当前位置:文档之家› 上海交大材料科学基础知识点总结

上海交大材料科学基础知识点总结

上海交大材料科学基础知识点总结
上海交大材料科学基础知识点总结

第一章材料中的原子排列

第一节原子的结合方式

1 原子结构

2 原子结合键

(1)离子键与离子晶体

原子结合:电子转移,结合力大,无方向性和饱和性;

离子晶体;硬度高,脆性大,熔点高、导电性差。如氧化物陶瓷。

(2)共价键与原子晶体

原子结合:电子共用,结合力大,有方向性和饱和性;

原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。如高分子材料。

(3)金属键与金属晶体

原子结合:电子逸出共有,结合力较大,无方向性和饱和性;

金属晶体:导电性、导热性、延展性好,熔点较高。如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体

原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O

(4)混合键。如复合材料。

3 结合键分类

(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式

(1)晶体:原子在三维空间内的周期性规则排列。长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。长程无序,各向同性。

第二节原子的规则排列

一晶体学基础

1 空间点阵与晶体结构

(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。图1-5

特征:a 原子的理想排列;b 有14种。

其中:

空间点阵中的点-阵点。它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷;b 可有无限多种。

2 晶胞图1-6

(1)――-:构成空间点阵的最基本单元。

(2)选取原则:

a 能够充分反映空间点阵的对称性;

b 相等的棱和角的数目最多;

c 具有尽可能多的直角;

d 体积最小。

(3)形状和大小

有三个棱边的长度a,b,c及其夹角α,β,γ表示。

(4)晶胞中点的位置表示(坐标法)。

3 布拉菲点阵图1-7

14种点阵分属7个晶系。

4 晶向指数与晶面指数

晶向:空间点阵中各阵点列的方向。

晶面:通过空间点阵中任意一组阵点的平面。

国际上通用米勒指数标定晶向和晶面。

(1)晶向指数的标定

a 建立坐标系。确定原点(阵点)、坐标轴和度量单位(棱边)。

b 求坐标。u’,v’,w’。

c 化整数。u,v,w.

d 加[ ]。[uvw]。

说明:

a 指数意义:代表相互平行、方向一致的所有晶向。

b 负值:标于数字上方,表示同一晶向的相反方向。

c 晶向族:晶体中原子排列情况相同但空间位向不同的一组晶向。用表示,数字相同,但排列顺序不同或正负号不同的晶向属于同一晶向族。

(2)晶面指数的标定

a 建立坐标系:确定原点(非阵点)、坐标轴和度量单位。

b 量截距:x,y,z。

c 取倒数:h’,k’,l’。

d 化整数:h,k,k。

e 加圆括号:(hkl)。

说明:

a 指数意义:代表一组平行的晶面;

b 0的意义:面与对应的轴平行;

c 平行晶面:指数相同,或数字相同但正负号相反;

d 晶面族:晶体中具有相同条件(原子排列和晶面间距完全相同),空间位向不同的各组晶面。用{hkl}表示。

e 若晶面与晶向同面,则hu+kv+lw=0;

f 若晶面与晶向垂直,则u=h, k=v, w=l。

(3)六方系晶向指数和晶面指数

a 六方系指数标定的特殊性:四轴坐标系(等价晶面不具有等价指数)。

b 晶面指数的标定

标法与立方系相同(四个截距);用四个数字(hkil)表示;i=-(h+k)。

c 晶向指数的标定

标法与立方系相同(四个坐标);用四个数字(uvtw)表示;t=-(u+w)。

依次平移法:适合于已知指数画晶向(末点)。

坐标换算法:[UVW]~[uvtw]

u=(2U-V)/3, v=(2V-U)/3, t=-(U+V)/3, w=W。

(4)晶带

a ――:平行于某一晶向直线所有晶面的组合。

晶带轴晶带面

b 性质:晶带用晶带轴的晶向指数表示;晶带面//晶带轴;

hu+kv+lw=0

c 晶带定律

凡满足上式的晶面都属于以[uvw]为晶带轴的晶带。推论:

(a)由两晶面(h1k1l1) (h2k2l2)求其晶带轴[uvw]:

u=k1l2-k2l1; v=l1h2-l2h1; w=h1k2-h2k1。

(b)由两晶向[u1v1w1][u2v2w2]求其决定的晶面(hkl)。

H=v1w1-v2w2; k=w1u2-w2u1; l=u1v2-u2v1。

(5)晶面间距

a ――:一组平行晶面中,相邻两个平行晶面之间的距离。

b 计算公式(简单立方):

d=a/(h2+k2+l2)1/2

注意:只适用于简单晶胞;对于面心立方hkl不全为偶、奇数、体心立方h+k+l=奇数时,d(hkl)=d/2。

二典型晶体结构及其几何特征

1三种常见晶体结构

面心立方(A1, FCC)体心立方(A1, BCC)密排六方(A3, HCP)

晶胞原子数 4 2 6

点阵常数a=2/2r a=4/3/3r a=2r

配位数12 8(8+6)12

致密度0.74 0.68 0.74

堆垛方式ABCABC.. ABABAB.. ABABAB..

结构间隙正四面体正八面体四面体扁八面体四面体正八面体

(个数)8 4 12 6 12 6

(rB/rA)0.225 0.414 0.29 0.15 0.225 0.414

配位数(CN):晶体结构中任一原子周围最近且等距离的原子数。

致密度(K):晶体结构中原子体积占总体积的百分数。K=nv/V。

间隙半径(rB):间隙中所能容纳的最大圆球半径。

2 离子晶体的结构

(1)鲍林第一规则(负离子配位多面体规则):在离子晶体中,正离子周围形成一个负离子配位多面体,正负离子间的平衡距离取决于正负离子半径之和,正离子的配位数取决于正负离子的半径比。

(2)鲍林第二规则(电价规则含义):一个负离子必定同时被一定数量的负离子配位多面体所共有。

(3)鲍林第三规则(棱与面规则):在配位结构中,共用棱特别是共用面的存在,会降低这个结构的稳定性。

3 共价键晶体的结构

(1)饱和性:一个原子的共价键数为8-N。

(2)方向性:各键之间有确定的方位

(配位数小,结构稳定)

三多晶型性

元素的晶体结构随外界条件的变化而发生转变的性质。

四影响原子半径的因素

(1)温度与应力

(2)结合键的影响

(3)配位数的影响(高配位结构向低配位结构转变时,体积膨胀,原子半径减小减缓体积变化。

(4)核外电子分布的影响(一周期内,随核外电子数增加至填满,原子半径减小至一最小值。

第三节原子的不规则排列

原子的不规则排列产生晶体缺陷。晶体缺陷在材料组织控制(如扩散、相变)和性能控制(如材料强化)中具有重要作用。

晶体缺陷:实际晶体中与理想点阵结构发生偏差的区域。

(晶体缺陷可分为以下三类。)

点缺陷:在三维空间各方向上尺寸都很小的缺陷。如空位、间隙原子、异类原子等。

线缺陷:在两个方向上尺寸很小,而另一个方向上尺寸较大的缺陷。主要是位错。

面缺陷:在一个方向上尺寸很小,在另外两个方向上尺寸较大的缺陷。如晶界、相界、表面等。

一点缺陷

1 点缺陷的类型图1-31

(1)空位:

肖脱基空位-离位原子进入其它空位或迁移至晶界或表面。

弗兰克尔空位-离位原子进入晶体间隙。

(2)间隙原子:位于晶体点阵间隙的原子。

(3)置换原子:位于晶体点阵位置的异类原子。

2 点缺陷的平衡浓度

(1)点缺陷是热力学平衡的缺陷-在一定温度下,晶体中总是存在着一定数量的点缺陷(空位),这时体系的能量最低-具有平衡点缺陷的晶体比理想晶体在热力学上更为稳定。(原因:晶体中形成点缺陷时,体系内能的增加将使自由能升高,但体系熵值也增加了,这一因素又使自由能降低。其结果是在G-n曲线上出现了最低值,对应的n值即为平衡空位数。)

(2)点缺陷的平衡浓度

C=Aexp(-?Ev/kT)

3 点缺陷的产生及其运动

(1)点缺陷的产生

平衡点缺陷:热振动中的能力起伏。

过饱和点缺陷:外来作用,如高温淬火、辐照、冷加工等。

(2)点缺陷的运动

(迁移、复合-浓度降低;聚集-浓度升高-塌陷)

4 点缺陷与材料行为

(1)结构变化:晶格畸变(如空位引起晶格收缩,间隙原子引起晶格膨胀,置换原子可引起收缩或膨胀。)

