当前位置:文档之家› 浅析量子通信技术在电力行业的应用情况

浅析量子通信技术在电力行业的应用情况

浅析量子通信技术在电力行业的应用情况

浅析量子通信技术在电力行业的应用情况

量子通信作为一门新型交叉学科是对信息通信安全一种从根本上的保障,目前已成为国际量子物理和信息科学的研究热点之一。基于量子通信的信

息通信及防护,具有高效、无条件安全等特点。文章跟踪目前量子通信研究进展,对国内外量子通信应用进行研究,尤其在电力信息通信方面进行深入分析

和阐述。

量子通信研究及其产业化进展

量子通信具有无条件安全特性,即在目前技术条件下可以提供绝对安

全,可以通过一次一密保障信息安全,同时可以通过量子状态侦测安全攻击,

这是传统通信方式所不具备的。该特性为国家安全、基础设施、网络通信、金

融等领域提供强有力的技术支撑,显现出广阔的前景和应用价值。

近年来,量子通信已成为欧盟、美国和日本等发达国家重点关注的前沿

科技热点,国际竞争非常激烈。国外已经建造了一系列的小规模QKD 技术验证网络,包括:2008 年欧洲联合建立的SECOQC 网络、2009 年美国国防高级研究计划署(即DARPA)建立的国防部感兴趣的城域QKD 网络以及2010 年日本通过与欧洲合作建立的TokyoQKDNetwork。欧盟相关机构于2010 年4 月更新的量子通信技术发展路线欧洲已经把量子通信应用于电子政务和金融领域,欧

洲的电信运营商也开始引进量子通信技术。不断研究量子通信特性及应用领

域,同时开展商业和运营模式探索。欧洲发布了量子通信技术和商业白皮书,

启动了技术标准化进程。包括AT&T、Bell 实验室、

我国政府高度重视包括量子通信在内的量子技术的发展。量子通信已经

被列入《国家中长期科学和技术发展规划纲要(2006-2020 年)》,而其中的量

量子力学发展简史

量子力学发展简史 摘要: 相对论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925 年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学,量子理论,矩阵力学,波动力学,测不准原理 量子力学是研究微观粒子(如电子、原子、分子等)的运动规律的物理学分 支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础,是现代物理学的两大基本支柱。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。 它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。大量的实验事实和量子论的发展,表明微观粒子不仅具有粒子性,同时还具有波动性(参见波粒二象性),微观粒子的运动不能用通常的宏观物体运动规律来描写。德布罗意、薛定谔、海森堡,玻尔和狄拉克等人逐步建立和发展了量子力学的基本理论。应用这理论去解决原子和分子范围内的问题时,得到与实验符合的结果。因此量子力学的建立大大促进了原子物理。固体物理和原子核物理等学科的发展,它还标志着人们对客观规律的认识从宏观世界深入到了微观世界。量子力学是用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律,并用算符或矩阵方法对各物理量进行计算。因此量子力学在早期也称为波动力学或矩阵力学。量子力学的规律用于宏观物体或质量和能量相当大的粒子时,也能得出经典力学的结论。在解决原子核和基本粒子的某些问题时,量子力学必须与狭义相对论结合起来(相对论量子力学),并由此逐步建立了现代的量子场论。

浅谈我国量子通信技术的发展现状及未来趋势

浅谈我国量子通信技术的发展现状及未来 趋势 量子通信具有超强安全性、超大信道容量、超高通信速率、超高隐蔽性等特点,其发展历经30余年,在理论上日益成熟,技术方案已逐渐从实验室走向了实用化,我国在量子通信技术领域也取得了丰硕成果。 【关键词】量子通信技术;发展现状;未来趋势 【Abstract】The quantum communication has the characteristics of super security,large channel capacity,super high communication speed and ultrahigh concealment. After 30 years of development,it has matured theoretically,and the technical scheme has gradually moved from the laboratory to the practical. Quantum communication technology has also achieved fruitful results. 【Key words】Quantum communication technology;Development status;Future trend 量子通信是利用量子纠缠效应改变量子态,从而实现信息传递的一种新型的通信方式,它是量子论和信息论相结合的新研究领域。量子通信具有超强安全性、超大信道容量、超高通信速率、超高隐蔽性等特点,其发展历经30余年,在理论上日益成熟,技术方案已逐渐从实验室走向了实用化,我国在量子通信技术领域也取得了丰硕成果。

