当前位置:文档之家› 蠕墨铸铁应用性能特点及应用范围

蠕墨铸铁应用性能特点及应用范围

蠕墨铸铁应用性能特点及应用范围
蠕墨铸铁应用性能特点及应用范围

蠕墨铸铁应用性能特点及应用范围

蠕墨铸铁介绍

蠕墨铸铁是指铸铁液经蠕化处理,使其石墨呈蠕虫状与少量球团状的铸铁,其石墨形状介于灰铁的片状石墨与球铁的球状石墨之间。如果蠕化处理过度,蠕墨铸铁就变成球墨铸铁,而蠕化不足就变成灰铸铁。

蠕墨铸铁的抗拉强度高于灰铸铁70%,略低于球墨铸铁,是结构件的优良材料。蠕虫状石墨象海水中的珊瑚,海水好似铸铁基体。蠕墨铸铁中球团石墨数增加,蠕化率降低,强度与伸长率提高,热导率和收缩率将变差。

目前蠕墨铸铁的基体仍限于铁素体和珠光体。蠕墨铸铁共晶团内蠕虫状石墨分枝发达,凝固时铁液中的碳原子与石墨相近,基体具有强烈形成铁素体的倾向。与D形石墨灰铸铁易于出现铁素体情况极为类似。为提高蠕墨铸铁的抗拉强度、耐磨性,可以采用合金化和正火处理等方法,提高珠光体量。

蠕墨铸铁的抗拉强度、屈服强度、伸长率、硬度等,是由蠕化率、珠光体量、石墨宽长比、渗碳体量、合金元素、夹杂物数量及分布等决定的。

蠕墨铸铁的化学成分应采用过共晶成分。蠕铁与灰铁不同,w(C)、w(Si)从亚共晶向共晶变化对力学性能影响小。过共晶成分蠕铁的缩孔缩松倾向比球铁和高强度灰铸铁小,铸造性能良好,致密度高,对降低液压铸件的渗漏非常有利。资料表明:Ce对于过共晶成分铁液活性作用大,对于亚共晶成分铁液活性作用很弱,过共晶成分有利于发挥Ce的活性。

蠕墨铸铁应用性能特点

在抗拉强度方面。虽然蠕墨铸铁的塑性较低,但抗拉强度和屈服强度和可锻铸铁相似。全部珠光体的蠕墨铸铁缸体的抗拉强度比珠光体灰铸铁高两倍,即使70%珠光体的蠕墨铸铁缸体的抗拉强度也比珠光体灰铸铁高,同时有较大的塑性。

在疲劳强度方面。由于蠕墨铸铁独特的石墨形态使其减少了裂纹的产生和扩展,因而其疲劳强度是均好于灰铸铁

在硬度方面。采用简单的冶金技术,改变蠕墨铸铁的基体结构,能达到提高硬度等级的目的,70%珠光体的蠕墨铸铁与100%珠光体的灰铸铁的硬度相同,且具有更高的抗拉强度。

在耐磨性方面。蠕墨铸铁中的石墨表面粗糙,限制了石墨的脱离,使得石墨粒子在表面长期存在,因此其耐磨性比灰铸铁高40%~70%,耐磨实验表明, 蠕墨铸铁的耐磨性为HT300的两倍以上。从石墨的形态出发,用蠕墨铸铁取代灰铸铁的最好材料。蠕墨铸铁的石墨形状与片状石墨相比,其长度较短而

厚,端部较圆,且表面粗糙,较圆的端部能抑制裂纹的发生和扩展,粗糙的表面也能限制石墨的脱落,这种独特的石墨形状与灰铸铁相比,能大大地提高抗拉强度、疲劳强度、弹性模量和耐磨性能。

在冲击性能方面。蠕铁的冲击韧度接近球铁。随着试验温度的降低,冲击韧度下降且存在一个从韧性断裂到脆性断裂的变化。但铁素体蠕铁的韧--脆转变温度在O~15℃之间与铁素体球铁相似,而珠光体蠕铁的韧--脆转变温度

约在100℃以下,也具有与球铁的相似特性。不过在韧性断裂范围内,铁素体蠕铁的冲击值为6.8~7.5J/cm2,比球铁冲击值16.3~19 J/cm2略低,说明蠕铁有较好的冲击韧度。

在机械加工性能方面。蠕铁的加上性能明显优于球铁而与灰铁HT200近似。加工性能与铸铁基体有关,如铁素体量多,进行车、刨、铣加工时有粘刀现象,加工表面留有刀痕且颜色发“乌”,刮研较困难,磨削时容易“枷”砂轮。如蠕化剂加人量增大,蠕铁中团、球状石墨与珠光体量增多,加工性能相应改善。

蠕墨铸铁应用范围

由于蠕墨铸铁兼有球墨铸铁和灰铸铁的性能,因此,它具有独特的用途,在钢锭模、汽车发动机、排气管、玻璃模具、柴油机缸盖、制动零件等方面的应用均取得了良好的效果。特别是我国第二汽车厂蠕墨铸铁排气管流水线的投产,标志着我国蠕墨铸铁生产已达到高水平。

到目前为止,世界蠕墨铸铁的产量尚难以统计,这是因为蠕墨铸铁往往被统计在灰铸铁的产量之内,而不是从单独的项目统计。我国蠕墨铸铁的年产量不尽确切。

我国制作蠕墨铸铁所用的蠕化剂中均含有稀土元素,如稀土硅铁镁合金、稀土硅铁合金、稀土硅钙合金、稀土锌镁硅铁合金等。由此,形成了适合国情的蠕化剂系列。

我国在蠕墨铸铁的形成机制的研究方面处于领先地位。另外在蠕墨铸铁的处理工艺、铁液熔炼及炉前质量控制、蠕墨铸铁常温和高温性能方面均进行了广泛、深入的研究。特别要指出的是,在我国冲天炉条件下,不少工厂能稳定地生产蠕墨铸铁,取得了显著的经济效益。可以预期,利用蠕墨铸铁具有的良好的综合性能、力学性能较高,在高温下有较高的强度,氧化生长较小、组织致密、热导率高以及断面敏感性小等特点,取代一部分高牌号灰铸铁、球墨铸铁和可锻铸铁,由此,将取得良好的技术经济效果。

