当前位置:文档之家› 横向剪切干涉实验报告

横向剪切干涉实验报告

横向剪切干涉实验报告
横向剪切干涉实验报告

横向剪切干涉实验

5-姓名:陈正学号:PB05210465 系别:6系实验目的:

利用一个焦距为190毫米的单薄透镜的剪切干涉条纹的分布求出该透镜的轴向离焦量及初级球差比例系数。

实验原理:

实验原理见预习报告!

实验器材:

本实验需要如下器材:

HeNe激光、反射镜、小焦距透镜、薄透镜(190mm)、平行玻璃扳、白屏、带变焦镜头的CCD、处理软件.

实验内容:

1,首先按照实验原理图连接好实验器材,在插入透镜之前放好剪切用的平行平板和白屏,使二者保持平行,激光束穿过平行板中心,此时白屏上应出现两个光点,记录亮光点的距离即为剪切量,本实验的剪切量为2.5mm.

2,在光路中插入扩束镜和准直镜,用白屏一步一步调整光路,使光路中仪器都处于同轴状态.

3,调整扩束镜于准直镜之间的距离,将符合实验原理中的符合物点A于准直镜的前焦点基本重合的位置处停下,并用AVercap采集程序记录下此时的图形,在按照实验要求分别在沿光轴方向使扩束镜沿准直镜移动3、5mm和背向准直镜移动3、2mm,并用AVercap采集程序分别记录下四个对应的图形.

4,启用“剪切干涉图应用程序”对实验对得到的图像进行处理.首先按照程序要求进行预处理,然后按照程序要求输入相关数据,点击”求解”,即可得到所需要的轴向离焦量()和初级球差比例系数(A)

5,将上步得到的轴向离焦量()和初级球差比例系数(A)于理论值进行比较.

数据处理:

1)与焦点重合时的图形如下:

2)从焦点往准直镜移动3mm时的图形如下:

3)从焦点往准直镜移动5mm时的图形如下:

4)从焦点背离准直镜移动2mm时的图形如下:

5)从焦点背离准直镜移动5mm时的图形如下:

由图可以清晰的观察到:

1, 在焦点处为一个图形上的界线点

2, 当扩束镜从焦点处靠近准直镜时图形呈现出来的是从中心想外凹,而党扩束镜从焦点处原理准直镜时图形呈现处来的则是从中心往外凸.

3, 当处于凹或凸时越靠近准直镜时干涉条纹越密,越远离准直镜时越松,这于理论也时相一致的.

通过上述步骤(4)对实验图形3和4的分析得到以下数据:

对图3有:

测量值为:

轴向离焦量()=5.8595

初级球差比例系数(A)=-258.684

理论值为;

轴向离焦量()=6

初级球差比例系数(A)=-250

所以得到实验偏差为:

=*100%=2.2%

对图4有:

测量值为:

轴向离焦量()=2.2643(单位?)

初级球差比例系数(A)=--263.278

理论值为;

轴向离焦量()=2

初级球差比例系数(A)=-250

所以得到实验偏差为:

=*100%=13.2%

由上面的误差可以看到实验中产生的误差还时相对较大,分析其产生的原因主要有以下几点:

1.实验时桌面的震动可能使光线发生偏转,对实验造成误差.

2.实验时说话,走动带来的空气流通对激光的传播也会带来很大误差.

3.在对图形进行预处理的时候采用的是一种不精确的用肉眼观察最上最下最左

最右点,这可能给实验带来很大误差.

4.实验时并没有按照每个仪器都测量光线是否穿过其光轴,使得各仪器不同轴,

这也可能带来误差

思考题::

1,要得到理想图形时,各元件必须严格同心,为什么?

答:

实验中要求,激光束要通过平行板中心,这样就要求准直镜与扩束镜必须都与平行平板同心.因为如果不同心,激光束通过透镜时将沿主轴方向发生偏转,这就与实验要求不符.

单片机c语言版数码管动态显示实验报告

数码管动态显示实验 一、实验要求 1.在Proteus软件中画好51单片机最小核心电路,包括复位电路和晶振电路 2.在电路中增加四个7段数码管(共阳/共阴自选),将P1口作数据输出口与7段数码 管数据引脚相连,P2.0~P2.3引脚输出选控制信号 3.在Keil软件中编写程序,采用动态显示法,实现数码管显示变量unsigned int show_value的值(show_value的值范围为0000~9999),即把show_value的千百 十个位的值用数码管显示出来。 二、实验目的 1.巩固Proteus软件和Keil软件的使用方法 2.学习端口输入输出的高级应用 3.掌握7段数码管的连接方式和动态显示法 4.掌握查表程序和延时等子程序的设计 三.实验说明 (条理清晰,含程序的一些功能分析计算) 如下图(五)所示,由P1口将要显示的数字输给七段数码管;再由P2第四位输给数码管的公共端,作为扫描输入信号;用外部中断P3.2和P3.3分别接PB1与PB2,实现数字的增减。所要实现的功能是,开始运行电路功能图时,四个数码管分别显示0000,按下PB1增1,直到9999回到0000,相反按下PB2减1,直到0000回到9999。 在算相关数据时,由于要显示个十百千的不同数字,要调用disp函数, disp[0]=show/1000; //显示千位的值 disp[1]=show%1000/100; //显示百位的值 disp[2]=show%100/10; //显示十位的值 disp[3]=show%10; //显示个位的值 本实验需要用到IE寄存器与TCON寄存器。 四、硬件原理图及程序设计 (一)硬件原理图设计

光通信实验报告

竭诚为您提供优质文档/双击可除 光通信实验报告 篇一:光通信实验报告 信息与通信工程学院 光纤通信实验报告 班姓学 级:名:号: 班内序号:17 日 期:20XX年5月 一、oTDR的使用与测量 1、实验原理 oTDR使用瑞利散射和菲涅尔反射来表征光纤的特性。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。oTDR就测量回到oTDR端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。形成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信

