当前位置:文档之家› 河海大学水文分析与计算课程设计报告

河海大学水文分析与计算课程设计报告

河海大学水文分析与计算课程设计报告
河海大学水文分析与计算课程设计报告

水文分析计算课程设计报告书

学院:水文水资源

专业:水文与水资源工程

学号:

姓名:

指导老师:梁忠民、国芳

2015年06月12日

南京

目录

1、设计任务 (1)

2、流域概况 (1)

3、资料情况及计算方案拟定 (1)

4、计算步骤及主要成果 (2)

4.1 设计暴雨X p(t)计算 (2)

4.1.1 区域降雨资料检验 (2)

4.1.2 频率分析与设计雨量计算 (3)

4.2计算各种历时同频率雨量X t,P (9)

4.3 选典型放大推求X P (t) (9)

4.4 产汇流计算 (9)

4.4.1 径流划分及稳渗μ值率定 (12)

4.4.2 地表汇流 (17)

4.5 由设计暴雨X P(t)推求Q P(t) (18)

4.5.1 产流计算 (18)

4.5.2 地面汇流 (18)

4.5.3地下汇流计算 (19)

4.5.4 设计洪水过程线 (20)

5、心得体会 (22)

1、设计任务

推求良田站设计洪水过程线,本次要求做P校,即推求Q0.01%(t)。

2、流域基本概况

良田是赣江的支流站。良田站以上控

制的流域面积仅为44.5km2,属于小流域,

如右图所示。年降水均值在1500~1600mm

之,变差系数Cv为0.2,即该地区降雨充

沛,年际变化小,地处湿润地区。暴雨集

中。暴雨多为气旋雨、台风雨,季节为3~

8月,暴雨历时为2~3日。

3、资料情况及计算方案拟定

3.1资料情况

设计站(良田)流量资料缺乏,邻近站雨量资料相对充分,具体如表3-1:

表3-1 良田站及邻近地区的实测暴雨系列、历时洪水、特大暴雨资料

站名实测暴雨流量系列特大暴雨、历史洪水

良田75~78 (4年)Q=216m3/s,N=80(转化成X1日,移置峡江站)峡江53~80 (28年)

36~80 (45年)

桑庄57~80 (24年)X1日=416mm,N=100~150(74.8.11)

寨头57~80 (24年)

沙港特大暴雨X1日=396mm,N=100~150(69.6.30)(移置到寨头站)

(设计站(良田)流量资料缺乏,邻近站雨量资料相对充分。)

3.2 方案拟定

本次课设采用间接法推求设计洪水,即是由推求的设计暴雨,经过产汇流计算得到设计洪水。示意图如下:

4、设计暴雨XP(t)的计算

4.1 设计暴雨X p(t)计算

4.1.1区域降雨资料检验

为推求该区域设计面降雨量,选取、桑庄、寨头与峡江四站降雨检验该区降雨是否选同一总体。选择四站1981~2013年数据(74年出现极值暴雨,不参加检验),对各站数据取自然对数,对转换后数据进行均值与方差检验,各站转换后系列的均值及方差见表4-1。

表4-1 、桑庄、寨头与峡江站最大一日降雨资料均值、方差情况

1)均值检验

选取均值差异最大的站(X 1 )和峡江站(X 2)两站进行检验。假设H : X 1 = X 2

构造统计变量:

= 0.78 取α=0.10,查得 |tα/2| =1.68 > |t|,接受假设H,即可认为、

1/2

1/2

22

12

11

()/()

()/(2)

X Y

m n

t

ms ns m n

-+

=

??

++-

??

统计量

桑庄、寨头与峡江站均值相等。

2)方差检验

选取方差差异最大的桑庄站(S1)和寨头站(S2)两站进行检验。假设H : S 1 = S 2

构造统计变量:

=1.19

查得Fα/2(55,55)=1.567 ,F1-α/2(55,55)=0.638,所以接受域为(0.638,1.567),则可以认为统计量F满足接受域,即认为四个站的降雨量数据满足方差相等。

综上所述,可认为区域降雨资料来自同一总体,可以进行综合。

4.1.2频率分析与设计雨量计算

(1)特大值处理

峡江站特大暴雨由良田站历史洪水转换而来,则良田站(峡江站)的X1日=293.9mm。公式如下(其中,Q为地表净峰流量(m3/s),m为汇流参数,取0.7,F为流域面积(km2),L为出口断面沿主河道至分水岭的最长距离(km),J为沿L的坡面和河道平均比降,t c为净雨历时(h),为汇流历时(h),R为地表径流深(mm),n为暴雨参数,取0.6,为稳渗率(mm/h),取4.5,用良田站计算):

沙港站特大暴雨取重现期N=150年,放置寨头站进行频率计算。

桑庄站最大一日暴雨取重现期N=150年。

(2)排位分析及频率计算

先对、峡江、桑庄、寨头四个站进行频率计算,要考虑各站可能存在的特大暴雨系列值。各站的频率计算见表4-2

表4-2各站频率计算

序号

峡江桑庄寨头

雨量值频率雨量值频率雨量值频率雨量值频率mm %mm %mm %mm %

(3)四站适线结果图站:

峡江站:

桑庄站:寨头站:

(4)四站均值计算结果及其适线图

图4-2 5个雨量站年最大雨量频率曲线

(5)推求X1日,P=0.01%

由上表查处X(1日,P=0.01%)=461.9mm,则X(24h,P=0.01%)=1.1*X(1日,P=0.01%)=508.09mm。

4.2计算各种历时同频率雨量X t,P

由暴雨公式推算t=3h,6h,9h,12h,15h,18h,21h,24h的设计暴雨值,结果如表4-3。

表4-3 各短历时设计暴雨

4.3 选典型放大推求X P (t)

4.4 产汇流计算

在设计暴雨中,由于稀遇频率的设计暴雨量很大,损失相对较小,因此,一般采用简化模型。即前段降雨尽量满足土壤蓄水量,即初损,而后假定稳渗率,算定地面径流深R 上和地下径流深R下,再列表求出,如与假定的相符,则假定的即为所求值。