灰铸铁的热处理

灰铸铁的热处理 退火 1.去应力退火为了消除铸件的残余应力,稳定其几何尺寸,减少或消除切削加工后产生的畸变,需要对铸件进行去应力退火。 去应力退火温度的确定,必须考虑铸铁的化学成分。普通灰铸铁当温度起过550℃时,即可能发生部分渗碳体的石墨化和粒化,使强度和硬度降低。当含有合金元素时,渗碳体开始分解的温度可提高到650℃左右。 通常,普通灰铸铁去应力退火温度以550℃为宜,低合金灰铸铁为600℃,高合金灰铸铁是可提高到650℃,加热速度一般选用60~120℃/h.保温时间决定于加热温度、铸件的大小和结构复杂程度以及对消除应力程度的要求。铸件去应力退火的冷却速度必须缓慢,以免产生二次残余内应力,冷却速度一般控制在20~40℃/h,冷却到200~150℃以下,可出炉空冷。 一些灰铸铁件的去应力退火规范示于表1. 2.石墨化退火灰铸铁件进行石墨化退火是为了降低硬度,改善加工性能,提高铸铁的塑性和韧性。 若铸件中不存在共晶渗碳体或其数量不多时,可进行低温石墨化退火;当铸件中共晶渗碳体数量较多时,须进行高温石墨化退火。 (1)低温石墨化退火,铸铁低温退火时会出现共析渗碳体石墨化与粒化,从而使铸件硬度降低,塑性增加。 灰铸铁低温石墨化退火工艺是将铸件加热到稍低于Ac1下限温度,保温一段时间使共析渗碳体分解,然后随炉冷却。

(2)高温石墨化退火,高温石墨化退火工艺是将铸件加热至高于Ac1上限以上的温度,使铸铁中的自由渗碳体分解为奥氏体和石墨,保温一段时间后根据所要求的基体组织按不同的方式进行冷却。 正火 灰铸铁正火的目的是提高铸件的强度、硬度和耐磨性,或作为表面淬火的预备热处理,改善基体组织。一般的正火是将铸件加热到Ac上限+30~50℃,使原始组织转变为奥氏体,保温一段时间后出炉空冷。形状复杂的或较重要的铸件正火处理后需再进行消除内应力的退火。如铸铁原始组织中存在过量的自由渗碳体,则必须先加热到Ac1上限+50~100℃的温度,先进行高温石墨化以消除自由渗碳体在正火温度范围内,温度愈高,硬度也愈高。因此,要求正火后的铸铁具有较高硬度和耐磨性时,可选择加热温度的上限。 正火后冷却速度影响铁素体的析出量,从而对硬度产生影响。冷速愈大,析出的铁素体数量愈少,硬度愈高。因此可采用控制冷却速度的方法)(空冷、风冷、雾冷),达到调整铸铁硬度的目的。 淬火与回火 1.淬火铸铁淬火工艺是将铸件加热到Ac1上限+30~50℃的温度,一般取850~900℃,使组织转变成奥氏体,并在此温度下保温,以增加碳在奥氏体中的溶解度,然后进行淬火,通常采用油淬。 对于形状复杂或大型铸件应缓慢加热,必要时可在500~650℃预热,以避免不均匀加热而造成开裂。 随奥氏体化温度升高,淬火后的硬度越高,但过高的奥氏体化温度,不但增加铸铁变形和开裂的危险,并产生较多的残留奥氏体,使硬度下降。 灰铸铁的淬透性与石墨大小、形状、分布、化学成分以及奥氏体晶粒度有关。

球墨铸铁管项目可行性研究报告

维儿康洗液项目 可行性研究报告 xxx集团

维儿康洗液项目可行性研究报告目录 第一章项目基本信息 第二章建设背景及必要性 第三章市场研究 第四章项目规划方案 第五章项目选址 第六章项目工程设计 第七章工艺可行性分析 第八章项目环保研究 第九章职业保护 第十章风险应对评价分析 第十一章项目节能概况 第十二章实施进度计划 第十三章投资计划 第十四章项目盈利能力分析 第十五章招标方案 第十六章综合评估

第一章项目基本信息 一、项目承办单位基本情况 (一)公司名称 xxx集团 (二)公司简介 公司始终坚持“服务为先、品质为本、创新为魄、共赢为道”的经营理念,遵循“以客户需求为中心,坚持高端精品战略,提高最高的服务价值”的服务理念,奉行“唯才是用,唯德重用”的人才理念,致力于为客户量身定制出完美解决方案,满足高端市场高品质的需求。 公司秉承以市场的为导向,坚持自主创新、合作共赢。同时,以产业经营为主体,以技术研究和资本经营为两翼,形成“产业+技术+资本”相生互动、良性循环的业务生态效应。 公司坚守企业契约精神,专业为客户提供优质产品,致力成为行业领先企业,创造价值,履行社会责任。 (三)公司经济效益分析 上一年度,xxx投资公司实现营业收入34292.06万元,同比增长 24.93%(6841.96万元)。其中,主营业业务维儿康洗液生产及销售收入为29139.06万元,占营业总收入的84.97%。

根据初步统计测算,公司实现利润总额7846.11万元,较去年同期相比增长1851.02万元,增长率30.88%;实现净利润5884.58万元,较去年同期相比增长541.31万元,增长率10.13%。 上年度主要经济指标 二、项目概况

影响材料性能的因素

1.0影响材料性能的因素 2.01.1碳当量对材料性能的影响字串9 决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。当碳当量()较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。这样的石墨使金属基体能够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。当随着 C、Si的量提高,会使珠光体量减少,铁素体量增加。因此,碳当量的提高将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。 1.2合金元素对材料性能的影响 在灰铸铁中的合金元素主要是指Mn、Cr、Cu、Sn、Mo等促进珠光体生成元素,这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上细化了石墨,使基体中铁素体的量减少甚至消失,珠光体则在一定的程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较高的强度性能。在熔炼过程控制中,对合金的控制同样是重要的手段。 1.3炉料配比对材料的影响字串4 过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规化学成分,而忽略了一些合金元素和有害元素在其中所起的作用。如生铁是Ti的主要来源,因此生铁使用量的多少会直接影响材料中Ti的含量,对材料机械性能产生很大的影响。同样废钢是许多合金元素的来源,因此废钢用量对铸铁的机械性能的影响是非常直接的。在电炉投入使用的初期,我们一直沿用了冲天炉的炉料配比(生铁:25~35%,废钢:30~35%)结果材料的机械性能(抗拉强度)很低,当我们意识到废钢的使用量会对铸铁的性能有影响时及时调整了废钢的用量之后,问题很快得到了解决,因此废钢在熔化控制过程中是一项非常重要的控制