号都有所损耗。 给定了光纤参数后,瑞利散射的功率就可以标明出来,如果波长已知,它就与信号的脉冲宽度成比例:脉冲宽度越长,背向散射功率就越强。瑞利散射的功率还与发射信号的波长有关,波长较短则功率较强。也就是说用1310nm信号产生的轨迹会比1550nm信号所产生的轨迹的瑞利背向散射要高。 在高波长区(超过1500nm),瑞利散射会持续减小,但另外一个叫红外线衰减(或吸收)的现象会出现,增加并导致了全部衰减值的增大。因此,1550nm是最低的衰减波长;这也说明了为什么它是作为长距离通信的波长。很自然,这些现象也会影响到oTDR。作为1550nm波长的oTDR,它也具有低的衰减性能,因此可以进行长距离的测试。而作为高衰减的1310nm或1625nm波长,oTDR的测试距离就必然受到限制,因为测试设备需要在oTDR轨迹中测出一个尖锋,而且这个尖锋的尾端会快速地落入到噪音中。 菲涅尔反射是离散的反射,它是由整条光纤中的个别点而引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙。在这些点上,会有很强的背向散射光被反射回来。因此,oTDR就是利用菲涅尔反射的信息来定位连接点,光纤终端或断点。 oTDR的工作原理就类似于一个雷达。它先对光纤发出一

实验 典型环节的动态特性实验报告

实验一典型环节的动态特性 一.实验目的 1.通过观察典型环节在单位阶跃信号作用下的相应曲线,熟悉它们的动态特性。 2.了解各典型环节中参数变化对其动态特性的影响。 二.实验内容 1.比例环节 G(S)= K 所选的几个不同参数值分别为K1= 33 ; K2= 34 ; K3= 35 ; 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值): 2.积分环节

G(S)= S T i 1 所选的几个不同参数值分别为T i1= 33 ; T i2= 33 ; T i3= 35 : 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值): 3.一阶惯性环节 G(S)= S T K c 1 令K不变(取K= 33 ),改变T c取值:T c1= 12 ;T c2= 14 ;T c3= 16 ;

对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值): 4. 实际微分环节 G(S)= S T S T K D D D 1 令K D 不变(取K D = 33 ),改变T D 取值:T D 1= 10 ;T D 2= 12 ;T D 3= 14 ;

对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值): 5.纯迟延环节 G(S)= S eτ- 所选的几个不同参数值分别为τ1= 2 ;τ2= 5 ;τ3= 8 ; 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值):

6. 典型二阶环节 G(S)= 2 2 2n n n S S K ωξωω++ 令K 不变(取K = 33 ) ① 令ωn = 1 ,ξ取不同值:ξ1=0;ξ2= 0.2 ,ξ3= 0.4 (0<ξ<1);ξ4=1;ξ5= 3 (ξ≥1); 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值): ②令ξ=0,ωn 取不同值:ωn 1= 1 ;ωn 2= 2 ; 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值):

常用剪切波波速

常用剪切波 剪切波波速成果图 相关公式编辑 剪切波速测试单孔法 压缩波或剪切波从振源到达测点时间得确定,应符合下列规定: (1)确定压缩波得时间,应采用竖向传感器记录得波形; (2)确定剪切波得时间,应采用水平传感器记录得波形。 压缩波或剪切波从振源到达测点得时间,应按下列公式进行斜距校正: 式中T——压缩波或剪切波从振源到达测点经斜距校正后得时间(s)(相应于波从孔口到达测点得时间); TL ———-压缩波或剪切波从振源到达测点得实测时间(s); K——斜距校正系数; H ——测点得深度(m); H0——振源与孔口得高差(m),当振源低于孔口时,H0为负值; L—-从板中心到测试孔得水平距离(m)。 时距曲线图得绘制,应以深度H为纵坐标,时间T为横坐标。 波速层得划分,应结合地质情况,按时距曲线上具有不同斜率得折线段确定、 每一波速层得压缩波波速或剪切波波速,应按下式计算: 式中V-—波速层得压缩波波速或剪切波波速(m/s); △H——波速层得厚度(m);

△T--压缩波或剪切波传到波速层顶面与底面得时间差(s)。 剪切波速测试跨孔法 压缩波或剪切波从振源到达测点时间得确定,应符合下列规定: (1)确定压缩波得时间,应采用水平传感器记录得波形; (2)确定剪切波得时间,应采用竖向传感器记录得波形。 由振源到达每个测点得距离,应按测斜数据进行计算。 每个测试深度得压缩波波速及剪切波波速,应按下列公式计算: 式中VP——压缩波波速(m/s); VS—-剪切波波速(m/s); TP1——压缩波到达第1个接收孔测点得时间(s); TP2——压缩波到达第2个接收孔测点得时间(s); TS1——剪切波到达第1个接收孔测点得时间(s); TS2—-剪切波到达第2个接收孔测点得时间(s); S1-—由振源到第1个接收孔测点得距离(m) S2——由振源到第2个接收孔测点得距离(m) △S--由振源到两个接收孔测点距离之差(m)、[1] 卓越周期得计算 《高层建筑岩土工程勘察规程JGJ72-2004》条文说明 [2] 规范重点摘录编辑 剪切波速土得类型划分与剪切波速范围

EDA设计课程实验报告数码管动态显示实验报告

EDA设计课程实验报告 实验题目:数码管动态显示实验 学院名称: 专业:电子信息工程 班级: 姓名:高胜学号 小组成员: 指导教师: 一、实验目的 学习动态扫描显示的原理;利用数码管动态扫描显示的原理编写程序,实现自己的学号的显示。 二、设计任务及要求

1、在SmartSOPC实验箱上完成数码管动态显示自己学号的后八个数字。 2、放慢扫描速度演示动态显示的原理过程。 三、系统设计 1、整体设计方案 数码管的八个段a,b,c,d,e,f,g,h(h是小数点)都分别连接到SEG0~SEG7,8个数码管分别由八个选通信号DIG0~DIG7来选择,被选通的数码管显示数据,其余关闭。如果希望8个数码管显示希望的数据,就必须使得8个选通信号DIG0~DIG7分别被单独选通,并在此同时,在段信号输入口SEG0~SEG7加上该对应数码管上显示的数据,于是随着选通信号的扫描就能实现动态扫描显示的目的。虽然每次只有1个数码管显示,但只要扫描显示速率足够快,利用人眼的视觉余辉效应,我们仍会感觉所有的数码管都在同时显示。 2、功能模块电路设 (1)输入输出模块框图(见图1) 图1 (2)模块逻辑表达(见表1) 表1(数码管显示真值表) clk_1k dig seg ↑01111111 C0 ↑10111111 F9