径流分割

点绘良田站76.6、毛背站75.5、76.7以及77.6的流量和雨量过程。利用平割法计算R t,利用斜线分割法进行水源划分。先寻找洪水过程的直接径流终止点B,然后用斜线连接起涨点A与终止点B,将实测流量过程线分为两部分,斜线AB上部分为直接径流RS,下部分为地下径流RG。本次课设先采用梯形面积法求得RG,再用R t-RG 求得RS。

计算初损

,其中,x为总降雨量,R为总径流,R=R t。

率定μ

1、假定μ,计算R下和R上。时段取△t=1h。

若时段的降雨量累积和小于初损量,则全部雨量补充初损值。

当累积降雨量大于初损值时,开始产生径流。

当X(t)≤μ时,全部产生底下径流,则R下(t)=μ,R上(t)=0;

当X(t)>μ时,R下(t)=μ,R上(t)=X(t)-μ。

2、判断μ值的正确性。

若RS=ΣR上,RG=ΣR下,则μ值即为良田站76.6所确定的μ值;

否则重新假定μ,转1。

4.4.1 径流划分及稳渗μ值率定

(1)良田站76年6月17日

表4-4良田站1976年6月17日次洪μ值率定

(2)毛背站75年5月13日

表4-5 毛背站1975年5月13日次洪μ值率定

(3)毛背站76年7月9日

表4-6 毛背站1976年7月9日次洪μ值率定

(4)毛背站77年6月26日

表4-7 毛背站1977年6月26日次洪μ值率定

(5)各场次洪水的径流分割结果及率定所得μ值

表4-8 各场次洪水的径流分割结果及率定所得μ值

4.4.2 地表汇流

地面汇流的计算方法有经验公式法(如单位线、经验公式等)和推理公式法(如等流时线法、水科院推理公式法、推理△过程线法、汇流系数法等)。本次采用八省一院公式。

(1)

(2)

其中,Q为地表洪峰流量(m3/s),m为汇流参数,取0.7,F为流域面积(km2),L为出口断面沿主河道至分水岭的最长距离(km),J为沿L的坡面和河道平均比降,t c为净雨历时(h),为汇流历时(h),R为地表径流深(mm),n为暴雨参数,取0.6,为稳渗率(mm/h),取4.5。

对于良田流域,,因此采用式(2)。

(1)m初值的确定

表4-9 m初值确定

故四站综合, =(0.31+0.6+0.8+0.75)/4=0.62

(2)m值的检验(以毛背站76.7为例)

计算步骤

(1)根据表18中计算的初值m、八省一院公式,对该次的降雨过程的每个推求,

(2)对每个Q i,假定过程线为三角形,底宽为Q i出现在处。

(3)将各时段的三角形过程进行叠加,与实测洪水(扣除地下径流)对比。如相差太大重新假定m,重新计算。

表4-10 m=0.62时的地表流量Qs及对应底宽T

表4-11m=0.62时的地表流量演算

毛背站1976年7月9日地表径流过程线(m=0.62)

表4-12 m=0.56时的地表流量Qs及对应底宽

表4-13 m=0.56时的地表流量演算

毛背站1976年7月9日地表径流过程线(m=0.56)

可以看出m=0.56时实测与计算径流量线拟合的更好。

(3)m值综合(以毛背站76.7为例)

点绘各次洪水的 Q/F~m 图,取上端趋于稳定的m值,为设计暴雨之m值。

表4-14 各场次洪水Qs/F~ m关系统计

由各次洪水的 Q/F~m图,取上端趋于稳定的m值(为0.8),设计暴雨之m值(实际运用时,选用通过检验后的四站m值进行综合,为0.7)。

4.5 由设计暴雨X P(t)推求Q P(t)

4.5.1 产流计算

由4.4可知,mm/h,再按前面过程分水源,(I=0)。计算结果见表20。

表4-15 产流计算及分水源

水文计算课程设计报告

设计任务一 飞口水利枢纽位于青河中游,流域面积为10100km.试根据表5—3及5—4所给资料,推求该站设计频率为95%的年径流及其分配过程,并与本流域上下游站和邻近流域资料比较,分析成果的合理性。 5-3 青口站实测年平均流量表 5-4 飞口站枯水年逐月平均流量表

5-5 青河及邻近流域各测站年径流量统计参数 青口站年最大洪峰流量理论频率曲线计算表 由表格可算出Q Cv

其中Ki=17.18 为各项模比系数,列于表中第(5)栏, 说明计算无误,=0.5929 为第(7)栏的总和。 选配理论频率曲线 (1)由Q=597m /s,Cv=0.2,并假定Cs=2.5Cv,查附表1,得出相应于不同频率P的值,列于表4-2的第二栏按Qp=Q(Cv P+1)计算P,列入第(3)栏。将表4-2中的第(1)栏和第(3)栏的对应值点绘曲线,发现理论频率曲线上段和下段明显偏低,中段稍微偏高。(2)修正参数,重新配线。根据统计参数对频率曲线的影响,需增大Cs。因此,选取Q=597m /s,Cv=0.20,Cs=3Cv,再次配线,该线与经验频率点据配合良好,即可作为目估适线法最后采用的理论频率曲线。 4-2 理论频率曲线选配计算表 此处选择Cs=3Cv,运用公式Qp=Q (Cv p+1)通附录(查表可查出p值)需求推出95%的年径流=-1.45 Qp=597[0.2×(-1.49×0.2+1)] Qp=419.09 Qp=419 m /s 3. 典型年的选择 从青口站的17年径流资料中可看出1970.5~1971.4年,1976.5~1977.4年,1977.5~1978.4年年径流量分别396m /s,438m /s,377m /s都与年径流量比较接近。

并行计算1

并行计算 实 验 报 告 学院名称计算机科学与技术学院专业计算机科学与技术 学生姓名 学号 年班级 2016年5 月20 日

一、实验内容 本次试验的主要内容为采用多线程的方法计算pi的值,熟悉linux下pthread 形式的多线程编程,对实验结果进行统计并分析以及加速比曲线分析,从而对并行计算有初步了解。 二、实验原理 本次实验利用中值积分定理计算pi的值 图1 中值定理计算pi 其中公式可以变换如下: 图2 积分计算pi公式的变形 当N足够大时,可以足够逼近pi,多线程的计算方法主要通过将for循环的计算过程分到几个线程中去,每次计算都要更新sum的值,为避免一个线程更新sum 值后,另一个线程仍读到旧的值,所以每个线程计算自己的部分,最后相加。三、程序流程图 程序主体部分流程图如下:

