结SVM模型选择。尤其是核函数参数选择的常用方法(例如交叉验证技术、最小化LOO误差及其上界、优化核评估标准)。关键词:机器学习;模式分类;支持向量机;模型选择;核函数;核函数评估 支持向量机基础 引言 机器学习的科学基础之一是统计学。传统统计学所研究的是渐近理论,即当样本数目趋于无穷大时的极限特性。基于传统统计学的机器学习,也称为统计模式识别,由Duda等人提出。Duda的贡献主要是以经典统计理论为工具刻画了模式识别与机器学习的各类任务,同时暗示了对所建模型的评价方法。然而,在实际应用中,学习样本的数目往往是有限的,特别当问题处于高维空问时尤其如此。统计学习理论研究的是有限样本情况下的机器学习问题,它基于PAC(Probably Approximately Correct)框架给出关于学习算法泛化性能的界,从而可以得出误差精度和样木数目之间的关系。这样,样木集合成为泛化指标的随机变量,由此建立了结构风险理论。 Minsky和PaPert在20世纪60年代明确指出线性学习机计算能力有限。总体上,现实世界复杂的应用需要比线性函数更富有表达能力的假设空间"多层感知器可以作为这个问题的一个解,由此导向了 多层神经网络的反向传播算法。核函数表示方式提供了另一条解决途径,即将数据映射到高维空间来增强线性学习机的计算能力。核函数的引入最终使得在适当的特征空间中使用人们熟知的线性算法高效地检测非线性关系成为一可能。SVM是建立在统计学习理论(包括核函数的表示理论)基础上的第一个学习算法,目前主要应用于求解监督学习问题,即分类和回归问题。SVM以泛化能力为目标,其目的不是

支持向量机(SVM)算法推导及其分类的算法实现

支持向量机算法推导及其分类的算法实现 摘要:本文从线性分类问题开始逐步的叙述支持向量机思想的形成,并提供相应的推导过程。简述核函数的概念,以及kernel在SVM算法中的核心地位。介绍松弛变量引入的SVM算法原因,提出软间隔线性分类法。概括SVM分别在一对一和一对多分类问题中应用。基于SVM在一对多问题中的不足,提出SVM 的改进版本DAG SVM。 Abstract:This article begins with a linear classification problem, Gradually discuss formation of SVM, and their derivation. Description the concept of kernel function, and the core position in SVM algorithm. Describes the reasons for the introduction of slack variables, and propose soft-margin linear classification. Summary the application of SVM in one-to-one and one-to-many linear classification. Based on SVM shortage in one-to-many problems, an improved version which called DAG SVM was put forward. 关键字:SVM、线性分类、核函数、松弛变量、DAG SVM 1. SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 对于SVM的基本特点,小样本,并不是样本的绝对数量少,而是与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。非线性,是指SVM擅长处理样本数据线性不可分的情况,主要通过松弛变量和核函数实现,是SVM 的精髓。高维模式识别是指样本维数很高,通过SVM建立的分类器却很简洁,只包含落在边界上的支持向量。

最小二乘支持向量机

最小二乘支持向量机 产生训练样本与测试样本,每一列为一个样本 k=125;m=10;n1=ones(5,125);n2=ones(5,10);n3=[120,150,218,2 47、7,56,181,0,57,4、32, 23、51, 24、16, 93、5,96,93,910,20,24, 26、7,220, 33、9, 46、9, 70、2,72,128,139,144,1 59、8,230,679, 15、21, 20、37, 22、1,16,35,73,86,336,82,87,94,121,170,1 72、9,180, 26、6, 70、4,164, 25、1,274,3,14,45,60,72,304, 22、3, 35、1,56,63,68,68,207,236,37,80,82,293,42,220,766,10,

36、2,105,117,240,851,4072,4、6875,0、962,2, 20、443, 18、614,4、0787, 17、187, 17、314, 11、299, 11、31,3、7648,25 87、2,1565, 87、266, 85、865, 84、333, 61、394, 57、983,59,57,6 73、6, 32、2,255,707, 50、11,56,121,1 30、4,300、 44,685,174,111,410,574,127,200,1678,162,334, 48、155, 49、77, 45、703, 39、216,