(2)性能变化:物理性能(如电阻率增大,密度减小。)

力学性能(屈服强度提高。)

二线缺陷(位错)

位错:晶体中某处一列或若干列原子有规律的错排。

意义:(对材料的力学行为如塑性变形、强度、断裂等起着决定性的作用,对材料的扩散、相变过程有较大影响。)

位错的提出:1926年,弗兰克尔发现理论晶体模型刚性切变强度与与实测临界切应力的巨大差异(2~4个数量级)。

1934年,泰勒、波朗依、奥罗万几乎同时提出位错的概念。

1939年,柏格斯提出用柏氏矢量表征位错。

1947年,柯垂耳提出溶质原子与位错的交互作用。

1950年,弗兰克和瑞德同时提出位错增殖机制。

之后,用TEM直接观察到了晶体中的位错。

1 位错的基本类型

(1)刃型位错

模型:滑移面/半原子面/位错线(位错线┻晶体滑移方向,位错线┻位错运动方向,晶体滑移方向//位错运动方向。)

分类:正刃型位错(┻);负刃型位错(┳)。

(2)螺型位错

模型:滑移面/位错线。(位错线//晶体滑移方向,位错线┻位错运动方向,晶体滑移方向┻位错运动方向。)

分类:左螺型位错;右螺型位错。

(3)混合位错

模型:滑移面/位错线。

2 位错的性质

(1)形状:不一定是直线,位错及其畸变区是一条管道。

(2)是已滑移区和未滑移区的边界。

(3)不能中断于晶体内部。可在表面露头,或终止于晶界和相界,或与其它位错相交,或自行封闭成环。

3 柏氏矢量

(1)确定方法(避开严重畸变区)

a 在位错周围沿着点阵结点形成封闭回路。

b 在理想晶体中按同样顺序作同样大小的回路。

c 在理想晶体中从终点到起点的矢量即为――。

(2)柏氏矢量的物理意义

a 代表位错,并表示其特征(强度、畸变量)。

b 表示晶体滑移的方向和大小。

c 柏氏矢量的守恒性(唯一性):一条位错线具有唯一的柏氏矢量。

d 判断位错的类型。

(3)柏氏矢量的表示方法

a 表示: b=a/n[uvw] (可以用矢量加法进行运算)。

b 求模:/b/=a/n[u2+v2+w2]1/2。

4 位错密度

(1)表示方法:ρ=K/V

ρ=n/A

(2)晶体强度与位错密度的关系(τ-ρ图)。

(3)位错观察:浸蚀法、电境法。

5 位错的运动

(1)位错的易动性。

(2)位错运动的方式

a 滑移:位错沿着滑移面的移动。

刃型位错的滑移:具有唯一的滑移面

螺型位错的滑移:具有多个滑移面。

位错环的滑移:注重柏氏矢量的应用。

b 攀移:刃型位错在垂直于滑移面方向上的运动。

机制:原子面下端原子的扩散――位错随半原子面的上下移动而上下运动。

分类:正攀移(原子面上移、空位加入)/负攀移(原子面下移、原子加入)。

应力的作用:(半原子面侧)压应力有利于正攀移,拉应力有利于负攀移。(3)作用在位错上的力(单位距离上)

滑移:f=τb;

攀移:f=σb。

6 位错的应变能与线张力

(1)单位长度位错的应变能:W=αGb2。

(α=0.5~1.0, 螺位错取下限,刃位错取上限。)

(2)位错是不平衡的缺陷。

(商增不能抵销应变能的增加。)

(3)位错的线张力:T=αGb2。

(4)保持位错弯曲所需的切应力:τ=Gb/2r。

7 位错的应力场及其与其它缺陷的作用

(1)应力场

螺位错:τ=Gb/2πr。(只有切应力分量。)

刃位错:表达式(式1-9)

晶体中:滑移面以上受压应力,滑移面以下受拉应力。

滑移面:只有切应力。

(2)位错与位错的交互作用

f=τb ,f=-σb (刃位错)。

同号相互排斥,异号相互吸引。(达到能量最低状态。)

(3)位错与溶质原子的相互作用

间隙原子聚集于位错中心,使体系处于低能态。

柯氏气团:溶质原子在位错线附近偏聚的现象。

(4)位错与空位的交互作用

导致位错攀移。

8 位错的增殖、塞积与交割

(1)位错的增殖:F-R源。

(2)位错的塞积

分布:逐步分散。

位错受力:切应力作用在位错上的力、位错间的排斥力、障碍物的阻力。

(3)位错的交割

位错交割后结果:按照对方位错柏氏矢量(变化方向和大小)。

割阶:位错交割后的台阶不位于它原来的滑移面上。

扭折:――――――――位于―――――――――。

对性能影响:增加位错长度,产生固定割阶。

9 位错反应

(1)位错反应:位错的分解与合并。

(2)反应条件

几何条件:∑b前=∑b后;反应前后位错的柏氏矢量之和相等。

能量条件:∑b2前>∑b2后; 反应后位错的总能量小于反应前位错的总能量。

10 实际晶体中的位错

(1)全位错:通常把柏氏矢量等于点阵矢量的位错称为全位错或单位位错。

(实际晶体中的典型全位错如表1-7所示)

(2)不全位错:柏氏矢量小于点阵矢量的位错。

(实际晶体中的典型不全位错如表1-7所示)

(3)肖克莱和弗兰克不全位错。

肖克莱不全位错的形成:原子运动导致局部错排,错排区与完整晶格区的边界线即为肖克莱不全位错。(结合位错反应理解。可为刃型、螺型或混合型位错。)

弗兰克不全位错的形成:在完整晶体中局部抽出或插入一层原子所形成。(只能攀移,不能滑移。)

(4)堆垛层错与扩展位错

堆垛层错:晶体中原子堆垛次序中出现的层状错排。

扩展位错:一对不全位错及中间夹的层错称之。

三面缺陷

面缺陷主要包括晶界、相界和表面,它们对材料的力学和物理化学性能具有重要影响。

1 晶界

(1)晶界:两个空间位向不同的相邻晶粒之间的界面。

(2)分类

大角度晶界:晶粒位向差大于10度的晶界。其结构为几个原子范围

内的原子的混乱排列,可视为一个过渡区。

小角度晶界:晶粒位向差小于10度的晶界。其结构为位错列,又分

为对称倾侧晶界和扭转晶界。

亚晶界:位向差小于1度的亚晶粒之间的边界。为位错结构。

孪晶界:两块相邻孪晶的共晶面。分为共格孪晶界和非共格孪晶界。

2 相界

(1)相界:相邻两个相之间的界面。

(2)分类:共格、半共格和非共格相界。

3 表面

(1)表面吸附:外来原子或气体分子在表面上富集的现象。

(2)分类

物理吸附:由分子键力引起,无选择性,吸附热小,结合力小。

化学吸附:由化学键力引起,有选择性,吸附热大,结合力大。

4 界面特性

(1)界面能会引起界面吸附。

(2)界面上原子扩散速度较快。

(3)对位错运动有阻碍作用。

(4)易被氧化和腐蚀。

(5)原子的混乱排列利于固态相变的形核。

第二章固体中的相结构

合金与相

1 合金

(1)合金:两种或两种以上的金属,或金属与非金属经一定方法合成的具有金属特性的物质。

(2)组元:组成合金最基本的物质。(如一元、二元、三元合金〕(3)合金系:给定合金以不同的比例而合成的一系列不同成分合金的总称。

2 相

(1)相:材料中结构相同、成分和性能均一的组成部分。(如单相、两相、多相合金。)

(2)相的分类

固溶体:晶体结构与其某一组元相同的相。含溶剂和溶质。

中间相(金属化合物):组成原子有固定比例,其结构与组成组元均不相同的相。

第一节固溶体

按溶质原子位置不同,可分为置换固溶体和间隙固溶体。

按固溶度不同,可分为有限固溶体和无限固溶体。

按溶质原子分布不同,可分为无序固溶体和有序固溶体。

1 置换固溶体

(1)置换固溶体:溶质原子位于晶格点阵位置的固溶体。

(2)影响置换固溶体溶解度的因素

a 原子尺寸因素

原子尺寸差越小,越易形成置换固溶体,且溶解度越大。

△r=(rA-rB)/rA

当△r<15%时,有利于大量互溶。

b 晶体结构因素

结构相同,溶解度大,有可能形成无限固溶体。

c 电负性因素

电负性差越小,越易形成固溶体,溶解度越大。

d 电子浓度因素

电子浓度e/a越大,溶解度越小。e/a有一极限值,与溶剂晶体结构有关。一价面心立方金属为1.36,一价体心立方金属为1.48。

(上述四个因素并非相互独立,其统一的理论的是金属与合金的电子理论。)