量子力学的发展综述

量子力学的发展综述 量子力学是对经典物理学在微观领域内的一次革命,是现代物理学的基础,它从根本上否定了牛顿物理学。本文带大家再次回到那个伟大的年代,再次简要回顾下那场史诗般壮丽的革命。 标签:量子力学发展量子多世界解释 量子理论的中心思想是一切东西都是由不可预言的量子构成,但这些粒子的统计行为遵循一种可以预言的波动图样。简简单单的一句话,深入研究起来确实那样令人困惑,整个20世纪的物理学家们就是在不断的量子的迷雾中摸索着。现在我们也要沿着他们的航线领略一下量子理论奇。 一、量子的创生 19世纪末,物理学界取得了一系列举世瞩目的成就,当人们为所谓的物理学大厦已经根深蒂而感到皆大欢喜时,几个悬而未决的谜题却一直困扰着高瞻远虑的物理学家们[1]。“在物理学阳光灿烂的天空中飘浮着两朵小乌云”这句话在几乎每一本关于物理学史的书籍中被反复提到,具体一些的话,指的是人们在迈克尔—莫雷实验和黑体辐射研究中的困境。这两朵乌云带来的狂风暴雨,远远超出了人们的想象:第一朵乌云,最终导致了相对论革命的爆发;第二朵乌云,最终导致了量子论革命的爆发。1900年,普朗克在解决黑体辐射问题时,做了一个假定,“必须假定,能量在发射和吸收的时候,不是连续不断,而是分成一份一份的。”普通的一个假设,却推翻自牛顿以来200多年,曾被认为坚固不可摧毁的物理世界。这与有史以来的一切物理学家的观念截然相反,自牛顿和伽利略以来,一切自然的过程都被当成是连续不间断的,是微积分的根本基础,牛顿、麦克斯韦那庞大的体系,都是建立在这个基础之上,从没有人怀疑过这个物理学的根基。1900年12月14日,量子的诞辰,这一天,量子这个幽灵从普朗克的方程中脱胎而出。这个幽灵拥有彻底的革命性和无边的破坏力,物理学构成的精密体系被摧毁成断壁残垣,甚至推动量子论的某些科学家最终也站到了它的对立面。量子论这场前所未有的革命,从这个叫马克思·普朗克的男人这里开始了。 二、量子力学的建立和论战 量子这个概念已经诞生了,然而他的创造者普朗克却抛弃了它,不断地告诫人们,不到万不得已不要使用,不要胡思乱想。不怪普朗克本人畏首畏尾,实在是量子这个概念太过惊世骇俗,但是接下来一系列的成就证明了它的价值:1.为了解释光电效应,1905年爱因斯坦提出光量子论,揭示了光的波粒二象性;2.玻尔结合原子的核式结构模型和量子论,1913年提出了氢原子理论;3.德布罗意从光量子理论得到启发,于1923年提出物质波假说;4.海森堡抛弃了玻尔的轨道概念,建立了矩阵力学(1925年)[2]。海森堡建立矩阵力学标志着量子力学的建立,但是刚诞生的矩阵力学立刻受到了挑战:薛定谔于1926年把物质波的思想加以发展,建立了波动力学。矩阵力学?波动力学?全新的量子论建立不到一

空间量子通信技术

空间量子通信技术 陈彦,胡渝 ( 电子科技大学 物理电子学院,成都 610054 ) 摘要:利用卫星来分发单光子(或纠缠光子对)的方法为远程量子通信网络提供了一种独特的解决方案。这将克服现有的光纤和陆上自由空间链路所带来的距离限制,实现真正意义上的全球量子通信。本文对这种设想进行了分析,证明这种设想有很高可行性。 关键词:量子通信; 空间技术; 光子分发 中图分类号:TN929.11;0431.2 文献标识码:A Quantum Communications in Space CHEN Y an ,HU Yu (Institute of Physics and Electronics, University of Electronic Science and Technology of China, Chengdu,610054 ) Abstract:Using satellites to deliver single photon or entangled photon pairs is a unique solution to realize long-distance quantum communications networks. This solution is able to overcome the disadvantage of transmission distance when using fiber and terrestrial free space optical links. And global quantum communications may be realized in this way. A scheme of using satellite to deliver single photon or entangled photon pairs is described,and the possibility of the scheme is proved. Key words:quantum communications; Space technology; photon deliver 1 引言 量子通信具有“容量大、速度快、通讯保密性极强”的优点,可完成经典信息处理方法所不能完成的任务。利用量子通信可以建立无法破译的密钥系统,因此量子通信已经成为当今研究的热点。已经在标准光纤信道中,已经实现了距离超过100KM的量子密钥分配实验。同时,还在23km的自由空间信道中,实现了基于单光子的量子密钥分配[1];在600m的自由空间中实现了基于纠缠光子对的量子密钥分配实验[2]。目前对量子通信的理论方案和实验研究,主要集中于利用光纤信道和点对点的陆地无线光信道。但光子在光纤和陆上自由空间信道中的传输距离只是局域性的,无法满足全球性的量子通信的需要。人们需要一种新的量子通信方案。 2 在空间中进行量子通信 单光子(纠缠光子对)的分发是实现量子通信的前提。当光子在光纤信道中传输时,其能量会随传输距离的增加而衰减,光子的偏振特性也会在传输过程当中发生变化;若利用陆上自由空间信道,则光子的能量会被大气信道吸收而衰减,同时链路的维持也会受到大气条件或陆上阻碍物的影响。因此,单光子在现在的硅光纤和陆上自由空间中的传输距离受到了限制,从而无法实现全球范围内的量子通信。而现在已得到广泛应用的卫星通信和空间技术却给全球性的量子通信提供了一种新的解决方案。它可以克服光纤和陆上自由空间链路的通信距离限制,极大地延伸量子通信的范围,实现真正意义上的全球性量子通信。 2.1 空间量子通信方案 按照单光子(纠缠光子对)发送者的不同,空间量子通信方案可分为地基和空基两种。下面分别介绍这两种方案。 2.1.1 地基(earth-based)方案 地基方案设想包括一个地基发射终端,该终端可以向地面站和卫星分发单光子,或者进行纠缠光子共享。这样就能在这些通信终端之间进行量子通信。其中最简单的情况,是一个地面终端与另外一个地面终端进行直接的通信,即陆上自由空间量子通信链路。如前所述,这种情况的通信距离有限。而由单个地面终端和单个卫星终端组成的上行链路,