56、982, 32、597, 26、859, 43、737, 20、385;120,60,1 20、7,1 48、7,78,262,434,77,193, 61、33,2 61、05, 36、7,41,58,1592, 41、9, 27、8, 90、6,230, 36、5,1 61、6, 70、2,442,419,714,754,4 38、7,5 72、4,4992, 61、25, 59、79, 64、1,237,30,520,110,419,81,87,195,69,320,334,97, 22、7,

支持向量机及支持向量回归简介

3.支持向量机(回归) 3.1.1 支持向量机 支持向量机(SVM )是美国Vapnik 教授于1990年代提出的,2000年代后成为了很受欢迎的机器学习方法。它将输入样本集合变换到高维空间使得其分离性状况得到改善。它的结构酷似三层感知器,是构造分类规则的通用方法。SVM 方法的贡献在于,它使得人们可以在非常高维的空间中构造出好的分类规则,为分类算法提供了统一的理论框架。作为副产品,SVM 从理论上解释了多层感知器的隐蔽层数目和隐节点数目的作用,因此,将神经网络的学习算法纳入了核技巧范畴。 所谓核技巧,就是找一个核函数(,)K x y 使其满足(,)((),())K x y x y φφ=,代 替在特征空间中内积(),())x y φφ(的计算。因为对于非线性分类,一般是先找一个非线性映射φ将输入数据映射到高维特征空间,使之分离性状况得到很大改观,此时在该特征空间中进行分类,然后再返会原空间,就得到了原输入空间的非线性分类。由于内积运算量相当大,核技巧就是为了降低计算量而生的。 特别, 对特征空间H 为Hilbert 空间的情形,设(,)K x y 是定义在输入空间 n R 上的二元函数,设H 中的规范正交基为12(),(),...,(), ...n x x x φφφ。如果 2 2 1 (,)((),()), {}k k k k k K x y a x y a l φφ∞ == ∈∑ , 那么取1 ()() k k k x a x φφ∞ ==∑ 即为所求的非线性嵌入映射。由于核函数(,)K x y 的定义 域是原来的输入空间,而不是高维的特征空间。因此,巧妙地避开了计算高维内 积 (),())x y φφ(所需付出的计算代价。实际计算中,我们只要选定一个(,)K x y ,

支持向量机(SVM)原理及应用概述

支持向量机(SVM)原理及应用 一、SVM得产生与发展 自1995年Vapnik(瓦普尼克)在统计学习理论得基础上提出SVM作为模式识别得新方法之后,SVM一直倍受关注。同年,Vapnik与Cortes提出软间隔(soft margin)SVM,通过引进松弛变量度量数据得误分类(分类出现错误时大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM得寻优过程即就是大得分隔间距与小得误差补偿之间得平衡过程;1996年,Vapnik等人又提出支持向量回归 (Support Vector Regression,SVR)得方法用于解决拟合问题。SVR同SVM得出发点都就是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR得目得不就是找到两种数据得分割平面,而就是找到能准确预测数据分布得平面,两者最终都转换为最优化问题得求解;1998年,Weston等人根据SVM原理提出了用于解决多类分类得SVM方法(MultiClass Support Vector Machines,MultiSVM),通过将多类分类转化成二类分类,将SVM应用于多分类问题得判断:此外,在SVM算法得基本框架下,研究者针对不同得方面提出了很多相关得改进算法。例如,Suykens 提出得最小二乘支持向量机(Least Square Support Vector Machine,LS—SVM)算法,Joachims等人提出得SVM1ight,张学工提出得中心支持向量机 (Central Support Vector Machine,CSVM),Scholkoph与Smola基于二次规划提出得vSVM等。此后,台湾大学林智仁(Lin ChihJen)教授等对SVM得典型应用进行总结,并设计开发出较为完善得SVM工具包,也就就是LIBSVM(A Library for Support Vector Machines)。LIBSVM就是一个通用得SVM软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM方法就是20世纪90年代初Vapnik等人根据统计学习理论提出得一种新得机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中得判别函数, 使学习机器得实际风险达到最小,保证了通过有限训练样本得到得小误差分类器,对独立测试集得测试误差仍然较小。 支持向量机得基本思想:首先,在线性可分情况下,在原空间寻找两类样本得最优分类超平面。在线性不可分得情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输入空

