当前位置:文档之家› 纤维素酶发酵工艺的研究进展

纤维素酶发酵工艺的研究进展

纤维素酶发酵工艺的研究进展
纤维素酶发酵工艺的研究进展

河北农业科学,2009,13(12):35-36,42

JournalofHebeiAgnculturalSciences编辑索相敏纤维素酶发酵工艺的研究进展

曾青兰,王志勇(成宁职业技术学院,湖北咸宁437100)

摘要:综述了纤雏素酶发酵生产的主要菌种、发酵培养基、固态发酵工艺和液态深层发酵_T-艺。展望了纤维素酶发酵生产的前景。

关键词:纤雏素酶;发酵工艺;固态发酵;液态深层发酵

中图分类号:TQ920.1文献标识码:A文章编号:1008—1631(2009)12-0035-02

AdvancesinFermentationTechnologyofCellulase

ZENGQing—lan,WANGZhi—yong(XianningVocationalTechnicalCollege,Xianning437100,China)

Abstract:Thestrains,fermentationmedia,solidstatefermentationtechnologyandliquiddeeplayerfermentationtechnologyofcellulaseproducedbyfermentationweresummarized.Theprospectwasforecasted.

Keywords:Cellulase;Fermentationtechnology;Solidstatefermentation;Liquiddeeplayerfermentation

纤维素酶是指能水解纤维素8.1,4葡萄糖苷键,将纤维素降解成纤维二糖和葡萄糖的一组酶的总称。纤维素酶的研究开发是利用新世纪的可再生资源——纤维素的关键,是缓解人类当前面临的“粮食、能源、环境”三大危机,实现农业可持续发展的有效途径之一。为了提高纤维素酶的产率、更好地利用纤维素,愈来愈多的国内外学者开始关注纤维素酶的发酵生产,纤维素酶的发酵工艺水平不断改进,生产效益和经济效益也不断提高。

1纤维素酶发酵生产的主要菌种

微生物是自然界中产纤维素酶的主要生物体。但细菌所产纤维素酶多为胞内酶,产量较低,在工业上应用得较少。真菌产生的纤维素酶多为胞外酶,提取纯化较容易,产酶量较高,且真菌所产纤维素酶的酶系结构较全,酶系中的各种酶相互发生强烈的协同作用,降解纤维素的效率高,是工业生产的主要菌种。如里氏木酶(Trichodermareesei)和绿色木霉(Trich∞de舢口i础

n瑙.exFr.)等是目前公认的较好的纤维素酶生产菌…。优良的诱变菌种,是纤维素酶发酵生产菌的另一来源。韩峰等旧1以拟康氏木霉(Trichodermapseudoko加ingii)TH为出发菌株,采用紫外诱变获得1株抗高浓度葡萄糖阻遏突变株uVⅢ,纤维素酶产量显著提高。UVⅢ对诱导物的敏感性增加了100倍,并且对葡萄糖的吸收能力明显下降,使得该菌解除了部分葡萄糖的阻遏作用。随着现代分子生物学技术的发展,基因工程菌也成为了纤维素酶发酵生产菌的来源之一,如汤新等po构建的工程菌P.pastorisEGIVl,在甲醇诱导下,可以合成并分泌EGlV,CMC活力达到2.11u/mL。

收稿日期:2009—12-04

基金项目:湖北省教育科学“十一五”规划专项资助(20088152)

作者简介:曾青兰(1965一),女,湖北咸宁人,硕士,副教授,主要从事酶分子进化工程的研究。

纤维素酶发酵生产的重点之一是将2种以上产酶微生物一起接种进行混合发酵,利用它们所产各纤维素酶系的互补作用,生产出优质高效的混合纤维素酶。

2纤维素酶发酵生产的培养基

纤维素酶是诱导酶,其生物合成的调控受诱导物的约束。通常采用经过粉粹并预处理的富含植物纤维原料、废纸、各种酒糟等作为诱导物和主要碳源,添加适宜的氮源和无机盐等。瓮佩芳等H1在啤酒糟中添加15%麸皮、2%尿素、l%硫酸铵和0.15%的KH:PO。,可以明显提高产物的酶活力和蛋白含量。进行液态发酵时,另外需要将物料与过量的水配成液体培养基,多数研究者采用干物料占液体培养基3%的用量∞1。余晓斌等旧1用响应面法对里氏木霉WX.112液体发酵产纤维素酶的培养基进行了优化,通过岭脊分析,确定了滤纸酶活达最大值10.53IU/mL时的最佳组合条件:豆饼粉3.18%,麸皮2.95%,KH2P040.25%,Avicel3。79%。3纤维素酶固体发酵工艺

3.1固体发酵工艺

3.1.1固体发酵工艺特点固体发酵法又称麸曲培养法,是以秸秆粉、废纸、玉米秸秆粉为主要原料,拌入种曲后.装入盘或帘子上,摊成薄层(厚约1cm),在培养室一定温度和湿度(RH90%一100%)下进行发酵。其主要特点是发酵体系没有游离水存在,微生物是在有足够湿度的固态底物上进行反应,发酵环境接近于自然状态下的微生物生长习性,产生的酶系更全,有利于降解天然纤维素,且投资低、能耗低、产量高、操作简易、回收率高、无泡沫、需控参数少、环境污染小等。但固体发酵法易被杂菌污染,生产的纤维素酶分离纯化较难.且色素不易去除。

3.1.2固体发酵设备浅盘发酵器是比较常用的一种

万方数据

固态发酵设备,培养基经灭菌冷却后装入浅盘,通过空气增湿器调节空间的温湿度进行发酵,工业化程度较低。固体发酵设备发展的趋向是机械化发酵罐,尤其是流化床式固体发酵设备,发酵效果将更好"J。

3.1.3固体发酵工艺流程

斜面试管一小三角瓶培养一大三角瓶培养一种子罐培养

I(髫雾)一粉碎一(麸皮、袈盐等)一混合一蒸煮灭菌一冷却接种

l成品一包装一千燥+-过滤一盐析一浓缩一过滤一浸提一固体发酵

3.1.4固体发酵工艺条件固体发酵过程中的温度、湿度、时间、水分、pH值等因素及其交互作用对发酵有显著影响,对周态发酵而言,温度是首要因素。培养基及培养条件的优化,是降低酶制剂成本、提高酶活、实现其工业化生产的重要措施。一般认为利用真菌进行固态发酵最好将培养基的起始pH值调为酸性,这样有利于真菌的生长而抑制细菌的滋生。固态发酵培养基的初始含水量,应视纤维素材料种类不同而异。玉米秸秆培养基适宜的含水量为1:(2—2.5)(w/w),麦秸培养基适宜的含水量为1:(1—1.5),啤酒糟培养基的含水量为1:l¨1。靖德兵等一。采用均匀设计U15(58)和双温度培养法(前30h恒温30℃,后续恒温27℃)进行康氏木霉产酶固体发酵生产纤维素酶条件的研究,结果表明,应用双温度培养法进行康氏木霉固体发酵生产纤维素酶时,在自然补给氧气、培养基pH值自然(约6.5)并保持环境湿度约60%的条件下,72h是适宜的发酵周期。徐福建等‘10‘提出了纤维素酶气相双动态固态发酵的方式:在优化条件下(最佳压力脉冲范围、脉冲频率及气体内循环速率),发酵温度得到较好地控制,910cm高的填料层中最大温度梯度为0.12oC/cm;以汽爆秸秆为底物,发酵水活度得到较好的保持;动态培养发酵周期(60h)比静态发酵周期(84h)缩短了1/3,酶活(20136IU/g)比静态酶活(10182IU/g)提高了1倍,压力脉动固态培养的料层上中下微生物生长状况均匀一致且疏松,而静态固态发酵的料层中部几乎没有菌体生长。利用气相双动态固态发酵可为纤维素酶大规模生产奠定基础。

4纤维素酶液态深层发酵工艺

4.1液态深层发酵工艺特点

液态深层发酵又称全面发酵,是将秸秆等原料粉碎、预处理并灭菌后送至具有搅拌桨叶和通气系统的密闭发酵罐内,接入菌种,借强大的无菌空气或自吸的气流进行充分搅拌,使气、液面积尽量加大而进行发酵。其主要特点是培养条件容易控制,不易染杂菌,生产效率高。液态深层发酵是现代生物技术之一,已成为国内外重要的研究和开发工艺。