多线程执行函数流程图如下: 四、实验结果及分析

令线程数分别为1、2、5、10、20、30、40、50和100,并且对于每次实验重复十次求平均值。结果如下: 图5 时间随线程的变化 实验加速比曲线的计算公式类似于 结果如下: 图5 加速比曲线 实验结果与预期类似,当线程总数较少时,线程数的增多会对程序计算速度带来明显的提升,当线程总数增大到足够大时,由于物理节点的核心数是有限的,因此会给cpu带来较多的调度,线程的切换和最后结果的汇总带来的时间开销较大,所以线程数较大时,增加线程数不会带来明显的速度提升,甚至可能下降。 五、实验总结

本次试验的主要内容是多线程计算pi的实现,通过这次实验,我对并行计算有了进一步的理解。上学期的操作系统课程中,已经做过相似的题目,因此程序主体部分相似。不同的地方在于,首先本程序按照老师要求应在命令行提供参数,而非将数值写定在程序里,其次是程序不是在自己的电脑上运行,而是通过ssh和批处理脚本等登录到远程服务器提交任务执行。 在运行方面,因为对批处理任务不够熟悉,出现了提交任务无结果的情况,原因在于windows系统要采用换行的方式来表明结束。在实验过程中也遇到了其他问题,大多还是来自于经验的缺乏。 在分析实验结果方面,因为自己是第一次分析多线程程序的加速比,因此比较生疏,参考网上资料和ppt后分析得出结果。 从自己遇到的问题来看,自己对批处理的理解和认识还比较有限,经过本次实验,我对并行计算的理解有了进一步的提高,也意识到了自己存在的一些问题。 六、程序代码及部署 程序源代码见cpp文件 部署说明: 使用gcc编译即可,编译时加上-pthread参数,运行时任务提交到服务器上。 编译命令如下: gcc -pthread PI_3013216011.cpp -o pi pbs脚本(runPI.pbs)如下: #!/bin/bash #PBS -N pi #PBS -l nodes=1:ppn=8 #PBS -q AM016_queue #PBS -j oe cd $PBS_O_WORKDIR for ((i=1;i<=10;i++)) do ./pi num_threads N >> runPI.log

武汉大学水文测验实习报告

水文测验实习报告 韦昭华 2014301580040

目录 实验一:气象要素观测实验 (3) 1.观测场 (3) 2.百叶箱 (5) 3.气温的测量 (6) 4.空气湿度的测量 (8) 5.风的测量 (9) 实验二:水文年鉴查阅和使用 (10) 实验三:参观汉口水文监测站 (14) 1.降水的观测 (17) 2.蒸散发的观测 (18) 3.参观水情气象遥测系统 (19) 实验四:流量观测 (21) 实验五:水下地形测量 (27)

实验目的: 水文资料是水利水电工程及其它建设工程规划设计的基本依据,而水文资料来源于水文测验。水文测验包括水位、流量、含沙量、输沙率、降水、蒸发、地下水水位、水质等的测定与收集,这些资料收集工作要借助于水文仪器来进行, 要靠一整套方法来完成。动手操作仪器,了解水文测验的基本方法等就是水文实习课的基本要求 实验一:气象要素观测实验 实验目的: 气象学是研究大气中所发生的物理现象和物理过程的科学。陆地水文学是研究陆地上水文循环规律的科学,包括降水的时空分布,水分的蒸发,以及地表径流和河川径流的形成过程等。 气象观测中空中气象观测和地面气象观测观测两种。本次实验进行地面气象观测,其指在地面上用目力和用设置在地面的仪器直接进行的观测。 地面气象观测的内容包括云、能见度、天气现象、风、温度、湿度、气压、降水、蒸发、日照及地温等。

1.观测场 观测场的要求: 地点一般设在能较好地反映本地较大范围气象要素特点的地方,四周必须空旷平坦,避免局部地形的影响。在城市或工矿区,观测场应选择在城市或工矿区最多风向的上风方。观测场边缘与四周孤立障碍物高度的十倍以上;距离较大水体(水库、湖泊、河海)的最高水位线,水平距离至少在 100m以上。观测场大小应为 25m×25m,如确因条件限制,可为 16m(东西向)×20m(南北向)。场地应该平整,保持有均匀草层。为保护场地的自然状态,场内要铺设0.3~0.5m宽的小路,只准在小路上行走。观测场四周应设高度约 1.2m 的稀疏围栏且四周 10m范围内不能种植高杆作物须能保持气流畅通。要保持场内整洁,经常清除观测场上的杂物。 仪器布置要求: (1)高的仪器安置在北面,低的仪器顺次安置在南面,东西排列成行;仪器之间,南北间距不小于 3m,东西间距不小于 4m。仪器距围栏不小于 3m;观测场门最好开在北面,仪器安置在紧靠东西向小路的南面;

大学水文分析及计算课程设计报告

水文分析计算课程设计报告书 学院:水文水资源 专业:水文与水资源工程 学号: 姓名: 指导老师:梁忠民、国芳

2015年06月12日 南京 目录 1、设计任务 (1) 2、流域概况 (1) 3、资料情况及计算方案拟定 (1) 4、计算步骤及主要成果 (2) 4.1 设计暴雨X p(t)计算 (2) 4.1.1 区域降雨资料检验 (2) 4.1.2 频率分析与设计雨量计算 (3) 4.2计算各种历时同频率雨量X t,P (9) 4.3 选典型放大推求X P (t) (9) 4.4 产汇流计算 (9) 4.4.1 径流划分及稳渗μ值率定 (12) 4.4.2 地表汇流 (17) 4.5 由设计暴雨X P(t)推求Q P(t) (18) 4.5.1 产流计算 (18) 4.5.2 地面汇流 (18) 4.5.3地下汇流计算 (19) 4.5.4 设计洪水过程线 (20) 5、心得体会 (22)