注:数码管显示为01180121 (3)算法流程图(见图2) (4)Verilog源代码 module scan_led(clk_1k,d,dig,seg); //模块名scan_led input clk_1k; //输入时钟 input[31:0] d; //输入要显示的数据output[7:0] dig; //数码管选择输出引脚

土层剪切波速度测试报告

**民生产业基地 土层剪切波速度测试报告 深圳市**有限公司 二0一七年十月二十七日

**民生产业基地 土层剪切波速度测试报告 测试: 报告编写: 审核: 批准: 深圳市**有限公司 二0一七年十月二十七日 测试单位地址:深圳市**号邮编: 联系电话:联系人:

目录 1.前言 (1) 2.测试目的及执行标准 (1) 2.1测试目的 (1) 2.2执行标准 (1) 3.测试方法及仪器设备 (1) 3.1测试方法 (1) 3.2仪器设备 (2) 4.测试结果 (2) 5.地面脉动的卓越周期 (5)

1.前言 受深圳市**有限公司委托,我公司于2017年09月21日至017年09月29日对**民生产业基地场地进行了3个钻孔的土层剪切波速度测试工作。 波速测试孔附近场地内自上而下主要有如下岩土层:素填土、粉质黏土、全风化混合岩、强风化混合岩、中风化混合岩、微风化混合岩。 2.测试目的及执行标准 2.1测试目的 本次试验目的是提供地层剪切波波速,判定土的类型及建筑场地类别;提供场地卓越周期。 2.2执行标准 《岩土工程勘察规范》(GB 50021-2001)(2009年版) 《建筑抗震设计规范》(GB 50011-2010)(2016年版) 3.测试方法及仪器设备 3.1测试方法 本项目剪切波速度测试采用单孔检层法,将起振板置于距井口约1.0~1.5米处,并使其中点与井口的连线垂直于起振板,同时在其上面加压整体性较好的重物。然后,锤击起振板产生纵波和剪切波(记录时通过调节仪器采样率对纵波和剪切波分开采集),并通过置于井内的三分向拾振器将土的振动历程输入电脑分析,获得各测点纵波和剪切波的到时,并利用下式计算相应剪切波速: Vi =(h i -h i-1)/(t i sin αi -t i-1sin αi-1) (1) 22sin i i i i D h h +=α (2) i=1......N 其中h i ,t i 分别为第i 测点的深度和剪切波的走时,D 为起振板中点至孔口的垂直距离。 现场测试时,一般每一岩土层都有一个测点,每1~2米左右一测点。

单片机动态数码显示设计实验报告

微机原理与接口技术 实验报告 实验题目:动态数码显示设计 指导老师: 班级:计算机科学与技术系 姓名: 2014年 12月3日

实验十三动态数码显示设计 一、实验目的 1.掌握动态数码显示技术的设计方法。 2.掌握扫描在程序设计中的应用。 二、设计原理 如图13.1所示,在单片机的P1端口接动态数码管的字形码笔段,在单片机的P2端口接动态数码管的数位选择端。在单片机P3.0管脚处接一个开关,当开关连接高电平时,态数码管上显示“12345”字样;当开关连接低电平时,态数码管上显示“HELLO”字样。 三、参考电路 图13.1 动态数码显示电路原理图

四、电路硬件说明 (1)在“单片机系统”区域中,把单片机的P1.0-P1.7端口连接到“动态数码显示”区域中的a-h端口上。 (2)在“单片机系统”区域中,把单片机的P2.0-P2.7端口通过8联拨动拨码开关JP1连接到“动态数码显示”区域中的S1-S8端口上。 (3)在“单片机系统”区域中,把单片机的P3.0端口通过8联拨动拨码开关JP2连接到拨动开关区域中的SW1端口上。 五、程序设计内容 (1)动态扫描方法: 动态接口采用各数码管循环轮流显示的方法,当循环显示频率较高时,利用人眼的暂留特性,看不出显示的闪烁现象,这种显示需要一个接口完成字形码的输出(字形选择),另一接口完成各数码管的轮流点亮(数位选择)。 (2)在进行数码显示的时候,要对显示单元开辟8个显示缓冲区,在每个显示缓冲区装有显示的不同数据即可。 (3)对于显示不同字形码的数据采用查表方法来完成。 六、程序流程图 (如图13.2所示) 图13.2 动态数码显示程序流程图

常用剪切波波速

常用剪切波波速 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

相关公式 剪切波速测试单孔法 压缩波或剪切波从振源到达测点时间的确定,应符合下列规定: (1)确定压缩波的时间,应采用竖向传感器记录的波形; (2)确定剪切波的时间,应采用水平传感器记录的波形。 压缩波或剪切波从振源到达测点的时间,应按下列公式进行斜距校正: 式中T——压缩波或剪切波从振源到达测点经斜距校正后的时间(s)(相应于波从孔口到达测点的时间); TL————压缩波或剪切波从振源到达测点的实测时间(s); K——斜距校正系数; H——测点的深度(m); H0——振源与孔口的高差(m),当振源低于孔口时,H0为负值; L——从板中心到测试孔的水平距离(m)。 时距曲线图的绘制,应以深度H为纵坐标,时间T为横坐标。 波速层的划分,应结合地质情况,按时距曲线上具有不同斜率的折线段确定。 每一波速层的压缩波波速或剪切波波速,应按下式计算: 式中V——波速层的压缩波波速或剪切波波速(m/s); △H——波速层的厚度(m); △T——压缩波或剪切波传到波速层顶面和底面的时间差(s)。

