当前位置:文档之家› 艾默生系列应用案例

艾默生系列应用案例

艾默生系列应用案例
艾默生系列应用案例

ES在电梯行业的应用(多段速)

艾默生CT 技术服务部冯润润

摘要:本文介绍了ES驱动器在电梯行业应用的特性,重点论述了ES驱动器在电梯调试上的参数应用。

关键词: ES 电梯专用驱动器多段速

1.引言:

UNIDRIVE ES是艾默生CT 专为电梯行业设计的一种理想的电梯专用驱动器,它使用于有齿轮曳引机及无齿轮曳引机的电梯系统。它可以在闭环矢量或无传感矢量模式下驱动异步电机,也可以在伺服模式下驱动高效的永磁同步电机,UNIDRIVE ES的内置功能非常容易与电梯控制相匹配,从而给乘客提供了最佳舒适感和最高安全性。

UNIDRIVE ES特点:

1.1.全面的自整定方式:静态/动态自整定模式,电流环自整定。

1.2.更新周期250ms;响应频率带宽达到 150Hz–2x。

1.3.0.1rpm /0.001rpm 高精度给定,精密定位。

1.4.转矩前馈-保证加速时的最小速度跟随误差。

1.5.设定值可达小数点后两位-精密转矩应用:力学测量设备。

1.6.速度环增益可选,应用于多速段控制或多电机分时控制。

1.7.载波频率可调,最高载波频率 12kHz,静音控制。

1.8.改善输出波形,降低马达发热。

2.应用配置:

2.1.ES驱动器内置PG接口,可接收多种类型的编码器。

2.2.全系列5.5kw-45kw内置制动单元。

2.3.可以支持48-72V供电应用于电梯紧急救援。

2.4.可选用智能卡SMARTCARD进行参数拷贝和上传。

2.5.可使用软件CTSoft在线更改和查看参数,使用CTScope在线监测电梯运行曲线。

3.应用设计:

3.1电控系统

电梯运行原理:首先由控制器根据实际需要给出正/反转运行信号,对应电梯的上行/下行,再给出抱闸信号,使曳引机松闸, ES驱动器在零速给出力矩,使轿厢与对重相对平衡,接下去控制器根据到达的层楼相应给出速度选择信号,ES给定出运行频率,运行过程中给出减速信号,平层信号,最后ES根据给定的速度选择信号,相应的调节输出频率直到停止。ES输入信号为:上,下行方向指令,爬行,低速,高速,检修速度等各种速度编码指令,复位和使能信号。ES输出信号为:驱动器准备就绪信号和运行中信号。下面是根据图1设定的ES端子接口参数表:

含义设定值单位 / 功能说明

参数

7.10 T5/6输入目标地址18.38 多段速3

8.21 端子24的输出源地址10.02 驱动器运行输出

8.22 端子25的输出源地址18.31 抱闸输出

8.23 端子26的输入地址18.37 多段速2

8.24 端子27的输入地址19.44 上行

8.25 端子28的输入地址18.44 下行

8.26 端子29的输入地址18.36 多段速1

8.27 41、41继电器输出源10.01 正常输出

8.32 端子25号定义为输出ON 定义25号端子为输出端

I/O接口参数表

图1.ES端子接线

3.2电机自学习

确定电机空载,设定电机级数Pr0.42,电机电流Pr0.46,电机转速1.06,定义电机参数后,接着设定 Pr 0.40 =2(动态自学习),然后闭合使能端子(T31) 与 (T22)和闭合运行端子(T27) 与+24v (T22),驱动器上排显示‘run’.下排在‘tune’与‘auto’之间闪烁,电机运行进行自学习,学习完后驱动器显示‘inh’,检查学习出的电机磁极初始角Pr0.43,如果学习两次的值都相差不到1度,证明学习参数正确。若不同,重新检查编码器硬件或参数设置,重新学习。

3.3参数设置

3.3.1.速度给定

显示速度给定选择Pr18.10,

低速Pr18.11,

检修Pr18.12,

楼层自学习Pr18.14,

爬行Pr18.16,

高速Pr18.17 。

可参考如下表进行速度设置(可定义26,27,29号端子进行多段速的选择):

多段速配置表

3.3.2斜坡给定

启动加加速19.14= 500±200 mm/s3调整,

加速度 0.03=0.5cm/s2,

运行加速度19.15=1000±200 mm/s3调整,

减速度0.04=0.8cm/s2,

停车加加速19.16=800 ±200mm/s3调整,

停车减速率19.13=1000±200 mm/s3调整,

图2 运行曲线

3.3.3速度环PI

运行段速度环比例增益Pr18.25 (高速P值),运行段速度环积分增益Pr18.26 (低速I值),启动段速度环比例增益Pr18.27(低速P值) ,启动段速度环积分增益Pr18.28 (低速I值),增益打开使能Pr18.48=ON。

3.4试车运行:

为防试车时冲顶或蹲底,手动将轿厢升到中间位置,然后从慢车开始调试,如果此时电流和速度运行平稳,可进行快车调试,根据调试情况调整PI参数、S参数、加减速时间、多段运行频率,力求达到舒适感好、平层精度高。

舒适度调试:

3.4.1.启动舒适感不好,一般表现为两种:一种是提拉的感觉,即冲击;一种是顿的感觉,即倒溜。对于两种情况,大部分原因是由于驱动器的PI值调整不当造成的。现场调试可根据实际情况调整ES的启动比例增益 (Pr18.26)和积分增益 (Pr18.27) 尽可能大,一般为2...3 倍运行增益。如果增大启动增益还是无法解决启动倒溜问题,可设定位置环比例增益参数 (Pr19.20)> 5...30和微分增益参数(Pr19.12)>10...30防止回溜。

3.4.2.如果停车时马达抖动:降低停车加加速(Pr19.16)<800 mm/s3

3.4.3.如果驱动器禁止时马达抖动:检查输出接触器延时(Pr 20.20)>50 ms,或者降低制动器闭合时间(Pr18.24)。

3.4.4.如果制动器闭合时抖动(制动器闭合的太早),降低零速限(无齿轮)Pr3.05 = 1 (4)

rpm。

现场可参考下面的经验值进行调试:

参数

含义经验值

18.25运行比例增益高的增益改善运行平滑度

设定数值一般为1000和20000之间

18.26运行积分增益高的数值降低负载的影响,小的数值降低速度环的超

设定的数值一般为参数#0.23[2](#18.25)的 10% 至

40%之间

18.27启动比例增益高的增益改善启动平稳度和硬度

设定的数值一般为1000和20000之间

18.28启动积分增益高的增益降低负载的影响和降低制动器打开时的急拉

设定的数值一般为参数#0.25[2](#18.27)的 30% 至

80% 之间

19.11增益转换时间

单位 ms

改变该参数即改变速度环从启动增益至运行增益之间的时间,默认设定500=0,5 秒

速度环PI设定经验值

4.结束语:

由于ES驱动器性能稳定,对电梯控制效果好,电梯舒适感好、平层精度高。加上易于调试,现已经在电梯行业得到广泛应用。

艾默生CT变频器冶金行业大规模应用案例集锦

鞍山新和电气有限公司王俊芳

摘要:本文解析艾默生CT变频器在冶金行业的规模化应用。根据不同的工艺要求采用不同的控制方式来满足现场需求,体现艾默生CT变频器有着广泛的应用领域和较强的适用性。关键词:EV2000 TD3000 EV3000 EV3500 冶金行业变频器

1 引言

中国是世界级的钢铁大国。中国连续多年的3亿多吨世界第一的钢产量,为改革开放时代的国民经济建设作出了支柱性的巨大贡献。进入“十五”国民经济发展规划以来,中国迎来重化工行业的优质高速发展时期。冶金行业做为自动化技术与电气动力驱动密集产业,变频传动技术应用具有重要的产业进步意义。

2 80万吨球团生产线案例

s 2.1 应用背景

鞍山宝得钢铁有限公司是以型材为主导产品的大型钢铁联合企业。宝得钢铁拥有炼铁、炼钢、烧结、轧钢、制氧五个分厂,年产铁、钢各120万吨,钢材60万吨。为适应市场需求扩大自身规模又新建80万吨/年球团生产线工程。新建的球团工程项目的主体设备采用艾默生CT 变频器作核心主驱动系统,与西门子自动化S7-400PLC相结合,形成完整的控制驱动系统。

2.2方案确定

项目采用DCS系统与现场控制两种操控方式,在整个系统中控制方式简洁但对变频器的矢量控制性能要求很高。在给回转窑主电机配置变频器的时候,与用户沟通得到电机参数,额定功率=250KW ,额定电流=526A,瞬时最大过载能力为180﹪。考虑主体设备运行的重要性并且必须达到用户的技术指标要求,最后选定EV3500-4T3150P变频器作为回转窑电机的主驱动。

2.3 工序设备简介

回转窑结构简单,生产过程控制方便可靠、易损件少、运转率高,煅烧球团的主要设备。同时也广泛用于冶金、化工、建筑等行业。宝得80万吨/年球团生产线变频器配置如表1所示。表1 宝得80万吨/年球团生产线变频器配置

3 提钒工程炼钢区案例

3.1 应用背景

承钢提钒工程炼钢区域项目是承德钢厂新建的3个炼钢高炉,年产量为400万吨。扩大了主营产品在市场占有量,增强自身品牌的实力。艾默生CT EV3000、EV3500变频器大量的应用在承钢提钒工程炼钢区域中,为相关设备稳定运行保驾护航。

3.2 EV3500变频器应用

承钢提钒工程炼钢区域电气成套项目:1-4号氧枪高压供水泵采用艾黙生EV3500-4T4000P 变频器4台,为炼钢供水属于重要设备。现场操作控制方式为SM-PROFIBUS-DP总线方式。在以前氧枪高压供水都采用高压电机来实现,故本次设计采用艾黙生EV3500变频器与低压变频电机配套使用。主要目的:用EV3500变频器与变频电机配套使用替代高压电机(因为高压电机驱动氧枪高压供水泵控制水压和扬程准确度不高)。

(1)现场配置。变频器EV3500-4T4000P驱动355kW变频电机4台。辅助传动是西门子

S7-400PLC并配置1台ET200远程I/O子站实现。系统配置为3用1备,采用SM-PROFIBUS-DP 总线方式控制,无论机旁还是自动都经过上位机进行控制,操作方便简单。

(2)变频器总线通讯控制方式设计。采用SM-PROFIBUS-DP通讯控制,实现无人看守操作,控制线路维护简单方便,故障率和故障点低,通过DP电缆满足对EV3500变频器的起停控制,变频器运行状态的反馈,远程故障复位等其它要求,并且充分利用EV3500通讯上的强大优势。针对控制方式的要求,对变频器柜进行如下设计:每台EV3500-4T4000P变频器由1个主模块控制3个SPMA1402 110/132kW 从模块。选配1个PROFIBUS总线接口模块。本系统采用的是siemens公司的S7系列PLC与艾默生CT EV3500变频器通讯,并提供相应的CTSP0672.GSD文件配置在上位机的应用程序中和sm_profibus_dp_user_guide.pdf文件,做为指令解析的对照表,与PROFIBUS总线接口模块之间进行通讯连接,通过上位机“控制字”的发送和对变频器“状态字”的读取来进行控制。

艾默生CT变频器在承钢提钒工程炼钢区域电气成套项目大量的应用,体现了艾默生CT变频

器从小功率单元到大功率模块式驱动的完备性,应用在冶金行业的各个环节上,艾默生CT 变频器EV2000的其它应用如表2所示。

表2 EV2000在转炉本体、铁水倒灌站、散装上料中部分变频器配置表

4 TD3300张力专用变频器收放卷控制系统

4.1 应用背景

外商独资在建项目天津华璟金属材料有限公司计划投入8条连续式镀锌线,生产销售镀锌带钢及其它相关产品,成为全球最大镀锌窄带钢生产基地。天津华璟酸洗线成套项目的热轧板宽度为850mm,厚度2.75-5mm。系统对张力要求较高,采用TD3300张力专用变频器与EV3000矢量型变频器配合使用,在卷曲过程中获得恒定平稳的张力。这是艾默生CT变频器首次应用于大型热轧板卷曲张力开环系统中。现场操作控制方式为SM-PROFIBUS-DP总线方式,采用旋转编码器作为变频器的反馈准确计算卷径。采用总线控制方案,既提高控制系统的精度,又增强系统稳定性。