2 间隙固溶体

(1)影响因素:原子半径和溶剂结构。

(2)溶解度:一般都很小,只能形成有限固溶体。

3 固溶体的结构

(1)晶格畸变。

(2)偏聚与有序:完全无序、偏聚、部分有序、完全有序。

4 固溶体的性能

固溶体的强度和硬度高于纯组元,塑性则较低。

(1)固溶强化:由于溶质原子的溶入而引起的强化效应。

(2)柯氏气团

(3)有序强化

第二节金属间化合物

中间相是由金属与金属,或金属与类金属元素之间形成的化合物,也称为金属间化合物。

1 正常价化合物

(1)形成:电负性差起主要作用,符合原子价规则。

(2)键型:随电负性差的减小,分别形成离子键、共价键、金属键。

(3)组成:AB或AB2。

2 电子化合物(电子相)

(1)形成:电子浓度起主要作用,不符合原子价规则。

(2)键型:金属键(金属-金属)。

(3)组成:电子浓度对应晶体结构,可用化学式表示,可形成以化合物为基的固溶体。

3 间隙化合物

(1)形成:尺寸因素起主要作用。

(2)结构

简单间隙化合物(间隙相):金属原子呈现新结构,非金属原子位于其间隙,结构简单。

复杂间隙化合物:主要是铁、钴、铬、锰的化合物,结构复杂。

(3)组成:可用化学式表示,可形成固溶体,复杂间隙化合物的金属元素可被置换。

4 拓扑密堆相

(1)形成:由大小原子的适当配合而形成的高密排结构。

(2)组成:AB2。

5 金属化合物的特性

(1)力学性能:高硬度、高硬度、低塑性。

(2)物化性能:具有电学、磁学、声学性质等,可用于半导体材料、形状记忆材料、储氢材料等。

第三节陶瓷晶体相

1 陶瓷材料简介

(1)分类:结构陶瓷(利用其力学性能):强度(叶片、活塞)、韧性(切削刀具)、硬度(研磨材料)。

功能陶瓷(利用其物理性能)

精细功能陶瓷:导电、气敏、湿敏、生物、超导陶瓷等。

功能转换陶瓷:压电、光电、热电、磁光、声光陶瓷等。

结合键:离子键、共价键。

硅酸盐陶瓷:主要是离子键结合,含一定比例的共价键。可用分子式表示

其组成。

2 硅酸盐陶瓷的结构特点与分类

(1)结构特点

a 结合键与结构:主要是离子键结合,含一定比例的共价键。硅位于氧四面体的间隙。

b 每个氧最多被两个多面体共有。氧在两个四面体之间充当桥梁作用,称为氧桥。

(2)结构分类

a 含有限Si-O团的硅酸盐,包括含孤立Si-O团和含成对或环状Si-O团两类。

b 链状硅酸盐:Si-O团共顶连接成一维结构,又含单链和双链两类。

c 层状硅酸盐:Si-O团底面共顶连接成二维结构。

d 骨架状硅酸盐:Si-O团共顶连接成三维结构。

第四节分子相

1 基本概念

(1)高分子化合物:由一种或多种化合物聚合而成的相对分子质量很大的化合物。又称聚合物或高聚物。

(2)分类

按相对分子质量:分为低分子聚合物(<5000)和高分子聚合物(>5000)。

按组成物质:分为有机聚合物和无机聚合物。

2 化学组成

(以氯乙烯聚合成聚氯乙烯为例)

(1)单体:组成高分子化合物的低分子化合物。

(2)链节:组成大分子的结构单元。

(3)聚合度n:大分子链中链节的重复次数。

3 高分子化合物的合成

(1)加聚反应

a 概念:由一种或多种单体相互加成而连接成聚合物的反应。(其产物为聚合物)

b 组成:与单体相同。反应过程中没有副产物。

c 分类

均聚反应:由一种单体参与的加聚反应。

共聚反应:由两种或两种以上单体参与的加聚反应。

(2)缩聚反应

a 概念:由一种或多种单体相互混合而连接成聚合物,同时析出某种低分子化合物的反应。

b 分类

均缩聚反应:由一种单体参加的缩聚反应。

共缩聚反应:由两种或两种以上单体参加的缩聚反应。

4 高分子化合物的分类

(1)按性能与用途:塑料、橡胶、纤维、胶黏剂、涂料等。

(2)按生成反应类型:加聚物、缩聚物。

(3)按物质的热行为:热塑性塑料和热固性塑料。

5 高分子化合物的结构

(1)高分子链结构(链内结构,分子内结构)

a 化学组成

b 单体的连接方式

均聚物中单体的连接方式:头-尾连接、头-头或尾-尾相连、无轨连接。

共聚物中单体的连接方式:

无轨共聚:ABBABBABA

交替共聚:ABABABAB

嵌段共聚:AAAABBAAAABB

接枝共聚:AAAAAAAAAAA

B B

B B

B B

c 高分子链的构型(按取代基的位置与排列规律)

全同立构:取代基R全部处于主链一侧。

间同立构:取代基R相间分布在主链两侧。

无轨立构;取代基R在主链两侧不规则分布。

d 高分子链的几何形状:线型、支化型、体型。

(2)高分子的聚集态结构(链间结构、分子间结构)

无定形结构、部分结晶结构、结晶型结构(示意图)

6高分子材料的结构与性能特点

(1)易呈非晶态。

(2)弹性模量和强度低。

(3)容易老化。

(4)密度小。

(5)化学稳定性好。

第五节玻璃相

1 结构:长程无序、短程有序

(1)连续无轨网络模型。

(2)无规密堆模型。

(3)无轨则线团模型。

2 性能

(1)各向同性。

(2)无固定熔点。

(3)高强度、高耐蚀性、高导磁率(金属)。

第三章凝固与结晶

凝固:物质从液态到固态的转变过程。若凝固后的物质为晶体,则称之为结晶。凝固过程影响后续工艺性能、使用性能和寿命。

凝固是相变过程,可为其它相变的研究提供基础。

第一节材料结晶的基本规律

1 液态材料的结构

结构:长程有序而短程有序。

特点(与固态相比):原子间距较大、原子配位数较小、原子排列较混乱。

2 过冷现象

(1)过冷:液态材料在理论结晶温度以下仍保持液态的现象。(见热分析实验图)(2)过冷度:液体材料的理论结晶温度(Tm) 与其实际温度之差。

△T=Tm-T (见冷却曲线)

注:过冷是凝固的必要条件(凝固过程总是在一定的过冷度下进行)。

3 结晶过程

(1)结晶的基本过程:形核-长大。(见示意图)

(2)描述结晶进程的两个参数

形核率:单位时间、单位体积液体中形成的晶核数量。用N表示。

长大速度:晶核生长过程中,液固界面在垂直界面方向上单位时间内迁移的距离。用G 表示。

第二节材料结晶的基本条件

1 热力学条件

(1)G-T曲线(图3-4)

a 是下降曲线:由G-T函数的一次导数(负)确定。

dG/dT=-S

b 是上凸曲线:由二次导数(负)确定。

d2G/d2T=-Cp/T

c 液相曲线斜率大于固相:由一次导数大小确定。

二曲线相交于一点,即材料的熔点。

(2)热力学条件

△Gv=-Lm△T/Tm

a △T>0, △Gv<0-过冷是结晶的必要条件(之一)。

b △T越大, △Gv越小-过冷度越大,越有利于结晶。

c △Gv的绝对值为凝固过程的驱动力。

2 结构条件

结构起伏(相起伏):液态材料中出现的短程有序原子集团的时隐时现现象。是结晶的必要条件(之二)。

第三节晶核的形成

均匀形核:新相晶核在遍及母相的整个体积内无轨则均匀形成。

非均匀形核:新相晶核依附于其它物质择优形成。

1 均匀形核

(1)晶胚形成时的能量变化

△G=V△Gv+σS

=(4/3)πr3△Gv+4πr2σ(图3-8)

〔2〕临界晶核

d△G/dr=0

rk=-2σ/△Gv

临界晶核:半径为rk的晶胚。

(3〕临界过冷度

rk=-2σTm/Lm△T

临界过冷度:形成临界晶核时的过冷度。△Tk.