剪切波速测试跨孔法 压缩波或剪切波从振源到达测点时间的确定,应符合下列规定: (1)确定压缩波的时间,应采用水平传感器记录的波形; (2)确定剪切波的时间,应采用竖向传感器记录的波形。 由振源到达每个测点的距离,应按测斜数据进行计算。 每个测试深度的压缩波波速及剪切波波速,应按下列公式计算: 式中VP——压缩波波速(m/s); VS——剪切波波速(m/s); TP1——压缩波到达第1个接收孔测点的时间(s); TP2——压缩波到达第2个接收孔测点的时间(s); TS1——剪切波到达第1个接收孔测点的时间(s); TS2——剪切波到达第2个接收孔测点的时间(s); S1——由振源到第1个接收孔测点的距离(m) S2——由振源到第2个接收孔测点的距离(m) △S——由振源到两个接收孔测点距离之差(m)。[1]卓越周期的计算 《高层建筑岩土工程勘察规程JGJ72-2004》条文说明 [2] 规范重点摘录 剪切波速土的类型划分和剪切波速范围

OTDR实验报告

实验名称:自构建光纤链路的otdr测试实验实验日期:指导老师:林远芳学生姓 名:同组学生姓名:成绩: 一、实验目的和要求二、实验内容和原理三、主要仪器设备四、实验结果记录 与分析 五、数据记录和处理六、结果与分析七、讨论、心得 一、实验目的和要求 1. 了解瑞利散射及菲涅尔反射的概念及特点; 2. 熟练掌握裸纤端面切割、清洁、连接对准方法及熔接技术; 3. 熟悉光时域反射仪(optical time domain reflectometer,以下简称 otdr)的工 作原理、操作方法和使用要点,能利用 otdr 测试、判断和分析光纤链路中的事件点位置及 其产生原因,提高工程应用能力。 二、实验内容和原理 1.otdr 测试基本理论 散射:光遇到微小粒子或不均匀结构时发生的一种光学现象,此时光传输不再具有良好 的方向性。 瑞利散射:当光在光纤中传播时,由于光纤的基本结构不完美(光纤本身的缺陷、制作 工艺和材料组分存在着分子级大小的结构上的不均匀性),一部分光纤会改变其原有传播方向 而向四周散射(图 1-3-1),引起光能量损失,其强度与波长的 4 次方成反比,随着波长的 增加,损耗迅速下降。 后向或背向散射:瑞利散射的方向是分布于整个立体角的,其中一部分散射光纤和原来 的传播方向相反,返回到光纤的注入端,形成连续的后向散射回波。光纤中某一点的后向回 波可以反映出光纤中光功率的分布情况,椐此可以测试出光纤的损耗。 菲涅尔反射:当光纤由一种媒质进入另一种媒质时会产生的一种反射,其强度与两种媒 质的相对折射率的平方成正比。如图1-3-2 所示,一束能量为p0 的光,由媒质 1(折射率 为nl)进入媒质 2(折射率为 n2)产生的反射信号为p1,则 ?n1?n2p1???n?n2?1? ???2 衰减:指信号沿链路传输过程中损失的量度,以 db 表示。衰减是光纤中光功率减少量 的一种度量,光纤内径中的瑞利散射是引起光纤衰减的主要原因。通常,对于均匀光纤来 说,可用单位长度的衰减,即衰减系数来反映光纤的衰减性能的好坏。 当光脉冲通过光纤传输时,沿光纤长度上的每一点均会引起瑞利散射。这种散射向着四 面八方,其中总有一部分会沿着纤轴反向传输到输入端。由于主要的散射是瑞利散射,并且 瑞利散射光的波长与入射光的波长相同,其光功率与该散射点的入射光功率成正比,光纤中 散射光的强弱反映了光纤长度上各点衰减大小,光纤长度上的某一点散射信号的变化,可以 通过后向散射方法独立地探测出来,而不受其它点散射信号改变的影响,所以测量沿纤轴返 回的后向瑞利散射光功率就可以获得光沿着光纤传输时的衰减及其它信息。 基于后向散射法设计的测量仪器称为 otdr,其突出优点在于它是一种非破坏性的单端测 量方法,测量只需在光纤的一端进行。它利用激光二极管产生光脉冲,经定向耦合器注入被 测光纤,然后在同一端测量沿光纤轴向向后返回的散射光功率返回信号与时间的关系,将时 间值乘以光在光纤中的传播速度以计算出距离,在屏幕上显示返回信号的相对功率与距离之 间的关系曲线和测试结果。国内厂家主要是中国电子科技集团公司第四十一研究所,国外的 品牌主要有安捷伦(agilent)、安立(anritsu)、exfo、wavetek 等。 2.光纤的连接 光纤连接时的耦合损耗因素基本上可分为两大类:一类是固有的,是被连接光纤本身特 性参数的差异,比如纤芯直径、模场直径、数值孔径差异、纤芯或模场的同心度偏差、纤芯

建筑场地剪切波速及地脉动测试报告

武汉建科科技有限公司WA VE2000场地振动测试仪 (以下内容可根据实际情况进行增加,正式报告中须去掉本规定格式中的注释红字)建筑场地剪切波速及地脉动 测试报告 工程名称: 工程地点: 委托单位: 检测日期: 报告编号: ※省※研究院 ※年※月※日