4.2 方案设计

(1)张力系统方案分析

2 采用速度差建立张力系统(速度建张)的普通变频器虽然可以满足控制,但是张力值不准确,在实际工艺中驱动板材运行的张力辊和卷曲轴都是主动辊,对速度匹配要求极高,当速度出现偏差就会使板材出现褶皱或偏中,板材卷曲会出现松紧不一致,精度控制不稳。2 采用张力计检测系统张力,系统控制精度高,工艺全过程要求张力闭环控制,成本造价高,工艺繁琐,因此不被采用。

2 零速建张力系统,在开始卷曲的同时建立起张力系统,有足够大的张力使板材之间绷紧,卷起板材全过程恒张力运行,通过SM-PROFIBUS-DP总线方式控制把张力辊AO1的线速度输出作为卷取机TD3300变频器的线速度输入。张力恒定速度匹配精准受到客户的高度认同,实现无人看守操作,控制线路维护简单方便。

(2)酸洗线系统配置。艾黙生TD3300-4T1320G张力控制专用变频器与EV3000-4T0550G矢量控制变频器相匹配组成张力开环系统,TD3300用作系统开卷机和收卷机的驱动电机,

EV3000作为系统主牵引部分。卷曲机和开卷机为变频电机并加装旋转编码器。辅助传动由西门子S7-400PLC并配置ET200远程I/O子站实现。SM-PROFIBUS-DP总线与艾默生CT总线适配器TDS-PA01通讯对变频器进行控制,操作方便控制精准。酸洗线系统配置如表3所示。表3 酸洗线变频器及相对应的电机配置

(3)酸洗线工艺流程。酸洗线工艺流程描述:开卷机——五辊矫直——头部活套——拉料滚——酸洗槽——水洗槽——烘干——尾部活套——2辊张力滚——收卷机。酸洗线工艺流程如图1、图2 所示。

图1 开卷机及头部活套工艺流程

图2 酸洗及卷曲机工艺流程

5 结束语

艾默生CT大功率变频器在冶金行业的其它规模化应用包括河南舞阳钢厂带式输送机和大功率渣浆泵变频驱动,系统应用艾默生CT EV2000变频器27台套;海城后英集团大屯钢厂SPM 工程机应用于白灰窑助燃风机。鞍山海城镁矿应用镁矿回转窑、引风机、助燃风机等不同负载共计25台EV2000变频器。

艾默生CT变频器在鞍钢集团公司的应用,充分的满足了生产工艺和机械设备的要求,显示变频器优越的性能和极高的可靠性,得到用户的好评与赞誉。丰富的规模化案例应用体现了艾默生CT变频器从小功率单元到大功率模块式驱动技术的成熟,展示出大型驱动技术供应商的大规模工业解决方案的品牌集成优势。

参考文献(略)

作者简介

王俊芳男工程师现在鞍山新和电气有限公司技术部从事冶金行业变频器及低压电气设计、调试和现场服务工作。

EV6000高性能变频器在电主轴上的应用

艾默生CT公司营销部李明

摘要:本文介绍了艾默生CT新一代高性能EV6000变频器在伺服电主轴上的调试及长期运行情况。通过多个客户为期超过半年的使用,它标志着EV6000变频器产品延续了EV1000,EV2000,产品极高的可靠性,简单易用性,同时还提供了前所未有的高性能,能够进行原先伺服主轴驱动器的替代。

关键词:电主轴零速锁定同步跟踪

1 引言

EV6000 变频器作为艾默生CT新一代高性能变频器,采用先进的控制策略实现了真正意义上的高精度磁通矢量转矩控制,无论是有PG 运行还是无PG 运行,均达到业界领先的控制水准。同步电机驱动与异步电机驱动的一体化,转矩控制、速度控制、位置控制的一体化,使得EV6000 成为业界少有的具有优异控制性能的一体化驱动器,满足客户应用的高性能化需求。电主轴是数控机床的重要部件,传统机床主轴是通过传动装置带动主轴旋转而工作的。电主轴是电机内装式主轴单元的简称。其主要特点是将电机置于主轴内部,通过驱动电源直接驱动主轴进行工作,实现了电机、主轴的一体化功能,进行切削加工。它具有结构紧凑,机械效率高,噪声低,振动小,精度高,运行平稳,没有冲击的特点,能够使主轴轴承寿命得到延长。通过EV6000机床专用版本内置的机床专用功能,可以完成动态高精度同步跟踪,分度,准停,零速锁定等功能。其优异的性能,丰富的功能完全能够满足数控加工中心主轴控制的工艺和精度要求。

2 伺服电主轴系统原理

交流伺服主轴驱动系统由主轴控制器、主轴驱动单元、主轴电动机和检测主轴速度与位置的编码器4部分组成,主要完成闭环速度控制,但当主轴准停时则完成闭环位置控制。主轴驱动单元的位置控制与速度控制均由内部的高速信号处理器及控制系统实现,其原理框图如图1所示。图中CNC系统向主轴驱动单元发出速度指令或位置指令,驱动单元根据该指令执行相应的速度与位置控制。与此同时,CNC控制器也接收来自于主轴电机编码器的分频输出(或终端传感器的输出信号)来对其指令进行校正,当然,此信号也用于系统过程偏差的检测,如速度偏差过大等。

图1 电主轴驱动原理框图(虚线为可选)

为方便起见,我们以一实际的电主轴系统为例进行描述。在该系统中,CNC控制器采用的是台湾LNCT520i主轴控制器,驱动器使用EV6000高性能机床专用版本变频器+PGABS选件卡(带分频输出的编码器接口卡),电机使用的是山东某厂家的JSZD150A-8/3C电动马达,出场配置2048RPM差分增量式编码器。整个系统接线框图如图2:

图2:电主轴系统接线框图

LNCT520i主轴控制器通过PA+/PA-和PB+/PB-正交脉冲信号向EV6000发出速度和位置信号,同时也包含着方向信号。EV6000配置有PGABS编码器选件卡,该卡既接收主轴控制器脉冲给定,又接收来自电机的编码器反馈信号,同时对编码器信号进行分频,反馈到主轴控制器。EV6000工作在伺服模式。系统的性能主要决定于驱动器和电机的性能。下面仔细介绍系统