4.2液态深层发酵设备

液态深层发酵一般采用具有搅拌桨叶和通气系统的密闭发酵罐,从培养基的灭菌、冷却到发酵都在同一发酵罐内进行。

4.3液态深层发酵工艺流程

斜面试管一小三角瓶培养一大三角瓶培养一种子罐培养

I(芸蒜)一粉碎一(麸皮、蒜盐等)一混合一蒸煮灭扑冷却接种

‘I

成品—包装一喷雾干燥一超滤浓缩一压滤一液体深层发酵

4.4液体深层发酵工艺条件

液体发酵时问约为70h,温度一般低于60℃。液态发酵中使用的接种量明显低于固态发酵,其接种量浓度一般为2%一10%(v/v)。张冬艳等【1¨研究了绿色木霉AS.3.3711、康宁木霉AS.3.2774、木霉AS.3.3032和康宁木霉ACC.3.167的适宜发酵产酶条件,结果表明,最适温度为28℃,产酶适宜的起始pH值为4.5—5.5。曾青兰等¨2。对丝状真菌菌株GibbereUaf可ikuroi产纤维素酶的条件进行了研究,结果表明,接种量为5%、培养时间为120h、培养温度为28~37℃、培养基初始pH值为5—6时,产酶可以达最佳值。

5纤维素酶发酵生产的前景

21世纪是可持续发展的世纪,随着人们对纤维素酶研究工作的深入,必将研制出更为有效的纤维素酶发酵生产的新工艺,较好地解决纤维素的生物转化问题,从而切实地缓解人类当前面临的“粮食、能源、环境”3大危机。纤维素酶的工业化发酵生产必将成为大有发展前途的新兴工业产业之一。

参考文献:

[1]BhatMkCellulasesandrelatedenzymesinbiotechnology[J].BiotechnolAdv,2000,18(5):355—383.

[2]韩峰,孙彩云,宋小焱.拟康氏木霉uVⅢ纤维素酶合成的诱导与阻遏[J].工业微生物,2003,33(1):23—26.

[3]汤新,刘刚,田生礼.里氏木霉内切葡萄糖苷酶Ⅳ在毕赤酵母中的表达[J].微生物学通报,2005,32(6):47—51.

[4]瓮佩芳,吴祖芳.复合菌固态发酵啤酒糟培养基优化的研究[J].酿酒科技,2003,(2):67—69.

[5]刘剑虹,陈庆森,陈剑勇,等.酸处理玉米秸秆生物转化单细胞蛋白的研究[J].天津商学院报,2001,21(3):1—5.

[6]余晓斌,郝学财.纤维素酶液体发酵最佳培养基的确定[J].工业微生物,2005,35(3):1—5.

[7]吴其飞,黄达明,陆建明,等.固态发酵新技术与反应器的研究进展[J].生物技术应用,2003,24(8):43—46.

[8]陈娜,顾金刚,徐凤花,等.产纤维素酶真菌混合发酵研究进展[J].中国土壤与肥料,2007,(4):16—21.

(下转第42页)

万方数据

要措施以预防副溶血性弧菌疾病的爆发和流行。

3.3副溶血性弧菌湛江分离株致病性分析

研究¨驯认为,副溶血性菌的致病性源于侵袭性、溶血素和脲酶。溶血素是副溶血性弧菌的主要致病因素,目前研究较多的有耐热直接溶血素(TDH)、相对耐热直接溶血素(TRH)和不耐热溶血素(TLH),TDH、TRH和TLH分别由tdh、trh及肌基因编码,舰基因具有种特异性,不论是环境分离株还是临床分离株都携带该基因,tdh和砌基因是副溶血性菌的毒力基因。TDH是副溶血性弧菌的主要毒力因子,具有溶血作用、细胞致死毒性、心脏毒性和肠毒素作用。tdh阳性菌株可以使氯化钠兔血琼脂平板产生B一溶血现象,副溶血性弧茵临床分离株绝大多数可以产生TDH。Nishi.buchiM等…1报道大多数临床分离株(95%)和小部分海产品分离株(1%~2%)溶血阳性,而环境分离株则溶血阴性。DepaolaA等¨引研究报道不同区域分离的副溶血性弧菌在溶血特性上有一定的差异性。在本研究中,10株副溶血性弧菌湛江分离株在兔血琼脂平板上均溶血阳性,为tdh阳性菌株;TRH也被认为是副溶血性弧菌的重要毒力因子,Okuda等发现脲酶阳性现象与砌基因之间存在密切关联,然而,Nakaguchi等’1引的研究却发现,trh基因的表达与脲酶基因无关。黄上媛等。14o进行了临床上分离的42株副溶血性弧菌的脲酶试验。有15株脲酶阳性。潘自降等¨纠对53株不同来源的副溶血性弧菌进行了脲酶检测,均为阴性。本研究中10株副溶血性弧菌湛江分离株脲酶试验均呈阴性,根据上述观点,10株副溶血性弧菌湛江分离株是否为tdh阳性、砌基因阴性菌株,还需做分子生物学鉴定。本研究从海水鱼中分离到的副溶血性弧菌与湛江市副溶血性弧菌食物中毒临床分离株的生物学特性的相关性如何,还有待于进一步深入研究。

参考文献:

[1]刘秀梅,程苏云,陈彦,等.2003年中国部分沿海地区零售海产品中副溶血性弧菌污染状况的主动监测[J].

中国食品卫生杂志,2005,17(2):97—99.

[2]宁喜斌,刘代新,张继伦.副溶血性弧菌的致病性及其快速检测[J].微生物与感染,2008,3(1):53—56.[3]中国国家标准化管理委员会.中华人民共和国国家标准(GB/T4789.7—2003,食品卫生微生物学检验:副溶血

(上接第36页)

[9]靖德兵,李培军,王力华,等.康氏木霉固体发酵生产纤维素酶优化研究[J].食品科学,2004,25(5):82—

86.

[10]徐福建,陈洪章,李佐虎.纤维素酶气相双动态固态发酵[J].环境科学,2002,23(3):53—58.

[11]张冬艳,张通,肖迪,等.影响液体深层发酵产生

性弧菌检验)[S].北京:中国标准出版社,2003.

[4]中华人民共和国国家进出口商品检验局.中华人民共和国进出口标准(SN0173—92,出口食品副溶血性弧菌检验方法[s].北京:中国标准出版社,1992.

[5]杨正时,房海.人及动物病原细菌学[M].石家庄:河北科技出版社,2003.

[6]宁喜斌,刘代新,张继伦.海产品中副溶血性弧菌的分离、鉴定及与临床分离株的生化性状比较[J].微生物学通报,2008,35(6):918—922.

[7]YukikoHK,TokuhiroN,HiroshiN,eta1.Improvedmeth—odfordetectionV/br/oparahaemolyticusinseafood[J].AppandEnvMierobiol,2001。67(12):5819—5823.

[8]严纪文,马丛,朱海明,等.2003—2005年广东省水产品中副溶血性弧菌的主动监测及其基因指纹图谱库的建立[J].中国卫生检验杂志,2006,16(4):387—391.

[9]王小玉,冯家望,吴小伦,等.实时荧光PCR方法检测副溶血性弧菌的研究[J].食品研究与开发,2007,(6):135—138.

[10]朱雪兰,陈艳.副溶血性弧菌溶血素基因及其检测的研究进展[J].国外医学卫生学分册,2007,34(4):

233—237.

[11]NishibuehiM,KaperJB.ThermostableDirecthemolysingeneofVibrioparahaemolyticus:avirulencegeneacquired

byamarinebacterium[J].Infectlmmun,1995,

63(6):2093—2099.

[12]DepaolaA,UlaszekJ,KaysnercA,eta1.Molecular,se?rological

andvirulencecharacteristicsofVibriorahacmolytic-USisolatedfromenvironmental,food,andclinicalsourcesinNorthAmericaandAsia[J].AppandEnvMicrobiol,

2003,69(7):3999—4005.

