当前位置:文档之家› 拉挤玻璃纤维增强塑料杆弯曲性能试验方法(标准状态:被代替)

拉挤玻璃纤维增强塑料杆弯曲性能试验方法(标准状态:被代替)

拉挤玻璃纤维增强塑料杆弯曲性能试验方法(标准状态:被代替)
拉挤玻璃纤维增强塑料杆弯曲性能试验方法(标准状态:被代替)

纺织品吸湿发热性能测试方法

纺织品吸湿发热性能测试方法 Test Method for Performance of Moisture Adsorption and Heat Release of Textiles  袁志磊李方雪 传统的保暖服装蓬松、臃肿,既不便于活动又缺乏美 感,满足不了现代人们对服装的的要求。随着科学技术的 发展和人们生活水平的提高,人们对面料与服装实用功能 的要求趋向多元化,特别是近几年来,各种新型功能性纺 织品逐渐走进人们的日常生活。在内衣产品方面,主要倾向 干“轻、薄”、“吸湿排汗”、“透气”、“保温”。这其中,“吸 湿发热材料”特别受欢迎。这种内衣而料可吸附人体散发 的水蒸汽,使其温度升高,达到保暖的效果;同时温度升高 后,又能加快水蒸汽的散发,使得人穿着后感觉更加干爽舒 适,故利用这种纤维持续且较强的吸湿性能,制成具有耐久 性发热保暖功能的内衣面料。 国内外一些纤维研究机构和生产企业,已对这类纤维 产品进行了研究开发,如日本东洋纺公司生产的Eks吸湿发 热纤维,东丽公司开发的“Toray heat”纤维,三菱丽公司开 发的“Renaissa”纤维等。 作者简介:袁志磊,男,1980年生,工程师,主要从事功能性纺织品 检测技术研究。 作者单位:袁志磊,上海出入境检验检疫局,李万雪,东华大学纺织 学院。 上海市科学技术委员会资助课题(编号为10DZ0505400)。

@@[1]陈嘉毅,朱光浅谈新型发热保暖纤维[J]山东纺织科技,2008(2) 53-56 @@[2]夏秉能,方国平,王奎芳,等吸湿发热纤维针织内衣面料的开发[J] 针织工业,2008 (11):19-20

基础实验-塑料弯曲强度-实验讲义

塑料弯曲强度实验 塑料弯曲实验常用作热固性脆性材料的力学性能评价。可以将其看做是冲击韧性的放大。本质上是拉伸和弯曲的复合,最终直接关系到材料的剪切强度。 【实验目的】 1.掌握塑料弯曲强度测量的基本原理 2.掌握简支梁弯曲性能的测量方法; 3.了解弯曲强度实验方法适用的材料范围。 【实验原理】 把试样支撑成横梁,使其在跨度中心以恒定速度弯曲,直到试样断裂或者变形达到预定值,测量该过程中对试样施加的压力。 4. 基本定义。 1.试验速度——speed of testing,支座与压头之间相对运动的速率,单位 mm/min 。 2.弯曲应力flexural stress Jf 试样跨度中心外表面的正应力, 按9.1 的(3) 式计算, 单位MPa 。 3.断裂弯曲应力flexural stress at break, σ fB试样断裂时的弯曲应力( 见图1 的曲线 a 和b), 单位MPa 。 4.弯曲强度flexural stretn gth, σ阳试样在弯曲过程中承受的最大弯曲应力( 见 国 1 的曲线 a 和b), 单位MPa 。 5.在规定挠度时的弯曲应力flexural stress at conventional deflection Jfc 达到 3.7 规定的挠度sc 时的弯曲应力( 见图1 的曲线C), 单位MPa 。 6.挠度deflection d 在弯曲过程中, 试样跨度中心的顶面或底面偏离原始 位置的距离, 单位mm 。 7.规定挠度conventionai deflection ,Sc规定挠度为试样厚度h 的1.5 倍, 单 位mm 。当跨度L=16h 时, 规定挠度相当于弯曲应变为 3.5% ( 见 3.8) 。 8.弯曲应变flexural strain, ε f试样跨度中心外表面上单元长度的微量变化, 用 无量纲的比或百分数(%) 表示。按9.2 的式(4) 计算。

织物动态吸湿性能测试设备及方法的制作方法

本技术涉及一种织物动态吸湿性能测试装置,包括两个激光发射端、两个接收端和液体供给点,所述两个激光发射端下方的对应位置设置有两个接收端;所述两个激光发射端和两个接收端之间设有待测织物;所述两个接收端与数据采集卡相连;所述数据采集卡与电脑相连;所述激光发射端发出的激光与待测织物所在的平面相互垂直;所述液体供给点与两个接收端在同一条直线上排布,并通过管道向所述待测织物供给液体。本技术还涉及一种织物动态吸湿性能测试方法。本技术可提供对液体动态传递过程全面的量化评价。 权利要求书 1.一种织物动态吸湿性能测试装置,包括两个激光发射端、两个接收端和液体供给点,其特征在于,所述两个激光发射端下方的对应位置设置有两个接收端;所述两个激光发射端和两个接收端之间设有待测织物;所述两个接收端与数据采集卡相连;所述数据采集卡与电脑相连;所述激光发射端发出的激光与待测织物所在的平面相互垂直;所述液体供给点与两个接收端在同一条直线上排布,并通过管道向所述待测织物供给液体。 2.根据权利要求1所述的织物动态吸湿性能测试装置,其特征在于,所述待测织物通过辅助立柱平整、水平地支撑在两个激光发射端和两个接收端之间。 3.根据权利要求1所述的织物动态吸湿性能测试装置,其特征在于,所述液体供给点与两个