1、设计任务 推求良田站设计洪水过程线,本次要求做P校,即推求Q0.01%(t)。 2、流域基本概况 良田是赣江的支流站。良田站以上控 制的流域面积仅为44.5km2,属于小流域, 如右图所示。年降水均值在1500~ 1600mm之,变差系数Cv为0.2,即该 地区降雨充沛,年际变化小,地处湿润地 区。暴雨集中。暴雨多为气旋雨、台风雨, 季节为3~8月,暴雨历时为2~3日。 3、资料情况及计算方案拟定 3.1资料情况 设计站(良田)流量资料缺乏,邻近站雨量资料相对充分,具体如表3-1: 表3-1 良田站及邻近地区的实测暴雨系列、历时洪水、特大暴雨资料 站名实测暴雨流量系列特大暴雨、历史洪水 良田75~78 (4年)Q=216m3/s,N=80(转化成X1日,移置峡江站)峡江53~80 (28年) 36~80 (45年) 桑庄57~80 (24年)X1日=416mm,N=100~150(74.8.11) 寨头57~80 (24年) 沙港特大暴雨X1日=396mm,N=100~150(69.6.30)

实验2 大数据分析平台中HDFS的使用

1、HDFS 预备知识 2、HDFS 读写数据的过程 (一) 实验目的 1.理解HDFS 在Hadoop 体系结构中的角色; 2.理解HDFS 存在的原因; 3.理解HDFS 体系架构; 4.理解HDFS 读写数据过程; 5.熟练使用HDFS 常用的Shell 命令。 (三) 实验环境 1.在HDFS 中进行目录操作; 2.在HDFS 中进行文件操作; 3.从本机中上传文件到HDFS ; 4.从HDFS 下载文件到本机。 (四) 实验步骤 (二) 实验要求 1.大数据分析实验系统(FSDP ); 2.CentOS 6.7; 3. Hadoop 2.7.1。 分布式文件系统(Distributed File System )是指文件系统管理的物理存储资源不一定直接连接在本地节点,而是通过计算机网络与节点相连。 HDFS (Hadoop 分布式文件系统,Hadoop Distributed File System )是一种适合运行在通用硬件上的分布式文件系统,它是一个高度容错性的系统,适合部署在廉价的机器上。HDFS 能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。 HDFS 为大数据分析平台的其他所有组件提供了最基本的存储功能。它具有高容错、高可靠、可扩展、高吞吐率等特征,为大数据存储和处理提供了强大的底层存储架构。 HDFS 采用主/从(master/slave )式体系结构,从最终用户的角度来看,它就像传统的文件系统,可通过目录路径对文件执行增删改查操作。由于其分布式存储的性质,HDFS 拥有一个NameNode 和一些DataNode ,NameNode 管理文件系统的元数据,DataNode 存储实际的数据。 1.HDFS 预备知识; 2.HDFS 读写数据的过程; 3.HDFS 的目录和文件操作。 HDFS 提供高吞吐量应用程序访问功能,适合带有大型数据集的场景,具体包括: ?数据密集型并行计算:数据量大,但是计算相对简单的并行处理,如大规模Web 信息搜索; ? 计算密集型并行计算:数据量相对不是很大,但是计算较为复杂的并行处理,如3D 建模与渲染、气象预报、科学计算等; ? 数据密集型与计算密集型混合的计算,如3D 电影渲染等。 HDFS 读数据的过程 HDFS 写数据的过程 普通文件系统主要用于随机读写以及与用户进行交互,而HDFS 则是为了满足批量数据处理的要求而设计的,因此为了提高数据吞吐率,HDFS 放松了一些POSIX 的要求,从而能够以流方式来访问文件系统数据。

水文地质勘察课程设计指导书讲解

《水文地质勘察》课程设计指导书 《水文地质勘察》是一门水文与水资源工程专业重要专业课程,该课程除课堂讲授水文地质勘察基本原理和工作方法外,还要特别加强对学生实践知识、动手能力和分析问题与解决问题能力的训练。本课程设计的目的就是为了巩固课堂学习的理论知识,理论联系实际,提高学生实际分析解决问题及编写报告的初步能力,为学生毕业论文(设计)的编写打下一个良好的基础。 一、课程设计名称 1、东王村地区水文地质条件及地下水资源供水意义分析 2、编制3号专门水文地质孔设计柱状图 3、宝兰高速铁路ZK03钻孔岩心编录 二、方法与步骤 1、认真仔细阅读东王村地区水文地质资料。包括水文地质图(图1),(平面图、剖面图)及相关资料(表1、表 2、表3); 2、在系统分析东王村地区地质背景(地形、地层、构造)的基础上,对该区水文地质条件进行分析; 3、东王村地区地下水资源供水意义分析; 4、编写课程设计报告。 5、编制3号专门水文地质孔设计柱状图。 6、认真阅读宝兰高速铁路ZK03钻孔资料,对岩心进行编录并绘制钻孔柱状图。 三、有关基本知识 1、水文地质图 水文地质图是反映一个地区地下水情况及其与自然地理和地质因素相互关系的图件。它是根据水文地质调查的结果绘制的。通常由一张图(主图)或一套相同比例尺的辅助图件来表示含水层的性质和分布、地下水的类型、埋藏条件、化学成分与涌水量等。主图是为对区域地下水的形成与分布建立总的概念而编制的反映主要水文地质特征的综合性图件,即综合水文地质图。辅助图件则包括基础性图件(如地质图、地貌图、实际材料图等)、地下水单项特征性图件(如潜水等水位线及埋深图、承压水等水压线图、水化学类型分区图、地下水储量分区图等)以及专门性水文地质图(如供水水文地质图、矿区水文地质图、环境水文地质图、地下水开采条件分区图等),一般是小面积大比例尺,针对某一方面或某一项自然改造利用而编制的图件。

多核编程与并行计算实验报告 (1)

(此文档为word格式,下载后您可任意编辑修改!) 多核编程与并行计算实验报告 姓名: 日期:2014年 4月20日

实验一 // exa1.cpp : Defines the entry point for the console application. // #include"stdafx.h" #include #include #include #include using namespace std; void ThreadFunc1(PVOID param) { while(1) { Sleep(1000); cout<<"This is ThreadFunc1"<

实验二 // exa2.cpp : Defines the entry point for the console application. // #include"stdafx.h" #include #include using namespace std; DWORD WINAPI FunOne(LPVOID param){ while(true) { Sleep(1000); cout<<"hello! "; } return 0; } DWORD WINAPI FunTwo(LPVOID param){ while(true) { Sleep(1000); cout<<"world! "; } return 0; } int main(int argc, char* argv[]) { int input=0; HANDLE hand1=CreateThread (NULL, 0, FunOne, (void*)&input, CREATE_SUSPENDED,