浅谈量子信息技术

浅谈量子信息技术 贝尔学院韩笑 (一) 引言 众所周知,信息技术经常出现在人们的视野之中,是许多人都很熟悉的词汇。它是主要用于管理和处理信息所采用的各种技术的总称。主要是应用计算机科学和通信技术来设计、开发、安装和实施信息系统及应用软件。它也常被称为信息和通信技术。主要包括传感技术、计算机技术和通信技术。 而量子信息技术,其与信息技术最显著的区别就在于“量子”两个字。量子信息技术是量子物理与信息技术相结合发展起来的新学科,主要包括量子通信和量子计算2个领域。量子通信主要研究量子密码、量子隐形传态、远距离量子通信的技术等等;量子计算主要研究量子计算机和适合于量子计算机的量子算法。 (二) 量子信息技术的具体含义 那么到底量子信息技术相比信息技术,它的高端之处在哪呢? 首先,应该着重于“量子”这两个字。在量子力学中,量子信息是关于量子系统“状态”所带有的物理信息。通过量子系统的各种相干特性(如量子并行、量子纠缠和量子不可克隆等),进行计算、编码和信息传输的全新信息方式。 量子是一个态.所谓态在物理上不是一个具体的物理量,也不是一个单位,也不是一个实体,而是一个可以观测记录的一组记录(也就是确定组不变量去测量另外一组量),但是这组记录可以运算.并可以求出某时刻对是已观测的纪录对比十分吻合.这个就是波动力学的基础。要解决量子信息.首先要在逻辑有一个多值逻辑理论,才能通过对于量子态对应于一个实体,也就是现在所谓的给量子的态赋给予实体的功能,这样就可以实现某些交换,也就是可以计算,只要这组态符合一定的条件,由波动力学①,结论一定成立。这就是量子信息学的基础,如果一旦能找到符合理论的这些态,则计算能力将不是现有计算机的N信部题,而是的一0时计算的超量完成.对某个有限大的数组在量子态可以理论上是0时完成,也就是超距变换。这是量子信息学的研究动力。 根据摩尔定律,每十八个月计算机微处理器的速度就增长一倍,其中单位面积(或体积)上集成的元件数目会相应地增加。可以预见,在不久的将来,芯片元件就会达到它能以经典方式工作的极限尺度。因此,突破这种尺度极限是当代信息科学所面临的一个重大科学问题。量子信息的研究就是充分利用量子物理基本原理的研究成果,发挥量子相干特性的强大作用,探索以全新的方式进行计算、编码和信息传输的可能性,为突破芯片极限提供新概念、新思路和新途径。量子力学与信息科学结合,不仅充分显示了学科交叉的重要性, 而且量子信息的最终物理实现, 会导致信息科学观念和模式的重大变革。事实上,传统计算机也是量子力学的产物,它的器件也利用了诸如量子隧道现象等量子效应。但仅仅应用量子器件的信息技术,并不等于是现在所说的量子信息。目前的量子信息主要是基于量子力学的相干特征,重构密码、计算和通讯的基本原理。 量子特性在信息领域中有着独特的功能,在提高运算速度、确保信息安全、增大信息容量和提高检测精度等方面可能突破现有经典信息系统的极限,于是便诞生了一门新的学科分支——量子信息科学。它是量子力学与信息科学相结合的产物,包括:量子密码、量子通信、量子计算和量子测量等,近年来,在理论和实验上已经取得了重要突破,引起各国政府、科技界和信息产业界的高度重视。人们越来越坚信,量子信息科学为信息科学的发展开创了新的原理和方法,将在21世纪发挥出巨大潜力。