各个组件。

(一)主轴电机:电机型号为JSZD150A-8/3C,内置2048RPM, 5V

差分编码器。厂家给定的技术参数与曲线如下:

表一:电机厂家参数

图3 功率与转速关系曲线图4 力矩与转速关系曲线

(二)EV6000变频器+PGABS测速卡

EV60-PGABS 测速卡是EV6000 系列变频器的选件,提供如下功能:1.编码器接口PG1,支

持差分ABZ、UVW 信号,作为速度或位置反馈。2.PG1 的脉冲分频输出,可用于速度或位置同步。3.脉冲指令接口PG2,可接收上一级装置的脉冲指令,用于速度或位置同步。

其信号定义如下:

CN1:信号管脚定义 CN2:信号管脚定义

(外壳接屏蔽层)

整个系统的接线可参考图2。EV6000变频器本体只连接运行信号和复位信号。

3 调试步骤与要点

无论是速度同步跟踪还是零速锁定,整个系统逻辑都非常简单,只需要将在F13组功能码里将EV6000设置为伺服模式,位置指令给定源选择为扩展PG给定即可。因此调试主要工作是根据电机的特性曲线来调整变频器相关参数,以获得驱动系统的最佳性能。为此,需要了解驱动器伺服模式的原理。

图5:EV6000伺服模式的原理框图

在上述系统中,电机特性是整个系统性能保证的基础。为达到最好的控制效果,需要对电机进行参数辨识。可参考表一和图3与图4,在功能组F80里依次输入电机额定功率,额定电压,额定电流,额定频率,额定转速之后启动电机旋转自整定。因为主轴电机基本都是特种电机,有时会发生自整定失败,此事需要对额定电压,额定频率和额定转速三个参数进行调整,直至整定通过。整定通过之后,不妨在全速范围内让电机空载运行,确保系统无振动,电机电流声音正常。

从图5中,系统还有三个控制环路。最里面的是电流环,其次是速度环,最外是位置环。电机自整定通过后,主要的调试就是调整这三个参数的PI参数。首先是电流环,该参数一般采用变频器默认参数,在现场无检测仪器的情况下,调整的依据可简化如下:全速运行,观察电机有无振动或啸叫,如有,则需调整,此种情况一般表明参数过强。进行零速锁定运行,观察锁定动作是否干净利索,锁定是否有力,可以逐步增加电流环PI直至感觉电机轴明显振动,此时适当回调PI至一合适值,顺便也可以观察输出电流是否稳定。电流环参数位于F09组。接下来调整速度环,调整原理不进行论述,可以观察[F01.13]电机实测频率是否稳定,响应是否足够快。同时零速锁定时锁定力是否足够大,不够大则需调强PI。如下图所示,为系统的阶跃响应图。

图6:系统阶跃响应图

最后是调整位置环。位置环主要调整动态位置偏差,一般的数控中心都有位置超差告警。在出场参数的基础上,一般需要强化位置环P参数。图7是在一个正反转过程中位置差的实际检测结果。可以看出整个过程动态误差不到25个脉冲(4倍频后)。

图7 位置超差结果

此外,影响性能可能需要调整的参数还包括[F09.01]载波频率,[F63.08]PG信号滤波等。在这里我们给出上述应用的参数设置。

4. 结束语

EV6000作为艾默生CT新一代平台型变频器产品,具备优异的控制性能。我们会将客户的实际需求和通用型产品结合起来,推出针对行业性的客户专机,也会和大客户紧密结合,推出一些定制产品,目前都已取得一定成效。就电主轴而言,变频器内置了专用的F13(伺服控制)、F33(主轴准停)、F34(刚性攻丝)功能组,只需要进行简单的功能码设置,就可以进行高精度的速度跟踪,零速锁定,分度等功能,方便了用户的使用,同时还可以进行一些简单的位置控制,动态位置精度可以控制的很好,可控制在4个脉冲之内,稳态位置精度可控制在一个脉冲之内。

图8 RNCII-15E外观图

CAN总线及其在艾默生PLC上的应用

EMERSON CT公司技术服务中心李庆敏

引言

数字电子信息技术的飞速发展对全世界的制造业日益起着巨大的推动作用,使得制造业的各种设备的设计越来越电子化,数字化,网络化,ECCT产品是艾默生公司推出的一款专应用于纺织行业的具有CAN总线协议的专用PLC控制器,它不仅满足了纺织的基本I/O工艺需求,更是把CAN总线协议完美地融合进去,使用户很轻易地把系统的各种设备通过CAN协议进行连接,本文介绍了CAN总线功能在艾默生PLC上的应用。

CAN总线基础知识简介

CAN总线(CONTROLLER AREA NETWORK,控制器局部网络)由德国BOSCH公司首先提出来的,CAN总线是目前工业界广泛应用的总线。其特点简要归纳如下:

1)CAN控制器工作于多主站方式,网络中的各节点都可根据总线访问优先权(取决于报文标识符)采用无损结构的逐位仲裁的方式竞争向总线发送数据。而利用RS-485只能构成主从式结构系统,通信方式也只能以主站轮询的方式进行,系统的实时性、可靠性较差。2)CAN协议废除了传统的站地址编码,而代之以对通信数据进行编码,其优点是可使网络内的节点个数在理论上不受限制,加入或减少设备都不影响系统的工作。同时可使不同的节点同时接收到相同的数据,这些特点使得CAN总线构成的网络各节点之间的数据通信实时性强,并且容易构成冗余结构,提高系统的可靠性和系统的灵活性。

3)CAN总线通过CAN控制器接口芯片的两个输出端CANH和CANL与物理总线相连,而CANH端的状态只能是高电平或悬浮状态,CANL端只能是低电平或悬浮状态。这样就保证不会出现类似在RS-485网络中系统有错误时会导致出现多节点同时向总线发送数据而导致总线呈现短路从而损坏某些节点的现象。而且CAN节点在错误严重的情况下具有自动关闭输出功能,以使总线上其他节点的操作不受影响,从而保证不会出现象在网络中,因个别节点出现问题,使得总线处于“死锁”状态。