水文分析计算课程设计

《水文分析与计算》课程设计指导书 ———设计年径流及设计洪水的计算 一、课程设计的目的 1.掌握PIII型频率曲线的制作方法 2. 掌握设计年径流及其年内分配的计算方法 3.掌握考虑历史特大洪水的设计洪水及其过程的计算方法 二、课程设计任务 1.根据所给资料推求设计年径流与设计年内分配过程 表1是某站1958~1976年各月径流量资料,根据所给资料推求P=10%的设计丰水年、P=50%的设计平水年、P=90%的设计枯水年的设计年径流量;并计算P=90%的设计枯水年径流年内分配过程。 要求:理论频率曲线采用PIII型分布,由矩法作参数无偏估计,并以估计值为初值,用目估适线法选配理想的理论频率曲线,注意比较验证均值X a、变差系数C V、偏态系数C S对频率曲线的影响效果。检查所选最终的理论频率曲线的合理性,并计算所求设计频率的相应设计年径流,年径流分配过程采用典型年同倍比放大法。 3

三、课程设计成果要求 要求提交设计成果:一份电子文档,一份打印文档。设计中的计算可采用采用excel 或编程计算,编程语言可采用FORTRAN 语言、C 语言、Basic 语言或同等功能的语言编程。要求程序正确、可靠、可运行,符合结构化程序设计思想,具有易读性、可修改性、可验证性、通用性,关键变量应作注释说明。计算结果要表格化,便于检查、保存和打印。设计设计报告,其重点是对计算成果的说明和合理性分析及其有关问题的讨论。要求文字流畅,简明扼要;图表整齐清楚,名称、编号齐全;封面统一,最后装订成册。 四、课程设计的考核 平日考勤、设计报告,加上抽查提问及上机操作,对成绩进行综合评定。 五、课程设计时间与地点 时间: 2013年5月9日星期四 地点: 学院 六、实验原理 1.经验频率计算 经验频率:P=m/(n+1)*100%,模比系数:Q Q Ki i = 2.线型选择 频率曲线一般应采用皮尔逊Ⅲ型。 3.频率曲线参数估计 平均值:n 1 ∑== n i i Q Q 变差系数:() 1 n 11 2 --= ∑=n i i v K C 4.偏态系数:Cs=2-3Cv 七、实验步骤 1、将测站所得数据年份及年平均流量数据复制与Excel 表格中,并列出序号,同时计算出年平均流量的均值。 2、另起一列,将年平均流量数据按从大到小排列。按数学期望公式计算出相应经验频率P=m/(n+1)*100%。在画图软件上绘制经验点距。再计算出各相应的模比系数Ki (Q Q Ki i =)和(Ki-1)2。 3、选定水文频率分布线型(选用皮尔逊Ⅲ型)。 表2 某站年径流量频率计算表

水文分析计算课程设计-2.设计暴雨

2、设计暴雨推求 依据良田站控制小流域的特点,本次计算区域设计面降雨首先采用区域综合法计算面设计暴雨量,然后依据暴雨公式计算短历时设计降雨量,并选取典型暴雨同频率放大推求设计暴雨过程。 1. 区域降雨资料检验 为推求该区域设计面降雨量,选取吉安、桑庄、寨头与峡江四站降雨检验该区降雨是否选同一总体。选择四站1957~80年数据(74年出现极值暴雨,不参加检验),对各站数据取自然对数,对转换后数据进行均值与方差检验,各站转换后系列的均值及方差见表2-1。 表2-1 吉安、桑庄、寨头与峡江站最大一日降雨资料取对数转换后 的均值与方差 项目P吉安P峡江P桑庄P寨头 均值X 4.562 4.453 4.519 4.482 样本方 差0.0980.0970.1460.071 1)均值检验 选取均值差异最大的吉安站(X 1 )和峡江站(X2)两站进行检验。 假设H : X1 = X2 构造统计变量: 取α=0.10,查得|tα/2|=1.68>|t|,接受假设H,即可认为吉安、桑庄、寨头与峡江站均值相等。 2)方差检验 选取方差差异最大的桑庄站(S1)和寨头站(S2)两站进行检验。 假设H : S 1 = S 2 构造统计变量:

取α=0.10,查得F1=2.05,F2=0.49。可认为F2

螳螂川青龙~蔡家村河段电站水文分析计算报告

昆明市西山区 螳螂川青龙~蔡家村河段水电站工程 初步设计报告 2.水文

目录 2.水文 (1) 2.1流域概况 (1) 2.1.1自然地理及河流概况 (1) 2.1.2流域内水利工程分布情况 (3) 2.1.4水文气象概况 (7) 2.2水文基本资料 (8) 2.2.1水文气象站点 (8) 2.2.2水文资料“三性”分析 (8) 2.3径流 (12) 2.3.1滇池入湖水量计算 (12) 2.3.2滇池出湖水量计算 (12) 2.3.3滇池~蔡家村站区间水量计算 (15) 2.3.4蔡家村站规划水平年径流量计算 (16) 2.3.5年径流合理性分析 (18) 2.3.6电站设计年径流量 (19) 2.3.7设计代表年径流分配 (20) 2.4洪水 (21) 2.4.1洪水标准 (21) 2.4.2洪水特性分析 (21) 2.4.3蔡家村水文站设计洪水计算 (22) 2.4.4设计洪水合理性检查 (23) 2.4.5电站坝址设计洪水 (25) 2.5枯季施工洪水 (25) 2.6泥沙 (26)