接收端中离其更近的一个接收端的距离为15mm,两个接收端之间的距离为10mm。 4.根据权利要求1所述的织物动态吸湿性能测试装置,其特征在于,所述管道将液体以从上至下或从下至上的方式供给所述待测织物。 5.一种织物动态吸湿性能测试方法,其特征在于,使用如权利要求1-4中任一所述的织物动态吸湿性能测试装置,具体包括以下步骤: (1)在测试之前,将所有待测织物在干燥箱中以60摄氏度干燥5分钟,测试环境的温度保持在25℃±1℃,相对湿度湿度保持在60%±5%; (2)将待测织物平整地放置在由多根辅助立柱组成的支撑面上,并固定,移动管道的出口,使其恰好与待测织物接触; (3)启动液体供给点,以小于4ml/min的速度供液5秒,随后关闭,让液体在待测织物上自由扩散,收集接收端的电压信号,并根据信号对液体到达时间、液体扩散速度、最大吸收率和饱和吸收倍率进行分析。 技术说明书 一种织物动态吸湿性能测试装置及方法 技术领域 本技术涉及吸湿材料检测技术领域,特别是涉及一种织物动态吸湿性能测试装置及方法。背景技术

常见的塑料检测标准和方法

常见的塑料检测标准和方法 检测产品/类别检测项目/参数 检测标准(方法)名称及编号(含年号)序 号 名称 塑料1 光源暴露试验方 法通则 塑料实验室光源暴露试验方法第1部分:通则ISO 4892-1:1999 2 氙弧灯光老化 汽车外饰材料的氙弧灯加速暴露试验SAE J2527:2004 汽车内饰材料的氙弧灯加速暴露试验SAE J2412:2004 塑料实验室光源暴露试验方法第2部分:氙弧灯ISO 4892-2:2006 /Amd 1:2009 室内用塑料氙弧光暴露试验方法ASTM D4459-06 非金属材料氙弧灯老化的仪器操作方法ASTM G155-05a 塑料暴露试验用有水或无水氙弧型曝光装置的操作ASTM D2565-99(2008) 3 荧光紫外灯老化 塑料实验室光源暴露试验方法第3部分:荧光紫外灯ISO 4892-3:2006 汽车外饰材料UV快速老化测试SAE J2020:2003 塑料紫外光暴露试验方法ASTM D4329-05 非金属材料UV老化的仪器操作方法ASTM G154-06 4 碳弧灯老化 塑料实验室光源暴露试验方法第4部分:开放式碳弧灯 ISO 4892-4:2004/ CORR 1:2005 塑料实验室光源曝露试验方法第4部分:开放式碳弧灯 GB/T16422.4-1996 5 荧光紫外灯老化 机械工业产品用塑料、涂料、橡胶材料人工气候老化试验方法荧 光紫外灯GB/T14522-2008 6 热老化 无负荷塑料制品的热老化 ASTM D3045-92(2010) 塑料热老化试验方法GB/T7141-2008 7 湿热老化 塑料暴露于湿热、水溅和盐雾效应的测定ISO4611:2008 塑料暴露于湿热、水喷雾和盐雾中影响的测定GB/T12000-2003 塑料8 拉伸性能塑料拉伸性能的测定第1部分:总则GB/T1040.1-2006

ISO-178-2010塑料——弯曲性能的测定

ISO178-2010 塑料——弯曲性能的测定 1.范围 1.1本国际标准规定了在特定条件下测定硬质(见3.12)和半硬质塑料弯曲性能的方法。规 定了标准试样尺寸,同时对适合使用的替代试样也提供了尺寸参数。规定了试验速度范围。 1.2本标准用于在规定条件下研究试样弯曲特性,测定弯曲强度、弯曲模量和其他弯曲应力 /应变关系。本标准适用于两端自由支撑、中央加荷的试验(三点加载测试)。 1.3本标准适用于下列材料: ——热塑性模塑、挤出铸造材料,包括填充和增强复合物;硬质热塑性板材; ——热固性模塑材料,包括填充和增强复合物;热固性板材。 与ISO10350-1[5]和ISO10350-2[6]一致,本国际标准适用于测试以长度≤7.5mm纤维增强的复合物。对于纤维长度>7.5mm的长纤维增强材料(层压材料)的测试,见ISO14125[7]。 本标准通常不适用于硬质多孔材料和含有多孔材料的夹层结构材料。对这些材料的测试,可采用ISO1209-1[3]和/或ISO1209-2[4]。 注:对于某些纺织纤维增强的塑料,最好采用四点弯曲试验,见ISO14125。 1.4本方法中所用的试样可以是选定尺寸的模塑试样,用标准多用途试样中部机加工的试样 (见ISO20753),或者从成品或半成品入模塑件、挤出或浇铸板材经机加工的试样。1.5本标准推荐了最佳试样尺寸。用不同尺寸或不同条件制备的试样进行试验,其结果是不 可比较的。其他因素,如试验速度和试样的状态调节也会影响试验结果。 注:尤其是半结晶聚合物,由模塑条件决定的样品表层厚度会影响弯曲性能。 1.6本方法不适用于确定产品设计参数,但可用于材料测试和质量控制测试。 1.7对于表现出非线性应力/应变特性的材料,其弯曲性能只为公称值。给出的计算公式都 基于应力/应变为线性的假设,且对样品挠度小于厚度的情况下有效。使用推荐的试样尺寸(80mm X10mm X4mm),在传统的3.5%弯曲应变和跨距与厚度比L/h为16的情况下,挠度为1.5h。相比于非常柔软的和延性材料,弯曲测试更合适于测试具有较小断裂挠度的坚硬材料和脆性材料。 1.8与本国际标准的之前版本相反,本版本包含了方法A和方法B两个方法。方法A与本 国际标准的之前版本中的方法一致,即在试验中使用1%/min的变形速度。方法B使用两个不同的变形速度:弯曲模量测试中选用1%/min的速度,测量弯曲应力-应变曲线的剩余部分依材料延展性的不同而选用5%/min或50%/min的形变速度。 2.规范性引用文件 本文件中引用了以下的文件。对于标示日期的引用文件,只有引用的版本有效。对于未标示日期的文献,其最新版(包括任何修正)适用于本标准。 ISO291,塑料——状态调节与测试标准环境 ISO293,塑料——热塑性材料的压塑试样 ISO294-1:1996,塑料——热塑性材料注塑试样——第1部分:一般原理及多用途和长条试样的模塑成型。 ISO295,塑料——热固性材料的压塑试样 ISO2602,测试结果的统计处理和解释——均值估计——置信区间 ISO2818,塑料——机械加工制备试样 ISO7500-1,金属材料——静态单轴测试仪器验证——第1部分:张力/压缩测试机器——力测量系统的验证和校准 ISO9513,金属材料——单轴测试伸长计校正