论高品质球墨铸铁的熔炼技术

论高品质球墨铸铁的熔炼技术 高品质球墨铸铁的熔炼技术是提高球墨铸铁综合性能的重要技术手段,通过高品质球墨铸铁的熔炼技术可获得高的强度、塑性、韧性、耐磨性和机械冲击、耐高温或低温、耐腐蚀等。本文针对高品质球墨铸铁熔炼技术要点进行了简要的分析和探讨。 标签:高品质;球墨铸铁;生产;熔炼技术 当今,我国是全球生产铸铁的第一大国,铸件产量是全球总产量的25%。近些年以来,一直保持着迅速增长的态势。然而,我国球墨铸铁的应用比重跟发达国家还面临着一些差距,应用高品质的球墨铸铁还具备比较大的空间。高品质球墨铸铁的优势是化学成分稳定、石墨形态良好、力学性能优异、基体组织适宜。球墨铸铁的熔炼水平会严重地影响到其性能,从一定程度上来讲,球墨铸铁的熔炼技术是球墨铸件生产能力的体现。 1 高品质球墨铸铁的熔炼工艺技术 球墨铸铁铁液的基本要求是高温低硫,国内外一般是借助冲天炉、中频炉、感应炉的联合来熔炼铁液。应用热风除尘冲天炉能够使熔炼铁液的效率大大提高,而应用感应电炉能够有效地控制合金的成分,从而确保稳定的球化。 在国内的大型铸造企业当中,经常应用双联熔炼工艺。然而,在多样性浇注的铸件牌号上,规模较大的冲天炉对铁液成分缺少较强的调整能力。并且,我国的冲天炉在熔炼的过程当中,由于熔炼温度比较低以及焦铁比间存在比较大的差异性,这会制约铁液的质量以及成分构成。通过采用中频感应炉的工艺技术可以使熔炼操作简便,工艺灵活调整,且铁液的质量较高,熔化效率也优于冲天炉,故在中小规模的铸造企业中广泛应用。 在球墨铸铁生产当中,一个关键的生产指标是石墨的形态,石墨的形态跟铸件的抗冲击性和强度性能存在非常紧密的关系。而熔炼球墨铸铁中一个重要的技术是球化处理,选用的球化剂和球化方式会严重地制约到处理的结果。当今,我国大都应用稀土镁硅铁复合剂作为球化剂,其中镁的功能是主导球化。在我国铸造企业日益提升脱硫能力的影响下,球化剂的发展方向是低稀土。另外,结合铸件形态的组织要求,能够选用含有锑、钙、钡的球化剂。在选用球化工艺的过程中,主要的兼顾要素是反应平稳性和吸收率。国外企业大都应用盖包冲入法,该方法的特点是适用面广、吸收率高、烟尘少。我国大都应用冲入法球化处理技术。另外还有喂丝法球化工艺,这种工艺损失的温度少,反应十分稳定,且逐步地获得了应用与推广。 2 原材料对球墨铸件性能产生的影响 我国常用的铸铁件原材料是铸造生铁。其中,生铁中的石墨形态、微量元素、

聚氨酯内衬球墨铸铁管及其在海水淡化中的应用

聚氨酯内衬球墨铸铁管及其在海水淡化中的应用 杨万良1孙华林2李军1 李宁1 新兴铸管股份有限公司天津市华淼给排水设计研究院有限公司 1 引言 离心球墨铸铁管具有管壁薄、韧性好、强度高、耐腐蚀等优点,采用柔性接口,施工方便,运行安全,机械性能接近钢管,而耐腐蚀性能优于钢管,是目前国际上最通用的输水管材,被广泛应用于市政给水排水工程。 水泥砂浆是历史最悠久的球墨铸铁管防腐内衬,目前仍在供水行业大量应用,但对于具有腐蚀性的水质如软水、淡化后的海水、膜处理后的水质等高品质水,水泥砂浆内衬不具备长久的防腐性能,影响了球墨铸铁管应用领域的扩展。 球墨铸铁管聚氨酯内衬采用100%固含量的聚氨酯涂料喷涂而成,因具有高耐磨、耐腐蚀、零渗透、表面光滑阻力系数小、无挥发性有机物,符合环保要求等优点,对于提高球墨铸铁管的使用寿命和保证输送水的质量都具有很好的作用,已成功的应用于海水淡化、膜处理等高品质水的输送,备受用户青睐。 2 淡化海水(产品水)的特点 目前海水淡化较为普遍的处理方法主要为蒸馏法及反渗透膜处理方式等,处理方式决定了淡化海水具有如下特点: pH较低:由于处理过程的高压作用,使水中溶解了较多的CO2,水质显酸性,一般p H≤6.5; 水质非常纯净:由于在生产过程中去除了绝大多数阴阳离子,钙、镁离子含量非常低,溶解性总固体(TDS)、电导率和总硬度、总碱度远远低于自来水,与离子交换等方法生产的纯水(去离子水)近似,而与自来水差异明显。这样的水质缓冲能力非常弱,pH 极易受酸碱的影响发生剧烈的变化。 水质化学稳定性差,对钢铁及水泥管道具有较强的腐蚀性:目前普遍把化学稳定性作为分析水和管网材质关系的重要指标。水质化学稳定性的鉴别方法一般通过对水质的朗格利尔饱和指数IL(式1)、稳定指数IR的计算(式2),然后对水质的腐蚀性倾向及稳定性进行判断,水质腐蚀性倾向的判断见表1、水质化学稳定性判断表2: 朗格利尔饱和指数IL=pH0-pH s(式1)稳定指数(IR)计算式为: IR = 2pH s–pH0(式2)式中,pH0-水的实测pH ; pH s-水在碳酸钙饱和平衡时的pH 。 pH s =(9.3+N s+N t)-(N h+N a) 式中Ns-溶解固体常数; N t-温度常数; N h-钙硬度常数(以CaCO3)计,mg/L;