4)CAN具有的完善的通信协议可由CAN控制器芯片及其接口芯片来实现,从而大大降低了用户系统开发的难度,缩短了开发周期,这些是仅仅有电气协议的RS-485所无法比拟的。

5)与其它现场总线比较而言,CAN总线通信最高速率可达1MBPS,传输速率为5KBPS时,采用双绞线,传输距离可达10KM,并且数据传输可靠性高;CAN总线是具有通信速率高、容易实现、且性价比高等诸多特点的一种已形成国际标准的现场总线。这些也是目前 CAN总线应用于众多领域,具有强劲的市场竞争力的重要原因。

CAN总线与RS485方式的区别:

RS-485方式CAN总线

特性

拓扑结构直线拓扑直线拓扑

传输介质双绞线双绞线

艾默生DCS_OVATION系统手册

OVATION系统硬件培训手册 (Solaris操作系统) Rev.1 上海西屋控制系统有限公司 (Aug.2005)

OVATION系统 目录 Ovation 系统硬件 第一章 Ovation分散控制系统概述 1.1 系统概述 ……………………………………………………………1-1 1.2 典型的Ovation系统结构 ……………………………………………1-3 1.3 Ovation系统诊断 ……………………………………………………1-4 1.4 参考手册 ……………………………………………………………1-7 第二章 Ovation系统网络 2.1 系统的组成 ……………………………………………………………2-1 2.2 网络的结构形式 …………………………………………………... 2-1 2.3 单网网络星形拓扑结构………………………………………………….. 2-3 2.4 多网网络 …………………………………………………………... 2-4 2.5 网络设备的功能 ……………………………………………………2-4 2.5.1 快速以太网的一般概念 ………………………………….. 2-4 2.5.2 集线器(Hub) ……………………………………………2-5 2.5.3 交换机(Switch) …………………………………………... 2-5 2.6 Ovation网络地址 ……………………………………………………. 2-6 2.7 网络中的数据流 ……………………………………………………. 2-7 第三章 Ovation控制器 3.1 控制器 …………………………………………………………3-1 08/16/05 1

艾默生监控模块

艾默生监控模块 PSM-E20监控模块功能: 电池管理 监控模块对电池的智能化管理主要体现在以下几种工作状态: 1、正常充电状态 监控单元自动记录均充和浮充的开始时刻,在上电(或复位)初始,如果监控单元发现均充过程尚未结束,则会继续进行均充。如果上电(或复位)前是处于限流均充状态,则继续进行限流均充;如果是处于恒压均充状态,则继续进行恒压均充。在限流均充时,当充电电压达到恒压均充电压值的时候,会自动转入恒压均充。 2、定时均充状态 用户可选择是否采用定时均充这种维护方式,还可对定时均充的时间间隔及每次均充的时间进行设定。一旦设定,电池管理程序就可自动计算电池定时均充的时间,以便确定在何时启动定时均充,何时停止定时均充,所有这些操作都是自动进行的,运行维护人员可在现场通过监控单元上的显示来明确这一过程,也可在远程监控中心的主机上查看这一过程。一般电池以每隔30天均充一次,每次均充24小时为宜,特殊情况必须根据电池说明书的实际的情况设置。 3、电池放电后均充状态 交流停电后,电池组对设备进行供电,放电终止后,再次恢复交流供电时,若电池电流大于设定值(转均充参考电流),则监控单元会自动控制模块进行均充。在监控模块的软件设置中,放电终止后的均充转换条件为:电池充电电流 4、其它电池管理功能 λ设置功能 电池的均浮充电压均可通过键盘设置,用户可根据不同型号的电池,不同的电池电压灵活配置,极大地方便了用户管理。均浮充电压设置好后,监控单元会根据当前的均浮充状态把电池端电压调节到设定的值。需要注意的是,若此时动力母排上有模块发生通讯中断,则模块进入自动保护运行模式,输出电压降为234V/117V,通讯正常后可自动退出保护运行模式。λ温度补偿 用户可选择是否对均浮充电压进行温度补偿,并可对温度补偿中心点、温度补偿系数进行设置。一旦设定,监控单元就会根据电池房的温度自动对浮充电压进行调节,确保电池工作温度正常。 λ容量分析 用户可设置电池的充电效率、放电特性曲线等参数来调整电池容量的计算结果。监控单元可根据电池电流、充放电状态以及充放电系数对电池容量进行估算,每隔15秒计算一次电池容量的变化量,并在菜单上实时显示出来,使用户能一目了然地看到电池容量的实时变化。λ自动与手动相结合 监控单元可在“自动”和“手动”两种方式下工作,在“自动”方式下,监控单元可自动完成上述的所有功能,完全不需人工干预;在“手动”方式下,电池的管理交给维护人员来完成,维护人员可通过菜单控制电池的均浮充转换,调节电压及模块限流点,还可以对模块作开关机控制,此时监控单元将只通过通讯采集各模块的数据及配电数据,不对模块作任何控制处理,因而不会在放电后作自动均浮充转换,也不会启动定时均充,但仍可对电池的容量进行估算。由于长期均充可能导致电池寿命下降,为了防止在“手动”方式下均充时间过长,监控单元会自动监视均充时间,当均充时间超过用户设定的定时均充时间时,就会转入浮充。

爱默生模块及监控中文说明书

PowerMaster智能高频开关电力操作电源系统 合作生产技术指导书 资料版本V5.0 归档日期2008-10-17 BOM 编码31031222 艾默生网络能源为客户提供全方位的技术支持,用户可与就近的艾默生网络能源办事处或客户服务中心联系,也可直接与公司总部联系。 艾默生网络能源 所有,保留一切权利。容如有改动,恕不另行通知。 艾默生网络能源 地址:市南山区科技工业园科发路一号 邮编:518057 公司网址:https://www.doczj.com/doc/af18455862.html, 客户服务投诉热线:00 E-mail:https://www.doczj.com/doc/af18455862.html,