[13]NakaguchiY,OkudaJ,HadT,eta/.TheureasegeneclusterofVirioparahaemolyticusdoesnotinfluencetheex-

pressionofthethermostabledirecthemolysin(TDH)gene

ortheTDH.relatedhemolysingene[J].MicrobiolImmu-

nol,2003,47(3):233—239.

[14]黄上嫒,刘永福,周志红,等.脲酶阳性副溶血弧菌的临床及实验研究[J].中华医学检验杂志,1995,

18(2):84—86.

[15]潘自降,坎布,沈飙,等.副溶血弧菌海产品和临床分离株的表型及溶血素相关基因分析[J].微生物学

报,2007,47(3):508—511.

纤维素酶的因素[J].内蒙古工业大学学报,2003,

22(1):22—26.

[12]曾青兰,洪玉枝,刘子铎.纤维素降解菌Gibberellaf匆ikuroi产纤维素酶条件的优化[J].华中农业大学学报,

2008,27(3):391—393.

万方数据

土壤纤维素酶测定方法

纤维素酶 一、试剂: 1)醋酸缓冲液(pH 5.5):164.08 g无水醋酸钠(C2H3O2Na)溶于700 ml去离子水,用醋酸(C2H4O2)调节pH至5.5,用去离子水稀释至1 L。 2)CMC溶液(0.7%,w:v):7 g羧甲基纤维素钠盐溶于1 L醋酸缓冲液,45℃下搅拌2 h,此溶液在4℃下可存放7天。 3)还原糖试剂: 试剂A:16 g无水碳酸钠(Na2CO3)和0.9 g氰化钾(KCN)溶于去离子水并稀释至1 L。试剂B:0.5 g六氰铁钾(K4Fe(CN)6)溶于去离子水并稀释至1 L,贮于棕色瓶中。 试剂C:1.5 g 硫酸铁铵(NH4SO4Fe2(SO4)2·H2O)、1 g十二烷基硫酸钠(C12H25O4SNa)和4.2 ml浓硫酸溶于50℃去离子水,冷却后稀释至1 L。 4)水合葡萄糖溶液:28 mg水合葡萄糖溶于少量去离子水中,并定容至1 L。 二、仪器设备 恒温培养箱,水浴锅,分光光度计,搅拌器,三角瓶 三、操作步骤 取10.00 g(耕地)或5.00 g(林地)新鲜土壤(<2 mm)于100 ml三角瓶中,加15 ml 醋酸缓冲液和15 ml CMC溶液,盖上塞子,于50℃下培养24 h,过滤。同时做空白对照,但在培养结束时才加入15 ml CMC溶液,并迅速过滤。 取2.00 ml滤液于50 ml容量瓶中,并用去离子水定容至刻度。吸取2.00 ml稀释液于20 ml试管中,加2.00 ml还原糖试剂A和2.00 ml还原糖试剂B,盖紧混匀,在100℃水浴中加热15 min 后,立即至于20℃水中冷却5 min。加10.00 ml还原糖试剂C,混匀,20℃下静置显色60 min,于690 nm波长处比色测定(要求在30 min内完成)。 标准曲线:吸取0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0 ml水合葡萄糖溶液,用去离子水稀释至2 ml,同上加入还原糖试剂A、B、C后,比色测定还原糖含量。c) 空白: 无土空白:不加土样,其余操作与样品试验相同,整个试验设置一个,重复一次。 无基质空白:以等体积水代替基质,每个土样设置一个。 四、结果计算 土壤纤维素酶活性(μg·g-1·(24 h)-1)=(C*V*f)/ dwt 式中C为样品的葡萄糖含量(μg·ml-1);V为土壤溶液体积(30 ml);f为稀释倍数(25);

纤维素酶的作用机理及进展的研究

纤维素酶的作用机理及进展的研究 摘要:纤维素酶广泛存在于自然界的生物体中,本文论述了纤维素酶的性质,重点介绍了纤维素酶的作用机理、应用及其研究进展,并对其研究前景做了展望。关键词:纤维素酶;纤维素;作用机理; 0引言 纤维素酶在饲料、酒精、纺织和食品等领域具有巨大的市场潜力,已被国内外业内人士看好,将是继糖化酶、淀粉酶和蛋白酶之后的第四大工业酶种,甚至在中国完全有可能成为第一大酶种,因此纤维素酶是酶制剂工业中的一个新的增长点。 纤维素占植物干重的35%-50%[1],是世界上分布最广、含量最丰富的碳水化合物。对人类而言,它又是自然界中最大的可再生物质。纤维素的利用和转化对于解决目前世界能源危机、粮食短缺、环境污染等问题具有十分重要的意义[2]。 1 纤维素酶的性质 纤维素酶是一种重要的酶产品,是一种复合酶,主要由外切β-葡聚糖酶、内切β-葡聚糖酶和β-葡萄糖苷酶等组成,还有很高活力的木聚糖酶活力。纤维素酶是四级结构,,产生纤维素酶的菌种容易退化,导致产酶能力降低。由于纤维素酶难以提纯,实际应用时一般还含有半纤维素酶和其他相关的酶,如淀粉酶(amylase)、蛋白酶(Protease)等。 纤维素酶的断键机制与溶菌酶一样,遵循双置换机制。纤维素与酶相互作用中,是酶被底物分子所吸附,然后进行酶解催化,酶的活性较低,仅为淀粉酶的1/100[3] 纤维素酶对底物分子的分解,必须先发生吸附作用。纤维素酶的吸附不仅与自身性质有关,也与底物密切相关,但纤维素酶的吸附机制总体并未弄清,仍需进一步研究[4]。 2 纤维素酶的作用原理 (1)、纤维素酶在提高纤维素、半纤维素分解的同时,可促进植物细胞壁的溶解使更多的植物细胞内溶物溶解出来并能将不易消化的大分子多糖、蛋白质和脂类降解成小分子物质有利于动物胃肠道的消化吸收。 (2)、纤维素酶制剂可激活内源酶的分泌,补充内源酶的不足,并对内源酶进行调整,保证动物正常的消化吸收功能,起到防病,促生长的作用。 (3)、消除抗营养因子,促进生物健康生长。半纤维素和果胶部分溶于水后会产生粘性溶液,增加消化物的粘度,对内源酶造成障碍,而添加纤维素酶可降低粘度,增加内源酶的扩散,提高酶与养分接触面积,促进饲料的良好消化。 (4)、纤维素酶制剂本身是一种由蛋白酶、淀粉酶、果胶酶和纤维素酶等组成的多酶复合物,在这种多酶复合体系中一种酶的产物可以成为另一种酶的底物,从而使消化道内的消化作用得以顺利进行。也就是说纤维素酶除直接降解纤维素,促进其分解为易被动物所消化吸收的低分子化合物外,还和其他酶共同作用提高奶牛对饲料营养物质的分解和消化。

真菌与细菌纤维素酶研究进展_高凤菊 (1)