球墨铸铁化学成分

球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五大常见元素。对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。同普通灰铸铁不同的是,为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。? 1、碳及碳当量的选择原则:? 碳是球墨铸铁的基本元素,碳高有助于石墨化。由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在~%之间,碳当量在~%之间。铸件壁薄、球化元素残留量大或孕育不充分时取上限;反之,取下限。将碳当量选择在共晶点附近不仅可以改善铁液的流动性,对于球墨铸铁而言,碳当量的提高还会由于提高了铸铁凝固时的石墨化膨胀提高铁液的自补缩能力。但是,碳含量过高,会引起石墨漂浮。因此,球墨铸铁中碳当量的上限以不出现石墨漂浮为原则。? 2、硅的选择原则:? 硅是强石墨化元素。在球墨铸铁中,硅不仅可以有效地减小白口倾向,增加铁素体量,而且具有细化共晶团,提高石墨球圆整度的作用。但是,硅提高铸铁的韧脆性转变温度(图1),降低冲击韧性,因此硅含量不宜过高,尤其是当铸铁中锰和磷含量较高时,更需要严格控制硅的含量。球墨铸铁中终硅量一般在—%。选定碳当量后,一般采取高碳低硅强化孕育的原则。硅的下限以不出现自由渗碳体为原则。? 球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。 3、锰的选择原则:? 由于球墨铸铁中硫的含量已经很低,不需要过多的锰来中和硫,球墨铸铁中锰的作用就主要表现在增加珠光体的稳定性,促进形成(Fe、Mn)3C。这些碳化物偏析于晶界,对球墨铸铁的韧性影响很大。锰也会提高铁素体球墨铸铁的韧脆性转变温度,锰含量每增加%,脆性转变温度提高10~12℃。因此,球墨铸铁中锰含量一般是愈低愈好,即使珠光体球墨铸铁,锰含量也不宜超过~%。只有以提高耐磨性为目的的中锰球铁和贝氏体球铁例外。? 4、磷的选择原则:? 磷是一种有害元素。它在铸铁中溶解度极低,当其含量小于%时,固溶于基体中,对力学性能几乎没有影响。当含量大于%时,磷极易偏析于共晶团边界,形成二元、三元或复合磷共晶,降低铸铁的韧性。磷提高铸铁的韧脆性转变温度,含磷量每增加%,韧脆性转变温度提高4~℃。因此,球墨铸铁中磷的含量愈低愈好,一般情况下应低于%。对于比较重要的铸件,磷含量应低于%。????球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。? ?5、硫的选择原则:? 硫是一种反球化元素,它与镁、稀土等球化元素有很强的亲合力,硫的存在会大量消耗铁液中的球化元素,形成镁和稀土的硫化物,引起夹渣、气孔等铸造缺陷。球墨铸铁中硫的含量一般要求小于%。

影响材料性能的因素

1.0 影响材料性能的因素 2.01.1 碳当量对材料性能的影响字串9 决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。当碳当量()较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。这样的石墨使金属基体能够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。当随着 C、Si的量提咼,会使珠光体量减少,铁素体量增加。因此,碳当量的提咼将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。 1.2 合金元素对材料性能的影响 在灰铸铁中的合金元素主要是指Mn、Cr、Cu、Sn、Mo 等促进珠光体生成 元素,这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上细化了石墨,使基体中铁素体的量减少甚至消失,珠光体则在一定的程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较咼的强度性能。在熔炼过程控制中,对合金的控制同样是重要的手段。 1.3 炉料配比对材料的影响字串4 过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规化学成分,而忽略了一些合金元素和有害元素在其中所起的作用。如生铁是Ti的主要来源,因此生铁使用量的多少会直接影响材料中Ti的含量,对材料机械性能产生很大的影响。同样废钢是许多合金元素的来源,因此废钢用量对铸铁的机械性能的影响是非常直接的。在电炉投入使用的初期,我们一直沿用了冲天炉的炉料配比(生铁:25~35%,废钢:30~35%)结果材料的机械性能(抗拉强度)很低,当我们意识到废钢的使用量会对铸铁的性能有影响时及时调整了废钢的用量之后,问题很快得到了解决,因此废钢在熔化控制过程中是一项非常重要的控制 参数。因此炉料配比对铸铁材料的机械性能有着直接的影响,是熔炼控制的重点。

项目立项文件范本

XXX有限公司 董事会决议书 一、会议地址:XXX有限公司三楼会议室 二、会议时间:2011年1月6日 三、到会人员:XXX、XXX、XXX 四、通知情况及参加人员:本次会议采用电话通知方式,于2011年1月5日通知各位董事,3位董事(全体)到会,无董事弃权情况。 五、内容: 本次董事会会议由XXX主持召集和主持,讨论由公司技术中心提出的2011年度《XXX》、《XXX》、《XXX》、《XXX》4个新产品研发计划,经公司全体股东一致同意予以立项研发,并决定如下: 1、4个新产品项目主要由公司技术中心科研人员组成项目研发小组,《XXX》项目由XXX任组长、组成人员为XXX、XXX、XXX、XXX,《XXX》项目由XXX任组长、组成人员为XXX、XXX、XXX、XXX,《XXX》项目由XXX任组长、组成人员为XXX、XXX、XXX、XXX,《XXX》项目由XXX任组长,组成人员为XXX、XXX、XXX、XXX,相关辅助人员由组长调配。 2、项目设计依据、主要内容、技术指标、经费预算、完成时间以公司新产品立项任务书为准,由技术中心负责组织实施,各相关部门积极配合,按任务按期完成。 此决议经全体股东签字后生效。 全体股东签名: 2011年1月6日 项目编号:XXX XXX技术研发中心 新产品项目立项文件 项目名称: XXX