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

量子力学的发展史及其哲学思想

十九世纪末期,物理学理论在当时看来已发展到相当完善的阶段.那时,一般的物理现象都可以从相应的理论中得到说明:物体的机械运动比光速小的多时,准确地遵循牛顿力学的规律;电磁现象的规律被总结为麦克斯韦方程;光的现象有光的波动理论,最后也归结为麦克斯韦方程;热的现象理论有完整的热力学以及玻耳兹曼,吉不斯等人建立的统计物理学.在这种情况下,当时有许多人认为物理现象的基本规律已完全被揭露,剩下的工作只是把这些基本规律应用到各种具体问题上,进行一些计算而已。 这种把当时物理学的理论认作”最终理论”的看法显然是错误的,因为:在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在”绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识具有相对的真理性.”生产力的巨大发展,对科学试验不断提出新的要求,促使科学试验从一个发展阶段进入到另一个新的发展阶段。就在物理学的经典理论取得上述重大成就的同时,人们发现了一些新的物理现象,例如黑体辐射,光电效应,原子的光谱线系以及固体在低温下的比热等,都是经典物理理论所无法解释的。这些现象揭露了经典物理学的局限性,突出了经典物理学与微观世界规律性的矛盾,从而为发现微观世界的规律打下基础。黑体辐射和光电效应等现象使人们发现了光的波粒二象性;玻尔为解释原子的光谱线系而提出了原子结构的量子论,由于这个理论只是在经典理论的基础上加进一些新的假设,因而未能反映微观世界的本质。因此更突出了认识微观粒子运动规律的迫切性。直到本世纪二十年代,人们在光的波粒二象性的启示下,开始认识到微观粒子的波粒二象性,才开辟了建立量子力学的途径。 量子力学诞生和发展的过程,是充满着矛盾和斗争的过程。一方面,新现象的发现暴露了微观过程内部的矛盾,推动人们突破经典物理理论的限制,提出新的思想,新的理论;另一方面,不少的人(其中也包括一些对突破经典物理学的限制有过贡献的人),他们的思想不能(或不完全能)随变化了的客观情况而前进,不愿承认经典物理理论的局限性,总是千方百计地企图把新发现的现象以及为说明这些现象而提出的新思想,新理论纳入经典物理理论的框架之内。虽然本书中不能详细叙述这个过程。尽管这些新现象在十九世纪末就陆续被发现,而量

浅谈量子通信技术

题目浅谈量子通信技术课程现代通信技术基础班级 学号 姓名 指导老师 2011 年12月10日

浅谈量子通信技术 摘要:量子通信(Quantum Teleportation)是指利用量子纠缠效应进行信息传递的一种新型的通讯方式。量子通讯是近二十年发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等,近来这门学科已逐步从理论走向实验,并向实用化发展。高效安全的信息传输日益受到人们的关注。基于量子力学的基本原理,量子通信具有高效率和绝对安全等特点,并因此成为国际上量子物理和信息科学的研究热点。 关键词语: 量子通信量子力学 1、引言 量子通信系统的基本部件包括量子态发生器、量子通道和量子测量装置。按其所传输的信息是经典还是量子而分为两类。前者主要用于量子密钥的传输,后者则可用于量子隐形传态和量子纠缠的分发。所谓隐形传送指的是脱离实物的一种“完全”的信息传送。从物理学角度,可以这样来想象隐形传送的过程:先提取原物的所有信息,然后将这些信息传送到接收地点,接收者依据这些信息,选取与构成原物完全相同的基本单元,制造出原物完美的复制品。但是,量子力学的不确定性原理不允许精确地提取原物的全部信息,这个复制品不可能是完美的。因此长期以来,隐形传送不过是一种幻想而已。 2、量子通信的的提出 自1 9世纪进入通信时代以来,人们就梦想着像光速一样(甚至比光速更快)的通信方式.在这种通信方式下,信息的传递不再通过信息载体(如电磁波)的直接传输,也不再受通信双方之间空间距离的限制,而且不存在任何传输延时,它是一种真正的实时通信.科学家们试图利用量子非效应或量子效应来实现这种通信方式,这种通信方式被称为量子通信.与成熟的通信技术相比,量子通信具有巨大的优越性,已成为国内外研究的热点.近年来在理论和实践上均已取得了重要的突破,引起各国政府、科技界和信息产业界的高度重视.从人类信息交流

量子力学的发展进程

量子力学的发展进程 黑体2014 摘要:简述了量子力学的发展进程。量子力学是近代物理学的重要组成部分,是研究微观粒子(分子、原子、原子核、基本粒子等)运动规律的一种基础理论。它是本世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。它的发展曾经引起物理思想上的巨大变革,它产生的影响,绝不局限于物理学和化学这两门学科,而且还涉及人类认识本身的种种基本问题。因此对它的发展进程进行研究有着特别的重要意义。笔者想在这篇文章中对量子力学的发展进程作一简要的回顾,并就自己在学习周世勋《量子力学教程》这门课程中一些疑惑和感想做一说明。 关键词:量子力学;进程;学习心得

The development process of quantum mechanics Abstract:Briefly describes the development process of quantum mechanics. It is an important part of modern physics, quantum mechanics is the study of microscopic particles (molecules, atoms, nuclei, elementary particles, etc.) a basic theory of the motion law. It is in the 20 s of this century in summing up a lot of experimental facts and the old quantum theory established on the basis of it. Its development has caused physical and ideological change, the impact of it, not limited to the physics and chemistry, the two subjects, but also the basic problem of human cognition itself. So the study of its development process has a special significance. In this article the development process of quantum mechanics makes a brief review of, and in their learning Zhou Shixun in the course of the quantum mechanics course some doubts and thoughts. Key words:Quantum mechanics; Process; The learning