第一章充电模块(必选件) 1.1 HD22010-3系列 1.1.1 模块简介 HD22010-3系列充电模块是电力电源最主要的配置模块,广泛应用于35kV到330kV的变电站电力电源中。 HD22010-3系列充电模块采用自冷和风冷相结合的散热方式,在轻载时自冷运行,符合电力系统的实际运行情况。 型号说明 HD 220 10 - 3 产品版本 额定输出电流10A 额定输出电压220Vdc 充电模块 产品系列 产品系列见下表。 表1-1 订货信息 工作原理概述 以HD22010-3模块的工作原理框图如下图所示。 图1-1 HD22010-3充电模块原理图 HD22010-3充电模块由三相无源PFC和DC/DC两个功率部分组成。在两功率部分之外还有辅助电源以及输入输出检测保护电路。 前级三相无源PFC电路由输入EMI和三相无源PFC组成,用以实现交流输入的整流滤波和输入电流的校正,使输入电路的功率因素大于0.94,以满足DL/T781-2001中三相谐波标准和GB/T 17794.2.2-2003中相关EMI、EMC标准。

艾默生SDC空调使用说明手册

艾默生SDC空调使用说明手册 一、设备用途 向地下吹风的打空调,用于机房温湿度调节。 二、接口类型 通讯接口采用RS485/232方式。 信息传输方式为异步方式,起始位1位,数据位8位,停止位1位,无校验。 数据传输速率为1200、2400、4800、9600和19200bps可以设置。 三、通信参数设置 1、控制器 SDC系列空调的控制器为PACC控制器,采用240*128点阵蓝色背光液晶显示 屏显示,用户界面操作简单。多级密码保护,能有效防止非法操作。控制器具 有掉电自恢复功能。通过菜单操作可以准确了解各主要部件运行时间。专家级 故障诊断系统,可以自动显示当前故障内容,方便维护人员进行设备维护。可 存储200多条历史事件记录,配置RS485接口,通信协议采用信息产业部标准 通信协议,控制器面包那如图1所示 图1 控制器面板 2、操作键功能说明 控制器有5个操作键,分别是开/关键、退出键、上移键、下移键和回车键。功 能见下表: 表1 操作键功能说明

3 3.1 主界面 图2 主界面 界面上包含三类机组工作图标,分别是动画运行状态图标、锁定状态图标和开关机主备状态图标,这些图标告知操作员机组正在何种运行模式下运行。图标及其含义如图3所示。 图3 图标含义 3.2 密码界面 在主界面下按回车键,显示输入密码界面,如图4所示。输入正确密码确认后即可进入主菜单界面。 图4 密码输入界面 进入菜单界面的密码分3个等级,需要密码打开的菜单在它的标题后标有菜单级别[1]、[2]、[3],以表示所需密码的级别。各种密码等级的使用者、初始密码、允许进入的菜单等级见图5。 图5 密码等级

艾默生直流分路计量设备接入艾默生FSU安装调试指导手册知识讲解

艾默生直流分路计量设备安装指导手册 一、分路计量设备现场安装指导 1、常用安装工具及辅材准备 1)分路计量设备安装所需工具大致如图所示,施工小组上站之前注意要配齐这些工具,并注意工具绝缘保护。 2)工具:手电钻、螺丝刀、剥线钳、斜口钳、钳形万用表等。 3)辅材:导轨、自攻丝、压线端子、绕线管、机打标签纸等。 2、开关电源供电线路的区分与确认 霍尔传感器安装之前,必须确定出所有需要检测的线缆,并区分出各线缆归属的运营商。这一操作步骤一定认真完成,确保准确,如遇问题及时联系随工维护人员。 1)确认开关电源供电线路是否有电流 使用钳形万用表对每一条线缆进行测量确认,查看线缆中的电流大小,当电流大于0.5A时,默认用户使用,需要再次核实、校验。核实在用的线缆必须加装霍尔传感器进行监控(可多线缆安装一个霍尔传感器)。所有的一次下电、二次下电的供电线路都需要核实、校验并监控。 2)确认开关电源供电线路所属运营商 3、电量计量模块安装要求 1)电量计量模块安装位置选择 ①开关电源柜内,用导轨进行安装固定

②如果开关电源柜内无法安装,则安装在开关电源柜的两侧,如果开关电源柜两侧有其他机柜遮挡不方便安装,再选择电源柜的后侧。侧面安装位置应遵循从左往右,从上往下依次进行安装,为后续扩容留有位置。 2)固定导轨的安装 导轨安装时,选择距离电源柜顶部约4--5CM的位置,要保证电量计量模块安装后其最上端,不高于开关电源柜的顶部边缘。 3)电量计量模块的固定 ①电量计量模块固定在导轨上,注意保证卡槽固定到位、牢固。 ②电量计量模块所用线缆需用扎带绑扎、固定。 4、电量计量模块供电要求 电量计量模块采用-48V供电,供电位置必须选择在开关电源二次下电供电空开。供电线缆需用标签进行标注“电量计量模块用电”,且一定注意区分一、二次下电位置与所贴标签是否正确。

艾默生充电模块定期维护指导说明

艾默生模块定期维护指导说明 一,维护时间间隔 对于只做了简单防尘网过滤的直通风系统,一般应用环境每半年清理一次;根据第一次维护清理的灰尘堆积情况,确定针对该站点的维护清理周期。对于在风沙较大的地区,或者比较繁忙的马路附近,公交枢纽或停车场附近的,积灰会比较严重,请适当缩短维护周期;反之对于室内型的,或者周围运行环境比较好的,则可以适当延长,但尽量不要超过一年。 二,维护清理所需工具 工具包括:十字螺丝刀,镊子,毛刷,控制模块的简易通信,万用表。 注意:选择十字口稍钝的十字螺丝刀或电批,防止打滑。 电气条件:三相380V交流,用于清理后测试模块。如果没有简易上电装置,可放在系统中每个模块逐一开机上电验证;注意必须单个模块验证合格后才能放入系统中运行。 三,ER45033/T模块的清理维护步骤如下: 1.取下模块上盖的固定螺钉,取下上盖,注意模块尾部有两个固定上盖的螺钉;注意取前 面板时底面的四个螺钉只需松开靠前端的两个,如图1所示。然后取下前面板的安装螺钉,并拔下显示板连接线缆的插头,如图2所示,再将前面板连同风扇一起取下。如果线缆插头点胶固定,请小心取下,防止将插头底座拔出。 图1 前面板和机箱底壳之间的固定螺钉示意图