开发部门:技术研发中心 项目负责人(签字): 批准(签字): 申请时间: 2013年1月5日 XXX有限公司制 一、项目名称 XXX 二、设计依据 GB/T XXX-2008 《XXXX》 三、概述与立项意义(约300字,应写出为什么要研发,产品的用途和使用领域,解决了什么问题,以致带来的效果和意义) 在给排水、电力、石油、化工等工程行业的管道系统中,通常采用其阀体内底部开一个凹槽,利用阀杆带动楔形闸板上下运动,楔入阀体楔形腔体,形成密封的传统闸阀,其长期使用易使介质中的颗粒杂物落入凹槽导致闸板关不到位而引起泄漏,经常存在漏水、易生锈的缺陷。我公司根据上述缺陷,自行研究开发一种直埋式弹性座封闸阀,克服了传统闸阀密封不良弹性疲乏、易生锈等缺陷,达到良好的密封效果,作为上述流体管线上具有调节、截流的阀门。 四、主要研究内容或核心技术(约500字,介绍项目的构成,通过或采用什么结构、技术、方法等实现或达到什么的目的、效果) 本项目产品软密封闸阀底部采用与水管相同的平底设计,不易造成杂物淤积,使流体通畅无阻。阀门采用高品质的橡胶进行整体内、外包胶,国内一流的橡胶硫化技术使得硫化后的阀门能够保证精确的几何尺寸,且橡胶与球墨铸铁阀门接着牢靠,不易脱落及弹性记忆佳。由于阀杆采用三“O”型环密封圈密封设计,可减少开关时的摩擦阻力,大幅减少漏水现象及可以不停水施工更换密封圈。阀体采用精密铸造,精确的几何尺寸使得阀体内部无需任何精加工即可保证阀门的密封性,本体采用球墨铸造制成,重量较传统闸阀重量减轻约20%~30%,安装维修方便。 五、技术性能指标(反映该产品的技术高,同时符合检测报告要求) (1)流量范围:6~300m3/h (2)扬程范围:30~200m

灰铸铁缺陷产生的原因分析及预防措施

一、影响灰铸铁力学性能的主要因素: 化学成分(C、Si、Mn、P、S合金元素)灰铸铁的力学性能金相组织 石墨的形状、大小、分布工艺因素和冶金因素 和数量以及基体组织 工艺、冶金因素:主要有冷却速度,铁液的过热处理、孕育处理、炉料特性等(1)关于冷却速度的影响铸铁是一种对冷却速度敏感性很大的材料,同一铸件的厚壁和薄壁部分,内部和外表都可能获得相差悬殊的组织,俗称为组织的不均匀性。因为石墨化过程在很大程度上取决于冷却速度。影响铸件冷却速度的因素较多:铸件壁厚和重量、铸型材料的种类、浇冒口和重量等等。由于铸件的壁厚、重量和结构取决于工作条件,不能随意改变,故在选择化学成分时应考虑到它们对组织的影响。 (2)关于铁液孕育处理的影响孕育处理就是在铁液进入铸件型腔前,把孕育剂附加到铁液中以改变铁液的冶金状态,从而可改善铸铁的显微组织和性能。 对灰铸铁而言,进行孕育处理是为了获得A型石墨、珠光体基体、细小共晶团的组织,以及减少铸件薄壁或边角处的白口倾向和对铸件壁厚的敏感性;对可锻铸铁而言,是为了缩短短退火周期,增大铸件的允许壁厚和改善组织的结构;对球墨铸铁而言,是为了减少铸件白口倾向,提高球化率和改善石墨的圆整性。 (3)关于铁液过热处理的影响。提高铁液过热温度可以:①增加化合碳含量和相应减少石墨碳含量,②细化石墨,并使枝晶石墨的形成,③消除铸铁的“遗传性”,④提高铸件断面上组织的均匀性,⑤有利于铸件的补缩。同样,铁液保温也有铁液过热的类似作用。 (4)关于炉料特性的影响实际生产中往往发现改变金属炉料(例如采用

不同产地的生铁或改变炉料的配比等)而化学成分似乎无变化的情况下铸铁具有不同的组织和性能,这说明原材料的性质直接影响着用它熔炼出来的铸铁的性质,称为铸铁的:“遗传性”为此,采用提高铁液温度和使用多种铁料配料可消除这种“遗传性”,并改善铸铁的组织和性能。 综上所述,铸铁的工艺因素和冶金因素对铸铁的力学性能有着很大的影响,因此,不应忽视对这些影响因素的控制。 二、灰铸铁不可用热处理的方法来达到牌号要求 一般说来,热处理能在很大程度上改善铸造合金的组织和性能,但在灰铸铁条件下,热处理所能发挥的作用相对较小。在灰铸铁中,石墨对铸铁性能的影响很大,而任何的热处理方法都不能改变石墨的形态和分布,故不可通过热处理来有效地提高灰铸铁的性能使之达到牌号要求。 但是,提高灰铸铁力学性能的方法很多,如合理选配化学成分、改变炉料组成、过热处理铁液、孕育处理、微量或低合金化等,都可取得很好效果。 三、生产高牌号灰铸铁(孕育铸铁)的注意事项 生产产高牌号灰铸铁(一般指HT200以上)时,为了获得高的力学性能,必须尽可能地减少石墨的数量、减小石墨的长度。传统的方法就是降低铁液的碳、硅含量、提高铁液的冷凝速度,但幅度稍大时就会出现D型过冷石墨及白口,反而降低灰铸铁的力学性能。 在炉前或在浇注前往铁液中添加适量的、以硅铁为主的铁合金碎粒被称作孕育处理。孕育处理在铁液中提供大量的、石墨借以生核的生核质点。有效的孕育将促进石墨的析出,从而消除白口、细化片状石墨并使过冷石墨转变为无方向性均布石墨(A型石墨),不但可大幅度地提高综合力学性能,同时还提高铸

VAG 操作手册-RIKO-活塞阀-中文

操作维护手册 VAG RIKO?活塞阀 KAT-B 2010 Edition 7 / 12-

1 概述.............................................................................31.1 安全事项 ............................................................31.2 正确使用 ............................................................31.3 标识.....................................................................32 运输和储存 ................................................................32.1 运输.....................................................................32.2 储存.....................................................................33 产品和功能描述........................................................43.1 功能描述 ............................................................43.2 应用领域 ............................................................43.3 运行极限 ............................................................53.4 正确和不正确的运行模式 ...............................54.管线安装 ...................................................................54.1 现场要求 ............................................................54.2 安装地点 ............................................................54.3 安装位置 ............................................................64.4 安装说明和配件 ................................................65 调试和试运行 ............................................................65.1 目检.....................................................................65.2 功能检查和压力测试........................................86 执行器安装 ................................................................86.1 概述.....................................................................86.2 操作力矩 ............................................................86.3.安装电动驱动机构 ...........................................87 维护和保养 ................................................................97.1 安全说明概述 ....................................................97.2 检查和驱动间隔 ................................................97.3 维护和更换部件 . (10) 7.3.1 设计 ...........................................................107.3.2 更换阀座密封圈(1.2)............................107.3.3 更换方截面O 型圈(1.4). (10) 7.3.4 更换密封圈(1.10和1.1) ....................107.3.5 螺栓拧紧扭矩(Nm) .........................118 故障排除 (11) 目录 VAG 保留技术变动及使用相近或更高品质材料的权利,无需发表申明。图片不具约束力。