第27卷第2期 唐山师范学院学报 2005年3月 Vol. 27 No.2 Journal of Tangshan Teachers College Mar. 2005 ────────── 收稿日期:2004-10-20 作者简介:高凤菊(1978-),女,河北乐亭人,四川农业大学生命科学学院硕士研究生。 - 7 - 真菌与细菌纤维素酶研究进展 高凤菊1,李春香2 (1.四川农业大学 生命科学学院,四川 雅安 625014;2.唐山师范学院 生物系,河北 唐山 063000) 摘 要:对分解纤维素真菌及细菌的种类,纤维素酶的组成和分类,分子结构、作用机理,纤维素酶基因工程及研究展望进行了综述。 关键词:真菌;细菌;纤维素酶 中图分类号:Q556+.2 文献标识码:B 文章编号:1009-9115(2005)02-0007-04 资源和环境问题是人类在21世纪面临的最主要的挑战。生物资源是可再生性资源,地球上每年光合作用的产物高达1.5×1011~2.0×1011t ,是人类社会赖以生存的基本物质来源。其中90%以上为木质纤维素类物质,[1]其中的纤维素是地球上最丰富 的多糖物质, [2] 这类物质是植物细胞壁的主要成分,也是地球上最丰富、最廉价的可再生资源。我国的纤维素资源极为丰富,每年农作物秸秆的产量 达5.7×108t , 约相当于我国北方草原年打草量的50倍。目前这部分资源尚未得到充分的开发利用,主要用于燃料,畜牧饲料与积肥,不仅利用率低,还 对环境造成一定的污染。 [3] 随着世界人口迅速增长、粮食、矿产资源日渐枯竭,开发高效转化木质纤维素类可再生资源的微生物技术,利用工农业废弃物等发酵生产人类急需的燃料、饲料及化工产品,即化工原料的“绿色化”,具有极其重大的现实意义和光明的发展前景。 在自然界中,许多霉菌[4]和细菌[5]都能产生纤维素酶,但有关细菌纤维素酶的报道很少。由细菌所产生的纤维素酶一般最适中性至偏碱性,因为这类酶制剂对天然纤维素的水解作用较弱,长期以来没有得到足够的重视。近十几年来,随着中性纤维素酶和碱性纤维素酶在棉织品水洗整理工艺及洗涤剂工业中的成功应用,细菌纤维素酶制剂已显示出良好的使用性能和巨大的经济价值。[6][7][8] 1 纤维素分解微生物 1.1 纤维素分解性细菌 (cellulose decomposingbacteria ) 纤维素分解性细菌是能分解纤维素的细菌。由于纤维素酶等的作用,纤维素可一直被分解到葡萄糖为止,有时在分解过程中会积累纤维二糖。这类 细菌多见于腐植土中。好氧性细菌如纤维单胞菌属(Cellulomonas )、纤维弧菌属(Cellvibrio )、噬胞菌属(Cytophaga )等能分解纤维素;但在好氧条件下土壤中纤维素的分解,主要是纤维素分解真菌在起作用。而在厌氧条件下纤维素的分解,一些厌氧性的芽孢梭菌属(Clostridium )的细菌具有重要作用。纤维素分解细菌亦可栖息于草食动物的消化道、特别是反刍动物的瘤胃中。它们在其中进行分解纤维素的活动,这些细菌是厌氧性细菌,例如产琥珀酸拟杆菌(Bacteroides succinogenes )、牛黄瘤胃球菌(Ruminococcus flavefaciens )、白色瘤胃球菌(R.albus )、溶纤维丁酸弧菌(Butyrivibrio fibrisolvens )(程光胜 译)等。细菌纤维素酶多数结合在细胞膜上,菌体细胞需吸附在纤维素上才能起作用,使用很不方便,酶的分离提取也较困难。但是细菌主要产生中性纤维素酶和碱性纤维素酶。碱性纤维素酶由于在洗涤剂工业中有良好的应用价值,也成为研究热点,其产生菌主要集中在芽孢杆菌属[9]。由于酶的耐热性在生产中具有现实意义,所以耐热细菌也是研究的热点。 1.2 纤维素分解性真菌 真菌类有黑曲霉、血红栓菌、卧孔属、疣孢漆斑菌QM460、绳状青霉、变幻青霉、变色多空霉、乳齿耙菌、腐皮镰孢、绿色木霉、里氏木霉、康氏木霉、嗜热毛壳菌QM9381和嗜热子囊菌QM9383等[10];丝状真菌产生的纤维素酶一般在酸性或中性偏酸性条件下水解纤维素底物。真菌纤维素酶通常是胞外酶,酶被分泌到培养基中,用过滤和离心等方法就可较容易地得到无细胞酶制品。目前饲用纤

发酵生产纤维素酶研究进展

发酵生产纤维素酶研究进展 摘要:纤维素酶是一种重要的工业用酶,广泛应用于能源、饲料、纺织、食品、工业洗涤、石油开采、农业、医药等领域。纤维素酶最主要的来源是通过微生物发酵生产。综述了纤维素酶的种类、高产纤维素酶菌种选育、发酵类型与优化等方面的研究进展,并展望了纤维素酶发酵生产的研究方向及前景。 关键词:发酵 纤维素酶 液体发酵 固体发酵 优化 纤维素原料是地球上分布广泛且含量丰富的可再生资源,其生物合成和降解过程是自然界中碳循环的中心环节。纤维素的利用与转化对于解决目前世界能源危机、粮食短缺、环境污染等问题具有十分重要的意义。随着纤维素资源越来越受到人们的重视,其能量密度低,难降解等特性却阻碍了其开发利用的进程。 纤维素酶是降解纤维素生成葡萄糖的一组酶的总称,它的作用是将纤维素转化为糖类,能够降解细胞壁,使细胞内溶物释放。作为重要的工业用酶,纤维素酶广泛应用于在能源、饲料、纺织、食品、工业洗涤、石油开采、农业、医药等诸多领域。 1977年,Elwyn T. Reese 发现木霉属中的菌株具有分泌纤维素酶的能力,并将该具有分泌纤维素酶能力的菌株命名为里氏木霉(Trichoderma reese ),该发现为工业大规模发酵生产纤维素酶奠定了基础。纤维素酶广泛存在广泛存在于自然界的生物体中,如细菌、真菌、动物体内等,其中真菌纤维素酶种类最多,最易获得和用于大规模生产,且具有较稳定的pH 、温度适应性,因此是工业用纤维素酶的重要来源。目前应用最广的纤维素酶生产菌是里氏木霉,也有曲霉属(Aspergillus )、青霉属(Penicillium )的菌种。 自20世纪50年代首次发现以来,便得到广泛的研究与应用。近几年来,真菌纤维素酶发酵研究主要集中在高产菌株的筛选、常规诱变育种、基因工程菌的构建、发酵工艺条件优化、发酵工艺放大和酶的分离纯化等方面。 1 纤维素酶的种类 纤维素酶(cellulase)指的是降解纤维素的一类酶的总称,它不是单种酶,而是起协同作用的多组分酶系。包括内切 1,4-葡聚糖酶(C 酶),外切葡聚糖酶 (C 酶)和β-葡萄糖苷酶(C 酶)。 X 1B 作用方式如下图:

羧甲基纤维素酶测定原理

纤维素酶活力的测定 一、目的 学习和掌握3,5-二硝基水杨酸(DNS)法测定纤维素酶活力的原理和方法,了解纤维素酶的作用特性。 二、原理 纤维素酶是一种多组分酶,包括C1 酶、CX 酶和β-葡萄糖苷酶三种主要组分。其中C1酶的作用是将天然纤维素水解成无定形纤维素,CX 酶的作用是将无定形纤维素继续水解成纤维寡糖,β-葡萄糖苷酶的作用是将纤维寡糖水解成葡萄糖。纤维素酶水解纤维素产生的纤维二糖、葡萄糖等还原糖能将碱性条件下的3,5-二硝基水杨酸(DNS)还原,生成棕红色的氨基化合物,在540nm 波长处有最大光吸收,在一定范围内还原糖的量与反应液的颜色强度呈比例关系,利用比色法测定其还原糖生成的量就可测定纤维素酶的活力。 三、实验材料、主要仪器和试剂 1.实验材料 (1)纤维素酶制剂 500mg (2)新华定量滤纸 50mg / 份× 4 (3)脱脂棉花 50mg / 份× 4 (4)羧甲基纤维素钠(CMC) 510mg (5)水杨酸苷 500mg 2.主要仪器 (1)722 型或其他型号的可见分光光度计 (2)恒温水浴2 台 (3)沸水浴锅 (4)电炉子 (5)剪刀 (6)万分之一分析天平 (7)恒温干燥箱 (8)冰箱 (9)试管架 (10)胶头滴管 (11)具塞刻度试管20mL×24 (12)移液管或加液器0.5 mL×3;2mL×7 (13)容量瓶100 mL×6;1000 mL×3 (14)量筒50 mL×2;100 mL×1;500 mL×1 (15)烧杯100 mL×6;500mL×3;1 000 mL×1 3.试剂(均为分析纯)