量子通信技术基于量子物理学的基本原理

关键词:量子通信安全性中国发展 摘要:用国际顶级量子专家王肇中教授的话说,量子通信就是单模光纤两端加上能代替常用光模块功能的、光量子态的发送和接收设备,实现基于物理加密的保密通信。 量子通信技术基于量子物理学的基本原理,克服了经典加密技术内在的安全隐患,是迄今为止唯一被严格证明是无条件安全的通信方式。为了拓展应用、与现有通信系统兼容以及大量减少成本,需对点对点的通信方式进行组网并充分利用经典通信设施。与此同时,量子克隆技术的出现也使得我们开始重新审视量子通信的安全性问题。量子通信是相对最安全的,但任何事情都不是绝对的,有矛就有盾。一方面有“量子非克隆原理”,另一方面有实现近似量子克隆的“量子克隆机”。怎样可靠地评估安全性?怎样进行攻击?是值得研讨的问题。在不久的将来,量子通信与经典通信的融合发展将会带来通信世界的新纪元。 例如一个量子态可以同时表示0和1两个数字,7个这样的量子态就可以同时表示128个状态或128个数字:0~127。光量子通信的这样一次传输,就相当于经典通信方式的128次。可以想象如果传输带宽是64位或者更高,那么效率之差将是惊人的2,以及更高。 1. 欧洲联合了来自12个欧盟国家的41个伙伴小组成立了SECOQC量子通信网络[8][9]。并于2008年10月在维也纳现场演示了一个基于商业网络的安全量子通信系统。该系统集成了多种量子密码手段,包含6个节点。其组网方式为在每个节点使用多个不同类型量子密钥分发的收发系统并利用可信中继进行联网。 息量子通信验证网”在北京开通,在世界上首次将量子通信技术应用于金融信息安全传输。 2014年11月15日,团队研发的远程量子密钥分发系统的安全距离扩展至200公里,刷新世界纪录。 2. 应用与用途 潘建伟教授指出,量子通信技术的实际应用将分三步走:一是通过光纤实现城域量子通信网络;二是通过量子中继器实现城际量子通信网络;三是通过卫星中转实现可覆盖全球的广域量子通信网络。 对市场角度来说,互联网本质上是一个不安全的网络,而量子通信在理论上的绝对保密特征,已经得到物理定理的证明,很显然在军事、国防、金融等领域有着广阔的应用前景。在大众商业市场,随着技术成熟,量子通信也将具有极大的发展潜力。 3.量子通信技术的发展趋势 4.不足 但量子通信本身,仍然处在研究阶段,还远远没有达到大规模商用化的水平,实用的量子通信网络其保密的绝对性还有待商榷。 量子通信面临四项难点:可扩展、强抗毁、广覆盖、立体化 子密钥分发在未来推广应用方面面临两大挑战:融合性和安全性。量子通信从量子力学的

量子力学的发展及应用

量子力学论文题目: 量子力学发展历史及应用领域 学生姓名武术 专业电子科学与技术 学号_ 222009322072082 班级2009 级 2班 指导教师张济龙 成绩 _ 工程技术学院 2011年12 月

量子力学发展历史及应用领域 武术 西南大学工程技术学院,重庆 400716 摘要:量子力学发展至今已有一百年了,它发展的道路并不是一帆风顺的。这一百年虽是艰难的,但是辉煌的。此后,人们发现量子力学与现代科技的联系日益紧密,它的发展潜力是不能低估的。本文从两个部分逐次论述了量子力学的发展及应用。第一部分是量子力学的发展,这部分阐述了早期量子论。第二部分是量子力学的应用,这部分阐明了量子力学在固体物理和信息科学中的应用。 关键词:早期量子论;量子力学的发展;量子力学的应用 量子力学诞生至今一百年。经过一百年的发展,它由原子层次的动力学理论,已经向物理学和其他学科以及高新技术延伸。而事实上,它已超出物理学范围;它不仅是现代物质科学的主心骨,又是现代科技文明建设的主要理论基础之一。 建立在量子概念的量子力学及其物理诠释,促使人类的思想观念产生根本性转变;虽然这新概念很抽象,但就目前文明的空前繁荣而言,量子力学所产生的影响是相当广泛的。而看看量子力学的前沿性进展新貌,则会感到心驰神往。 量子力学可谓是量子理论的第二次发展层次,第一次常称作早期量子论,第三次就是量子场论。本文除了论述这三个层次以外,又说了它在现代物理乃至现代物质科学中的地位,阐述了它应用的状况。 一.量子力学的发展 19世纪末20世纪初,人们认为经典物理发展很完美的时候,一系列经典理论无法解释的现象一个接一个的发现了。经典力学时期物理学所探讨的主要是用比较直接的实验研究就可以接触到的物理现象的定理和理论。牛顿定理和麦克斯韦电磁理论在宏观和慢速的世界中是很好的自然规律。而对于微观世界的