塑料力学性能测试标准大全-

塑料力学性能测试标准 GB/T 1039-1992塑料力学性能试验方法总则 plastics--General rules for the test method of mechannlcal properties GB1040 塑料拉伸试验方法 Plastics--Determination of tensile properties GB/T_1041-1992 塑料压缩性能试验方法 Plastics--Determination of compressive properties GB/T 1043-93 硬质塑料简支梁冲击试验方法 Plastics--Determination of charpy impact strength of rigid matericals GB/T 14153-1993硬质塑料落锤冲击试验方法通则 General test method for impact resistance of rigid plastics by means of falling weight GB/T 14484-1993 塑料承载强度试验方法 Test method for bearing strength of plastics GB/T 14485-1993 工程塑料硬质塑料板材及塑料件耐冲击性能试验方法、落球法Standard methods of testing for impact resistance of plats and pats made from englneering plastics by a ball(falling ball GB/T 15047-1994 塑料扭转刚性试验方法 Test method for stiffness proporties in tirsion of plastics GB/T 15048-1994 硬质泡沫塑料压缩蠕变试验方法 Cellular plastics,rigid--Determination of compressive creep GB/T 12027-2004 塑料-薄膜和薄片-加热尺寸变化率试验方法 Plastics--film and sheeting-Determination of dimensional change on heating GB/T 2013525-1992 塑料拉伸冲击性能试验方法 Test method for tensile-impact property of plastics GB/T 11999-1989塑料薄膜和薄片耐撕裂性试验方法埃莱门多夫法 Plastics--Film and sheeting--Determination of tear resistance--Elmendorf method GB/T 10808-1989 软质泡沫塑料撕裂性能试验方法 Cellular plastics--Tear resistance test for flexible materials

国家标准塑料及塑料制品性能检测方法标准

1 GB/T 1033-1986 塑料密度和相对密度试验方法 2 GB/T 1034-1998 塑料吸水性试验方法 3 GB/T 1036-1989 塑料线膨胀系数测定方法 4 GB/T 1037-1988 塑料薄膜和片材透水蒸气性试验方法杯式法 5 GB/T 1038-2000 塑料薄膜和薄片气体透过性试验方法压差法 6 GB/T 1039-1992 塑料力学性能试验方法总则 7 GB/T 1040-1992 塑料拉伸性能试验方法 8 GB/T 1041-1992 塑料压缩性能试验方法 9 GB/T 1043-1993 硬质塑料简支梁冲击试验方法 11 GB/T 1408.1-1999 固体绝缘材料电气强度试验方法工频下的试验 13 GB/T 1409-1988 固体绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的试验方法 14 GB/T 1410-1989 固体绝缘材料体积电阻率和表面电阻率试验方法 15 GB/T 1411-2002 干固体绝缘材料耐高电压、小电流电弧放电的试验 16 GB/T 1446-2005 纤维增强塑料性能试验方法总则 17 GB/T 1447-2005 纤维增强塑料拉伸性能试验方法 18 GB/T 1448-2005 纤维增强塑料压缩性能试验方法 19 GB/T 1449-2005 纤维增强塑料弯曲性能试验方法 20 GB/T 1450.1-2005 纤维增强塑料层间剪切强度试验方法 21 GB/T 1450.2-2005 纤维增强塑料冲压式剪切强度试验方法 22 GB/T 1451-2005 纤维增强塑料简支梁式冲击韧性试验方法 23 GB/T 1458-1988 纤维缠绕增强塑料环形试样拉伸试验方法 24 GB/T 1461-1988 纤维缠绕增强塑料环形试样剪切试验方法 25 GB/T 1462-2005 纤维增强塑料吸水性试验方法 26 GB/T 1463-2005 纤维增强塑料密度和相对密度试验方法 27 GB/T 1633-2000 热塑性塑料维卡软化温度(VST)的测定 28 GB/T 1634.1-2004 塑料负荷变形温度的测定第1部分:通用试验方法 29 GB/T 1634.2-2004 塑料负荷变形温度的测定第2部分:塑料、硬橡胶和长纤维增强复合材料 30 GB/T 1634.3-2004 塑料负荷变形温度的测定第3部分:高强度热固性层压材料 31 GB/T 1636-1979 模塑料表观密度试验方法 32 GB/T 1843-1996 塑料悬臂梁冲击试验方法 33 GB/T 1844.1-1995 塑料及树脂缩写代号第一部分:基础聚合物及其特征性能 34 GB/T 1844.2-1995 塑料及树脂缩写代号第二部分:填充及增强材料 35 GB/T 1844.3-1995 塑料及树脂缩写代号第三部分:增塑剂 36 GB/T 2035-1996 塑料术语及其定义 37 GB/T 2406-1993 塑料燃烧性能试验方法氧指数法 38 GB/T 2407-1980 塑料燃烧性能试验方法炽热棒法 39 GB/T 2408-1996 塑料燃烧性能试验方法水平法和垂直法 40 GB/T 2409-1980 塑料黄色指数试验方法 41 GB/T 2410-1980 透明塑料透光率和雾度试验方法 42 GB/T 2411-1980 塑料邵氏硬度试验方法 43 GB/T 2546.2-2003 塑料聚丙烯(PP)模塑和挤出材料第2部分: 试样制备和

纤维增强塑料弯曲性能试验方法(标准状态:现行)

’() %&!’#&&’"$% "#"#!$%&&’"%

"#$%&’( ()*+ !"#$%&’()*+,-. !"!#$%%&"’(() ! "(*+,-.,-/0 123456789:;<1=$*> ?@AB#$(((%) +,,-#!!.../0-1/23,/12 CD#*4565445$*4565%%5 ’(()E$(FGH-"’(()E$(FCI-JK ! !>#$))(**%$7’*’5) !"#$"%"&’ ()*+#&!"!’#$%&&%&&