2.水文 2.1流域概况 2.1.1自然地理及河流概况 普渡河属金沙江下段右岸一级支流,位于东经102°09′~103°05′、北纬24°28′~26°18′范围内,流域地势南低北高、东高西低,南部为滇池盆地,北部为禄劝深山河谷,南北最长205 km,东西最宽90 km,平均海拔高程2250 m,涵盖了昆明市嵩明县、官渡区、盘龙区、五华区、西山区、呈贡县、晋宁县、安宁市、富民县、禄劝县、寻甸县、东川市共12个县(市)区和楚雄州禄丰县、武定县一部份。流域东面受禄劝县拱王山(向南延伸至嵩明县草白龙山及呈贡县梁王山)控制,与东川市小江水系、寻甸县牛栏江水系及宜良县南盘江水系相分隔,流域西面受武定县及禄劝县境内三台山(向南延伸至禄丰县及安宁市)控制,与武定县猛果河水系相分隔,流域南面则背靠晋宁县白龙山,与玉溪市元江流域为枕,流域北面为金沙江河谷,为普渡河金沙江汇入口。 根据云南省水利厅2002年7月出版的《云南省河流状况》调查报告,普渡河发源于嵩明县大哨乡梁王山喳啦箐,源地高程2705 m,河口处高程762 m,全河总落差1943 m,全长363.6 km,平均比降5.3‰,控制径流面积11657 km2。 习惯上将普渡河流域分为三段,滇池出口海口以上为普渡河上游区,称为滇池流域,控制径流面积2920 km2,河长(含滇池)120 km,其中:滇池水面30.2 km,滇池入湖干流盘龙江嵩明境内河长46.6 km,官渡区境内河长37.7 km,盘龙区境内河长5.5 km。

河海大学水文分析与计算课程设计报告定稿版

河海大学水文分析与计算课程设计报告 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

水文分析计算课程设计报告书 学院:水文水资源 专业:水文与水资源工程 学号: 姓名: 指导老师:梁忠民、李国芳 2015年06月12日 南京 目录 1、设计任务 (1) 2、流域概况 (1) 3、资料情况及计算方案拟定 (1) 4、计算步骤及主要成果 (2) 4.1 设计暴雨X p(t)计算 (2) 4.1.1 区域降雨资料检验 (2) 4.1.2 频率分析与设计雨量计算 (3) 4.2计算各种历时同频率雨量X t,P (9) 4.3 选典型放大推求X P (t) (9) 4.4 产汇流计算 (9) 4.4.1 径流划分及稳渗μ值率定 (12) 4.4.2 地表汇流 (17) 4.5 由设计暴雨X P(t)推求Q P(t) (18) 4.5.1 产流计算 (18) 4.5.2 地面汇流 (18)

4.5.3地下汇流计算 (19) 4.5.4 设计洪水过程线 (20) 5、心得体会 (22)

1、设计任务 推求江西良田站设计洪水过程线,本次要求做P 校,即推求Q 0.01%(t)。 2、流域基本概况 良田是赣江的支流站。良田站以上控制的流域面积仅为44.5km 2,属于小流域,如右图所示。年降水均值在1500~1600mm 之内,变差系数Cv 为0.2,即该地区降雨充沛,年际变化小,地处湿润地区。暴雨集中。暴雨多为气旋雨、台风雨,季节为3~8月,暴雨历时为2~3日。 3、资料情况及计算方案拟定 3.1资料情况 设计站(良田)流量资料缺乏,邻近站雨量资料相对充分,具体如表3-1: 表3-1 良田站及邻近地区的实测暴雨系列、历时洪水、特大暴雨资料 3.2 方案拟定 本次课设采用间接法推求设计洪水,即是由推求的设计暴雨, 经过产汇流计算得到设计洪水。示意图如下: 4、设计暴雨XP(t)的计算 4.1 设计暴雨X p (t)计算 4.1.1区域降雨资料检验 站名 实测暴雨流量系列 特大暴雨、历史洪水 良田 75~78 (4年) Q=216m 3 /s ,N=80(转化成X 1日,移置峡江站) 峡江 53~80 (28年) 吉安 36~80 (45年) 桑庄 57~80 (24年) X 1日 寨头 57~80 (24年) 沙港 特大暴雨 X 1日 (移置到寨头站)

并行计算第一次实验报告

并行计算上机实验报告题目:多线程计算Pi值 学生姓名 学院名称计算机学院 专业计算机科学与技术时间

一. 实验目的 1、掌握集群任务提交方式; 2、掌握多线程编程。 二.实验内容 1、通过下图中的近似公式,使用多线程编程实现pi的计算; 2、通过控制变量N的数值以及线程的数量,观察程序的执行效率。 三.实现方法 1. 下载配置SSH客户端 2. 用多线程编写pi代码 3. 通过文件传输界面,将文件上传到集群上 4.将命令行目录切换至data,对.c文件进行编译 5.编写PBS脚本,提交作业 6.实验代码如下: #include

#include #include #include #include #include static double PI=0; static int N=0; static int numOfThread=0; static int length=0; static int timeUsed=0; static int numOfThreadArray[]={1,2,4,6,8,10,12,14,16,20,24,30}; static int threadArraySize=12; static int nTime=4; static int repeatTime=30; static double totalTime=0; struct timeval tvpre, tvafter; pthread_mutex_t mut; clockid_t startTime,endTime;

水文气象报告

目录 1 前言 2 沿线水文条件 3 河流跨越 3.1 颍河 3.2 泉河 4 设计气象条件选择 4.1 气象站及气候概况 4.2 设计最大风速取值 4.3 导线覆冰取值 4.4 气温及雷暴日数 5 结语 1 前言 工程,为一新建工程,该工程主要为电气化铁路配套的110kV太和牵引站供电。 本线路位于安徽省阜阳市及所属太和县境内,线路起自110kV太和牵引站,终止与在建的220kV程集变电站,线路路径走向主要向南方向,分别跨越颍河及泉河,颍河及泉河均为通航河流,线路路径长约km。 本阶段水文气象专业的主要工作是:现场踏勘、水文调查、气象调查、收资。主要进行沿线历史洪水调查、洪涝调查、大风及覆冰等气象灾害的调查,收集沿线水利工程设施及规划,附近线路运行情况,线路沿线气象站最大风速、覆冰、气温、雷暴日数等气象资料。内业工作主要是分析计算水文、气象等设计参数,并分析确定设计气象条件,编制水文气象报告。 本线路经过地区有阜阳市及太和县气象观测站,与线路相距较近,具有多年观测统计资料,是本工程气象原始资料的主要来源。 注:报告中水位及高程均为黄海高程系统。 2 沿线水文条件 本线路所经地段地貌单元主要为淮北平原区,地形略有起伏,地形总趋势为自西北向东南倾斜。 本线路位于安徽省阜阳市及所属太和县境内,线路起自110kV太和牵引站,向行走,经过新陈集西,傅庄,孙营,于龙口以东跨越颍河,继续向南行走,经李集西,后新庄,于张三湾以西跨越泉河,继续向南行走,直至220kV程集变电站。线路总长约km,跨越颍河、泉河为通航河流。 本线路经过老泉河洼地内涝积水区,主要分布小胡至泉河北岸,原为泉河,后泉河改道后,现为泉河洼地。据现场查勘及水利部门收资了解到,1954年泉河大洪水时地面淹没水深1.5~2.0m,可行小船;1975年大水期间,地面有积水,水深一般约1.0~1.5m。在一般年份,泉河洼地地段,存在内涝积水,水深0.5~1.0m,时间较长。 本线路沿线经过一些小的沟渠,如柳青沟柳河等,它们分别汇入颍河或泉河,主要起到排泄内涝积水的作用,目前无大的整治规划,其最高水位建议按现状堤顶高程确定。 本线路经过一些小的排涝及灌溉沟渠,线路立塔位置只要留有一定的距离即可。 3河流跨越