量子通信技术发展现状及面临的问题研究_徐兵杰

doi:10.3969/j.issn.1002-0802.2014.05.001 量子通信技术发展现状及面临的问题研究 徐兵杰1,刘文林2,毛钧庆3,杨燕3 (1.保密通信实验室,四川成都610041;2.解放军95830部队,北京100093;3.解放军91746部队,北京102206) 摘要:量子通信具有更高的传输速率和更可靠的保密性,是世界各国正在研究和发展的通信技术热点之一。首先介绍量子通信技术的基本概念、发展历程、系统架构、特点优势,然后重点阐述国内外量子密钥分配、量子隐形传态、量子安全直接通信、量子机密共享等技术的研究进展情况,最后分析量子通信技术研究和发展过程中面临的困难及局限。 关键词:量子通信密钥分配隐形传态机密共享 中图分类号:TN91文献标志码:A文章编号:1002-0802(2014)05-0463-06 Research on Development Status and Existing Problems of Quantum Communication Technology XU Bing-jie1,LIU Wen-lin2,MAO Jun-qing3,YANG yan3 (1.Science and Technology on Communication Security Laboratory,Chengdu Sichuan610041,China; 2.Unit95830of PLA,Beijing100093,China;3.Unit91746of PLA,Beijing102206,China)Abstract:Quantum communication is a new communication technology under research and development,which possesses higher transmission rate and reliable secure communication advantages.This paper intro-duces the concepts,development,system architecture,features and advantages of quantum communication technologies firstly.Then it focuses on demonstrating the technology research progress of quantum commu-nication,such as quantum key distribution,teleportation,secure direct communication and secret sharing.Finally,the research and development difficulties of quantum communication technology and limitations are analyzed in this paper. Key words:quantum communication;key distribution;teleportation;secret sharing 0引言 量子通信基于量子力学原理,将微观世界的物质特性运用到通信技术上,在高速传输和高可靠保密通信方面具有优势,成为当今通信技术领域的研究热点之一。世界各国纷纷投入大量的人力和物力进行研究和开发,在理论研究和实验技术上均取得了重大突破。 1量子通信技术 1.1基本概念 量子通信是利用量子相干叠加、量子纠缠效应进行信息传递的一种新型通信技术,由量子论和信息论相结合而产生[1]。从物理学角度看,量子通信是在物理极限下利用量子效应现象完成的高性能通信,从物理原理上确保通信的绝对安全,解决了通信技术无法解决的问题,是一种全新的通信方式[2]。从信息学角度看,量子通信是利用量子不可克隆或者量子隐形传输等量子特性,借助量子测量的方法实现两地之间的信息数据传输。量子通信中传输的不是经典信息,而是量子态携带的量子信息,是未来通信技术的重要发展方向。 1.2发展历程 量子通信的研究发展起步于20世纪80年代[3]。1969年,美国哥伦比亚大学Wiesner提出采用量子力学理论保护信息安全的设想。1979年,美国IBM公司的Bennett和加拿大蒙特利尔大学的Brassard提出了将Wiesner的设想用于通信传输的 第47卷第5期2014年5月 通信技术 Communications Technology Vol.47No.5 May.2014

量子通信技术发展中存在的问题分析

龙源期刊网 https://www.doczj.com/doc/b011956136.html, 量子通信技术发展中存在的问题分析 作者:刘冬 来源:《中国新通信》2017年第01期 【摘要】量子通信是指用量子纠缠效应进行信息传递的一种新型通信方式,是量子理论 和信息论相结合的新的研究领域,是近20年发展起来的新型交叉学科,目前这门学科已逐步从理论实验走向实用化。英国《自然》杂志曾指出我国量子通信技术发展迅速是一支世界劲旅,我国在为量子通信技术研究硕果欣喜的同时也发现它在实用发展中存在诸多问题。本文从量子通信技术发展中存在的弱相干光源安全性问题、通信技术发展中存在的光子源产生单光子效率低问题两方面进行了浅析。 【关键词】量子通信发展存在问题现状分析 20世纪80年代是量子通信技术研究的开启性时代,其实从历史角度看量子通信技术的研究要早于这个时间,早在20世纪70年代威斯纳已经写出了“共轭编码”这篇著名文章。量子通信技术是在量子力学快速发展的前提下发展的新领域,它在信息传递方面存在很大优势已成为目前研究的热点。但是随着通信技术的快速发展,也存住诸多问题。 一、量子通信技术发展中存在的弱相干光源安全性问题分析 根据量子通信技术研究表明量子通信是利用了光子等粒子的量子纠缠原理,量子纠缠是指在微观世界里两个粒子间的距离不论有多远,一个粒子的变化会影响另一个粒子变化的一种现象。因此,量子通信技术离不开光源技术。由于单光子源技术难度太高,我国量子通信技术一般采用弱相干光源技术,但是这种光源在实用发展中存在诸多安全性问题。 1、量子通信技术发展中存在的单光子分离攻击问题。光子是光最小的单位,单光子是不可再分的。但是我国通信技术使用的弱相干光源技术,它的脉冲中不止一种光子,在理论上这种脉冲中所包括的光子是可以再进行分割的。量子通信系统的基本部件由量子态发生器、量子通道和量子测量装置三部分组成,主要涉及量子密码通信、量子远程传态、量子密码编码等,按量子通信所传输的信息是经典还是量子分为两大类,它的基本思想是将原物信息分成经典和量子两种信息,分别经由经典通道和量子通道传递给接受者,在传递过程中量子通信的通道损耗非常大。对于单光子源技术来讲,即使通道损耗再大也是安全的,因为单光子不可再分割。但对弱相干光源来讲就会存在安全隐患,窃听者可以通过光子分离攻击假冒量子通信技术的通道而获得全部密码,并且不会被量子通信技术发现。 2、量子通信技术发展中存在的木马攻击和侧信道攻击问题分析。量子密码编码是量子通信技术使用中主要涉及部分之一,木马攻击就是利用量子密码信号源和接收器等部件的设计漏洞进行攻击,有效窃取量子通信技术里的量子保密系统的内部信息。这种窃取信息的方法主要有侧信道攻击、光能部件高能破坏攻击和大脉冲攻击等。[1]