!!!" !!"#$%&’!"#$%$&’!$(()"()*+,-./0-#1234567$%8!"#$%$&’!$(() 59:3;<=>?@%ABCDEFGH! ###!"#$%$&’!$(()IJKLMNL12OPQR%"#$IJKL12& "#$ST*+’,$%%(#$()-"UV()*+,-1234WXQR$&8*+’,$%%(#$()-Y ZAB[\GH! ####](UV()*+,-1234WXQR)^=(()*+,-1234WXQR)* ###_J‘ab(_J’UV()*+,-)^=(_J’()*+,-)+cd$e,* ###*fDgM7h+cd-e,* ###*fijk+cd%e,* ###*fi&[5lmQRnopq5lmQR+cd(e,* ###IJrstuv& "#$bwrxy0-z{|}~!& "#$b"r()*+,-#$\CD#$}%&& "#$AB’(tu!)*UV+,-.l/-wr01z{23d4K,-5-6789:z; <=>?@& "#$AB’(A!B w C-DEF-GHI-JKL-M}N& "#$’$(.(O’PQRST%$()-O d9RUV%&//-O dO RUV&

关于纺织品吸湿速干性能测试方法的对比探讨

关于纺织品吸湿速干性能测试方法的对比探讨 发表时间:2018-07-18T16:11:02.290Z 来源:《科技中国》2018年2期作者:黄启棠 [导读] 摘要:社会的发展在一定程度上促进了人们消费水平的提升,尤其是在服装领域中,人们对于服装布料的吸湿和排汗功能越来越重视。本文对纺织品吸湿速干性能测试的水分蒸发速率、芯吸高度、滴水扩散、吸水率和透湿量等方面进行了分析,在此基础上通过测试试验的方式,判断不同种类纺织品吸湿速干性能测试方法各自特点,旨在为关注这一领域的人士提供一些可行性较高的参考意见,推动行业整体发展。 摘要:社会的发展在一定程度上促进了人们消费水平的提升,尤其是在服装领域中,人们对于服装布料的吸湿和排汗功能越来越重视。本文对纺织品吸湿速干性能测试的水分蒸发速率、芯吸高度、滴水扩散、吸水率和透湿量等方面进行了分析,在此基础上通过测试试验的方式,判断不同种类纺织品吸湿速干性能测试方法各自特点,旨在为关注这一领域的人士提供一些可行性较高的参考意见,推动行业整体发展。 关键词:吸湿速干;水分蒸发速率;滴水扩散;吸水率;透湿量;芯吸高度 引言:随着我国国民经济的发展以及人民生活水平的提高,社会各界对于我国服装制造业,特别是纺织品吸湿速干性能等方面的关注程度越来越高。科学技术的进步在一定程度上增强了服装纺织品的使用性能,通过提高纺织品吸湿速干性能能优化人们的穿着体验。因此,如何通过对比分析不同纺织品吸湿速干性能测试方法,用于检测纺织品吸水性和速干性,提升服装品质,是相关领域工作人员的工作重点之一。 一、纺织品吸湿速干性的影响因素 纺织品的纤维分子结构、纤维形态结构以及纺织品的组织结构等要素都对纺织品的吸湿速干性能存在明显影响。纤维材料表面的亲水基团越多极性越强,则说明纺织品具有较强的吸湿能力。动物纤维当中含有的氨基酸可以组成肽链,因此具有较好的亲水性,大部分合成纤维是由多种非极性高分子的材料所组成,因此合成纤维的吸湿性较差。纺织品纤维形态结构若存在异形截面,纺织品表面积和纤维沟槽表面积越大,纺织品的速干性越好。天然植物纤维表面的果胶会对吸水性产生影响,果胶含量对纺织品的吸水性起着反向促进作用。果胶含量越高,纺织品的吸水性越差。纺织品的组织结构对于纺织品的透湿、导湿以及保湿效果存在影响。当纺织品的纤维分子结构和纤维形态结构相同时,纤维的吸水速率和速干性能会受到组织结构的影响。通常情况下,棉毛和网眼结构的纺织品具有较高的吸水速率,机织的平纹组织纺织品吸水速率较低。速干性能最强的为机织平纹的纺织品,针织网眼、针织棉毛和针织条纹的纺织品速干能力依次减弱[1]。 二、纺织品吸湿速干性能测试的检测方法 (一)吸水率 在纺织品吸湿速干性能测试试验当中,吸水率的判定需要借助于样品完全浸没到水中直至取出之后不再滴水的质量变化情况。在具体操作环节,经过调适平衡之后,将用于试验的样品进行称重,再将其放置在水中全部浸湿。经过5min之后取出,垂直悬挂,直至不在滴水以后进行二次测量。将试验样品的吸取水分的重量在原本样品重量中所占的比例即为纺织品的吸水率,且比例值越大说明纺织品的吸水量越强。国际上关于纺织品吸水率的试验要求指标有所不同。例如,日本要求试验样本浸入的时间为20min,取出之后需要放置在两块滤纸中间,用特殊装置以25毫米/秒的速度进行挤压[2]。 (二)滴水扩散时间 纺织品生产企业的测试部门可以通过滴水扩散的程度,对纺织品对于水分的吸收速度进行判断。将水滴从统一的高度向下滴落到测试样品的表面,并且对水滴接触测试样品直到测试样品上水滴反射的光线全部消失所需要的时间进行记录。对纺织品滴水扩散的测试指标进行判断,需要根据时间的长短对纺织品的吸水性能进行分析,在外界光照、温度以及空气流通速度相同的情况下,滴水扩散所需要的时间越短,说明纺织品对于水分的吸收速度越快,也反映了对于水分的吸收能力越强。滴水扩散时间测试中,需要将体积为0.2毫升的三级水滴在试验样品上,从水滴接触样品开始直至全部扩散并且渗透之后所需要的时间,记录需要精确到0.1秒,在这一试验过程中,滴水扩散的时间越短就说明纺织品具有较强的吸水能力。目前,国内根据滴水扩散程度对纺织品的吸水能力进行测试的方法主要有单项组合测试法,以及在《纺织品吸水性测试》和《纺织品吸水性试验》等测试项目规定中记录的测试方法,各项参数之间略有不同,具体情况如下表所示:

塑料测试方法(中文版)

拉伸强度和拉伸模量 ASTM D 638, ISO R527, DIN 53455, DIN53457 了解材料对负载的响应程度是了解材料性能的基础。通过测试在一定应力下材料的变形程度(应变),设计者可以预测材料在其工作环境下的应用(如图1)。 图1 拉伸应力-应变曲线 A:弹性形变的极限值 B:屈服点 C:最大强度 O-A:屈服区域,发生弹性形变 超过A点:塑性变形 图2:ASTM D 6, 拉伸试样的尺寸 模量:应力/应变 Mpa

屈服应力:开始发生塑性变形的应力 Mpa 断裂应力发生断裂时的应力 Mpa 断裂伸长率材料发生断裂时的应变% 弹性极限开始发生弹性形变的终点 弹性模量发生在塑性变形时的模量 Mpa 测试速度: A速度:1mm/mm 拉伸模量 B速度:5mm/mm 填充材料 的拉伸应力/应变 C速度:50mm/mm 为填充材料的拉伸应力/应变 弯曲强度和弯曲模量 ASTM D 790, ISO 178, DIN 53452 弯曲强度是用来测量材料抵制挠曲变形的能力或者是测试材料的刚性。与拉伸负载不同的是,在测试弯曲时,所有的应力加载在一个方向上。用压头压在试样的中部使其形成一个3点的负载,在标准测试仪上,恒定的压缩速度为2mm/mm. 通过计算机收集的数据,测绘出试样的压缩负荷-变形曲线,来计算压缩模量。在曲线的线性区域至少取5个点的负载和变形。 弯曲模量(应力与应变的比值)是表征材料弯曲性能的重要指标。压缩模量是指在应力-应变的曲线的线性范围内,压缩应力与压缩应变之比。 压缩应力与压缩应变的单位都是Mpa。 图3:弯曲测试示意图 耐磨性能测试

吸湿速干纺织品的性能及测试方法

吸湿速干纺织品得性能及测试方法 摘要: 简要介绍了吸湿速干纺织品得发展概况及性能,针对吸湿速干纺织品得特殊功能性总结了国内外得检测方法,并提出综合得评价体系,为纺织品得功能性检测提供依据。 关键词:吸湿速干纺织品;检测方法;评价体系 近年来,人们不仅对衣服得保暖性、款式有较高得要求, 而且对服装面料得舒适性、健康性、安全性与环保性得要求也越来越高,既要求服装有良好得舒适性,又要求在大量活动而出现汗流泱背得情况时,服装不会粘贴皮肤而使人产生湿冷感。于就是人们对面料提出了吸湿速干功能新要求[1]。 1吸湿速干纺织品得发展概况 吸湿速干产品得兴起可追溯到上世纪80年代。早在1982 年初,日本帝人公司就开始了吸水性聚酯纤维得研究,到了 1986年,正式推出中空微多孔纤维第一代产品专利,并命名 为Wei Ikey; 1986年美国杜邦公司首次推出名为“Coolmax” 得吸湿排汗聚酯纤维,纤维外表具有4条排汗沟槽,可将汗水快速带出,散发到空气中,制成得衣料洗后30min几乎已完全干透,夏季穿着仍能保持皮肤干爽;1999年杜邦公司推出升级换代Cool max Aim 系列布料。自杜邦公司推出吸湿排汗功 能得Cool max后,我国台湾得许多纤维生产商依托自身得技 术优势,先后投入巨资开发具有吸湿排汗功能得相关产品, 如远东纺织研制成功得Topcool十字形截面吸湿排汗纤维、华垄中兴纺织出品得十字断面Coolplus新型高科技功能性改性聚酯纤维、台湾豪杰股份集团开发得Technofine吸湿排汗聚酯纤维。目前杜邦得Coolmax、远东纺织得TopcooK 豪杰得Technofine、中兴纺织得

塑料力学性能

塑料弯曲性能试验 2008-1-23 10:44:19 来源:https://www.doczj.com/doc/af249776.html, 1.概述 弯曲试验主要用来检验材料在经受弯曲负荷作用时的性能,生产中常用弯曲试验来评定材料的弯曲强度和塑性变形的大小,是质量控制和应用设计的重要参考指标。弯曲试验采用简支梁法,把试样支撑成横梁,使其在跨度中心以恒定速度弯曲,直到试样断裂或变形达到预定值,以测定其弯曲性能。 2.试验原理 弯曲试验在《塑料弯曲性能试验方法》(《GB/T 9341-2000》)中使用的是三点式弯曲试验。三点式弯曲试验是将横截面为矩形的试样跨于两个支座上,通过一个加载压头对试样施加载荷,压头着力点与两支点间的距离相等。在弯曲载荷的作用下,试样将产生弯曲变形。变形后试样跨度中心的顶面或底面偏离原始位置的距离称为挠度,单位mm。试样随载荷增加其挠度也增加。弯曲强度是试样在弯曲过程中承受的最大弯曲应力,单位MPa。弯曲应变是试样跨度中心外表面上单元长度的微量变化,用无量纲的比或百分数(%)表示。 3.试验方法 3.1试验应在受试材料标准规定的环境中进行,若无类似标准时,应从GB/T2918中选择最合适的环境进行试验。另有商定的,如高温或低温试验除外。 3.2测量试样中部的宽度b,精确到0.1mm; 厚度h,精确到0.01mm,计算一组试样厚度的平均值h。剔除厚度超过平均厚度允差±0.5%的试样,并用随机选取的试样来代替。调节跨度L,使L=(16±1)h ,并测量调节好的跨度,精确到0.5%。 除下列情况外都用上式计算: 3.2.1对于较厚且单向纤维增强的试样,为避免剪切时分层,在计算两撑点间距离时,可用较大L/h比。 3.2.2对于较薄的的试样,为适应试验设备的能力,在计算跨度时应用较小的L/h比。c、对于软性的热塑性塑料,为防止支座嵌入试样,可用较大的L/h比。 3.3.3试验速度使应变速率尽可能接近1%/min,这一试验速度使每分钟产生的挠度近似为试样厚度值的0.4倍,推荐试样的试验速度为2mm/min。 试样应对称地放在两个支座上,并于跨度中心施加力,如图所示:

吸湿速干纺织品的性能及测试方法

吸湿速干纺织品的性能及测试方法 摘要: 简要介绍了吸湿速干纺织品的发展概况及性能,针对吸湿速干纺织品的特殊功能性总结了国内外的检测方法,并提出综合的评价体系,为纺织品的功能性检测提供依据。 关键词:吸湿速干纺织品;检测方法;评价体系 近年来,人们不仅对衣服的保暖性、款式有较高的要求,而且对服装面料的舒适性、健康性、安全性和环保性的要求也越来越高,既要求服装有良好的舒适性,又要求在大量活动而出现汗流浃背的情况时,服装不会粘贴皮肤而使人产生湿冷感。于是人们对面料提出了吸湿速干功能新要求[1]。 1 吸湿速干纺织品的发展概况 吸湿速干产品的兴起可追溯到上世纪80年代。早在1982年初,日本帝人公司就开始了吸水性聚酯纤维的研究,到了1986年,正式推出中空微多孔纤维第一代产品专利,并命名为Wellkey;1986年美国杜邦公司首次推出名为“Coolmax”的吸湿排汗聚酯纤维,纤维外表具有4条排汗沟槽,可将汗水快速带出,散发到空气中,制成的衣料洗后30min几乎已完全干透,夏季穿着仍能保持皮肤干爽;1999年杜邦公司推出升级换代Coolmax Aim系列布料。自杜邦公司推出吸湿排

汗功能的Coolmax后,我国台湾的许多纤维生产商依托自身的技术优势,先后投入巨资开发具有吸湿排汗功能的相关产品,如远东纺织研制成功的Topcool十字形截面吸湿排汗纤维、华垄中兴纺织出品的十字断面Coolplus新型高科技功能性改性聚酯纤维、台湾豪杰股份集团开发的Technofine 吸湿排汗聚酯纤维。目前杜邦的Coolmax、远东纺织的Topcool、豪杰的Technofine、中兴纺织的Coolplus等吸湿排汗纤维制成的产品已投入市场[2]。 相比而言,我国大陆对于吸湿排汗纤维的研究在技术上还存在一定的差距,近年由于市场兴起“吸湿排汗”纤维开发和应用的热潮,加上后道织物产品开发对吸湿排汗纤维需求的增加,大陆的研究机构也逐渐投入大量的精力研究相关的课题。 2 吸湿速干纺织品的原理 吸湿性指纤维表面或内部吸附或吸收气相水分的特性,放湿性指纤维吸湿后向外界环境放湿的特性,图1形象地展示了服装产品在穿着时的湿传导过程。吸湿速干,顾名思义就是面料能很快地吸收水分,又能及时将水分排出,从而保持人体的干爽状态,无论天然纤维还是合成纤维都很难兼具这两种性能,如何能使一种纤维同时具有快速吸湿、散湿的高舒适性能,纺织专家尝试各种技术开发吸湿速干面料,目前研究比较多的主要是通过以下几个途径:一是通过合理的

塑料性能解析

塑料性能解析 橡塑包括PE、PP、PVC、ABS、PC、PA、POM、PBT、PET、TPE、TPO、TPR、TPU等材料;这些材料,一般都需要进行常规或特定的测试:如老化测试,其中包括:人工气候老化试验(氙弧灯、碳弧灯、紫外灯)、自然气候暴晒试验、盐雾试验、湿热试验、高低温试验、臭氧试验、热氧老化试验等; 力学性能、电学性能方面的测试,包括:拉伸、撕裂、弯曲、压缩、冲击、热变形温度、维卡软化温度、熔融指数、氧指数、表面电阻、体积电阻、击穿电压、光泽、透光率、雾度、燃烧性能等。 但真正系统完整的资料,能找到的估计并不多,所以就有了这篇文章的目的。这篇文章对于销售而言,可以快速了解塑料的基本性质;对于做品质的朋友,能加深对于自己工作的一认识;对于研发的朋友,也有一些参考性的建议。 机械力学性能 1.密度与比重 塑料的比重是在一定的温度下,秤量试样的重量与同体积水的重量之比值,单位为 g/cm3,常用液体浮力法作测定方法. 在质量相同的条件下,密度越轻,根据ρ=m/V,比重越小,在等体积,价格相同的情况下,比重越小的材料可以制造的产品越多,单个产品的材料成本也就越低,而且可以减少产品的重量,节省运输等费用。所以,比重是非常重要的属性。特别是在塑料代替金属等材料的时候,是特别大的一个优势。 2. 拉伸/弯曲 在拉伸性能的测试中,通常的测试项目为拉伸应力、拉伸强度、拉伸屈服强度、断裂伸长率、拉伸弹性模量,弯曲模量/弯曲强度等。 拉伸测试:测定高聚物材料的基本物性,对材料施加应力后,测出变形量,求出应力,应力应变曲线是最普通的方法。将样条的两端用器具固定好,施加轴方向的拉伸荷重,直到遭破坏时的应力与扭曲。 弹性模量:E=( F/S)/(dL/L)(材料在弹性变形阶段,其应力和应变成正比例关系)弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。 弹性模量的意义:弹性模量是工程材料重要的性能参数,从宏观角度来说,弹性模量是衡量物体抵抗弹性变形能力大小的尺度,从微观角度来说,则是原子、离子或分子之间键合强度的反应。 强度:材料在载荷作用下抵抗塑性变形或被破坏的最大能力。 屈服强度:材料发生明显塑性变形的抗力 拉伸强度:在拉伸试验中,试样直至断裂为止所承受的最大拉伸应力。