△T≥△Tk是结晶的必要条件。

(4)形核功与能量起伏

△Gk=Skσ/3

临界形核功:形成临界晶核时需额外对形核所做的功。

能量起伏:系统中微小区域的能量偏离平均能量水平而高低不一的现象。(是结晶的必要条件之三)。

(5)形核率与过冷度的关系

N=N1.N2 (图3-11,12)

由于N受N1.N2两个因素控制,形核率与过冷度之间是呈抛物线的关系。

2 非均匀形核

(1)模型:外来物质为一平面,固相晶胚为一球冠。

(2)自由能变化:表达式与均匀形核相同。

(3)临界形核功

计算时利用球冠体积、表面积表达式,结合平衡关系σlw=σsw+σslcosθ计算能量变化和临界形核功。

△Gk非/△Gk=(2-3cosθ+cos3θ)/4

a θ=0时,△Gk非=0,杂质本身即为晶核;

b 180>θ>0时, △Gk非<△Gk, 杂质促进形核;

cθ=180时,△Gk非=△Gk,杂质不起作用。

(4)影响非均匀形核的因素

a 过冷度:(N-△T曲线有一下降过程)。(图3-16)

b 外来物质表面结构:θ越小越有利。点阵匹配原理:结构相似,点阵常数相近。

c 外来物质表面形貌:表面下凹有利。(图3-17)

第四节晶核的长大

1 晶核长大的条件

(1)动态过冷

动态过冷度:晶核长大所需的界面过冷度。(是材料凝固的必要条件)

(2)足够的温度

(3)合适的晶核表面结构。

2 液固界面微结构与晶体长大机制

粗糙界面(微观粗糙、宏观平整-金属或合金从来可的界面):垂直长大。

光滑界面(微观光滑、宏观粗糙-无机化合物或亚金属材料的界面):二维晶核长大、依靠缺陷长大。

3 液体中温度梯度与晶体的长大形态

(1)正温度梯度(液体中距液固界面越远,温度越高)

粗糙界面:平面状。

光滑界面:台阶状。

(2)负温度梯度(液体中距液固界面越远,温度越低)

粗糙界面:树枝状。

光滑界面:树枝状-台阶状。

第五节凝固理论的应用

1 材料铸态晶粒度的控制

Zv=0.9(N/G)3/4

(1)提高过冷度。降低浇铸温度,提高散热导热能力,适用于小件。

(2)化学变质处理。促进异质形核,阻碍晶粒长大。

(3)振动和搅拌。输入能力,破碎枝晶。

2 单晶体到额制备

(1)基本原理:保证一个晶核形成并长大。

(2)制备方法:尖端形核法和垂直提拉法。

3 定向凝固技术

(1)原理:单一方向散热获得柱状晶。

(2)制备方法。

4 急冷凝固技术

(1)非晶金属与合金

(2)微晶合金。

(3)准晶合金。

第四章二元相图

相:(概念回顾)

相图:描述系统的状态、温度、压力及成分之间关系的图解。

二元相图:

第一节相图的基本知识

1 相律

(1)相律:热力学平衡条件下,系统的组元数、相数和自由度数之间的关系。

(2)表达式:f=c-p+2; 压力一定时,f=c-p+1。

(3)应用

可确定系统中可能存在的最多平衡相数。如单元系2个,二元系3个。

可以解释纯金属与二元合金的结晶差别。纯金属结晶恒温进行,二元合金变温进行。

2 相图的表示与建立

(1)状态与成分表示法

状态表示:温度-成分坐标系。坐标系中的点-表象点。

成分表示:质量分数或摩尔分数。

(2)相图的建立

方法:实验法和计算法。

过程:配制合金-测冷却曲线-确定转变温度-填入坐标-绘出曲线。

相图结构:两点、两线、三区。

3 杠杆定律

(1)平衡相成分的确定(根据相率,若温度一定,则自由度为0,平衡相成分随之确定。)

(2)数值确定:直接测量计算或投影到成分轴测量计算。

(3)注意:只适用于两相区;三点(支点和端点)要选准。

第二节二元匀晶相图

1 匀晶相同及其分析

(1)匀晶转变:由液相直接结晶出单相固溶体的转变。

(2)匀晶相图:具有匀晶转变特征的相图。

(3)相图分析(以Cu-Ni相图为例)

两点:纯组元的熔点;

两线:L, S相线;

三区:L, α, L+α。

2 固溶体合金的平衡结晶

(1)平衡结晶:每个时刻都能达到平衡的结晶过程。

(2)平衡结晶过程分析

①冷却曲线:温度-时间曲线;

②相(组织)与相变(各温区相的类型、相变反应式,杠杆定律应用。);

③组织示意图;

④成分均匀化:每时刻结晶出的固溶体的成分不同。

(3)与纯金属结晶的比较

①相同点:基本过程:形核-长大;

热力学条件:⊿T>0;

能量条件:能量起伏;

结构条件:结构起伏。

②不同点:合金在一个温度范围内结晶(可能性:相率分析,必要性:成分均匀化。)

合金结晶是选分结晶:需成分起伏。

3 固溶体的不平衡结晶

(1)原因:冷速快(假设液相成分均匀、固相成分不均匀)。

(2)结晶过程特点:固相成分按平均成分线变化(但每一时刻符合相图);

结晶的温度范围增大;

组织多为树枝状。

(3)成分偏析:晶内偏析:一个晶粒内部化学成分不均匀现象。

枝晶偏析:树枝晶的枝干和枝间化学成分不均匀的现象。

(消除:扩散退火,在低于固相线温度长时间保温。)

4 稳态凝固时的溶质分布

(1)稳态凝固:从液固界面输出溶质速度等于溶质从边界层扩散出去速度的凝固过程。

(2)平衡分配系数:在一定温度下,固、液两平衡相中溶质浓度的比值。

k0=Cs/Cl

(3)溶质分布:液、固相内溶质完全混合(平衡凝固)-a;

固相不混合、液相完全混合-b;

固相不混合、液相完全不混合-c;

固相不混合、液相部分混合-d。

(4)区域熔炼(上述溶质分布规律的应用)

5 成分过冷及其对晶体生长形态的影响

最新材料科学基础总结

材料科学基础复习总结填空 1.过冷奥氏体发生的马氏体转变属于(非扩散型相变)。 2.碳钢淬火要得到马氏体组织,其冷却速度要(大于)临界冷却速度(vk)。 3.珠光体型的组织是由铁素体和渗碳体组成的(机械混合物)。 4.工件淬火后需立即回火处理,随着回火温度的提高,材料的硬度(越低)。 5.共析成分的液态铁碳合金缓慢冷却得到的平衡组织是P(铁碳相图) 6.表征材料表面局部区域内抵抗变形能力的指标为(硬度)。 7.下列原子结合键既具有方向性又具有饱和性的是(共价键)。 8.下面哪个不属于大多数金属具有的晶体结构(面心立方、体心立方、密排六方)。 9.面心立方结构晶胞中原子数个数是( 4 )。 10.如图1所示的位错环中,属于刃型位错的是()。 11.A为右螺旋位错,B为左螺旋位 错,C为正刃位错,D为负刃位错, E为混合位错。 判断方法是根据柏氏矢量与位错线 所形成的角度,图中位错环所标的 方向为位错线的规定方向,柏氏矢 量垂直于位错的是刃型位错,然后 将柏氏矢量按顺时针方向旋转90°,与位错方向相同的为正,相反的为负,叫做顺正逆负。柏氏矢量与位错方向平行的是螺型位错,方向相同的为右螺,方向相反为左螺,这叫做顺右逆左。除ABCD四点之外位错环上其他任意一点均是混合位错。 12.固体材料中物质传输的方式为(扩散)。液态是对流。 13.纯铁在室温下的晶体结构为(面心立方)。 14.由一种成分的液相同时凝固生成两种不同成分固相的过程称为(共晶)。 15.共析包晶 16.碳原子溶于α-Fe中形成的固溶体为(铁素体)。 17.钢铁材料的热加工通常需要加热到(奥氏体)相区。 18.成分三角形中标出了O材料的成分点( )。三元相图 19.白铜是以(镍)为主要合金元素的铜合金。 20.45钢和40Cr钢比较,45钢的(淬透性低(合金),淬硬性高(含碳量))。 21.金属塑性变形方式的是(滑移)。孪生 22.高分子大分子链的柔顺性决定了高分子材料独特的性能。 23.在置换型固溶体中,两组元原子扩散速率的差异引起的标记面漂移现象称为柯肯达耳效应。 24.为减少铸造缺陷,铸造合金需要熔点低、流动性好,因此一般选择共晶点附近的合金。 25.根据相律,对于三元合金,最大的平衡相数为4个。 26.调质处理是淬火+高温回火的复合热处理工艺。 27.材料塑性常用断后伸长率和断后收缩率两个指标表示。