支持向量机训练算法综述_姬水旺

收稿日期:2003-06-13 作者简介:姬水旺(1977)),男,陕西府谷人,硕士,研究方向为机器学习、模式识别、数据挖掘。 支持向量机训练算法综述 姬水旺,姬旺田 (陕西移动通信有限责任公司,陕西西安710082) 摘 要:训练SVM 的本质是解决二次规划问题,在实际应用中,如果用于训练的样本数很大,标准的二次型优化技术就很难应用。针对这个问题,研究人员提出了各种解决方案,这些方案的核心思想是先将整个优化问题分解为多个同样性质的子问题,通过循环解决子问题来求得初始问题的解。由于这些方法都需要不断地循环迭代来解决每个子问题,所以需要的训练时间很长,这也是阻碍SVM 广泛应用的一个重要原因。文章系统回顾了SVM 训练的三种主流算法:块算法、分解算法和顺序最小优化算法,并且指出了未来发展方向。关键词:统计学习理论;支持向量机;训练算法 中图分类号:T P30116 文献标识码:A 文章编号:1005-3751(2004)01-0018-03 A Tutorial Survey of Support Vector Machine Training Algorithms JI Shu-i wang,JI Wang -tian (Shaanx i M obile Communicatio n Co.,Ltd,Xi .an 710082,China) Abstract:Trai n i ng SVM can be formulated into a quadratic programm i ng problem.For large learning tasks w ith many training exam ples,off-the-shelf opti m i zation techniques quickly become i ntractable i n their m emory and time requirem ents.T hus,many efficient tech -niques have been developed.These techniques divide the origi nal problem into several s maller sub-problems.By solving these s ub-prob -lems iteratively,the ori ginal larger problem is solved.All proposed methods suffer from the bottlen eck of long training ti me.This severely limited the w idespread application of SVM.T his paper systematically surveyed three mains tream SVM training algorithms:chunking,de -composition ,and sequenti al minimal optimization algorithms.It concludes with an illustrati on of future directions.Key words:statistical learning theory;support vector machine;trai ning algorithms 0 引 言 支持向量机(Support Vector M achine)是贝尔实验室研究人员V.Vapnik [1~3]等人在对统计学习理论三十多年的研究基础之上发展起来的一种全新的机器学习算法,也使统计学习理论第一次对实际应用产生重大影响。SVM 是基于统计学习理论的结构风险最小化原则的,它将最大分界面分类器思想和基于核的方法结合在一起,表现出了很好的泛化能力。由于SVM 方法有统计学习理论作为其坚实的数学基础,并且可以很好地克服维数灾难和过拟合等传统算法所不可规避的问题,所以受到了越来越多的研究人员的关注。近年来,关于SVM 方法的研究,包括算法本身的改进和算法的实际应用,都陆续提了出来。尽管SVM 算法的性能在许多实际问题的应用中得到了验证,但是该算法在计算上存在着一些问题,包括训练算法速度慢、算法复杂而难以实现以及检测阶段运算量大等等。 训练SVM 的本质是解决一个二次规划问题[4]: 在约束条件 0F A i F C,i =1,, ,l (1)E l i =1 A i y i =0 (2) 下,求 W(A )= E l i =1A i -1 2 E i,J A i A j y i y j {7(x i )#7(x j )} = E l i =1A i -1 2E i,J A i A j y i y j K (x i ,x j )(3)的最大值,其中K (x i ,x j )=7(x i )#7(x j )是满足Merce r 定理[4]条件的核函数。 如果令+=(A 1,A 2,,,A l )T ,D ij =y i y j K (x i ,x j )以上问题就可以写为:在约束条件 +T y =0(4)0F +F C (5) 下,求 W(+)=+T l -12 +T D +(6) 的最大值。 由于矩阵D 是非负定的,这个二次规划问题是一个凸函数的优化问题,因此Kohn -Tucker 条件[5]是最优点 第14卷 第1期2004年1月 微 机 发 展M icr ocomputer Dev elopment V ol.14 N o.1Jan.2004