图2 显示板与控制板之间的连接线缆 图3 风扇安装位置(注意风扇安装方向,切勿装反) 2. 用毛刷将散热器以及PCB板上的灰尘清扫干净,特别注意进风口处的器件,需要仔细清理。然后用风枪将残留在器件和PCB板上的灰尘吹掉,可以从出风口顺序往进风口方向吹扫(从出风口往进风口方向吹更容易将灰尘清理干净),直至将残留灰尘吹出机箱外。 3. 将拆下的面板风扇组件也清理干净。 (以下是ER45033/T清理后重新装配的步骤) 5. 现将风扇安装在面板上,将面板靠近机箱,插上显示板连接线缆,如图2所示;然后将面板组件安装到机箱上,装上侧面以及背面的安装螺钉。 6. 将电感板装上,注意电感板的安装螺钉要拧紧。确认接线缆两端是否都安装到位。

艾默生开关电源用户手册31010887

PS48400-2C/50智能高频开关电源系统 用户手册 E1-20020314-C-1.0 艾默生网络能源有限公司

PS48400-2C/50智能高频开关电源系统 用户手册 资料版本E1-20020314-C-1.0 BOM编码31010887 艾默生网络能源有限公司为客户提供全方位的技术支持,客户可与就近 的艾默生网络能源有限公司办事处或客户服务中心联系,也可直接与公 司总部联系。 艾默生网络能源有限公司 地址:深圳市龙岗区坂雪岗工业区华为基地电气厂房一楼、三楼 邮编:518129 公司网址:https://www.doczj.com/doc/af18455862.html,或https://www.doczj.com/doc/af18455862.html, E-mail:info@https://www.doczj.com/doc/af18455862.html,

版权声明 艾默生网络能源有限公司 版权所有,保留一切权利。 在没有得到本公司书面许可时,任何单位和个人不得擅自摘抄、复制本书(软件等)的一部分或全部,不得以任何形式(包括资料和出版物)进行传播。 版权所有,侵权必究。内容如有改动,恕不另行通知。 Copyright by Emerson Network Power Co.,Ltd. All rights reserved. The information in this document is subject to change without notice. No part of this document may in any form or by any means (electronic, mechanical, micro-copying, photocopying, recording or otherwise) be reproduced, stored in a retrieval system or transmitted without prior written permission from Emerson Network Power Co.,Ltd.

艾默生UPS用户操作指导书

UPS 用户操作指导书 一、显示面板说明: 图1-1 UPS 面板图 1:大屏幕液晶显示屏; 2:整流器工作指示灯; 3:蓄电池组工作指示灯; 4:旁路电源工作指示灯; 5:逆变器工作和输出指示灯; 6:负载在线指示灯; 7:整机报警蜂鸣器; 8:整机报警指示灯; 9:防紧急停机按钮误操作盖板; 10:紧急停机按钮; 11:逆变器启动按钮; 12:逆变器停机按钮; 13:故障清除按钮; 14:蜂鸣器消音按钮; 15:F1功能键; 16:F2功能键; 17:F3功能键; 18:F4功能键。

二、LED 指示说明: F1F2F3F4 逆变启动逆变停机 故障清除 消音告警 图 2-1 图2-1的LED 显示区的6个发光二极管(LED)作为运行状态和故障的指示灯, 绿色亮表示正常,红色亮表示故障。 【旁路灯】绿色亮表示旁路正供电;红色亮表示旁路输入超出保护范围;不亮 表示旁路正常但不供电。 【整流灯】绿色亮表示整流器正供电;绿色闪表示市电正常,整流器尚未供电; 红色亮表示整流器故障;不亮表示市电异常,无整流器故障。 【电池灯】绿色亮表示电池正供电;绿色闪表示电池放电终止预告警;红色亮 表示电池异常(包括电池过温、电池需更换、电池接触器未闭合); 不亮表示电池正常但不供电。 【逆变灯】绿色亮表示逆变器正供电;绿色闪表示逆变器工作但处于待供电状 态;红色亮表示逆变器故障;不亮表示逆变器未开启,且无故障。

【负载灯】绿色亮表示本机正常输出;红色亮表示本机因过载关机;不亮表示无输出;橙色亮(实际是红绿同亮)表示本机处于过载输出供电中。【告警灯】红色亮表示系统有告警发生;绿色亮表示无任何告警。 三、功能键说明: 图2-1所示的功能键控制区包括五个按钮: 【紧急关机键】紧急彻底关掉本机输出,并关掉整流模块、逆变模块、电池 输入。 【逆变启动键】逆变器具备启动条件时,按此键可启动逆变器工作;否则此 键按下无效。 【逆变停机键】当逆变器正在工作时,按此键可关闭逆变器。 【故障清除键】当系统故障或紧急关机导致UPS电源关闭后,如故障已经排除,按此键可重新启动系统工作。 【消音键】当有故障鸣叫时,按此键可消除本次鸣叫,再按此键可恢复故障鸣叫,当UPS处于故障消音状态时,新的故障可重新引发故障鸣叫。 以上任何按键按下都会有蜂鸣器短促的“嘀”声,当按键有效时,液晶显示屏的当前事件窗口均会增添一新的按键事件。 四、主要操作开关:

HD22010-3艾默生充电模块

2.1 HD22010-3系列 2.1.1 模块简介 HD22010-3系列充电模块是电力电源最主要的配置模块,广泛应用于35kV 到330kV的变电站电力电源中.本系列产品为HD22010-2系列充电模块的 优化产品,其各项性能指标优于HD22010-2充电模块. HD22010-3系列充电模块采用自冷和风冷相结合的散热方式,在轻载时自冷 运行,符合电力系统的实际运行情况.模块外形尺寸与HD22005-3充电模块 相同,因此模块的功率密度有所增高. 型号说明 HD 220 10 - 3 产品版本 10A额定输出电流 220Vdc额定输出电压 充电模块 订货信息 订货信息见下表. 表2-1-1 订货信息 名称型号编码单位定购指南备注 充电模块HD22010-3 02130517 PCS根据系统要求配置个数自然冷/风冷结合防尘设计 充电模块HD11020-3 02130XXX PCS根据系统要求配置个数自然冷/风冷结合防尘设计 工作原理概述 下面以HD22010-3模块为例介绍产品,工作原理框图如下图所示. 三相 交流输入 直流 176V~286V 0~2860W 输入 EMI 三相 无源PFC DC/DC 整流 滤波 输出 EMI 输入检测 保护 辅助 电源 DC/DC 控制与保护 输出,温