第四节 球墨铸铁的铸造性能与铸造工艺特点

第四节球墨铸铁的铸造性能与铸造工艺特点 由于碳硅含量较高,球墨铸铁与灰铸铁一样具有良好的流动性和自补缩能力。但是由于炉前处理工艺及凝固过程的不同,球墨铸铁与灰铸铁相比在铸造性能上又有很大的差别,因而其铸造工艺也不尽相同。 一、球墨铸铁的流动性与浇注工艺 球化处理过程中球化剂的加入,一方面使铁液的温度降低,另一方面镁、稀土等元素在浇包及浇注系统中形成夹渣。因此,经过球化处理后铁液的流动性下降。同时,如果这些夹渣进入型腔,将会造成夹杂、针孔、铸件表面粗糙等铸造缺陷。 为解决上述问题,球墨铸铁在铸造工艺上须注意以下问题: (1)一定要将浇包中铁液表面的浮渣扒干净,?最好使用茶壶嘴浇包。 (2)严格控制镁的残留量,最好在0.06%以下。 (3)浇注系统要有足够的尺寸,以保证铁液能做尽快充满型腔,并尽可能不出现紊流。 (4)采用半封闭式浇注系统,根据美国铸造学会推荐的数据,直浇道、横浇道与内浇道的比例为4:8:3。 (5)内浇口尽可能开在铸型的底部。 (6)如果在浇注系统中安放过滤网会有助于排除夹渣。 (7)适当提高浇注温度以提高铁液的充型能力并避免出现碳化物。对于用稀土处理的铁液,其浇注温度可参阅我国有关手册。对于用镁处理的铁液,根据美国铸造学会推荐的数据,当铸件壁厚为25mm时,浇注温度不低于1315℃;当铸件壁厚为6mm时,浇注温度不低于1425℃。 二、球墨铸铁的凝固特性与补缩工艺特点 球墨铸铁与灰铸铁相比在凝固特性上有很大的不同,主要表现在以下方面: (1)球墨铸铁的共晶凝固范围较宽。灰铸铁共晶凝固时,片状石墨的端部始终与铁液接触,因而共晶凝固过程进行较快。球墨铸铁由于石墨球在长大后期被奥氏体壳包围,其长大需要通过碳原子的扩散进行,因而凝固过程进行较慢,以至于要求在更大的过冷度下通过在

灰铸铁缺陷产生的原因分析及预防措施

灰铸铁缺陷产生的原因分析及预防措施 一、影响灰铸铁力学性能的主要因素: 化学成分(C、Si、Mn、P、S合金元素)灰铸铁的力学性能金相组织 石墨的形状、大小、分布工艺因素和冶金因素 和数量以及基体组织 工艺、冶金因素:主要有冷却速度,铁液的过热处理、孕育处理、炉料特性等(1)关于冷却速度的影响铸铁是一种对冷却速度敏感性很大的材料,同一铸件的厚壁和薄壁部分,部和外表都可能获得相差悬殊的组织,俗称为组织的不均匀性。因为石墨化过程在很大程度上取决于冷却速度。影响铸件冷却速度的因素较多:铸件壁厚和重量、铸型材料的种类、浇冒口和重量等等。由于铸件的壁厚、重量和结构取决于工作条件,不能随意改变,故在选择化学成分时应考虑到它们对组织的影响。 (2)关于铁液孕育处理的影响孕育处理就是在铁液进入铸件型腔前,把孕育剂附加到铁液中以改变铁液的冶金状态,从而可改善铸铁的显微组织和性能。 对灰铸铁而言,进行孕育处理是为了获得A型石墨、珠光体基体、细小共晶团的组织,以及减少铸件薄壁或边角处的白口倾向和对铸件壁厚的敏感性;对可锻铸铁而言,是为了缩短短退火周期,增大铸件的允许壁厚和改善组织的结构;对球墨铸铁而言,是为了减少铸件白口倾向,提高球化率和改善石墨的圆整性。 (3)关于铁液过热处理的影响。提高铁液过热温度可以:①增加化合碳含量和相应减少石墨碳含量,②细化石墨,并使枝晶石墨的形成,③消除铸铁的“遗传性”,④提高铸件断面上组织的均匀性,⑤有利于铸件的补缩。同样,铁液保

温也有铁液过热的类似作用。 (4)关于炉料特性的影响实际生产中往往发现改变金属炉料(例如采用不同产地的生铁或改变炉料的配比等)而化学成分似乎无变化的情况下铸铁具有不同的组织和性能,这说明原材料的性质直接影响着用它熔炼出来的铸铁的性质,称为铸铁的:“遗传性”为此,采用提高铁液温度和使用多种铁料配料可消除这种“遗传性”,并改善铸铁的组织和性能。 综上所述,铸铁的工艺因素和冶金因素对铸铁的力学性能有着很大的影响,因此,不应忽视对这些影响因素的控制。 二、灰铸铁不可用热处理的方法来达到牌号要求 一般说来,热处理能在很大程度上改善铸造合金的组织和性能,但在灰铸铁条件下,热处理所能发挥的作用相对较小。在灰铸铁中,石墨对铸铁性能的影响很大,而任何的热处理方法都不能改变石墨的形态和分布,故不可通过热处理来有效地提高灰铸铁的性能使之达到牌号要求。 但是,提高灰铸铁力学性能的方法很多,如合理选配化学成分、改变炉料组成、过热处理铁液、孕育处理、微量或低合金化等,都可取得很好效果。 三、生产高牌号灰铸铁(孕育铸铁)的注意事项 生产产高牌号灰铸铁(一般指HT200以上)时,为了获得高的力学性能,必须尽可能地减少石墨的数量、减小石墨的长度。传统的方法就是降低铁液的碳、硅含量、提高铁液的冷凝速度,但幅度稍大时就会出现D型过冷石墨及白口,反而降低灰铸铁的力学性能。 在炉前或在浇注前往铁液中添加适量的、以硅铁为主的铁合金碎粒被称作

利用垂直分型技术生产高品质球墨铸铁件[1]