※工程 单孔波速法地脉动测试报告测试人员: 负责人: 报告编写: 校核: 审核: 审定: ※省※研究院 (盖章) ※年※月※日

一、前言 受※的委托,※省※院于※年※月※日对※工程拟建场地进行单孔波速法、地脉动测试。该场地位于※路※号,根据场地条件及《建筑抗震设计规范》(GB50011-2001)等有关规定,本场地共完成K16#、K37#、K69#、K75#、K82#、K96#六个孔剪切波速及场地脉动测试工作。测试的目的是对拟建建筑场地土的类型及建筑场地类别进行划分,以确定建筑抗震有利、不利和危险地段。 本项目工作技术要求: 1、 测定场地20米以内的等效剪切波速; 2、 测定场地地脉动; 3、 确定场地土类型及建筑场地类别。 二、检测设备、基本原理 1、检测设备 检测设备采用武汉建科科技有限公司制造的W A VE2000场地振动测试仪,检测设备及现场联接见图1。 1-场地振动测试仪 2-重物 3-木板 4-外触发传感器 5-三分量探头 6-探头信号传输线 7-外触发传感器信号线 8-钢丝绳(或尼龙绳) 图1 单孔波速测试示意图 2、剪切波速及地脉动测试基本原理 单孔剪切波速法(检层法)测试基本原理: 用木锤或适宜的铁锤分别水平敲击水平放置孔口的木板两端,地表产生的剪切波经地层传播,由孔内三分量检波器的水平向检波器接收SH 波信号,然后读取正、反两方向的实测波形,找出波形交叉点,读取初至波传播时间,进而计算出各测点(层)剪切波速值及其它相关参数。 地脉动测试原理: 地脉动测试时应选择外界环境干扰极小的深夜进行。测试时将地脉动拾振器放置于平整场地地表土上,一般按东西向EW 、南北向SN 、垂直向VR 三个方向放置。测试时由三分量拾振器分别接收三个方向的脉动信号,信号再通过放大,采集仪记录,即可在时域曲线上分析信号幅值大小,从频率域曲线上分析其频率组成并确定场地卓越周期值。 土层的等效剪切波速,按下列公式计算: ∑=÷=÷=n i si i sc v d t t d v 10) (

动态法测杨氏模量实验报告

动态法测量杨氏模量 一、 实验目的 1. 理解动态法测量杨氏模量的基本原理。 2. 掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。 3. 了解压电陶瓷换能器的功能,熟悉信号源和示波器的使用。学会用示波器观察判断样品共振的方法。 4. 培养综合运用知识和使用常用实验仪器的能力。 二、 实验原理: 在一定条件下,试样振动的固有频率取决于它的几何形状、尺寸、质量以及它的杨氏模量。如果在实验中测出试样在不同温度下的固有频率,就可以计算出试样在不同温度下的杨氏模量。 根据杆的横振动方程式 02 244=??+??t y EJ S x y ρ (1) 式中ρ为杆的密度,S 为杆的截面积,?= s dS y J 2 称为惯量矩(取决于截面的形状),E 即为杨氏模量。 如图1所示,长度L 远远大于直径d (L >>d )的一细长棒,作微小横振动(弯曲振动)时满足的动力学方程(横振动方程)为 02244=??+??t EJ y S x y ρ (1) 棒的轴线沿x 方向,式中y 为棒上距左端x 处截面的y 方向位 移,E 为杨氏模量,单位为Pa 或N/m 2;ρ为材料密度;S 为 截面积;J 为某一截面的转动惯量,??=s ds y J 2。 横振动方程的边界条件为:棒的两端(x =0、L )是自由端,端点既不受正应力也不受切向力。用分离变量法求解方程(1),令)()(),(t T x X t x y =,则有 2 24411dt T d T EJ S dx X d X ?-=ρ (2) 由于等式两边分别是两个变量x 和t 的函数,所以只有当等式两边都等于同一个常数时等式才成立。假设此常数为K 4,则可得到下列两个方程 044 4=-X K dx X d (3) 0422=+T S EJ K dt T d ρ (4) 如果棒中每点都作简谐振动,则上述两方程的通解分别为 图1 细长棒的弯曲振动

剪切波报告汇总

道真自治县道真中学第二食堂单孔法Ps波速度检层测试报告 工程名称:道真自治县道真中学第二食堂 测试地点:工地现场 测试日期:2016年9月 勘察单位:贵州鼎盛岩土工程有限公司 证书等级:工程勘察专业类甲级 证书编号:B152004778-6/4 提交日期: 2016年9月

道真自治县道真中学第二食堂单孔法Ps波速度检层测试报告 项目负责:陈简 报告编写:罗仿超 审核:姚本焱 审定:曾昭涤 总工程师:秦启明 总经理:袁万骅 勘察单位:贵州鼎盛岩土工程有限公司 证书等级:工程勘察专业类甲级 证书编号:B152004778-6/4 提交日期: 2016年9月

目录 一、工程概况 二、场地工程地质简况及测试条件 1、场地工程地质简况 2、场地岩土体的微振动、Vs波特征及测试条件 三、仪器选用及测试方法 (一)仪器选用 (二)测试方法 四、测试分析结果 1、动弹性参数的计算 2、土层等效剪切波(Vse)的计算 3、场地类别划分 4、测试分析结果 五、结论 附件 1、单孔波速测试测点原始数据表 2、单孔波速测试测点计算数据表 3、单孔波速测试分层结果数据表 一、工程概况

拟建道真自治县道真中学第二食堂位于道真县城,交通便利,地理位置优越。受打钻自治县道真中学的委托,我公司测试人员于2016年8月对该场地具有代表性的2个勘探钻孔进行了Ps波测试(测试位置见钻孔平面布置图),其主要目的为: 1、测试纵、横波在钻孔土体的传播速度; 2、利用Vs、Vp值计算场地土体的小应变条件下的动弹参数,以供设计参考; 3、利用场地剪切波(Vs波)的等效波速值(Vse),对场地土的类型进行划分,进而对场地类别进行划分: 测试过程及资料处理的技术依据为: 《岩土工程勘察规范》(GB50021-2001)2009年版; 《工程岩体试验方法标准》(GB/T50266-99); 《建筑抗震设计规范》(GB50011—2010); 《地基动力特性测试规范》(GB/T50269-97); 《水电水利工程物探规程》(DL/T5010-2005); 《水利水电工程物探规程》(SL/326-2005)等。 二、场地工程地质简况及测试条件 1、场地工程地质简况 根据地质调查和钻探揭露,场地覆盖土层有素填土(Q4ml)红粘土(Q4el),下伏基岩为三叠系下统茅草铺组(T1m)石灰岩,岩层倾向100°,倾角8°。 2、场地岩土体的微振动、Vs波特征及测试条件 按《建筑抗震设计规范》(GB50011—2010),一般情况下,应按地面至剪切波速大于500 m/s,且其下卧各岩土的剪切波速均不小于500 m/s的土层顶面距离确定。 场地局部地段回填土结构较松散,对激发的应力波有较强的衰减和吸收作用,附近的车辆和施工作业也对测试数据带来一定的干扰,在资料分析过程中,通过调整信号增益和对信号进行滤波分析处理。 三、仪器选用及测试方法