(完整版)厦大材料科学基础知识点总结

第一章原子结构和键合 原子中一个电子的空间和能量的描述 (1)主量子数ni:决定原子中电子能量和核间平均距离,即量子壳层,取正整数K、L、M、N、O、P、Q (2)轨道动量量子数li:给出电子在同一量子壳层内所处的能级(电子亚层),与电子运动的角动量有关,s,p,d,f (3)磁量子数mi:给出每个轨道角动量数或轨道数,决定原子轨道或子云在空间的伸展方向 (4)自旋角动量量子数si:表示电子自旋的方向,取值为+1/2 或-1/2 核外电子的排布规律 (1)能量最低原理:电子总是占据能量最低的壳层,使体系的能量最低。而在同一电子层,电子依次按s,p,d,f的次序排列。 (2)Pauli不相容原理:在一个原子中不可能有运动状态完全一样的两个电子。因此,主量子数为n的壳层,最多容纳2n2电子。 (3)Hund原则:在同一个亚能级中的各个能级中,电子的排布尽可能分占不同的能级,而且自旋方向相同。 原子间的键(见作业) 第二章固体结构 晶体结构的基本特征:原子(或分子、离子)在三维空间呈周期性重复排列。即存在长程有序。性能上两大特点:(1)固定的熔点;(2)各向异性 空间点阵的概念将晶体中原子或原子团抽象为纯几何点(阵点)即可得到一个由无数几何点在三维空间排列成规则的阵列—空间点阵特征:每个阵点在空间分布必须具有完全相同的周围环境 晶胞:代表性的基本单元(最小平行六面体) 选取晶胞的原则: Ⅰ)选取的平行六面体应与宏观晶体具有同样的对称性; Ⅱ)平行六面体内的棱和角相等的数目应最多; Ⅲ)当平行六面体的棱角存在直角时,直角的数目应最多; Ⅳ)在满足上条件,晶胞应具有最小的体积。 晶体结构与空间点阵的区别: 空间点阵是晶体中质点的几何学抽象,用以描述和分析晶体结构的周期性和对称性,由于各点阵的周围环境相同,只有14种。 晶体是指晶体中实际质点(原子、离子和分子)的具体排列情况,它们能组成各种类型的排列,因此,实际存在的晶体结构是无限的。 晶带 所有相交于某一晶向直线或平行于此直线的晶面构成一个“晶带”。此直线称为晶带轴,所有的这些晶面都称为共带面。晶带轴[u v w]与该晶带的晶面(h k l)之间存在以下关系 hu+kv+lw=0 ————晶带定律 凡满足此关系的晶面都属于以[u v w]为晶带轴的晶带

西安交大材料科学基础课后答案

第一章 8.计算下列晶体的离于键与共价键的相对比例 (1)NaF (2)CaO (3)ZnS 解:1、查表得:X Na =0.93,X F =3.98 根据鲍林公式可得NaF 中离子键比例为:21 (0.93 3.98)4 [1]100%90.2%e ---?= 共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21 (1.00 3.44)4 [1]100%77.4%e ---?= 共价键比例为:1-77.4%=22.6% 3、ZnS 中离子键比例为:2 1/4(2.581.65)[1]100%19.44%ZnS e --=-?=中离子键含量 共价键比例为:1-19.44%=80.56% 10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。 答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。 稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。 第二章 1.回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: (001)与[210],(111)与[112],(110)与 [111],(132)与[123],(322)与[236] (2)在立方晶系的一个晶胞中画出(111)和 (112)晶面,并写出两晶面交线的晶向指数。 (3)在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。 解:1、(132) (111) [112] (110) [111] [123] [236] (112) (111) (322) (101) (112) [111] (001)[210] [110] (101) (011)(101) [111] (011) (112) (101) [111] (112) 2.有一正交点阵的 a=b, c=a/2。某晶面在三个晶轴上的截距分别为 6个、2个和4个原子间距,求该晶面的密勒指数。 3.立方晶系的 {111}, 1110}, {123)晶面族各包括多少晶面?写出它们的密勒指数。 4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、[1101]晶向和(1012)晶面,并 确定(1012)晶面与六方晶胞交线的晶向指数。 5.根据刚性球模型回答下列问题: (1)以点阵常数为单位,计算体心立方、面心立方和密排六方晶体中的原子半径及四面体和八面体的间隙半径。 (2)计算体心立方、面心立方和密排六方晶胞中的原子数、致密度和配位数。 6.用密勒指数表示出体心立方、面心立方和密排六方结构中的原子密排面和原子密排方向,并分别计算这些晶面和晶向上的原子密度。 解:1、体心立方 密排面:{110}22 1 144 1.4142a a -+? = 密排方向:<111> 11.153a a -=

材料科学基础总结

材料基础 一、名词解释 1、塑形变形: 2、滑移:晶体一部分相对另一部分沿着特定的晶面和晶向发生的平移滑动。滑移后再晶体表面留下滑移台阶,且晶体滑移是不均匀的。 3、滑移带:单晶体进行塑性变形后,在光学显微镜下,发现抛光表面有许多线条,称为滑移带。 4、滑移线:组成滑移带的相互平行的小台阶。 5、滑移系:一个滑移面和其上的一个滑移方向组成一个滑移系,表示晶体滑移是可能采取的一个空间方向。滑移系越多,晶体的塑形越好。 6、单滑移:当只有一组滑移系处于最有利的取向时,分切应力最大,便进行单系滑移。 7、多滑移:至少有两组滑移系的分切应力同时达到临界值,同时或交替进行滑移的过程。 8、交滑移:至少两个滑移面沿着某个共同的滑移方向同时或交替滑移,这种滑移叫交滑移。(会出现曲折或波纹状滑移带\最易发生交滑移的是体心立方晶体\纯螺旋位错) 9、孪生变形:在切应力作用下,晶体的一部分沿一定晶面和一定的晶向相对于另一部分作均匀的切变所产生的变形。(相邻晶面的相对位移量相等) 10、孪晶:孪生后,均匀切变区的取向发生改变,与未切变区构成镜面对称,形成孪晶。 11、晶体的孪晶面和孪生方向:体心,{112}【111】,面心立方{111}【112-】,密排六方{101-2} 【1-011】。 12、软取向,硬取向:分切应力最大时次取向是软取向;当外力与滑移面平行或垂直时,晶体无法滑移,这种取向称为硬取向。 13、几何软化、硬化:在拉伸时,随着晶体的取向的变化,滑移面的法向与外力轴的夹角越来越远离45度时滑移变得困难的这种现象是几个硬化;当夹角越来愈接近45度,使滑移越来越容易进行的现象叫做几何软化。 14、细晶强化:晶体中,用细化晶粒来提高材料强度的方法为细晶强化。也能改善晶体的塑形和韧性。 15、固熔强化:当合金由单相固熔体构成时,随熔质原子含量的增加,其塑性变形抗力大大提高,表现为强度,硬度的不断增加,塑性、韧性的不断下降,的这种现象称为固熔强化。(单相) 16、(多相)沉淀强化、时效强化:相变热处理 17、(多相)弥散强化:粉末冶金 18、纤维组织:随变形量的增加,晶粒沿变形方向被拉长扁平晶粒,变形量很大时,各晶粒一不能分辨而成为一片如纤维状的条纹称为纤维组织。 19、带状组织:当金属中组织不均匀,如有枝晶偏析或夹杂物时,塑性变形会使这些区域伸长,在热加工后或随后的热处理中会出现带状组织。 20、变形织构:多晶体材料中,岁变形度的增加,多晶体中原先取向的各个晶粒发生转动,从而使取向趋于一致,形成择优取向。丝织构【***】平行于线轴,板织构{***}【***】平行于扎制方向。 21、制耳:用有织构的扎制板材深冲成型零件时,将会因为板材各方向变形能不同,使深冲出来工件边缘不齐,壁厚不均的现象。 22、应变硬化、加工硬化:金属塑性变形过程中,随着变形量的增加,金属强度,硬度上升,塑性、韧性下降的现象。作用:变形均匀,均衡负载,增加安全性,提高强度 23、冷拉:试样在拉断前卸载,或因试样因被拉断二自动卸载,则拉伸中产生的大变形除少量可恢复外,大部分变形将保留下来的过程。