(1)浓度为1mg/mL 的葡萄糖标准液 将葡萄糖在恒温干燥箱中105℃下干燥至恒重,准确称取100mg 于100mL 小烧杯中,用少量蒸馏水溶解后,移入100mL 容量瓶中用蒸馏水定容至100mL,充分混匀。4℃冰箱中保存(可用12~15 天)。(2)3,5-二硝基水杨酸(DNS)溶液 准确称取DNS 6.3g 于500mL 大烧杯中,用少量蒸馏水溶解后,加入2mol/L NaOH 溶液262mL,再加到500mL 含有185g 酒石酸钾钠(C4H4O6KNa · 4H2O,MW=282.22)的热水溶液中,再加5g结晶酚(C6H5OH,MW=94.11)和5g无水亚硫酸钠(Na2SO3,MW=126.04),搅拌溶解,冷却后移入1 000mL 容量瓶中用蒸馏水定容至1 000mL,充分混匀。贮于棕色瓶中,室温放置一周后使用。 (3)0.05 mol/L pH4.5 的柠檬酸缓冲液A 液(0.1 mol/L 柠檬酸溶液):准确称取C6H8O7 · H2O (MW=210.14)21.014g 于500mL大烧杯中,用少量蒸馏水溶解后,移入1 000mL 容量瓶中用蒸馏水定容至1 000mL,充分混匀。4℃冰箱中保存备用。

年产300吨纤维素酶工厂的初步设计_毕业设计

年产300吨纤维素酶工厂的初步设计 摘要

纤维素是年产量巨大的可再生性资源,地球上每年光合作用生成的上亿吨生物质中,纤维素占了近一半。目前,自然界中纤维素只有一小部分得到了利用,绝大多数纤维素不仅被白白浪费,而且还会造成环境污染。利用这一年产量巨大的可再生性资源将其转化为人类急需的能源、食物和化工原料,对于人类社会的可持续性发展具有非常重要的意义。 本设计采用目前认为是最好的产纤维素酶的菌种里氏木霉作为发酵菌种,液体深层发酵过程中采用变温发酵的方法分别控制菌种的生长和产酶,提取过程中采用超滤、层析等,提高产品的收率。最后采用喷雾干燥做成固态的酶制剂。 本设计的主要内容有:工厂总平面布置、全厂工艺流程设计、工艺计算、设备的计算与选型、成本核算;另外,完成设计图纸8张,有工厂总平面布置图、工艺流程图(3张)、发酵罐设计图、种子罐设计图、发酵车间设备布置图(平面图和立面图)。根据全厂工艺设计和计算结果可以看出,该设计能够达到工业生产的要求。 关键词:纤维素酶;液体深层发酵;里氏木霉

ABSTRACT Cellulose is a kind of reproducible resource of great output, it takes about a half of the hundred million biomaterial making by photosynthesis. Presently, only a few cellulose are utilized, most of cellulose are wasted and pollute environment. It is of great importance to transfer these resource to energy ,food, and so on. This design adopt Trichoderma reesei which produce cellulase best. During the liquid submerged fermentation course we chang the temperature in order to control the growth that germ grows and produce cellulase respectively. Ultrafiltration and chromatography are used In the extrace process for improve the yield. In the end we make solid zymin by spray dring . The design mainly include the contents hereinafter: the layout of the whole factory ,the craft argumentation of the whole factory,the calculation of the craft,the calculation and type choosing of main equipments, the calculation of the costs. And design 8 charts , that are the layout of the whole factory, the design of the craft process(3), the design of the fermentation pot, the design of seeding tank, the lay out for equipments of the fermentation workplace(ichnography and space).According to the craft argumentation of the whole factory and the result of the calculation, the design can come up to the request of industrialization. Keywords: Cellulase; liquid submerged fermentation;; Trichoderma reesei

产纤维素酶菌株的筛选及其酶活的测定模板

本科开放项目 题目:产纤维素酶菌株的筛选及其酶活的测定 学生姓名: 指导教师: 学院: 专业班级: 2016年3月

产纤维素酶菌株的筛选及其酶活的测定 摘要 纤维素作为植物光合作用的主要多糖类产物,是高等植物细胞壁的主要成分,是公认的自然界数量最丰富、最廉价的可再生有机物质资源。据估计,纤维素生成量每年高达1000亿吨。我国每年农作物秸秆总产量为7亿吨左右,仅农业生产中形成的农作物残渣(如稻草、玉米秸、麦秸等),每年就有5亿吨之多。纤维素的降解是自然界碳素循环的中心环节。但由于纤维素的结构特点,对纤维素的利用仍然非常有限。目前仅有20%的纤维素物质被开发利用,大量的纤维素物质因无法分解利用而废弃,不仅造成资源浪费,而且污染环境。随着人口数量的不断增长和人民生活水平的不断提高,能源危机、食物短缺、环境污染等问题日益严重,寻找利用可再生资源、节省粮食、减少环境污染的有效途径显得日趋重要。采用微生物技术处理秸秆是当前研究最多的一种秸秆处理方法,纤维素酶能将天然纤维素降解,生成纤维素分子链、纤维二糖和葡萄糖,然而目前制约纤维素材料转化为乙醇并实现产业化的关键因素之一是纤维素酶效率低下,从而造成生产成本过高。因此,筛选具有高活性纤维素酶的秸秆降解微生物菌株以及相关研究是当前研究的热点和难点。 关键词:纤维素降解高活性纤维素酶微生物菌株

目录 第1章绪论 (1) 1.1 实验原理 (1) 1.2 实验仪器及试剂 (1) 1.2.1 实验材料 (1) 1.2.2 实验仪器 (1) 1.2.3 培养基 (2) 第2章实验步骤 (3) 2.1 采样培养 (3) 2.2 初筛 (3) 2.3 复筛 (3) 2.4 酶活的测定 (3) 2.4.1原理 (3) 2.4.2溶液配制 (3) 2.4.3实验步骤 (4) 第3章实验结果 (6) 3.1 标准曲线的绘制 (6) 3.2 菌株复筛结果 (6) 3.3 测定纤维素酶活力结果 (7) 结束语 (8) 参考文献 (9)

纤维素酶固体发酵工艺的改良研究

纤维素酶固体发酵工艺的改良研究 (生命科学学院,生物技术专业黄泽锦) (学号:2000302063) 摘要:纤维素酶的固体发酵对发酵培养基的要求是很严格的,如培养基灭菌,无菌操作的等等,都是限制纤维素酶应用于生产的一个重要原因。本实验通过一种对细菌抑制效果强,但对霉菌抑制能力一般的抑制剂对发酵过程进行控制,运用3,5-二硝基水杨酸法(DNS法)来测定羧甲基纤维素酶活(CMCase)及滤纸糖酶活(FPA,FPase)。探讨是否能够实现在培养基未灭菌或者在有菌操作下实现纤维素酶的固体发酵,简化实验对培养基和操作过程的操作要求,进而为纤维素酶的工业化生产提供一定实验依据。 关键词:纤维素酶,抑菌剂,CMCase,Fpase,酶活力 教师点评:本论文应用了自制的抑菌剂于纤维系酶的固体发酶工艺中,有一定抑制细菌的能力,但又不影响霉菌的产纤维素酶的活性,为简化固体发酵工艺探索了一条新的途径,有一定的实用参考价值。(点评教师:余少文,副教授) 一.前言 纤维素占全球植物总干重的30%—50%,是地球上分布最广、含量最丰富的碳水化合物[1],但是,纤维素分子是由葡萄糖分子通过β-1,4糖苷键连接而成的链状高分子聚合物,每个大分子中含的葡萄糖残基数一般为8000--12000个。天然的纤维素由排列整齐而规则的结晶区和相对不规则、松散的无定形区构成,其结晶度一般在30%—80%之间。在植物细胞壁中,纤维素分子聚集成纤维丝,包埋在半纤维素和木质素里,形成网状结构。纤维素分子本身的致密结构以及由木质素和半纤维素形成的保护层造成纤维素不容易降解而难以被充分利用或被大多数微生物直接作为碳源物质而转化利用。据不完全统计,全球每年通过光合作用产生的植物物质高达1.55x109t,其中有89%尚未被利用或未被合理利用(如直接焚烧)目前全世界被开发利用的农林纤维副产物不足2%,我国约有50%以上的农林废弃物在田间地头被白白烧掉。全世界每年因农林废弃物焚烧不仅造成直接的经济损失达数十亿元,而且由于焚烧而产生的滚滚浓烟及排放的大量有害气体严重影响了公路、航空的安全,污染了环境,对气候、生态等也造成了严重的影响。而同时在另一方面,世界上还有十多亿人口由于粮食不足而遭受饥饿、营养不良。灾荒或战乱造成的粮食危机依然是正存在的和潜在的威胁;随着全球经济的飞速发展,地球上石油、煤炭的储量正以惊人的速度减少,能源危机成了世界大多数国家所面临的一个严峻问题;由于对资源的破坏性开采和利用,人类赖以生存的环境正在不断地恶化,对可再生资源利用的研究与开发的可持续发展战略已在世界各国逐步展开。植物纤维素资源的开发利用对解决粮食和能源短缺以及环境污染问题有极其深远的意义。 经过多年的实验研究,虽然取得不上成果,但是实验的成本却总是居高不下,使得实验成果不能很好的应用到生产中,本实验通过研究抑菌剂对霉菌的影响,实现的对实验要求的降低。本测试方法对纤维素工业应用中,对控制生产过程、产品质量及降低成本具有一定的实际指导意义。 1.1. 纤维素酶的概述 1.1.1 纤维素酶的组分:一个完整的纤维素酶系,通常由作用方式不同而能相互协同催化 水解纤维素的三类酶组成,即(1)内切葡萄糖苷酶(endo—1,4—β—D—glucanase,EC3.2.1.4,简称EG、Cx)。这类酶作用于纤维素分子内部的非结晶区,随机水解β—1,4—糖苷键,将长链纤维素分子截短,产生大量带非还原性末端的小分子纤维素。(2)外切葡萄糖苷酶(exo—1,4—β—D—glucanase,EC3.2.1.91,C1),又称纤维二糖水解酶(cellobiohydrolase,简称CBH)。这类酶作用于纤维素线状分子末端,水解β—1,4糖苷键,每次切下一个纤维二糖分子。 (3) β—葡萄糖苷酶(β—glucosidase,EC3.2.1.21,简称BG),这类酶将纤维二糖水解成葡萄糖分子。