度检测 模块 监控 RS485 图2-1-1 HD22010-3充电模块原理图 HD22010-3充电模块由三相无源PFC和DC/DC两个功率部分组成.在两功率部分之外还有辅助电源以及输入输出检测保护电路. 前级三相无源PFC电路由输入EMI和无源PFC组成,用以实现交流输入的整流滤波和输入电流的校正,使输入电路的功率因素大于0.92,以满足 DL/T781-2001中三相谐波标准和GB/T 17794.2.2-2003中相关EMI,EMC 标准. 后级的DC/DC电路由DC/DC变换器及其控制电路,整流滤波,输出EMI 等部分组成,用以实现将前级整流电压转换成电力操作系统要求的稳定的直流电压输出. 辅助电源在输入无源PFC之后,DC/DC变换器之前,利用三相无源PFC的直流输出,产生控制电路所需的各路电源. 输入检测电路实现输入过欠压,缺相等检测.DC/DC的检测保护电路包括 输出电压电流的检测,散热器温度的检测等,所有这些信号用以DC/DC的 控制和保护. 结构及接口 1.模块外观 HD22010-3充电模块的外观如下图所示. 图2-1-2 HD22010-3充电模块外观 2.前面板 HD22010-3充电模块前面板如下图所示. 紧固螺钉 LED显示面板 指示灯 显示切换 按钮 拉手盖板 风扇罩及 防尘网 拨码开关 手动调压 按钮 图2-1-3 充电模块前面板 1)LED显示面板 显示模块的电压,电流或告警信息. 由显示切换按钮进行输出电压和电流的显示切换.显示3位数字,电压显示精度为±0.3V,电流显示精度为±0.2A. 出现模块告警时,闪烁显示故障代码. 2)指示灯 模块面板上有3个指示灯,功能见下表.

基站开关电源二次下电配置指导书(艾默生PAM-X和中兴ZXDU68监控模块标准规定样式)

基站开关电源柜一、二次下电配置指导书 一、基站供电系统结构概述 基站供电系统主要由交流供电系统和直流供电系统组成。 交流供电系统运行方式: (1)市电正常时,由市电供电; (2)市电停电后,移动油机未到站时,站内通信设备由蓄电池放电供电; (3)移动油机到站,待油机启动后,由油机供电; (4)市电恢复后,由市电供电。 直流供电系统的运行方式: 在线恒压充电的全浮充供电方式。 (1)当交流电源正常时,由整流器和蓄电池并联浮充供电(整流器一方面给通信设备,一方面又给蓄电池充电,以补充蓄电池因自放电而失去的电量); (2)当交流电源中断后,由蓄电池单独向通信设备供电;

(3)当交流电源恢复供电时,开关电源的监控模块自动启动整流器向通信负荷供电,并对蓄电池进行充电。 蓄电池组既为备用电源,又可以吸收高频纹波电流。 二、开关电源柜硬件配置概述 当前基站中常见的电源柜厂家有艾默生、中兴、中达、华为、北京动力源等,其中艾默生的占比最大,以下以艾默生电源柜做示例。 1、开关电源柜功能架构 (1)逻辑架构 高频开关组合电源由交流配电单元、直流配电单元、整流模块、监控模块组成。 交流配电单元:输入市电或油机电源,将交流电能分配给开关电源整流模块使用;

含有浪涌保护器,作为基站电源系统的第二级防雷保护。 直流配电单元:通过直流汇流母排,将开关电源整流模块输出的直流电能提供给通信设备用电,并对电池进行充电。 整流模块:从交流配电取得交流电能,将交流电整流成直流电,输出到直流母排。监控模块:实时监测和控制电源系统各部分工作,对电池进行自动管理,具有标准的RS232或RS485通信口,作为后台监控的接口。 (2)开关电源柜现场图 2、交流配电单元

艾默生直流分路计量设备接入艾默生FSU安装调试指导手册

艾默生直流分路计量设备安装指导手册 1.分路计量设备现场安装指导 1、常用安装工具及辅材准备 1.分路计量设备安装所需工具大致如图所示,施工小组上站之前注意要配齐这些工具,并注意工具 绝缘保护。 2.工具:手电钻、螺丝刀、剥线钳、斜口钳、钳形万用表等。 3.辅材:导轨、自攻丝、压线端子、绕线管、机打标签纸等。 1.开关电源供电线路的区分与确认 霍尔传感器安装之前,必须确定出所有需要检测的线缆,并区分出各线缆归属的运营商。这一操作步骤一定认真完成,确保准确,如遇问题及时联系随工维护人员。 1.确认开关电源供电线路是否有电流 使用钳形万用表对每一条线缆进行测量确认,查看线缆中的电流大小,当电流大于0.5A时,默认用户使用,需要再次核实、校验。核实在用的线缆必须加装霍尔传感器进行监控(可多线缆安装一个霍尔传感器)。所有的一次下电、二次下电的供电线路都需要核实、校验并监控。 2.确认开关电源供电线路所属运营商 1.电量计量模块安装要求 1.电量计量模块安装位置选择 ①开关电源柜内,用导轨进行安装固定

②如果开关电源柜内无法安装,则安装在开关电源柜的两侧,如果开关电源柜两侧有其他机柜遮挡不方便安装,再选择电源柜的后侧。侧面安装位置应遵循从左往右,从上往下依次进行安装,为后续扩容留有位置。 2)固定导轨的安装 导轨安装时,选择距离电源柜顶部约4--5CM的位置,要保证电量计量模块安装后其最上端,不高于开关电源柜的顶部边缘。 1.电量计量模块的固定 ①电量计量模块固定在导轨上,注意保证卡槽固定到位、牢固。 ②电量计量模块所用线缆需用扎带绑扎、固定。 1.电量计量模块供电要求 电量计量模块采用-48V供电,供电位置必须选择在开关电源二次下电供电空开。供电线缆需用标签进行标注“电量计量模块用电”,且一定注意区分一、二次下电位置与所贴标签是否正确。

相关主题
文本预览
相关文档 最新文档