量子力学的历史和发展

量子力学的历史和发展 量子论和相对论是现代物理学的两大基础理论。它们是在二十世纪头30年发生的物理学革命的过程中产生和形成的,并且也是这场革命的主要标志和直接的成果,量子论的诞生成了物理学革命的第一声号角。经过许多物理学家不分民族和国籍的国际合作,在1927年它形成了一个严密的理论体系。它不仅是人类洞察自然所取得的富有革命精神和极有成效的科学成果,而且在人类思想史上也占有极其重要的地位。如果说相对论作为时空的物理理论从根本上改变人们以往的时空观念,那么量子论则很大程度改变了人们的实践,使人类对自然界的认识又一次深化。它对人与自然之间的关系的重要修正,影响到人类对掌握自己命运的能力的看法。量子论的创立经历了从旧量子论到量子力学的近30年的历程。量子力学产生以前的量子论通常称旧量子论。它的主要内容是相继出现的普朗克量子假说、爱因斯坦的光量子论和玻尔的原子理论。 热辐射研究和普朗克能量子假说 十九世纪中叶,冶金工业的向前发展所要求的高温测量技术推动了热辐射的研究。已经成为欧洲工业强国的德国有许多物理学家致力于这一课题的研究。德国成为热辐射研究的发源地。所谓热辐射就是物体被加热时发出的电磁波。所有的热物体都会发出热辐射。凝聚态物质(固体和液体)发生的连续辐射很强地依赖它的温度。一个物体被加热从暗到发光,从发红光到黄光、蓝光直至白光。1859年,柏林大学教授基尔霍夫(1824—1887年)根据实验的启发,提出用黑体作为理想模型来研究热辐射。所谓黑体是指一种能够完全吸收投射在它上面的辐射而全无反射和透射的,看上去全黑的理想物体。1895年,维恩(1864—1928年)从理论分析得出,一个带有小孔的空腔的热辐射性能可以看作一个黑体。实验表明这样的黑体所发射的辐射的能量密度只与它的温度和频率有关,而与它的形状及其组成的物质无关。黑体在任何给定的温度发射出特征频率的光谱。这光谱包括一切频率,但和频率相联系的强度却不同。怎样从理论上解释黑体能谱曲线是当时热辐射理论研究的根本问题。1896年,维恩根据热力学的普遍原理和一些特殊的假设提出一个黑体辐射能量按频率分布的公式,后来人们称它为维恩辐射定律。普朗克就在这时加入了热辐射研究者的行动。普朗克(1858—1947年)出身于一个书香门第之家,曾祖父和祖父曾在哥廷根大学任神学教授,伯父和父亲分别是哥廷根大学和基尔大学的法学教授。他出生在基尔,青年时期在慕尼黑度过。17岁进慕尼黑大学攻读数学和物理学,后来转到柏林大学受教于基尔

量子通信简介

量子通信 一.经典通信系统模型 经典通信系统可以用下图所示的模型描述。 信源(Information source):指产生消息的源泉。信息总是一个物理系统,其形态随空间坐标或时间变化。 空间信源(space source):系统随时间改变形态,它生产在空间传输的信号,这样的物理系统称为空间信源。 时间信源(time source):系统空间各部分有不随时间变化的不同的分布,它可能引起信号在时间中传输,这样的系统称为时间信源。编码(Encoding):对信源进行处理,以提高信源传输的有效性和可靠性。 信道(Channel):传输消息的媒介称为信道。 噪声(Noise):在传输过程中,由于干扰使编码的物态发生畸变。引起编码物理态畸变的各种因素称为噪声。 译码(Decoding):由信道输出物态恢复信源输出的消息的过程叫译码。 信宿(Destination):是消息传输的归宿和的地,即接收消息的人或仪器。