纤维素酶的基因克隆研究进展

纤维素酶的基因克隆研究进展 摘要:纤维素酶是一种高活性生物催化剂,具有广阔的开发和应用前景。本文对纤维素酶的特性、研究进展、应用以及纤维素酶基因克隆等方面进行了综述,并对今后的研究趋势作了预测和展望。 关键词:纤维素酶;分子生物学;基因克隆;前景展望 前言 纤维素是植物细胞壁的主要成分,约占植物干重的1/3—1/2,它是地球上分布最广、含量最丰富、生成量最高的有机化合物。纤维素的利用与转化对于解决目前世界能源危机、粮食短缺、环境污染等问题具有十分重要的意义。利用纤维素酶将纤维素彻底水解是纤维素的有效利用途径。纤维素酶(cellulase)是指能水解纤维素β—l,4葡萄糖苷键,使纤维素变成纤维二糖和葡萄糖的一组酶的总称,它不是单一酶,而是起协同作用的多组分酶系。近年来对纤维素酶的基础研究,包括酶的氨基酸序列、基因的克隆与表达、酶蛋白的空间结构与功能以及酶蛋白的基因调控等诸多方面,并且均取得了显著进展。由于纤维素酶在饲料、酒精、纺织和食品等领域具有巨大的市场潜力,已被国内外业内人士看好,将是继糖化酶、淀粉酶和蛋白酶之后的第四大工业酶种,甚至在中国完全有可能成为第一大酶种,因此纤维素酶是酶制剂工业中的一个新的增长点。 1.1 纤维素酶的组成 纤维素酶是由许多高协同作用的水解酶组成的,根据其催化反应功能的不同可分为内切葡聚糖酶(1,4-β-D-glucan glucanohydrolase或endo-1,4-β-D-glucanase,EC3.2.1.4,即C1酶),来自真菌的简称EG,来自细菌的简称Cen、外切葡聚糖酶(1,4-β-D-glucan cellobilhydrolase或exo-1,4-β-D-glucannase,EC.3.2.1.91),来自真菌的简称CBH,来自细菌的简称Cex) 和β-葡聚糖苷酶(β-1,4- glucosidase,EC.3.2.1.21)简称BG。 (1)外切葡聚糖酶,这类酶作用于纤维素分子的末端,一次从纤维素分子中切下纤维二糖,它可以作用于纤维素分子内的结晶区、无定形区和羧甲基纤维素。对于外切纤维素酶,传统上认为是从纤维素链的非还原端切下纤维二糖。可是,从一些微生物的外切酶的研究中发现了另一种纤维素酶,它们优先从纤维素分子的还原末端切下纤维二糖。这些研究说明存在两种不同功能的外切酶,它们分别从还原端和非还原端水解纤维素分子[ 1 ]。 (2)内切葡聚糖酶,这类酶是纤维素酶中最重要的酶,可作用于纤维素分子内的无定形区,随机水解糖苷键,将长链纤维素分子截短,产生大量的小分子纤维素,即纤维素末端。

纤维素酶的检测方法

纤维素CMC酶、FPA酶和半纤维素酶测定 1.纤维素CMC酶 1.0标题 用3.5一二硝基水杨酸法测定纤维素CMC酶活性单位。 2.0范围 生产分析和质量控制部门适用。 3.0原理 纤维素CMC酶(EC3.2.1.4)水解羧基纤维素分子中β-1.4葡萄糖苷键,释放出的还原糖(以葡萄糖计)与3.5二硝基水杨酸(DNS)反应,产生颜色变化,这种颜色变化与释放还原糖(以葡萄糖计)的量成正比关系,即与酶样品中的酶活性成正比。通过在550nm的光吸收值查对标准曲线(以葡萄糖为标准物)可以确定还原糖产生的量,从而确定出酶的活力单位。 4.0试剂 4.1无水醋酸钠(分析纯) 4.2冰醋酸(分析纯) 4.3 3.5-二硝基水杨酸 4.4无水葡萄糖 4.5四水酒石酸钾钠(分析纯) 4.6氢氧化钠(分析纯) 4.7重蒸苯酚(分析纯) 4.8无水亚硫酸钠(分析纯) 4.9叠氮化钠(分析纯) 4.10羧甲基纤维素钠 5.0仪器 5.1水浴锅(恒温)50±1℃ 5.2电热干燥箱80±1℃ 5.3 722型分光光度机计 5.4分析天平感量0.1㎎ 5.5一级玻璃制品 5.6电冰箱 6.0试剂的准备 6.1乙酸-乙酸钠缓冲溶液(PH=4.8) 溶液A:量取冰醋酸6ml,定容至1000ml,制成0.1M醋酸钠溶液。 溶液B:称取8.2g醋酸钠,溶解后容至1000ml,制成0.1M醋酸钠溶液。 以A:B=4:6的比例混合,低温冷藏备用。 6.2 DNS试剂: 溶液A:称分析纯NaOH 104g溶于1300ml水中,加入30g分析纯3.5一二硝基水杨酸。 溶液B:称分析纯酒石酸钾钠910g,溶于2500ml热水中,再称取25g重蒸苯酚和25g无水亚硫酸钠加入酒石酸钾钠溶液。 将A、B溶液混合,定容至5000ml,贮存于棕色瓶中,暗处放置一星期后可使用。 6.3 CMC溶液:用羧甲基纤维素钠(CMC)以PH4.8醋酸缓冲液配成1%的溶液。 7.0标准曲线制作: 7.1无水葡萄糖80℃烘干至恒重。 7.2准确称取1.000g溶于1000ml水中,加10mg叠氮化钠防腐,4℃冷藏备用。 7.3标准葡萄糖曲线制作