2010年第4期Aug.2010№4铸造设备与工艺近年来我国铸造业发展迅速,产量已稳居世界第一,而且随着自动线的不断引进,我国铸造技术和水平也达到了前所未有的进步。然而我国铸造业发展却极不平衡,大型、合资及少数民营企业由于其资金优势,多采用自动化方式生产;而大多数中小企业仍采用半自动和手工方式生产,生产方式和技术落后、单一,铸件质量水平总体不高。尤其对大平面和不易补缩铸件缺少可靠的方法,有些厂家也简单采用了横浇竖冷的工艺方法,但效果不明显,究其原因主要是对垂直分型工艺不了解。此外横浇竖冷的工艺方法不适合批量生产铸件,对厚大件而言也存在安全隐患。 1水平分型工艺和垂直分型工艺的特点1.1 水平分型工艺的特点 水平分型是传统的工艺方法,具有适应性强的 特点。浇注系统常用的分类方法有两种:一是根据各组元断面比例关系的不同,即阻流断面位置的不同,可分为封闭式和开放式浇注系统;另一是按内浇道在铸件上的相对位置不同,将浇注系统分成顶注式、中间注入式、底注式和阶梯式等几种类型。 封闭式浇注系统是指从浇口杯底孔到内浇道的断面积逐渐缩小、其阻流断面正好是内浇道的浇注系统。这种浇注系统在浇注开始不久各组元能迅速被金属液充满,故又称充满式浇注系统。特点是有较好的挡渣能力,但产生金属飞溅而使金属液氧化加剧。主要用于中小型铸铁件。 开放式浇注系统是指浇口杯底孔到内浇道的断面积逐渐加大、其阻流断面在直浇道上口的浇注系统。其特点是充型平稳,但挡渣能力差,消耗的金属液也较多。主要用于有色金属件、球墨铸铁件及漏包浇注的铸钢件。 半封闭式和封闭—开放式浇注系统兼顾了前两种的优点应用广泛。 1.2垂直分型工艺的特点 垂直分型浇注系统中,金属液的充型静压头在 铸型底部和顶部可相差几倍,如果在短时间内要求各层内浇道逐层接替地充满所有型腔(即像阶梯式浇注系统那样),势必造成每个型腔的充型速度太快,以及上下部位受热条件不一样,而使冲砂、气孔、粘砂(底部铸件)、浇不足(顶部铸件)等缺陷太多,因而要求在浇注过程中,所有型腔都能始终保持恒定的金属静压头(即各层内浇道的压头虽不同,但浇注的整个过程中不变化),达到各内浇道的流量相等,同时充满,以获得质量基本一致的合格铸件。这样设计的浇注系统称为恒压等流量浇注系统。 设计时需注意以下几点: 1)只有浇注过程中始终保持充满状态,整个浇 注系统内金属的静压头才能稳定不变。所以应采用封闭式,而不能采用开放式浇注系统。 2)不同高度的内浇道应有不同的断面积,以控 制相同的浇注重量速度,让上下各层型腔几乎同时充型和同时充满,使铸型的受热条件和铸件的冷却条件都基本相同。这样就可获得质量一致的铸件。浇注时间应严加控制。据经验,浇注时间的变化如果大于1s ,废品率大幅度地增加。 利用垂直分型技术生产高品质球墨铸铁件 裴 兵 (安徽神剑科技股分有限公司,安徽合肥 230022) 摘要:作者根据多年的生产实践,分析了垂直分型工艺和水平分型工艺各自的特点,研究了垂分型工艺浇注系统和冒口的计算,重点讨论了垂直分型技术在实际生产中的应用,尤其是大平面和不易补缩铸件可利用垂直分型技术来弥补水平分型的缺憾,从而生产出高品质铸件。 关键词:垂直分型;生产;高品质;铸铁件中图分类号:TG255 文献标识码:B 文章编号:1674-6694(2010)04-0030-02 收稿日期:2010-06-11 作者简介:裴兵(1967-),男,硕士,高级工程师,从事铸造技术开发应 用和管理工作。 ·铸造工艺· 铸造设备与工艺 FOUNDRY EQUIPMENT AND TECHNOLOGY 2010年第4期 Aug.2010№4 2010年8 月30··

球墨铸铁化学成分完整版

球墨铸铁化学成分集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五大常见元素。对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。同普通灰铸铁不同的是,为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。 1、碳及碳当量的选择原则: 碳是球墨铸铁的基本元素,碳高有助于石墨化。由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在3.5~3.9%之间,碳当量在4.1~4.7%之间。铸件壁薄、球化元素残留量大或孕育不充分时取上限;反之,取下限。将碳当量选择在共晶点附近不仅可以改善铁液的流动性,对于球墨铸铁而言,碳当量的提高还会由于提高了铸铁凝固时的石墨化膨胀提高铁液的自补缩能力。但是,碳含量过高,会引起石墨漂浮。因此,球墨铸铁中碳当量的上限以不出现石墨漂浮为原则。 2、硅的选择原则: 硅是强石墨化元素。在球墨铸铁中,硅不仅可以有效地减小白口倾向,增加铁素体量,而且具有细化共晶团,提高石墨球圆整度的作用。但是,硅提高铸铁的韧脆性转变温度(图1),降低冲击韧性,因此硅含量不宜过高,尤其是当铸铁中锰和磷含量较高时,更需要严格控制硅的含量。球墨铸铁中终硅量一般在1.4—3.0%。选定碳当量后,一般采取高碳低硅强化孕育的原则。硅的下限以不出现自由渗碳体为原则。 球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。 3、锰的选择原则: 由于球墨铸铁中硫的含量已经很低,不需要过多的锰来中和硫,球墨铸铁中锰的作用就主要表现在增加珠光体的稳定性,促进形成(Fe、Mn)3C。这些碳化物偏析于晶界,对球墨铸铁的韧性影响很大。锰也会提高铁素体球墨铸铁的韧脆性转变温度,锰含量每增加0.1%,脆性转变温度提高10~12℃。因此,球墨铸铁中锰含量一般是愈低愈好,即使珠光体球墨铸铁,锰含量也不宜超过0.4~0.6%。只有以提高耐磨性为目的的中锰球铁和贝氏体球铁例外。 4、磷的选择原则: 磷是一种有害元素。它在铸铁中溶解度极低,当其含量小于0.05%时,固溶于基体中,对力学性能几乎没有影响。当含量大于0.05%时,磷极易偏析于共晶团边界,形成二元、三元或复合磷共晶,降低铸铁的韧性。磷提高铸铁的韧脆性转变温度,含磷量每增加0.01%,韧脆性转变温度提高4~4.5℃。因此,球墨铸铁中磷的含量愈低愈好,一般情况下应低于0.08%。对于比较重要的铸件,磷含量应低于0.05%。球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。 5、硫的选择原则: 硫是一种反球化元素,它与镁、稀土等球化元素有很强的亲合力,硫的存在会大量消耗铁液中的球化元素,形成镁和稀土的硫化物,引起夹渣、气孔等铸造缺陷。球墨铸铁中硫的含量一般要求小于0.06%。