LCD液晶显示实验实验报告及程序

实验三 LCD1602液晶显示实验 姓名专业学号成绩 一、实验目的 1.掌握Keil C51软件与proteus软件联合仿真调试的方法; 2.掌握LCD1602液晶模块显示西文的原理及使用方法; 3.掌握用8位数据模式驱动LCM1602液晶的C语言编程方法; 4.掌握用LCM1602液晶模块显示数字的C语言编程方法。 二、实验仪器与设备 1.微机一台 C51集成开发环境仿真软件 三、实验内容 1.用Proteus设计一LCD1602液晶显示接口电路。要求利用P0口接LCD1602 液晶的数据端,~做LCD1602液晶的控制信号输入端。~口扩展3个功能键 K1~K3。参考电路见后面。 2.编写程序,实现字符的静态和动态显示。显示字符为 第一行:“1.姓名全拼”,第二行:“2.专业全拼+学号”。 3.编写程序,利用功能键实现字符的垂直滚动和水平滚动等效果显示。显示字 符为:

“1.姓名全拼 2.专业全拼+学号 EXP8 DISPLAY ” 主程序静态显示“My information!” 四、实验原理 液晶显示的原理:采用的LCD显示屏都是由不同部分组成的分层结构,位于最后面的一层是由荧光物质组成的可以发射光线的背光层,背光层发出的光线在穿过第一层偏振过滤层之后进入包含成千上万水晶液滴的液晶层,液晶层中的水晶液滴都被包含在细小的单元格结构中,一个或多个单元格构成屏幕上的一个像素。当LCD中的电极产生电场时,液晶分子就会产生扭曲,从而将穿越其中的光线进行有规则的折射,然后经过第二层过滤层的过滤在屏幕上显示出来。 1.LCD1602采用标准的14引脚(无背光)或16引脚(带背光)接口,各引脚 接口说明如表:

剪切波速汇报

剪切波速 剪切波速是区别土动力学和土静力学的一个主要物理量。它反映了土在动力影响下的惯性作用和波传行为。因此也是反映土体在地震作用下行为反应的一个重要物理量。土层的剪切波速Vs只与组成土层的骨架的性质有关, 而与孔隙中的充填物无关, 这是由剪切波的运动特点所决定的, 剪切波是由介质的质点垂直于传播方向的振动形式向前运动的,即后一个质点的振动是由前一个质点的振动产生的剪切作用力所推的。剪切波的这一传播特性决定了它不能在气体或液体中传播, 因此, 剪切波速Vs与介性中是否含有气体或液体无关, 而只与土层骨架的性质有关。土层的骨架性质变化是一个漫长的缓慢的渐变过程, 其性质是相对稳定的。对于一种特定的土层而言, 它有比较稳定的剪切波速值, 它几乎不受时间及自然条件的影响。所以, 剪切波速是衡量土层物理力学性质的一项硬指标。 在工程试验中,通常假定所试验的土层位均匀土层,或者各层均匀土体,在这种土体中,远离任何边界的波动,存在两种基本莫泰:压缩波(P波)和剪切波(S波),他们的传播速度取决于弹性介质的刚度和质量密度,即: V p=M = E1?υ (1)V s= G ρ(2) 其中ρ为土体质量密度,M、G和E分别是约束、剪切模量和杨氏模量,υ为泊松比。 而在均质各向同性线弹性材料具有独特的弹性性质,因此知道弹性模量中的任意两种,就可由换算公式求出其他所有的弹性模量,由以上两公式知,我们以杨氏模量E和泊松比υ为变量,那么剪切模量G就可以表示为: G= E 2(1+υ)(3) 那么(2)式可变为: V s=E1 (4) 对比(1)式和(4)式,压缩波(P波)波速V p和和剪切波(S波)波速V s有公共因子 Eρ,因此归一化后,可得压缩波(P波)波速V p和和剪切波(S波)波速V s随泊松比变化的趋势图(图1),土层泊松比的取值范围是0.3~0.5。

用双棱镜干涉测光波波长的实验报告

用双棱镜干涉测光波波长的实验报告 【实验目的】 1.掌握用双棱镜获得双光束干涉的方法,加深对干涉条件的理解. 2.学会用双棱镜测定钠光的波长. 【实验仪器】 光具座,单色光源(钠灯),可调狭缝,双棱镜,辅助透镜(两片),测微目镜,白屏. 【实验原理】 如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的位相差不随时间而变化,那么在两列光波相交的区域,光强分布是不均匀的,而是在某些地方表现为加强,在另一些地方表现为减弱(甚至可能为零),这种现象称为光的干涉. 菲涅耳利用图1所示的装置,获得了双光束的干涉现象.图中AB 是双棱镜,它的外形结构如图2所示,将一块平玻璃板的一个表面加工成两楔形板,端面与棱脊垂直,楔角A 较小(一般小于10).从单色光源发出的光经透镜L 会聚于狭缝S ,使S 成为具有较大亮度的线状光源.从狭缝S 发出的光,经双棱镜折射后,其波前被分割成两部分,形成两束光,就好像它们是由虚光源S1和S2发出的一样,满足相干光源条件,因此在两束光的交叠.区域P1P2内产生干涉.当观察屏P 离双棱镜足够远时,在屏上可观察到平行于狭缝S 的、明暗 相间的、等间距干涉条纹. 图1 图2 设两虚光源S1和S2之间的距离为d ',虚光源所在的平面(近似地在光源狭缝S 的平面内)到观察屏P 的距离为d ,且d d <<',干涉条纹间距为x ?,则实验所用光源的波长λ为 x d d ?'= λ 因此,只要测出d '、d 和x ?,就可用公式计算出光波波长. 【实验内容】 1.调节共轴 (1)按图1所示次序,将单色光源M ,会聚透镜L ,狭缝S ,双棱镜AB 与测微目镜P 放置在光具座上.用目视法粗略地调节它们中心等高、共轴,棱脊和狭缝S 的取向大体平行. (2)点亮光源M ,通过透镜L 照亮狭缝S ,用手执白纸屏在双棱镜后面检查:经双棱镜折射后的光束,有否叠加区P1P2 (应更亮些)?叠加区能否进入测微目镜? 当移动白屏时,叠加