纤维素酶的研究进展及应用前景

纤维素酶的研究进展及应用前景 摘要 我国近年来在纤维素酶研究应用领域取得了很大进展。纤维素酶是一组能够分解纤维素产生葡萄糖的酶的总称,按照功能可以分为内切葡糖聚酶,外切葡糖聚酶和β-葡聚糖苷酶。它在纺织,酿酒,食品与饲料行业的市场潜力是巨大,受到国内外业内人士的看重。本文综述了纤维素酶的组成,结构,分类,理化性质与作用机理,阐明了生产纤维素酶的微生物种类,纤维素酶的发酵工艺及高效分解菌。介绍了纤维素酶的特性,重要意义,在各领域的应用,并对其未来研究趋势进行了展望。 关键字:纤维素酶研究应用 前言:因为资源枯竭、能源短缺及环境污染等问题日益加剧,世界各国都在寻找开发新能源。纤维素类物质是自然界中分布最广泛、含量最丰富、生成量最高的有机化合物,也是自然界中数量最多的可再生类质。但这些纤维素大部分没有被开发,造成巨大的资源浪费和环境污染。近年来关于纤维素酶的基础研究获得了显著的进展,主要包括酶的组成部分和结构、发生降解的机理、基因的克隆和表达、酶的发酵和生产、应用等方面。由此可见生产纤维素酶对人类生存环境的改善和可持续发展有着举足轻重的地位。 1,纤维素酶的来源和分类 纤维素酶的最主要来源是微生物,用其生产是最为有效和方便的。不同微生物合成的纤维素酶在组成上差异明显。对纤维素的降解能力也不尽相同。细菌与放线菌生产的纤维素酶产量均不高,在工业上很少应用。而真菌具有产酶的诸多优点:产酶能力强,产生的纤维素酶为胞外酶,便于酶的分离和提取,且产生纤维素酶的酶系结构较为合理;酶之间有强烈的协同作用,降解纤维素的效率高。纤维素酶是一类能够把纤维素降解为低聚葡萄糖、纤维二糖和葡萄糖的水解酶。根据纤维素酶的结构不同,可把纤维素酶分为两类:纤维素酶复合体和非复合体纤维素酶。纤维素酶复合体是一种超分子结构的多酶蛋白复合体,由多个亚基构成。由四个部分构成:脚手架蛋白、凝集蛋白和锚定蛋白结合体、底物结合区域和酶亚基。非复合体纤维素酶主要由好氧的丝状真菌产生,如子囊菌纲和担子菌纲等的一些种属。它是由不同的三种酶所构成的混合物,即内切葡聚糖酶、外切葡苷糖酶和B一葡萄糖苷酶。 2,纤维素酶的组成与结构 因为种类和来源的不同,纤维素酶的结构存在较大差异,但是通常均具有2

纤维素酶的介绍

纤维素酶的生产方法及在食品行业的应用 纤维素酶的生产方法及在食品行业的应用 纤维素酶(cellulase)是降解纤维素生成葡萄糖的一组酶的总称,它不是单成分酶,而是由多个酶起协同作用的多酶体系。 纤维素酶在扩大食品工业原料和植物原料的综合利用,提高原料利用率,净化环境和开辟新能源等方面具有十分重要的意义。 纤维素酶的来源 纤维素酶的来源非常广泛,昆虫、微生物、细菌、放线菌、真菌、动物体内等都能产生纤维素酶。 目前,用于生产纤维素酶的微生物菌种较多的是丝真菌,其中酶活力较强的菌种为木霉属(Trichoderma)、曲霉属(As pergillus)和青霉属(Penicillium),特别是绿色木霉(Trichoder mavirde)及其近缘菌株等较为典型,是目前公认的较好的纤维素酶生产菌。 现已制成制剂的有绿色木霉、黑曲霉、镰刀霉等纤维素酶。同时,反刍动物依靠瘤胃微生物可消化纤维素,因此可以利用瘤胃液获得纤维酶的粗酶制剂。另外,也可利用组织培养法获得所需要的微生物。 纤维素酶的生产方法 目前,纤维素酶的生产主要有固体发酵和液体发酵两种方法。 固体发酵法固体发酵法是以玉米等农作物秸秆为主要原料,其投资少,工艺简单,产品价格低廉,目前国内绝大部分纤维素生产

厂家均采用该技术生产纤维素酶。然而固体发酵法存在根本上的缺陷,以秸秆为原料的固体发酵法生产的纤维素酶很难提取、精制。目前,我国纤维素酶生产厂家只能采用直接干燥法粉碎得到固体酶制剂或用水浸泡后压滤得到液体酶制剂,其产品外观粗糙且质量不稳定,发酵水平不稳定,生产效率较低,易污染杂菌,不适于大规模生产。 液体发酵法液体发酵生产工艺过程是将玉米秸秆粉碎至20目以下进行灭菌处理,然后送发酵釜内发酵,同时加入纤维素酶菌种,发酵时间约为70h,温度低于60℃。采用除菌后的无菌空气从釜低通入进行通气搅拌,发酵完毕后的物料经压滤机板框过滤、超滤浓缩和喷雾干燥后制得纤维素酶产品。液态深层发酵由于具有培养条件容易控制,不易染杂菌,生产效率高等优点,已成为国内外重要的研究和开发方向。 纤维素酶的应用 制酒 在进行酒精发酵时添加纤维素酶可显著提高酒精和白酒的出 酒率和原料的利用率,降低溶液的黏度,缩短发酵时间,而且酒的口感醇香,杂醇油含量低。纤维素酶提高出酒率的原因可能有两方面:一是原料中部分纤维素分解成葡萄糖供酵母使用;另外,由于纤维素酶对植物细胞壁的分解,有利于淀粉的释放和被利用。 将纤维素酶应用于啤酒工业的麦芽生产中可增加麦粒溶解性,

纤维素酶研究进展及固定化技术

纤维素酶研究进展及固定化技术 摘要: 纤维素酶是一类能够水解纤维素的β-D-糖苷键生成葡萄糖的多组分酶的总称。传统上将其分为3类:内切葡聚糖酶、外切葡聚糖酶和β-葡萄糖苷酶。纤维素酶属于糖苷水解酶类,近年来,根据氨基酸序列的同源性以及纤维素酶结构的相似性,将其分成不同的家族。本文介绍了纤维素酶的研究进展,主要包括纤维素酶的性质及作用机理,应用与发展趋势,来源及生产技术,分离纯化方法,最后介绍几种常用的纤维素酶固定化方法。 关键词: 纤维素酶;研究进展;固定化 引言: 纤维素是地球上分布最广、蕴藏量最丰富的生物质,也是最廉价的可再生资源。纤维素酶是一类能够将纤维素降解为葡萄糖的多组分酶系的总称,它们协同作用,分解纤维素产生寡糖和纤维二糖,最终水解为葡萄糖。自1906年Seilliere在蜗牛的消化液中发现纤维素酶至今已有一百余年了,随着在工业上的广泛应用,特别是在纺织工业、能源工业上的应用,纤维素酶已成为最近十几年酶工程研究的一个焦点。近年来有关纤维素酶的研究,包括酶的氨基酸序列、基因的克隆与表达、酶蛋白的空间结构与功能,以及酶蛋白的基因调控等诸多方面都取得显著进展。到目前为止,登记在Swiss-Protein数据库的纤维素酶的氨基酸序列有649条,基因序列有433条。我国对纤维素酶的研究始于上世纪50年代,迄今已有50多年的历史。在纤维素酶的菌种开发、发酵培养、基因的克隆与表达、纤维素酶的固定化,以及纤维素酶在纺织、能源等方面的应用都取得较大进展。 1 纤维素酶的性质及作用机理 纤维素酶分子的大小因来源不同而不尽相同,三大类酶分子量一般在23Kda~146Kda之间。多数真菌和少数细菌的纤维素酶都受糖基化,糖基与蛋白之间以共价键结合,或呈可解离的络合状态。糖基化作用在一定程度上保护酶免受蛋白酶的水解,而纤维素酶正是由于糖基化,使其所含碳水化合物的比率在不同酶之间发生差异,导致酶的多形式和分子量的差别。通过比较分析,人们发现许多不同纤维素酶间表现出一定的同源性,且纤维素酶分子普遍具有类似的结构。由球状的催化结构域(CD)、连接桥和纤维素结合结构域(CBD)三部分组成。(1)连接桥,可能是保持CD和CBD之间的距离,也可能有助于不同酶分子间形成较为稳定的聚集体;(2)纤维素结合结构域,它对酶的催化活力是非必需的,但它执行调节酶对可溶性和非可溶性底物专一性活力的作用,其结合纤维素的作用机理目前尚不十分清楚;(3)催化结构域,它体现酶的催化活性及对特定水溶性底物的特异性。尽管不同来源纤维素酶的分子量大小差别很大,但它们催化区的大小却基本一致。 研究表明,EG和CBH能引起纤维素的分散和脱纤化。纤维素酶通过打乱纤维素的结晶结构,使其变形,深入纤维素分子界面之间,从而使纤维素孔壁、腔壁和微型隙壁的压力增大,水分子的介入又使纤维素分子之间的氢键被破坏,产生部分可溶性的微结晶,利于进一步被降解。(1),对纤维素分子的吸附作用:纤维素酶对纤维素的降解,一般首先吸附到纤维素上,但并不是吸附的越好催化效果约好。纤维素酶的吸附不仅与酶本身性质有关,也与底物的特性密切相关。其吸附能力大小与酶的含糖量和疏水性均有关联。此外,纤维素酶的吸附机理并未弄清,仍需做进一步研究。(2),单一纤维素酶的作用机制:纤维素酶的断键机理