水文分析与计算(20110801)

水文分析与计算 1 旧石马河基本概况 旧石马河位于石马河西侧,原为石马河河道,1966年东深供水工程建设时兴建了部分新河道,现该河道主要排除区内西侧大部分地区的雨水,为天然土渠。全流域面积17.8km2,干流河长6.3km,河道加权平均坡降1‰,旧石马河排站以上面积16.8km2,干流河长5.6km,河道加权平均坡降1.4‰。建塘水闸至环城路段长约3.8km,河底宽约30~90m。主要支流有东岸涌、湖头水、新湖水、面前湖水等。旧石马河部分跨河建筑物过水断面狭窄,还有很多地段房屋建在渠道上,严重缩窄了渠道断面,影响泄洪。 2 水文资料情况 桥头镇没有水文观测站及气象观测站,仅在镇水利所设有雨量观测设施。本次收集了镇水利所1993~2007年共15年的日降雨观测资料和东莞市气象局1957~2005年降雨观测资料及历年最大1日降雨量。因镇水利所观测资料序列较短,且没有经过整编,本次仅采用收集到的东莞市气象局观测的1957~2005年资料分析桥头镇的降雨特征。 3 暴雨及洪水特性 暴雨类型主要有锋面雨和台风雨,锋面雨一般发生在4~6月,降雨范围和强度大、历时长;台风雨一般出现在7~9月,降雨范围小、历时短,强度大。一次降雨持续时间多在三日以内,以一日为主。

从降雨量及降雨过程特征分析可知,造成局部地区洪涝灾害的降雨主要为短历时暴雨,其特点是暴雨历时短而强度大。 本地区洪水由暴雨形成,洪水出现时间与暴雨出现时间相一致,也大多发生于4~9月。 4 设计暴雨计算 (1)实测暴雨成果 根据东莞市气象局资料,以及东莞其他站点最大1日与最大24h 暴雨,分析得最大24h暴雨与最大1日暴雨换算系数为1.1,求得东莞市1957~2005年历年最大24h暴雨系列,采用PIII型曲线进行适线分析,得到设计暴雨参数和设计结果(表1)。 表1 东莞市最大24h暴雨频率分析成果 (2)等值线成果 设计洪水分析计算需要有不同历时暴雨,但短历时暴雨的实测资料一般完整性较差,也难于收集,因此,采用《广东省暴雨参数等值线图》(2003年版)(以下简称《等值线图》查算不同历时的暴雨参数。 根据桥头镇中心位置,查《广东省暴雨径流查算图表》(以下简称《图表》)和《等值线图》,求得不同时段暴雨均值和变差系数,结果见表2。

多核编程与并行计算实验报告 (1)

多核编程与并行计算实验报告 姓名: 日期:2014年 4月20日 实验一 // exa1.cpp : Defines the entry point for the console application.

// #include"stdafx.h" #include #include #include #include using namespace std; void ThreadFunc1(PVOID param) { while(1) { Sleep(1000); cout<<"This is ThreadFunc1"<

实验二 // exa2.cpp : Defines the entry point for the console application. // #include"stdafx.h" #include #include using namespace std; DWORD WINAPI FunOne(LPVOID param){ while(true) { Sleep(1000); cout<<"hello! "; } return 0; } DWORD WINAPI FunTwo(LPVOID param){ while(true) { Sleep(1000); cout<<"world! ";

海原县陶家沟水库水文分析报告

海原县陶家沟水库水文分析计算报告 二○一二年七月

项目名称:海原县陶家沟水库水文分析计算报告委托单位: 承担单位: 批准: 审定: 审核: 项目负责: 报告编写:

目录 1任务由来 (1) 2流域概况 (1) 2.1自然概况 (1) 2.2气象要素 (2) 3水文站点及水文资料 (2) 4水文要素 (3) 4.1降水 (3) 4.2水面蒸发 (3) 4.3径流 (4) 4.4悬移质输沙量 (4) 5暴雨洪水特性 (4) 5.1暴雨特性 (4) 5.2洪水特性 (5) 6.设计洪水 (5) 6.1设计暴雨 (5) 6.2设计洪水 (6)

海原县陶家沟水库水文分析计算报告 1任务由来 为了充分发挥水利工程设施在国民经济持续发展中的基础作用,减少洪水灾害损失,改善当地生态环境,提高当地群众的生产生活条件,保证库区生产安全,海原县水务局拟对陶家沟病险水库除险加固,委托宁夏水文水资源勘测局编制《海原县陶家沟水库水文分析计算报告》,我局接到任务后,经现场勘测和收集相关水文资料,编制《海原县陶家沟水库水文分析计算报告》,为该工程提供设计依据。 2流域概况 2.1 自然概况 陶家沟水库地处海原县树台乡王坡村,水库大坝选址在园河支流韩庄河流域陶家沟出口,地理位置为东经105°30′26.8″,北纬36°29′10.6″(位置图见附图1),坝址以上控制流域面积15.8km2(经量算),河长9.0km,为小(二)型洪水库。水库始建于1975年,总库容15万m3,现状最大坝高16米。水库主要功能是拦沙防洪,保证下游群众的生命生产安全,经过多年运行,水库淤积严重,输水建筑物老化失修,现有效库容不能满足防洪要求。 陶家沟发源于南华山西麓,流域属中温带干旱黄土丘陵区,多山岑沟壑,沟道发育良好,自然发育,土壤为黑垆土,植被覆盖率低,植被较差,水土流失比较严重。