场地土剪切波速测试报告

附件3:场地土剪切波速测试报告 报告编号:从1 工程名称:中铁五局(集团)有限公司科研培训中心 工程地点:广州市南沙区工业五路5号 主要检测人: 报告编写人: 报告审核人: 试验日期:2012年8月26日~2012年8月28日 中国有色金属长沙勘察设计研究院有限公司试验室 二○一二年九月 目录 1、前言 2、测试原理及仪器设备 3、野外测试方法 4、资料整理 5、测试成果

1、前言 我公司于2012年8月26日~2012年8月28日对拟建中铁五局(集团)有限公司科研培训中心场地进行了剪切波速测试。 执行标准: 《岩土工程勘察规范》(GB50021-2001)(2009年版); 《建筑抗震设计规范》(GB50011-2010); 《地基动力特性测试规范》(GB/T50269-97)。 本次测试共完成波速测试孔2个,钻孔编号ZK16、ZK17号。 2、测试原理及仪器设备 测试原理 通过人工激发产生的剪切波,穿过被测土层,被传感器接收转换成电讯号,输入仪器放大并记录下来。由激发点和接收点的相对位置,可知波的传播距离,由激发时间和波到接收点的初至时间,可知波的传播时间,因而便可计算出剪切波在被测土层中的传播速度。 仪器设备 采用武汉岩海公司生产的RS—1616J桩基动测仪及日本OYO公司生产的井中三分量检波器, 该仪器采用专门设计的电脑与大屏幕液晶显示器;通过键盘和液晶显示器进行人机对话,菜单式提示操作,可在强干扰环境中提取有用信息,准确测试波的传播时间。采用地面激发井中接收,测量点距1-3m ;工作中先将探头放入井底,然后自下而上逐点激振采样。对每个接收点均进行正反向水平激发并记录各激振波形。采样间隔100~400μs,记录长度100~400ms。 3、野外测试方法 采用单孔检层法:将激振板置于孔口附近地面,并使其中点与孔口的连线垂直于激振板,板上加压400公斤以上重物。用激振锤横向敲击激振板两端,产生剪切波向地下传播。将三分量检波器置于孔中不同深度处,接收剪切波输入仪器记录。由此测得剪切波到达不同地层的初至时间。方法原理见插图1示意。激震点距孔口距离为~1.6m。采用地面激发井中接收,测量点距1-3m ;

波速报告

山东莒南生物热电综合利用项目 波速测试报告 山东地矿开元勘察施工总公司 二○一六年五月

山东莒南生物热电综合利用项目 波速测试报告 批准: 审定: 审核: 项目负责: 报告提交单位:山东地矿开元勘察施工总公司 报告提交日期:2016年5月

正文目录 第一章工程概况 第二章资料处理与解释 第三章结论 附表、附图目录 附表1-1:33号孔单孔波速测试原始数据表附表1-2:39号孔单孔波速测试原始数据表

第一章工程概况 山东莒南生物热电综合利用项目拟建场地,根据工程勘察任务要求,需要对该工程的部分勘察钻孔进行波速测试,我公司于2016年5月6日,对该场地的2个钻孔进行了波速测试。 该场地波速测试采用单孔法进行测试。内业资料处理、解释、报告编写等工作至2016年5月9日完成。 本工程执行标准: 1、《地基动力特性测试规范》(GB/T 506269-97) 2、《浅层地震勘察技术规范》(DZ/T 0170-1997) 3、《建筑抗震设计规范》(GB 50011-2010) 4、《场地微振动测量技术规程》(CECS74-95) 一、工作原理及使用仪器设备 1、波速测试 波速测试是在地表采用脉冲源激震,从而产生直达波(纵波Vp、剪切波Vs)、折射波(Vp、Vs)、反射波(Vp、Vs)、及转换波等扰动,它们在岩土介质中传播的特征和速度各不相同。直达Vp波传播速度最快,直达Vs波次之。根据它们传播速度的差异,通过在井中安置的三分量检波器,接收它们到达的时间、波形等特征,再根据传播旅程和直达波(Vp、Vs)初至时间计算出Vp、Vs波在地下介质中的传播速度。一般剪切波Vs 更能代表岩土的物理性质,在岩土工程中有广泛应用。 本次测试使用仪器为骄鹏公司产Miniseis24型综合工程探测仪和BGJ-28A型井中三分量检波器。

微机原理数码显示实验报告

广东海洋大学寸金学院学生实验报告书 实验名称数码显示课程名称微机原理与接口技术系机电工程系专业机械设计制造及其自动化班级14机械2班学生姓名陈瑞玲学号20141032102 实验地点实验楼103 实验日期 一、实验目的: 了解LED数码管动态显示的工作原理及编程方法。 二、实验内容: 编制程序,使数码管显示“GOOD88”字样。 三、实验结果: 实验程序框图 实验步骤 联机模式: (1)在PC机和实验系统联机状态下,运行该实验程序,可用鼠标左键单击菜单栏“文件”或工具栏“打开图标”,弹出“打开文件”的对话框,然后打开598K8ASM文件夹,点击S6.ASM文件,单击“确定”即可装入源文件,再单击工