纤维素酶活力测定方法_张瑞萍

测试与标准 纤维素酶活力测定方法 张瑞萍 南通工学院(226007) 摘 要 用DN S 为显色剂,分别以滤纸和CM C 为底物,以滤纸糖酶活性(FP A )和羧甲基纤维素酶活性(CM C a se )表征纤维素酶活力。确定酶活测定用波长为530nm,参比溶液应为失活酶、底物和DN S 等共热的反应物;比较了两种底物的酶活力测定方法。结果表明,CM C a se 比FP A 高,说明酶对水溶性底物有较高的活力,也表明吸附对酶的活性部位与纤维素分子链段的结合及催化均有很大影响;对于不同牌号的纤维素酶,织物的酶减量率与CM C 酶活力关系密切。 叙 词: 测试 纤维素酶 活度中图分类号: TS197 纤维素酶是多组分复合物,各组分的底物专一性不同。纤维素酶作用的底物比较复杂,反应产物不同,致使纤维素酶活力测定方法很多,各国的方法亦不统一。我们选择滤纸、CM C 为底物,原理系利用纤维素酶催化水解纤维素,产生纤维多糖、二糖及葡萄糖等还原糖,与显色剂反应,求出还原糖的浓度,间接求出酶的活力。由不同底物测得的酶活力分别称作FPA (滤纸糖酶活力)和CM C ase (羧甲基纤维素酶酶活力)。本文分析确定酶活力测定的主要条件,比较两种底物的酶活力测定方法的结果,探讨纤维素酶活力与织物减量率的关系,为酶在生产中的利用提供依据。 1 实验方法 1.1 化学药品、材料 纤维素酶(工业品),DNS 试剂(自配),冰醋酸,醋酸钠,葡萄糖(均为分析纯),滤纸(定性),羧甲基纤维素酶CM C (试剂级),纯棉针织物半制品(南通针织厂)。 1.2 FPA 滤纸酶活力和CMC 酶活力的测定 取适当稀释的酶液,分别以滤纸或1%的CM C 溶液为底物,于50℃恒温水解反应1h ;然后加入显色剂DNS,沸水浴中煮沸5min;再加入蒸馏水,于530nm 测定吸光度OD 值。 酶活可定义为:每毫升酶液1min 产生1mg 葡萄糖为一个单位( )。 1.3 针织物酶减量率的测定 将酶处理前后的试样在烘箱中105℃烘至恒重。减量率= 处理前织物干重-处理后织物干重 处理前织物干重 ×100% 2 结果与讨论 2.1 显色剂的选择 选用DNS ,在碱性条件下与还原糖反应,生成有色化合物,用分光光度计比色,确定低分子糖含量。 碱性条件下DNS 与还原糖共热反应如下: O 2N OH O 2N CO OH +还原糖  H 2N OH CO OH O 2N DN S(黄色) 3-氨基-5-硝基水杨酸(棕红色) 生成的棕红色氨基化合物系比色法测定基础。2.2 最大吸收波长的确定 选取490~580nm 波长对显色液进行比色。由图1可知,不同浓度的葡萄糖溶液在490~500nm 处有最大吸收,DNS 在此波长下也有较明显的吸收。为了排除DNS 的干扰,选择在波长 530nm 处进行测定,此波长下的葡萄糖吸收虽有所降低,然而符合“吸收最大、干扰最小”的原则。 图1 D NS 与葡萄糖的吸收曲线 2.3 底物及酶本身含糖量的影响 在实验过程中发现,底物特别是滤纸,也含有一定的还原糖,在碱性的DNS 试剂中也会发色。而且,试验所用的纤维素酶是一种工业级的复合酶,品种不同,其本身含糖量也不同。为了排除这类还原糖的干扰,参比溶液取失活后的酶、底物、DNS 等共热的反应物。2.4 葡萄糖标准曲线 用不同浓度的葡萄糖溶液作为标准溶液,与DNS 共热反应显色后,测出其吸光度OD 值(见图2)。标准曲线的线性相关系数R 2为0.9991(见图2),线性相当好,可以用于酶活力的测定。 38 印 染(2002No .8) www .cdfn .com .cn

生物技术生产纤维素酶及其应用研究进展

Vol.15,No.18精细与专用化学品第15卷第18期 Fine and Specialty Che m icals2007年9月21日技术进展 生物技术生产纤维素酶 及其应用研究进展 刘 颖3 张玮玮 (哈尔滨商业大学食品工程学院,黑龙江哈尔滨150076) 摘 要:简要介绍纤维素酶的酶学性质、降解机制、生产工程菌的选育、纤维素酶的应用情况,以及对纤维素酶生产与应用方面存在的问题和未来发展趋势进行了分析与探讨。纤维素酶在食品、酿造行业、农副产品深加工、饲料、医药、环境保护和化工等领域有着非常广阔的应用前景和应用潜力。我国纤维素酶的生产及应用研究近年来取得了很大进展,今后必将在应用深度和广度上进一步扩展。 关键词:纤维素酶;发酵;克隆;生物技术 Cellul a se Produced by B i otechnology and Its Appli ca ti on Progress L I U Ying,ZHAN G W ei2w ei (College of Food Engineering,Harbin University of Commerce,Harbin150076,China) Abstract:The enzy mol ogical p r operties of cellulase,degradati on mechanis m,the selecting culture of engineering m i2 cr oorganis m and the app licati on p r os pect of bi otechnol ogy in cellulase industry are intr oduced briefly.The existing p r oble m s in cellulase p r oducti on and app licati on and the devel opment trend in the future are analyzed and discussed.The p r os pect and potential of app licati ons of cellulase are wide,es pecially in the fields of f ood industry,fer mentati on industry,deep2p r o2 cessing of far m ing p r oducts,f orage,medicine,envir on mental p r otecti on and che m ical industry.A great p r ogress has been made in the cellulase devel opment and app licati on recently in China,and in the future it will be certainly expanded deep ly and comp rehensively. Key words:cellulase;fer mentati on;cl one;bi otechnol ogy 纤维素是地球上数量最大的可再生资源,微生物对它的降解、转化是自然界中碳素转化的主要环节。纤维素酶(Cellulase)是降解纤维素生成葡萄糖的一组酶的总称。纤维素的生物转化与利用对当前世界能源危机、粮食短缺和环境污染等问题具有重要的意义。近年来,我国纤维素酶的应用研究十分活跃,已筛选到一批高产菌株。随着分子生物学、遗传工程的迅猛发展,国内外均在尝试应用基因工程技术来改造和构建高效纤维素降解菌。这些菌具有独特的酶学性质,扩大了纤维素酶的应用范围。根据纤维素酶遗传特性而构建的高效纤维素分解菌开辟了纤维素酶生产的新途径。 1 维素酶的性质及其降解机制 纤维素酶是一种糖蛋白,它是一个多组分的诱导酶系,采用层析分离和电泳技术等可将纤维素酶分成不同的组分。目前普遍认为,完全降解纤维素至少需要由3种功能不同但又互补的纤维素酶协同作用才能将纤维素水解至葡萄糖,它们是EG(内切葡聚糖酶)、CBH(外切葡聚糖酶)和CB(纤维二糖酶或β2葡萄糖苷酶)。纤维素的降解过程,首先是纤维素酶分子吸附到纤维素表面,然后,EG(内切 ? 8 ? 3收稿日期:2007207212  作者简介:刘颖(19682),女,副教授,研究方向为食品生物技术。

相关主题
文本预览
相关文档 最新文档