支持向量机训练算法的实验比较

支持向量机训练算法的实验比较 姬水旺,姬旺田 (陕西移动通信有限责任公司,陕西西安710082) 摘 要:S VM是基于统计学习理论的结构风险最小化原则的,它将最大分界面分类器思想和基于核的方法结合在一起,表现出了很好的泛化能力。并对目前的三种主流算法S VM light,Bsvm与SvmFu在人脸检测、M NIST和USPS手写数字识别等应用中进行了系统比较。 关键词:统计学习理论;支持向量机;训练算法 中图法分类号:TP30116 文献标识码:A 文章编号:100123695(2004)1120018203 Experimental C omparison of Support Vector Machine Training Alg orithms J I Shui2wang,J I Wang2tian (Shanxi Mobile Communication Co.,LTD,Xi’an Shanxi710082,China) Abstract:Support vector learning alg orithm is based on structural risk minimization principle.It combines tw o remarkable ideas:maxi2 mum margin classifiers and im plicit feature spaces defined by kernel function.Presents a com prehensive com paris on of three mainstream learning alg orithms:S VM light,Bsvm,and SvmFu using face detection,M NIST,and USPS hand2written digit recognition applications. K ey w ords:S tatistical Learning T heory;Support Vector Machine;T raining Alg orithms 1 引言 支持向量机(Support Vector Machine)是贝尔实验室研究人员V.Vapnik等人[30]在对统计学习理论三十多年的研究基础之上发展起来的一种全新的机器学习算法,也是统计学习理论第一次对实际应用产生重大影响。S VM是基于统计学习理论的结构风险最小化原则的,它将最大分界面分类器思想和基于核的方法结合在一起,表现出了很好的泛化能力。由于S VM 方法有统计学习理论作为其坚实的数学基础,并且可以很好地克服维数灾难和过拟合等传统算法所不可规避的问题,所以受到了越来越多的研究人员的关注。近年来,关于S VM方法的研究,包括算法本身的改进和算法的实际应用,都陆续提了出来。但是,到目前为止,还没有看到有关支持向量算法总体评价和系统比较的工作,大多数研究人员只是用特定的训练和测试数据对自己的算法进行评价。由于支持向量机的参数与特定的问题以及特定的训练数据有很大的关系,要对它们进行统一的理论分析还非常困难,本文试从实验的角度对目前具有代表性的算法和训练数据进行比较,希望这些比较所得出的经验结论能对今后的研究和应用工作有指导意义。本文所用的比较算法主要有S VM light[14],Bsvm[12]和SvmFu[25],它们分别由美国C ornell University的Thorsten Joachims教授,National T aiwan U2 niversity的Chih2Jen Lin教授和美国麻省理工学院Ryan Rifkin博士编写的,在实验的过程中,笔者对算法进行了修改。由于这些算法有很大的相似之处,而且训练支持向量机是一个凸函数的优化过程,存在全局唯一的最优解,训练得到的模型不依赖于具体的算法实现,因此,本文在实验过程中不对具体的算法做不必要的区别。实验所采用的训练和测试数据也是目前非常有代表性的,它们大部分由国内外研究人员提供。 2 比较所用数据简介 本文所用的人脸检测数据是从美国麻省理工学院生物和计算学习中心[31](Center for Biological and C omputational Lear2 ning)得到的,这些数据是C BC L研究人员在波士顿和剑桥等地收集的,每个训练样本是一个由19×19=361个像素组成的图像,我们用一个361维的向量来代表每一个图像,每一个分量代表对应的像素值。用于训练的样本共有6977个,其中有2429个是人脸,其余4548个是非人脸;在测试样本集中共有24045个样本,包含472个人脸和23573个非人脸。这是一个两类分类问题。图1是训练样本中部分人脸的图像。 图1 人脸检测数据中部分人脸的图像 M NIST手写数字识别数据是由美国AT&T的Y ann LeCun 博士收集的[32],每个样本是0~9中的一个数字,用28×28= 784维的向量表示。在训练集中有60000个样本,测试集中有10000个样本。图2是训练样本中前100个样本的图像。 USPS手写识别数据是由美国麻省理工学院和贝尔实验室的研究人员共同从U.S.P ostal Service收集的[33],每个样本是0~9中的一个数字,用16×16=256维的向量中的各个分量表示所对应像素的灰度值。训练集中共有7291个样本,测试集中有2007个样本。图3是训练集中部分样本的图像。 ? 8 1 ?计算机应用研究2004年 收稿日期:2003206220;修返日期:2003211212

相关主题
文本预览
相关文档 最新文档