具栏中编译装载,即可完成源文件自动编译、装载目标代码功能,再单击“调试”中“连续运行”或工具图标运行,即开始运行程序。 (2)数码管显示“GOOD88”字样。 脱机模式: 1、在P.态下,按SCAL键,输入2DF0,按EXEC键。 2、数码管显示“GOOD88”字样。 实验程序清单 CODE SEGMENT ;S6.ASM display "GOOD88" ASSUME CS:CODE ORG 2DF0H START: JMP START0 PA EQU 0FF20H ;字位口 PB EQU 0FF21H ;字形口 PC EQU 0FF22H ;键入口 BUF DB ?,?,?,?,?,? data1: db0c0h,0f9h,0a4h,0b0h,99h,92h,82h,0f8h,80h,90h,88h,83h,0c6h,0a1h db 86h,8eh,0ffh,0ch,89h,0deh,0c7h,8ch,0f3h,0bfh,8FH,0F0H START0: CALL BUF1 ;缓冲区写初值 CON1: CALL DISP ;调显示子程序 JMP CON1 ;循环 DISP: MOV AL,0FFH ; 位码 MOV DX,PA ;数码管字位口 OUT DX,AL ;关位码 MOV CL,0DFH ; 最高位位码;显示子程序 ,5ms MOV BX,OFFSET BUF ;取缓冲区首址 DIS1: MOV AL,[BX] ;取缓冲区数字 MOV AH,00H ;清零 PUSH BX ;压栈 MOV BX,OFFSET DATA1 ;字表首址 ADD BX,AX ;加偏移量 MOV AL,[BX] ;取字形代码 POP BX ;出栈 MOV DX,PB ;字形口 OUT DX,AL ;送字形码 MOV AL,CL ;取位码 MOV DX,PA ;位口 OUT DX,AL ;送位口 PUSH CX ;压栈

微波光学实验报告

微波光学实验报告 一、实验目的与实验仪器 1.实验目的 (1)学习一种测量微波波长的方法。 (2)观察微波的衍射现象并进行定量测量。 (3)测量微波的布拉格衍射强度分布。 2.实验仪器 微波分光仪、分束玻璃板、固定和移动反射板、单缝板、双缝板、模拟晶体等。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 微波是一种波长处于1mm~1m之间的电磁波,范围为3×102~3×105MHz之间。微波也具有衍射、干涉等性质。 1.用微波分光仪(迈克尔逊干涉 仪)测微波波长 用迈克尔逊干涉仪测波长 光路图如上。设微波波长为λ, 若经M1和M2反射的两束波波 程差为Δ,则当满足 Δ = kλ(k = ±1,±2,…) 时,两束波干涉加强,得到各级 极大值;当满足 Δ = (k +)λ(k = 0,±1,±2,…) 时,两束波干涉减弱,得到各级极小值。

将反射板M2沿着微波传播的方向移动d,则波程差改变了2d. 若从某一极小值开始移动可动反射板M2,使接收喇叭收经过N个极小值信号,即电流示数出现N个极小值,读出M2移动的总距离L,则有: 2L = N·λ 从而λ = 由此可见,只要测定金属板位置的该变量L和出现接收到信号幅度最小值的次数N,可以求出微波波长。 2.微波的单缝衍射实验 当微波入射到宽度和其波长差不多的一个狭缝时,会发生衍射现象。在狭缝后面的衍射屏上出现衍射波强度不均匀,中央最强且最宽,从中央向两边微波衍射强度迅速减小。 当θ = 0时,衍射波强度最大,为中央零级极大; 其他次级强所在位置为: asinθ = ±(k + )λ(k = 1,2,…) 暗条纹位置为: asinθ = kλ(k = ±1,±2,…) 式中a为单缝的宽度。因此可以画出单缝衍射的强度分布曲线如上图。 3.微波的双缝干射实验 当微波入射到一块开有两个缝的铝板时,会发生 衍射现象,两缝面内波是同相位的。由惠更斯原理, 来自两缝波面向同一方向传播的子波叠加决定该方向 的强度。 强度极小所在位置(干涉相消): dsinθ = (k + )λ(k = 0,±1,±2,…) 强度极大所在位置(干涉相长): asinθ = kλ(k =0,±1,±2,…) 4.微波的布拉格衍射 晶体中的原子按一定规律形成高度规则的空间排列,称为晶格。最简单的晶格为立方晶格,具有三维的空间点阵结构,它如同一个三维光栅。晶体点阵中原子排列成许多具有不同取向的晶面,每个取向都由许多互相平行的晶面构成晶面族。由于晶体面间距与X射线

单片机原理 数码管动态显示实验-单片机原理-实验报告

单片机原理数码管动态显示实验-单片机原理-实验报告宁德师范学院计算机系 实验报告 (2014—2015学年第 2学期) 课程名称单片机原理实验名称数码管动态显示实验专业计算机科学与技 术(非师范) 年级 2012级学号 B2012102147 姓名王秋指导教师杨烈君实验日期2015.4.17 实验目的: 1. 巩固Proteus软件和Keil软件的使用方法 2. 学习端口输入输出的高级应用 3. 掌握7段数码管的连接方式和动态显示法 4. 掌握查表程序和延时等子程序的设计 实验要求: 1. 在Proteus软件中画好51单片机最小核心电路,包括复位电路和晶振电路 2. 在电路中增加八位7段数码管(共阳/共阴自选),将P2口作数据输出口与7段数码管数据引 脚相连,P3引脚输出位选控制信号 3. 在Keil软件中编写程序,采用动态显示法,实现数码管分别显示数字1-8 4. 实现指定数值的显示 (可使用缓存数值) 5. 实现类似时钟的效果,如“ 13-23-25” 13时23分25秒 6. 实现时钟的自动计时 7. 扩展要求: 结合LED显示,实现带数码显示的交通灯

实验设备(环境): 1(计算机 2(Proteus ISIS 7 Professional应用程序 3(Keil应用程序 实验内容: 数码管动态显示技术要求实现: 1(动态显示法,实现数码管分别显示数字1-8; 2(实现指定数值的显示 (可使用缓存数值) (33355223); 3(实现类似时钟的效果,如“ 13-23-25” 13时23分25秒; 4(实现时钟的自动计时; 扩展要求: 结合LED显示,实现带数码显示的交通灯; 实验步骤、实验结果及分析: 1 实验步骤: 1、使用Proteus ISIS 7 Professional应用程序,建立一个.DSN文件 2、在“库”下拉菜单中,选中“拾取元件”(快捷键P),分别选择以下元件:AT89C51、CAP、CAP-ELEC、 CRYSTAL、RESPACK-8。 3、构建仿真电路: 连接图

相关主题
文本预览
相关文档 最新文档