材料科学基础知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,

上交材料科学基础各章例题、习题与及解答

各章例题、习题与及解答 第1章原子结构与键合 1.何谓同位素?为什么元素的相对原子质量不总为正整数? ????答案:在元素周期表中占据同一位置,尽管它们的质量不同,然它们的化学性质相同的物质称为同 位素。由于各同位素的含中子量不同(质子数相同),故具有不同含量同位素的元素总的相对原子质量不为正整数。 ????2.已知Si的相对原子质量为28.09,若100g的Si中有5×1010个电子能自由运动,试计算:(a)能自由运动的电子占价电子总数的比例为多少?(b)必须破坏的共价键之比例为多少? ????答案:原子数=个 ????价电子数=4×原子数=4×2.144×1024=8.576×1024个 ????a) ????b) 共价键,共有2.144×1024个;需破坏之共价键数为5×1010/2=2.5×1010个;所以 ????3.有一共聚物ABS(A-丙烯腈,B-丁二烯,S-苯乙烯),每一种单体的质量分数均相同,求各单体的摩尔分数。 ????答案:丙烯腈(-C2H3CN-)单体相对分子质量为53; ????丁二烯(-C2H3C2H3-) 单体相对分子质量为54; ????苯乙烯(-C2H3C6H5-) 单体相对分子质量为104; ????设三者各为1g,则丙烯腈有1/53mol,丁二烯有1/54mol,苯乙烯有1/104mol。 ????故各单体的摩尔分数为 1.原子中一个电子的空间位置和能量可用哪四个量子数来决定?答案 2.在多电子的原子中,核外电子的排布应遵循哪些原则?答案 3.在元素周期表中,同一周期或同一主族元素原子结构有什么共同特点?从左到右或从上到下元素结构有什 么区别?性质如何递变?答案 4.何谓同位素?为什么元素的相对原子质量不总为正整数?答案 5.铬的原子序数为24,它共有四种同位素:4.31%的Cr原子含有26个中子,83.76%含有28个中子,9.55% 含有29个中子,且2.38%含有30个中子。试求铬的相对原子质量。答案 6.铜的原子序数为29,相对原子质量为63.54,它共有两种同位素Cu63和Cu65,试求两种铜的同位素之含量 百分比。答案

材料科学基础总结

材料科学基础总结 铸造C081 张云龙 一、名词解释 1、空间点阵:由周围环境相同的阵点在空间排列的三维列阵称为空间点阵。 2、晶体结构:由实际原子、离子、分子或各种原子集团,按一定规律的具体排列方式称为 晶体结构,或称为晶体点阵。 3、晶格常数:(为了便于分析晶体中的粒子排列,可以从晶体的点阵中取一个具有代表性 的基本单元作为点阵的基本单元,称为晶胞。)晶格常数就是指晶胞的边长。 4、晶向指数:(在晶格中,穿过两个以上结点的任一直线,都代表晶体中一个原子阵列在 空间的位向,称为晶向。)为了确定晶向在晶体中的相对取向,需要一种符号,这种符号称为晶向指数。 5、晶面指数:(在晶格中,由结点组成的任一平面都代表晶体的原子平面,称为晶面)为 了确定晶面在晶体中的相对取向,需要一种符号,这种符号称为晶面指数。 6、晶向族:原子排列相同但空间位向不同的所有晶向称为晶向族。 7、配位数:每个原子周围最近邻且等距离的原子的数目称为配位数。 8、致密度:计算单位晶胞中原子所占体积与晶胞体积之比,比值称为致密度。 9、各向异性:晶体的某些物理和力学性能在不同方向上具有不同的数值,此为晶体的各向 异性。 10、晶体缺陷:通常把晶体中原子偏离其平衡位置而出现不完整性的区域称为晶体缺陷。 11、点缺陷:在三维方向上尺寸都有很小的缺陷。 12、线缺陷:在两个方向上尺寸很小、令一个尺寸上尺寸较大的缺陷。(指各种类型的位错, 是晶体中某处一列或若干列原子发生了有规律的错排现象) 13、面缺陷:在一个方向上尺寸很小,令两个方向上尺寸较大的缺陷。 14、刃型位错:位错线与滑移方向垂直的位错。 15、螺型位错:位错线与滑移方向平行的位错。 16、混合型位错:位错线与滑移方向既不垂直也不平行而成任意角度的位错。 17、位错的滑移:在切应力的作用下,位错沿滑移面的运动称为位错的滑移。 18、位错的攀移:刃型位错在正应力的作用下,位错垂直于滑移面的运动。 19、单位位错:柏氏矢量的模等于该晶向上原子的间距的位错则为单位位错。 20、部分位错:柏氏矢量的模小于该晶向上原子的间距的位错则为部分位错。 21、扩展位错:两个肖克莱部分位错中间夹一层错,这样的位错组态称为扩展位错。 22、肖克莱部分位错:层错区与完整晶体区的交线。 23、弗克莱部分位错:层错区与右半部分完整晶体之间的边界。 24、上坡扩散:扩散由低浓度向高浓度进行而导致成分偏析或形成第二相的扩散。 25、下坡扩散:扩散由高浓度向低浓度进行而导致成分均匀的扩散。 26、原子扩散:扩散中只形成固溶体而无其它新相形成的扩散。 27、反应扩散:扩散中有新相形成的扩散。 28、自扩散:在均匀的固溶体或纯金属中原子的扩散,此种扩散不伴有浓度的变化。 29、互扩散:在不均匀的固溶体中异类原子的相对扩散,此种扩散伴有浓度的变化。 30、体扩散:通过均匀介质的扩散。 31、扩散能量:单位时间内通过垂直于扩散方向的单位面积的扩散物质流量。

上海交通大学材料科学基础试题真题

2005年上海交通大学材料科学基础考博试卷[回忆版] 材料科学基础: 8选5。每题两问,每问10分,我当10个题说吧,好多我也记不清是那个题下的小问了。 1。填空。你同学应该买那本材料科学基础习题了吧,看好那本此题就没多大问题,因为重复性很强。 2。论述刃位错和螺位错的异同点 3。画晶面和晶向,立方密排六方一定要会,不仅是低指数;三种晶型的一些参数象原子数配位数之类的 4。计算螺位错的应力。那本习题也有类似的,本题连续考了两年,让你同学注意下此题 5。置换固熔体、间隙固熔体的概念,并说明间隙固熔体、间隙相、间隙化合物的区别。那本习题上有答案、 6。扩散系数定义,及对他的影响因素 7。伪共晶定义,还有个相关的什么共晶吧,区分下。根据这概念好像有个类似计算的题,这我没做,不太记得了,总之就是共晶后面有点内容看下 8。关于固熔的题,好像是不同晶型影响固熔程度的题,我就记得当时我画了个铁碳相图举例说明了下还有两个关于高分子的题,我没做也没看是啥题 总之,我觉得复习材科把握课本及习题,习题很重要,有原题,而且我发现交大考试重基础,基本概念要搞清楚,就没问题。 上海交通大学2012年材料科学基础考博试卷[回忆版] 5 个大题,每个大题20分。下面列出的是材料科学基础的前五个大题,其中第一大题有几个想不起来了,暂列9个。 其实后边还有三道大题,一道是关于高分子的,一道是关于配位多面体的,还有最后一个是作为一个材料工作者结合经验谈谈对材料科学特别是对材料强韧化的看法和建议,我都没敢选。

一填空(20分,每空1分) 1 密排六方晶体有()个八面体间隙,()个四面体间隙 2 晶体可能存在的空间群有(230)种,可能存在的点群有(32)种。 3 离子晶体中,正负离子间的平衡距离取决于(),而正离子的配位数则取决于()。(鲍林第一规则) 4 共价晶体的配位数服从()法则。 5 固溶体按溶解度分为有限固溶体和无限固溶体,那么()固溶体永远属于有限固溶体。 6 空位浓度的计算公式:()。 7 菲克第一定律描述的是()扩散过程,菲克第二定律描述的是()扩散过程。 8 原子扩散的动力是(),物质由低浓度区域向高浓度区域的扩散过程称为()。9 一次再结晶的动力是(),而二次再结晶的动力是()。 二在立方晶体和密排六方晶体中画出下列M勒指数的晶面和晶向。(20分,每个2分)各有三个晶面、两个晶向,别的不记得了,就记得一个在密排六方中画[2 2 -4 3]晶向。 三简答 1 写出霍尔佩奇公式,并指出各参数的意义。(8分) 2 说明什么是屈服和应变失效,解释其机理。(12分) 四简答 1 忘了。。。(8分) 2 刃型位错和螺型位错的异同点(12分) 五相图题(20分)这个就是个送分题,Pb-Sn相图,分析w(Sn)%=50%的平衡凝固过程,并用杠杆定律计算室温下α相的含量。(见交大第三版材科第268、270页) 感言:可以看出,上交今年的材科题目比较简单,偏重于基础知识。这次考材科感觉像是上当了,复习的方向完全不对,那么多计算公式一个也没用到,像是一拳打出去扑了个空,而空间群有多少种、共价晶体配位数服从的8—N法则这种基础知识却没看到!所以以后要考的同学们一定要注意,课本要细细看一遍那,太难的题目基本不用做的。