量子信息通信简介 量子信息科学是物理学与信息科学交叉融合产生的新兴学科领域,涉及物理、计算机、通信、数学等多个学科,对带动这些学科的发展具有重要意义。量子信息学为未来信息科学的革命性变革提供了可靠的物理基础。量子信息技术在运算速度、信息安全、信息容量等方面可突破传统信息系统的极限。 一.量子信息通信物理基础 1. 量子位(Quantum Bit: qubit ) 在经典信息理论中,信息量的基本单位是比特(bit),一个比特是给 出经典二值系统一个取值的信息量. 例如,{0,1} 在量子信息理论中,量子信息的基本单位是量子比特(qubit)。一个 qubit 是一个双态量子系统,即两个线性独立的态,常记为:|0>和 |1>。以这两个独立态为基矢,张成一个二维复矢量空间,即二维Hilbert 空间。 量子位的物理载体: 光子: ()()>+>->=>+>>=y i x L y i x R ||21 | ,||21 | |R>: 右圆极化偏振光, |L>: 左圆极化偏振光。 自旋1/2的粒子: |0>,|1> 二能级原子: |g >,|e > 迭加态: >+>>=1|0||b a ψ |a|2, |b|2分别为测量时得到|0>,|1>的几率。 n 个qubit 态:张成一个2n 的Hilbert 空间,有2n 个相互正交的态:>i | , i 是一个n 位二进制数。 例如:3个量子位有8个量子态: |0>, |1>, |2>, |3>, |4>, |5>, |6>, |7> |000>, |001>, |010>, |011>, |100>, |101>, |110>, |111>

量子力学的产生与发展

量子力学的产生与发展 量子力学是描述微观世界结构、运动与变化规律的物理科学。它是20世纪人类文明发展的一个重大飞跃,量子力学的发现引发了一系列划时代的科学发现与技术发明,对人类社会的进步做出重要贡献。 量子的诞生 19世纪末正当人们为经典物理取得重大成就的时候,一系列经典理论无法解释的现象一个接一个地发现了。德国物理学家维恩通过热辐射能谱的测量发现的热辐射定理。1900年德国物理学家普朗克为了解释热辐射能谱提出了一个大胆的假设:在热辐射的产生与吸收过程中能量是以hV为最小单位,一份一份交换的。普朗克利用内插法,将适用于短波的维恩公式和适用于长波的瑞利―金斯公式衔接起来.在1900年提出了一个新的公式。量子论就这样随着二十世纪开始由伟大的物理学家普朗克把它带到我们这个世界来。虽然在围绕原子论的争论过程中,玻尔兹曼(1844—1966年)在反驳唯能论时说过“怎么能说能量就不像原子那样分立存在呢?”这样的话,马赫(1838—1916年)曾经表明化学运动不连续性的观点,但真正把能量不连续的概念引入物理学的是普朗克。因为能量不连续的概念与古典物理学格格不入,物理学界对它最初的反映是冷淡的。物理学家们只承认普朗克公式是同实验一致的经验公式,不承认他的理论性的量子假说。普朗克本人也惴惴不安,因为他的量子假设是迫不得已的“孤注一掷的举动”。他本想在最后的结果中令h→0,但却发现根本办不到。他其后多年试图把量子假说纳入古典物理学框架之内,取消能量的不连续性,但从未成功。只有爱因斯坦最早认识到普朗克能量子概念在物理学中的革命意义。

著名科学家爱因斯坦经过认真思考,于1905年提出了光量子说。1916年美国物理学家密立根发表了光电效应实验结果,验证了爱因斯坦的光量子说。 量子的青年时代 杂乱的数字以及有趣的台阶想法 从光谱学中,我们知道任何元素都产生特定的唯一谱线。这些谱线呈现什么规律以及为什么会有这些规律,却是一个大难题。拿氢原子的谱线来说吧,这是最简单的原子谱线了。它就呈现为一组线段,每一条线都代表了一个特定的波长。比如在可见光区间内,氢原子的光谱线依次为:656,484,434,410,397,388,383,380……纳米。这些数据无疑不是杂乱无章的,1885年,瑞士的一位数学教师巴尔末(Johann Balmer)发现了其中的规律,并总结了一个公式来表示这些波长之间的关系,这就是著名的巴尔末公式。将它的原始形式稍微变换一下,用波长的倒数来表示,则显得更加简单明了:ν=R(1/2^2 - 1/n^2) 1913年丹麦物理学家玻尔疑惑于卢瑟福原子行星模型的不稳定,建了一所“诺贝尔奖幼儿园”的卢瑟福向他推荐了这个公式。在玻尔眼里,这无疑是一个晴天霹雳,它像一个火花,瞬间点燃了玻尔的灵感,所有的疑惑在那一刻变得顺理成章了,玻尔知道,隐藏在原子里的秘密,终于向他嫣然展开笑颜。一个大胆的想法在玻尔的脑中浮现出来:如同具有一定势能的人从某一层台阶上跳下来一样。台阶数“必须”是整数,就是我们的量子化条件。原子内部只能释放特定量的能量,说明电子只能在特定的“势能位置”之间转换。也就是说,电子只能按照某些“确定的”轨道运行,这些轨道,必须符合一定的势能条件,从而使得电子在这些轨道间跃迁时,只能释放出符合巴耳末公式的能量来。氢原子的光谱线代表了电子从一个特定的台阶跳跃到另外一个台阶所释放的能量。因为观测到的光谱线是量子化的,所以电子的“台阶”(或者轨道)必定也是量子化的,它不能连续而取任意值,而必须分成“底楼”,“一楼”,“二楼”等,在两层“楼”之间,是电子的禁区,它不可能出现在那里。正如一个人不能悬在两级台阶之间漂浮一样。如果现在电子在“三楼”,它的能量用W3表示,那么当这个电子突发奇想,决定

相关主题
文本预览
相关文档 最新文档