灰铸铁中各元素作用

灰铸铁中各元素作用 1、碳、硅 碳、硅都是强烈地促进石墨化的元素,可用碳当量来说明他们对灰铸铁金相组织和力学性能的影响。提高碳当量促使石墨片变粗、数量增加,强度硬度下降。相反降低碳当量可减少石墨数量、细化石墨、增加初析奥氏体枝晶数量,从而提高灰铸铁的力学性能。 但是降低碳当量会导致铸造性能下降。 2、锰:锰本身是稳定碳化物、阻碍石墨化的元素,在灰铸铁中具有 稳定和细化珠光体作用,在 Mn=0.5%~1%范围内,增加锰量,有利于强度、硬度的提高。 3、磷:铸铁中含磷量超过0.02%,就有可能出现晶间磷共晶。磷在奥 氏体中的溶解度很小,铸铁凝固时,磷基本上都留在液体中。共晶凝固接近完成时,共晶团之间剩余的液相成分接近三元共晶成(Fe-2%、C-7%、P)。此液相约在955℃凝固。 铸铁凝固时,钼、铬、钨和钒都偏析于富磷的液相中,使磷共晶的量增多。铸铁中含磷量高时,除磷共晶本身的有害作用外,还会使金属基体中所含的合金元素减少,从而减弱合金元素的作用。 磷共晶液体在凝固长大的共晶团周围呈糊状,凝固收缩很难得到补给,铸件出现缩松的倾向较大。 4、硫:降低铁液流动性,增加铸件热裂倾向,是铸件中的有害元素。 很多人认为硫含量越低越好,实则不然,当硫含量≤0.05%时,此种铸铁对我们使用的普通孕育剂来说不起作用,原因是孕育衰

退的很快,常常在铸件中产生白口。 5、铜:铜是生产灰铸铁最常加入的合金元素,主要原因是由于铜熔 点低(1083℃),易熔解,合金化效果好,铜的石墨化能力约为硅的1/5,因此能降低铸铁的白口倾向,同时铜也能降低奥氏体转变的临界温度,因此铜能促进珠光体的形成,增加珠光体的含量,同时能细化珠光体和强化珠光体及其中的铁素体,因而增加铸铁的硬度及强度。但是并非铜量越高越好,铜的适宜加入量为0.2%~0.4%当大量地加铜时,同时又加入锡和铬的做法对切削性能是有害的,它会促使基体组织中产生大量的索氏体组织。 6、铬:铬的合金化效果是非常强烈的,主要是因为加铬使铁水白口 倾向增大,铸件易收缩,产生废品。所以,应对铬量加以控制。 一方面希望铁水中含有一定量的铬,以提高铸件的强度和硬度; 另一方面又将铬严格控制在下限,以防止铸件收缩而造成废品率增加。传统的经验认为,原铁水铬量超过0.35%时,将对铸件产生致命的影响。 7、钼:钼是典型的化合物形成元素,是很强的珠光体稳定元素,它 能细化石墨,在ωMo<0.8%时,钼能细化珠光体,同时能强化珠光体中的铁素体,从而能有效地提高铸铁的强度和硬度。

2010年镁工业发展报告

2010年镁工业发展报告 2010年,中国原镁产量、出口量、国内消费量均有回升;销售收入、利税总额同比均有大幅提高,利润总额实现扭亏为盈,是全行业经济运行状况实现回升向好的一年。 2010年,镁冶炼企业在全面应用节能减排技术、提升装备水平上又有新的进展,吨镁能耗5吨标煤、吨镁二氧化碳排放12吨,新型竖罐的开始应用表明了向低碳经济发展;在镁深加工基地建设、抅建创新战略联盟、镁及镁合金的推广应用及加工技术方面取得新的突破;是进一步加快实现产品结构、产业结构调整升级和发展方式转变的一年。 1、2010年镁工业发展现状 1.1 经济运行情况良好 1.1.1 2010年原镁产量为65.38万吨,是历史最高水平见表1。 数据来源:原镁产量为有色协会年度快报数,其余数据均为镁业分会统计。 1.1.2 主要生产技术经济指标保持上一年水平见表2。 表2 2010年镁冶炼技术经济指标比较 2010年硅热法镁冶炼生产技术主要经济指标,继续保持了2009年技术改造、技术进步的水平。还原周期为8-12小时,料镁比6.3以下,劳动生产率为20吨/人·年。 1.1.3 2010年规模以上镁冶炼企业经济效益向好发展 据国家统计局统计,157家(含一些初加工企业)规模以上镁冶炼企业的经济效益,2010年1-11月统计:产品销售收入187.27亿元,同比增加28.98%;利税总额3.68亿元,同比增加25.17%。利润总额0.12亿元,同比减少94.69%;因为1至8月亏损6787.4万

元,后4个月镁价直线上升,全年扭亏为盈,全行业向好发展。 1.2 国内消费23.2万吨同比增长34.88% 由于2008年的镁价大起大落,影响和制约了下游加工,不少企业改回用铝合金,价格因素抑制了消费的影响仍然存在。但2010年1-8月镁价趋于稳定,又促进了国内消费,2010年国内消费23.20万吨,同比增加34.88%。消费情况见表3 表3 2010年国内镁消费比较(单位:万吨) 数据:镁业分会 加35.13%;而在加工领域消费7.66万吨,占33.02%,同比增加32.76%。 1.3 镁产品出口38.40万吨,同比增加64.45%,出口金额创历史最高水平 国外市场受2008年镁价上涨和金融危机影响,需求一直不旺,但2010年1-8月镁价

相关主题
文本预览
相关文档 最新文档