水文分析

遥感与地理信息系统上机报告 班级:地化21202 序号:15 姓名:成绩: 一、实验题目:水文分析 二、实验目的 1. 了解ArcGIs,Maplnfo的基本功能; 2. 利用水文分析工具提取地表水流径流模型的水流方向、汇流累积量、水 流长度、河流网络以及对研究区的流域进行分割等。 三、实验方法与结果: 转成矢量河流数据(Stream To Feature)Archydro模型上机实习内容; 1.数据准备:数字高程模型(DEM), 首先导入已知DEM的矢量数据,利用ArcGIS的ArcToolBox中Data Management Tools/Raster/CLIP工具,载出所需流域DEM数据。 水文流域DEM数据图1 2.流向计算 利用原始DEM数据,采用Flow Direction工具计算,得到每个表格的流

向。 3.洼地计算 基于原始DEM的坡向,计算洼地。

经过求洼后的洼地分布图 4.填洼计算 根据Sink扫描找出洼地,用Fill工具将洼地点的高程值设为与相邻点的最小高程值,这样迭代直到填平所有的洼地。填洼后形成了新的经过修正无凹陷DEM。 填洼后无凹陷DEM图 5.重新计算流向数据利用FILL后的新的DEM重新计算Flow Direction。

填洼后的流向计算 6.汇流累积量计算 6.1 利用无凹陷的dem求坡向,得到坡向分布数据。 6.2 利用flow accumulation命令计算出每个格网上淤累积汇流数,越是 上游的格网累积量越小;越处于下游累积数越大。 汇流累积量计算

7.水流长度 水流长度指地面上一点沿水流方向到流向起点(或终点)间的最大地面距离在水平面上的投影长度。 (1)在arctoobox中选择[spatial analyst 工具]/[水文分析]/[水流长度],打开水流长度工具; (2)[输入栅格流向数据]为fdirfill;在[输出栅格]中指定保存路径及名称;(3)[侧向方向]:选择downstream或upstream; (4)[输入权重栅格数据]; (5)单击[确定],完成操作。

并行计算-实验二-矩阵乘法的OpenMP实现及性能分析

深圳大学 实验报告 课程名称:并行计算 实验名称:矩阵乘法的OpenMP实现及性能分析姓名: 学号: 班级: 实验日期:2011年10月21日、11月4日

一. 实验目的 1) 用OpenMP 实现最基本的数值算法“矩阵乘法” 2) 掌握for 编译制导语句 3) 对并行程序进行简单的性能 二. 实验环境 1) 硬件环境:32核CPU 、32G 存计算机; 2) 软件环境:Linux 、Win2003、GCC 、MPICH 、VS2008; 4) Windows 登录方式:通过远程桌面连接192.168.150.197,用户名和初始密码都是自己的学号。 三. 实验容 1. 用OpenMP 编写两个n 阶的方阵a 和b 的相乘程序,结果存放在方阵c 中,其中乘法用for 编译制导语句实现并行化操作,并调节for 编译制导中schedule 的参数,使得执行时间最短,写出代码。 方阵a 和b 的初始值如下: ????????? ? ??????????-++++=12,...,2,1,..2,...,5,4,31,...,4,3,2,...,3,2,1n n n n n n n a ???????? ? ???????????= 1,...,1,1,1..1,...,1,1,11,...,1,1,11,..., 1,1,1b 输入: 方阵的阶n 、并行域的线程数 输出: c 中所有元素之和、程序的执行时间 提示: a,b,c 的元素定义为int 型,c 中所有元素之各定义为long long 型。 Windows 计时: 用中的clock_t clock( void )函数得到当前程序执行的时间 Linux 计时: #include

水力计算案例分析报告

学院工程技术学院课程设计任务书 2013年 12 月 2 日至 2013 年 12 月 20 日 课程名称:工程水文案例分析及实训 专业班级: 2011级水利水电工程1班 姓名:飘 学号: 1115030041 指导教师:洪晓江 2013年12月2日

案例一流域产流与汇流计算 习题4-2 某流域1992年6月发生一次暴雨,实测降雨和流量资料见表4-13。该次洪水的地面径流终止点在27日1时。试分析该次暴雨的初损量及平均后损率,并计算地面净雨过程。 表4-13 某水文站一次实测降雨及洪水过程资料 案例二设计年径流量分析计算 习题7-2 某水利工程的设计站,有1954~1971年的实测年径流资料。其下游有一参证站,有1939~1971年的年径流系列资料,如表7-7所示,其中1953~1954年、1957~1958年和1959~1960年,分别被选定为P=50%、P=75%和P=95%的代表年,其年的逐月径流分配如表7-8示。试求: m s 表7-7 设计站与参证站的年径流系列单位:3/ 注本表采用的水利年度为每年7月至次年6月。

(1)根据参证站系列,将设计站的年径流系列延长至1939~1971年。 (2)根据延长前后的设计站年径流系列,分别绘制年径流频率曲线,并分析比较二者有何差别。 (3)根据设计站代表年的逐月径流分配,计算设计站P=50%、P=75%和P=95%的年径流量逐月径流分配过程。 表7-8 设计站代表年月径流分配 单位:3/m s 案例三 洪峰流量推求计算 习题8-1 某河水文站有实测洪峰流量资料共30年(表8-10),根据历史调查得知1880年和1925年曾发生过特大洪水,推算得洪峰流量分别为32520/m s 和32100/m s 。试用矩法初选参数进行配线,推求该水文站200年一遇的洪峰流量。 表8-10 某河水文站实测洪峰流量表 案例四 暴雨资料推求设计洪水 习题9-3 已知设计暴雨和产、汇流计算方案,推求P=1%的设计洪水。 资料及计算步骤如下。 (1)已知平恒站以上流域(2992F km =) 1%P =的最大24h 设计面雨量为152mm ,其时程分配按1969年7月4日13时至5日13时的实测暴雨进行(表9-9),Δt 取3h ,可求得设计暴雨过程。

相关主题
文本预览
相关文档 最新文档