塑料软包装的国家检测标准2

塑料软包装的国家检测标准 ZBY 28004—86 塑料膜包装袋热合强度测定方法 GB/T 14903—94 无机胶粘剂套接扭转剪切强度试验方法 GB/T 12954—91 建筑胶粘剂通用试验方法 GB 11177—89 无机胶粘剂套接压缩剪切强度试验方法 GB 7754—87 压敏胶粘带剪切强度试验方法(胶面对背面) GB 7753—87 压敏胶粘带拉伸性能试验方法 GB/T 14705—93 报纸印刷品质量要求及检验方法 GB 7707—87 凹版装潢印刷品 GB 7706—87 凸版装潢印刷品 GB 7705—87 平版装潢印刷品 HG/T 2727—95(代替GB 11178—89)聚乙酸乙烯酯乳液木材胶粘剂 HG/T 2493—93 鞋用氯丁橡胶胶粘剂 HG/T 2406—92 压敏胶标签纸 GB/T 15332—94 热熔胶粘剂软化占的测定环球法 CY/T 17—95 印后加工纸基印刷品上光质量要求及检验方法 CY/T 7.9—91 印后加工质量要求及检验方法裁质量要求及检验方法 CY/T 7.7—91 印后加工质量要求及检验方法覆膜质量要求及方法 CY/T 7.7—91 印后加工质量要求及检验方法胶粘装订质量要求及检验方法CY/T 6—91 凹版印刷品质量要求及检验方法 GY/T 5—91 平版印刷品质量要求及检验方法 CY/T 4—91 凸版印刷品质量要求及检验方法 CY 3—91 色评价照明和观察条件 CY 2—91 书刊印刷产品质量评价和分级方法 GB 1449—83(代替GB 1449—78)玻璃纤维增强塑料弯曲性能试验方法 塑料软包装的国家检测标准2 GB 3356—82 单向纤维增强塑料弯曲性能试验方法 GB 9341—88 塑料弯曲性能试验方法 GB 1041—79 塑料压缩试验方法 GB 8947—88 复合塑料编织袋 SG 233—81 聚苯乙烯泡沫烹包装材料 GB 4456—84 包装用聚乙烯吹塑薄膜 SG 224—81 高压聚乙烯重包装袋(膜) GB 7749—87 胶粘剂劈裂强度试验方法(金属对金属) GB 7124—86 胶粘剂拉伸剪切强度测定方法 GB/T 7122—1996 ISO 4578:1990 高强度胶粘剂剥离强度的测定浮辊法GB/T 6329—1996 ISO 6922:1987 胶粘剂对接接头拉伸强度的测定 GB 6328—86 胶粘剂剪切冲击强度试验方法 GB 4852—84 压敏胶粘带初粘性测试方法(斜面滚球法) GB 4850—84 压敏胶粘带低速解卷强度测试方法 GB 4851—84 压敏胶粘带持粘性测试方法 GB/T 2793——1995 胶粘剂不挥发物含量的测定

塑料薄膜的性能测试方法

塑料薄膜的性能测试方法 塑料薄膜、复合膜具有不同的物理、机械、耐热以及卫生性能。当塑料薄膜应用为包装材料时,需要根据包装物以及应用环境的不同,选择合适的材料来使用。如何评价包装材料的性能呢?国内外测试方法有很多。我们应优先选择那些科学、简便、测量误差小的方法,优先选择ISO、ASTM、以及我国国家标准、行业标准,如BB/T 标准、QB/T标准、HB/T标准等等。 GBT 2918-1998 《塑料试样状态调节和试验的标准环境》等同国际标准ISO 291:1997《塑料一状态调节和试验的标准环境》,提出了各种塑料及各类试样在相当于实验室平均环境条件的恒定环 境条件下进行状态调节和试验的规范,并给出标准实验环境定义,是大部分塑料性能测试方法引用的标准。 1.规格、外观测试方法 塑料薄膜作为包装材料,它的尺寸规格要满足内装物的需要;外观直接影响商品形象;其厚度则又是影响机械性能、阻隔性的因素之一,需要在质量和成本上找到最优化的指标。因此这些指标就会在每个产品标准的要求中作出规定,相应的要求检测方法一般有: 1.1厚度测定 塑料一般具有一定的弹性,因此其厚度测定一般需要施加一定的接触负荷。 GB/T6672-2001《塑料薄膜和薄片厚度测定机械测量法》等同采用ISO4593:1993《塑料-薄膜和薄片-厚度测定-机械

测量法》。规定了机械法测量法即接触法测量塑料薄膜或薄片样品厚度的试验方法,但不适用于压花材料的测试。 1.2.长度、宽度 塑料材料的尺寸受环境温度的影响较大,解卷时的操作拉力也会造成材料的尺寸变化。测量器具的精度不同,也会造成测量结果的差异。因此在测量中必须注意每个细节,以求测量的结果接近真值。 GB/T 6673-2001《塑料薄膜与片材长度和宽度的测定》非等效采用国际标准ISO 4592:1992《塑料-薄膜和薄片-长度和宽度的测定》。该标准规定了卷材和片材的长度和宽度的基准测量方法。标准中规定了卷材在测量前应先将卷材以最小的拉力打开,以不超过5m的长度层层相叠不超过20层作为被测试样,并在这种状态下保持一定的时间,待尺寸稳定后在进行测量。 1.33.外观 塑料薄膜的外观检验一般采取在自然光下目测。 外观缺陷在GB/T 2035 《塑料术语及其定义》中有所规定。 2.物理机械性能测试方法 2.1拉伸性能 塑料的拉伸性能试验包括拉伸强度、拉伸断裂应力、拉伸屈服应力、断裂伸长率等试验。采用拉力试验机进行测试。 GB/T 1040-1992 《塑料拉伸性能试验方法》一般适用于厚度大于1mm的材料热塑性、热固性材料,这些材料包括填充和纤维增强的塑料材料以及塑料制品。

织物的吸湿速干性能及其新型测试方法

织物的吸湿速干性能及其新型测试方法 主要内容: ●织物的吸湿速干性能 ●吸湿速干纤维及面料的研究现状 ●吸湿速干织物的制备工艺 ●吸湿速干织物的评价方法 ●液态水分管理性能测试方法 随着生活水平的提高,消费者在追求服装遮体、实用的同时也注重服装的舒适、健康。对于内衣、运动服装等面料而言,纤维材料的吸湿排汗速干性是影响服装穿着舒适性的最重要因素之一,因此织物的吸湿速干性研究正逐渐成为国内外关注的热点。 对吸湿快干性要求高的运动面料和内衣面料 1、织物的吸湿速干性能 织物的吸湿速干性是指织物能把身体产生的汗水迅速吸收,尽量排向外层并尽快挥发,使身体尽量保持干爽的性能,也可称为吸湿排汗性。 通常,人体在从事剧烈运动时会明显感到大量汗液的排出。其实,即使在一般环境状态下,