材料科学基础要背知识总结

2010级材料科学基础复习参考材料 一、名词解释 第二章 2-1 Crystalline and Non-crystalline 结晶态与非晶态 Crystalline: The state of a solid material characterized by a periodic and repeating three-dimensional array of atoms,ions,or molecules. Non-crystalline:The solid state wherein there is no long-range atomic order.sometimes the terms amorphous,glassy,and vitreous are used synonymously. 2-2 Single crystalline materials and polycrystalline materials 单晶与多晶材料 Single crystalline materials:A crystalline solid for which the periodic and repeated atomic pattern extends throughout its entirety without interruption. polycrystalline materials:Referring to crystalline materials that are composed of more than one crystal or grain. 2-3 Crystal structure, point lattice and unit cell 晶体结构、空间点阵、单位晶胞 Crystal structure:For crystalline materials,the manner in which atoms or ions are arrayed in space.It is defined in terms of the unit cell geometry and the atom positions within the unite cell. point lattice:The regular geometrical arrangement of points in crystal space. unit cell:The basic structural unit of a crystal structure.It is generally defined in terms of atom(or ion) positions within a parallelepiped volume. 2-4点群与空间群 点群:是指宏观晶体中对称要素的集合。它包含了宏观晶体中全部对称要素的总和以及它们相互间的组合关系。 空间群:晶体内部结构中全部对称要素的集合。 2-5 Direction indices and plane indices 晶向指数与晶面指数 晶向指数:晶体点阵在任何方向上分解为相互平行的结点直线组,质点等距离地分布在直线上。位于一条直线上的质点构成一个晶向。用表示,其中u v w是晶向矢量在参考坐标系X Y Z轴上的矢量分量等比例化简而得到。 晶面指数:可将晶体点阵在任何方向上分解为相互平行的结点平面,即晶面,用表示,h l k是晶面在三个坐标轴(晶轴)上截距倒数的互质整数比。 2-6 Coordination number and coordination polyhedron配位数与配位多面体 配位数:一个原子(或离子)周围同种原子(或异号离子)的数目为原子或离子的配位数 配位多面体:由原子(或离子)与其配位原子(或异号离子)组成的多面体结构为配位多面体。

2005_2016年上海交通大学827材料科学基础试题真题版

2005年上海交通大学材料科学基础考博试题[ 回忆版] 材料科学基础: 8选5。每题两问,每问10 分,我当10 个题说吧,好多我也记不清是那个题下的小问了。 1。填空。你同学应该买那本材料科学基础习题了吧,看好那本此题就没多大问题,因为重复性很强。 2。论述刃位错和螺位错的异同点 3。画晶面和晶向,立方密排六方一定要会,不仅是低指数;三种晶型的一些参数象原子数配位数之类的 4。计算螺位错的应力。那本习题也有类似的,本题连续考了两年,让你同学注意下此题 5。置换固熔体、间隙固熔体的概念,并说明间隙固熔体、间隙相、间隙化合物的区别。那本习题上有答案、 6。扩散系数定义,及对他的影响因素 7。伪共晶定义,还有个相关的什么共晶吧,区分下。根据这概念好像有个类似计算的题,这我没做,不太记得了,总之就是共晶后面有点内容看下 8。关于固熔的题,好像是不同晶型影响固熔程度的题,我就记得当时我画了个铁碳相图举例说明了下还有两个关于高分子的题,我没做也没看是啥题 总之,我觉得复习材科把握课本及习题,习题很重要,有原题,而且我发现交大考试重基础,基本概念要搞清楚,就没问题。 上海交通大学2012年材料科学基础考博试题[回忆版] 5个大题,每个大题20 分。下面列出的是材料科学基础的前五个大题,其中第一大题有几个想不起来了,暂列9 个。 其实后边还有三道大题,一道是关于高分子的,一道是关于配位多面体的,还有最后一个是作为一个材料工作者结合经验谈谈对材料科学特别是对材料强韧化的看法和建议,我都没敢选。 一填空(20 分,每空1 分)

1密排六方晶体有()个八面体间隙,()个四面体间隙 2晶体可能存在的空间群有(230)种,可能存在的点群有(32 )种。 3离子晶体中,正负离子间的平衡距离取决于(),而正离子的配位数则取决于()。(鲍林第一规则) 4共价晶体的配位数服从()法则。 5固溶体按溶解度分为有限固溶体和无限固溶体,那么()固溶体永远属于有限固溶体。6 空位浓度的计算公式:()。 7 菲克第一定律描述的是()扩散过程,菲克第二定律描述的是()扩散过程。 8 原子扩散的动力是(),物质由低浓度区域向高浓度区域的扩散过程称为()。9 一次再结晶的动力是(),而二次再结晶的动力是()。 二在立方晶体和密排六方晶体中画出下列米勒指数的晶面和晶向。(20 分,每个2 分)各有三个晶面、两个晶向,别的不记得了,就记得一个在密排六方中画[2 2 -4 3] 晶向。 三简答 1写出霍尔佩奇公式,并指出各参数的意义。(8 分) 2说明什么是屈服和应变失效,解释其机理。(12 分) 四简答 1忘了。。。(8 分) 2刃型位错和螺型位错的异同点(12 分) 五相图题(20 分)这个就是个送分题,Pb-Sn 相图,分析w(Sn)%=50%的平衡凝固过程,并用杠杆定律计算室温下α相的含量。(见交大第三版材科第268、270 页) 感言:可以看出,上交今年的材科题目比较简单,偏重于基础知识。这次考材科感觉像是上当了,复习的方向完全不对,那么多计算公式一个也没用到,像是一拳打出去扑了个空,而 空间群有多少种、共价晶体配位数服从的8—N 法则这种基础知识却没看到!所以以后要考 的同学们一定要注意,课本要细细看一遍那,太难的题目基本不用做的。 英语部分:(没有听力~~)最后,附上今年的英语作文题目:Some people argue that one can succeed by taking risks or chances, however, some other people advocate that careful planning is the key to success. To what extent do you agree with the two opinions? Use specific examples to support your view. (300 words)感言:今年的英 语题目类型跟2008 年的题型一样,第一大题40 个选择题(20 分),第二大题6 篇阅读

2019年材料科学基础期末总结复习资料

材料科学基础期末总结复习资料 1、名词解释 (1)匀晶转变:由液相结晶出单相固溶体的过程称为匀晶转变。 (2)共晶转变:合金系中某一定化学成分的合金在一定温度下,同时由液相中结晶出两种不同成分和不同晶体结构的固相的过程称 为共晶转变。 (3)包晶转变:成分为H点的δ固相,与它周围成分为B点的液相L,在一定的温度时,δ固相与L液相相互作用转变成成分是J 点的另一新相γ固溶体,这一转变叫包晶转变或包晶反应。即HJB---包晶转变线,LB+δH→rJ (4)枝晶偏析:合金以树枝状凝固时,枝晶干中心部位与枝晶间的溶质浓度明显不同的成分不均匀现象。 (5)晶界偏析:晶粒内杂质原子周围形成一个很强的弹性应变场,相应的化学势较高,而晶界处结构疏松,应变场弱,化学势低,所以晶粒内杂质会在晶界聚集,这种使得溶质在表面或界面上聚集的现象称为晶界偏析 (6)亚共晶合金:溶质含量低于共晶成分,凝固时初生相为基体相的共晶系合金。 (7)伪共晶:非平衡凝固时,共晶合金可能获得亚(或过)共晶组织,非共晶合金也可能获得全部共晶组织,这种由非共晶合金所获得的全部共晶组织称为伪共晶组织。