人体也需不断地“无感蒸泄”来释放人体本身新陈代谢所产生的热量和水汽,以维持体温的恒定。人们都喜欢用棉纤维作为内衣或运动服的纺织原料,因为棉纤维本身就具有亲水基团,吸水性好,但是,亲水基的棉制品既能吸湿,也能保湿,棉纤维吸入汗水之后,一旦为汗水所饱和,其干燥速度缓慢,从湿润状态到水分平衡所需的时间长,使人体皮肤有潮湿的感觉。而吸湿快干功能性纤维能够通过纤维表面微细沟槽所产生的毛细现象使汗水通过芯吸、扩散、传输等作用,迅速迁移至织物的表面,并散发达到导湿快干的目的。利用吸湿快干纤维制作的服装,能够实现体温调节、控制积聚在服装内汗水的重量、减少皮肤在变得潮湿时产生水泡和发炎以及降低微生物繁殖等功能。人们形象的将该种纤维称为可呼吸纤维。 2、吸湿速干纤维及面料的研究现状 2.1国外的研究现状 早在1982年初,日本帝人公司就开始了聚酯多孔中空纤维的研究,其研制的中空多孔纤维在1986年申请了专利,从表面上看,纤维有许多贯穿到中空部位的细孔,液态水可以从纤维表面渗透到中空部分。此种纤维以最大的吸水速率和汗水率为目标,具有优良的吸汗快干和干爽性的独特风格,较适合用作运动服或运动装的衬里;日本东丽公司开发的强吸湿聚酰胺纤维“Quup”,其吸湿能力是传统聚酰胺纤维的2倍;杜邦公司独家研究开发的功能性纤维Coolmax,截面为十字型,而且纤维纵横向有四沟槽,管壁透气,这种结构是Coolmax功能面料能及时的将皮肤上的水吸干同时迅速蒸发。Coolmax面料与其他面料的甘早性比较,无论在短时间还是长时间,其干燥性都明显好于其他面料,它的干燥速率近似于棉的2倍。 另外,通过多层结构织物和针织物而达到吸湿速干的材料也被开发出来。如东洋纺公司的Altima织物采用特殊的两层结构,在体育运动大量出汗时能减少衣服内层的潮湿感,旭化成公司研制出铜氨、吸水聚酰胺和弹性体等3种材料构成的具有3层结构的织物具有良好的吸湿速干性;尤尼吉卡公司的吸汗织物“spacie”也含三层结构,第一层用于媳妇和传输汗水,第二层可以防止汗水逆向迁移,第三层结构起放湿的作用,另外,与皮肤接触的一侧为亲水性纤维,具有很厚的舒适性。 2.2国内研究现状

塑料弯曲强度测试

弯曲强度概述 材料在弯曲负荷作用下破裂或达到规定挠度时能承受的最大应力,用N/M^2[帕]表示。 检验材料在经受弯曲负荷作用时的性能。 测定标准ASTM D790 & ISO 178 强度表现 杆件在受弯时其断面的上部是受压区,而下面是受拉区.以矩形匀质断面为例,受压、受拉区的最外沿的强度就叫做弯曲强度。它与弯矩成正比与断面模数成反比。 弯曲强度测定常常采用简支梁法,将试样放在两支点上,在两支点间的试样上施加集中载荷,使脆性材料变形直至破裂时的强度即为弯曲强度,对于非脆性材料来讲,当载荷达到某一值时其变形继续增加而载荷不增加时的强度即为破坏载荷。 根据下式计算弯曲强度: σ=1.5PL/bh2 式中:p——最大载荷,N; L——试验时试样的跨度,mm; b——试样宽度,mm; h——试样厚度,mm。 实验原理 弯曲性能测试主要用来检验材料在经受弯曲负荷作用时的性能,生产中常用弯曲实验来评定材料的弯曲强度和塑性变形的大小,尤其是对于托架这样的产品,制品经常受到弯曲的作用力,弯曲强度称为质量控制和应用设计的重要参考指标。 实验步骤 1.使用游标卡尺测量试样中间部位的宽度和厚度,测量三点,取其平均值,精确到0.02mm。 2.电子式万能材料试验机使用前预热30分钟。 3.调整电子式万能材料试验机,设定相应的实验参数,最大静态弯曲载荷选择10KN的档位;下压速度选择(l-3)/h(mm/min);跨度L选择10h±0.5(mm)。 4.调节好跨度,将试样放于支架上,上压头与试样宽度的接触线须垂直于试样长度方向,试样两端紧靠支架两头。 5.启动下降按钮,试验机按设定的参数开始工作。当压头接触到试样后,计算机开始自动记录试样所受的载荷及其产生的位移数据。至试样到达屈服点或断裂时为止,立即停机。 6.保存数据,并根据数据作弯曲载荷-位移曲线图,并保存。根据图形分析试样的弯曲力学行为。 弯曲性能性能有以下主要影响因素 ①试样尺寸和加工.试样的厚度和宽度都与弯曲强度和挠度有关. ②加载压头半径和支座表面半径.如果加载压头半径很小,对试样容易引起较大的剪 切力而影响弯曲强度.支座表面半径会影响试样跨度的准确性. ③应变速率.弯曲强度与应变速率有关,应变速率较低时,其弯曲强度也偏低. ④试验跨度.当跨厚比增大时,各种材料均显示剪切力的降低,可见用增大跨厚比可 减少剪切应力,使三点弯曲试验更接近纯弯曲. ⑤温度.就同一种材料来说,屈服强度受温度的影响比脆性强度的大.现行塑料弯曲性能实验的国家标准为GB/T9341-2000.

相关主题
文本预览
相关文档 最新文档