(8)离异共晶:在共晶转变时,共晶中与初晶相同的那个相即附着在初晶相之上,而剩下的另一相则单独存在于初晶晶粒的晶界处,从而失去共晶组织的特征,这种被分离开来的共晶组织称为离异共晶。 (9)纤维组织:当变形量很大时,晶粒变得模糊不清,晶粒已难以分辨而呈现出一片如纤维状的条纹,这称为纤维组织。 (10)胞状亚结构:经一定量的塑性变形后,晶体中的位错线 通过运动与交互作用,开始呈现纷乱的不均匀分布,并形成位错缠结,进一步增加变形度时,大量位错发生聚集,并由缠结的位错组成胞状亚结构。 (11)加工硬化:随着冷变形程度的增加,金属材料强度和硬 度指标都有所提高,但塑性、韧性有所下降。 (12)结构起伏:液态结构的最重要特征是原子排列为长程无序、短程有序,并且短程有序原子集团不是固定不变的,它是一种此消彼长、瞬息万变、尺寸不稳定的结构,这种现象称为结构起伏。 (13)能量起伏:能量起伏是指体系中每个微小体积所实际具 有的能量,会偏离体系平均能量水平而瞬时涨落的现象。 (14)垂直长大:对于粗糙界面,由于界面上约有一半的原子 位置空着,故液相的原子可以进入这些位置与晶体结合起来,晶体便连续地向液相中生长,故这种长大方式为垂直生长。 (15)滑移临界分切应力:晶体的滑移是在切应力作用下进行的,但其中许多滑移系并非同时参与滑移,而只有当外力在某一滑移

材料科学基础知识点大全

点缺陷1范围分类1点缺陷.在三维空间各方向上尺寸都很小,在原子尺寸大小的晶体缺陷.2线缺陷在三维空间的一个方向上的尺寸很大(晶粒数量级),另外两个方向上的尺寸很小(原子尺寸大小)的晶体缺陷.其具体形式就是晶体中的位错3面缺陷在三维空间的两个方向上的尺寸很大,另外一个方向上的尺寸很小的晶体缺陷 2点缺陷的类型1空位.在晶格结点位置应有原子的地方空缺,这种缺陷称为“空位”2.间隙原子.在晶格非结点位置,往往是晶格的间隙,出现了多余的原子.它们可能是同类原子,也可能是异类原子3.异类原子.在一种类型的原子组成的晶格中,不同种类的原子替换原有的原子占有其应有的位置3点缺陷的形成弗仑克耳缺陷:原子离开平衡位置进入间隙,形成等量的空位和间隙原子.肖特基缺陷:只形成空位不形成间隙原子.(构成新的晶面)金属:离子晶体:1 负离子不能到间隙2 局部电中性要求 4点缺陷的方程缺陷方程三原则: 质量守恒, 电荷平衡, 正负离子格点成比例增减. 肖特基缺陷生成:0=V M,,+ V O··弗仑克尔缺陷生成: M M=V M,,+ M i ·· 非计量氧化物:1/2O2(g)=V M,,+ 2h·+ O O不等价参杂:Li2O=2Li M,+ O O + V O··Li2O+ 1/2O2 (g) =2Li M, + 2O O + 2h· .Nb2O5=2Nb Ti ·+ 2 e, + 4O O + 1/2O2 (g) 5过饱和空位.晶体中含点缺陷的数目明显超过平衡值.如高温下停留平衡时晶体中存在一平衡空位,快速冷却到一较低的温度,晶体中的空位来不及移出晶体,就会造成晶体中的空位浓度超过这时的平衡值.过饱和空位的存在是一非平衡状态,有恢复到平衡态的热力学趋势,在动力学上要到达平衡态还要一时间过程. 6点缺陷对材料的影响.原因无论那种点缺陷的存在,都会使其附近的原子稍微偏离原结点位置才能平衡即造成小区域的晶格畸变.效果1提高材料的电阻定向流动的电子在点缺陷处受到非平衡力(陷阱),增加了阻力,加速运动提高局部温度(发热)2加快原子的扩散迁移空位可作为原子运动的周转站3形成其他晶体缺陷过饱和的空位可集中形成内部的空洞,集中一片的塌陷形成位错4改变材料的力学性能.空位移动到位错处可造成刃位错的攀移,间隙原子和异类原子的存在会增加位错的运动阻力.会使强度提高,塑性下降. 位错 7刃型位错若将上半部分向上移动一个原子间距,之间插入半个原子面,再按原子的结合方式连接起来,得到和(b)类似排列方式(转90度),这也是刃型位错. 8螺型位错若将晶体的上半部分向后移动一个原子间距,再按原子的结合方式连接起来(c),同样除分界线附近的一管形区域例外,其他部分基本也都是完好的晶体.而在分界线的区域形成一螺旋面,这就是螺型位错 9柏氏矢量.确定方法,首先在原子排列基本正常区域作一个包含位错的回路,也称为柏氏回路,这个回路包含了位错发生的畸变.然后将同样大小的回路置于理想晶体中,回路当然不可能封闭,需要一个额外的矢量连接才能封闭,这个矢量就称为该位错的柏氏矢10柏氏矢量与位错类型的关系刃型位错,柏氏矢量与位错线相互垂直.(依方向关系可分正刃和负刃型位错).螺型位错,柏氏矢量与位错线相互平行.(依方向关系可分左螺和右螺型位错).混合位错,柏氏矢量与位错线的夹角非0或90度. 柏氏矢量守恒1同一位错的柏氏矢量与柏氏回路的大小和走向无关.2位错不可能终止于晶体的内部,只能到表面,晶界和其他位错,在位错网的交汇点, 11滑移运动--刃型位错的滑移运动在晶体上施加一切应力,当应力足够大时,有使晶体上部向有发生移动的趋势.假如晶体中有一刃型位错,显然位错在晶体中发生移动比整个晶体移动要容易.因此,①位错的运动在外加切应力的作用下发生;②位错移动的方向和位错线垂直;③运动位错扫过的区域晶体的两部分发生了柏氏矢量大小的相对运动(滑移);④位错移出晶体表面将在晶体的表面上产生柏氏矢量大小的台阶.螺型位错的滑移在晶体上施加一切应力,当应力足够大时,有使晶体的左右部分发生上下移动的趋势.假如晶体中有一螺型位错,显然位错在晶体中向后发生移动,移动过的区间右边晶体

材料科学基础-名词解释.

材料科学基础名词解释(上海交大第二版) 第一章原子结构 结合键结合键分为化学键和物理键两大类,化学键包括金属键、离子键和共价键;物理键即范德华力。 化学键是指晶体内相邻原子(或离子)间强烈的相互作用。 金属键金属中的自由电子与金属正离子相互作用所构成的键合称为金属键。 离子键阴阳离子之间通过静电作用形成的化学键叫作离子键 共价键由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。 范德华力是借助临近原子的相互作用而形成的稳定的原子结构的原子或分子结合为一体的键合。 氢键氢与电负性大的原子(氟、氧、氮等)共价结合形成的键叫氢键。 近程结构高分子重复单元的化学结构和立体结构合称为高分子的近程结构。它是构成高分子聚合物最底层、最基本的结构。又称为高分子的一级结构 远程结构由若干个重复单元组成的大分子的长度和形状称为高分子的远程结构 第二章固体结构 1、晶体:原子在空间中呈有规则的周期性重复排列的固体物质。晶体熔化时具固定的熔点,具有各向异性。 2、非晶体:原子是无规则排列的固体物质。熔化时没有固定熔点,存在一个软化温度范围,为各向同性。 3、晶体结构:原子(或分子、离子)在三维空间呈周期性重复排列,即存在长程有序。 4、空间点阵:阵点在空间呈周期性规则排列,并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵,简称点阵。 5、阵点:把实际晶体结构看成完整无缺的理想晶体,并将其中的每个质点抽象为规则排列于空间的几何点,称之为阵点。 6、晶胞:为了说明点阵排列的规律和特点,在点阵中取出一个具有代表性的单基本元(最

小平行六面体)作为点阵的组成单元,称为晶胞。 7、晶系:根据六个点阵参数间的相互关系,将全部空间点阵归属于7中类型,即7个晶系,分别为三斜、单斜、正交、六方、菱方、四方和立方。 13、晶带轴:所有平行或相交于某一晶向直线的晶面构成一个晶带,此直线称为晶带轴。属于此晶带的晶面称为共带面。 14、晶面间距:晶面间的距离。 18、点群:点群是指一个晶体中所有点对称元素的集合。 19、空间群:用以描述晶体中原子组合所有可能的方式,是确定晶体结构的依据,它是通过宏观和微观对称元素在三维空间的组合而得出的。 20、晶胞原子数:一个晶胞体积内的原子数。 21、点阵常数:晶胞的大小一般是由晶胞的棱边长度来衡量的,它具有表征晶体结构的一个重要基本参数。 22、配位数:指晶体结构中任一原子周围最近邻且等距离的原子数。 23、致密度:指晶体结构中原子体积占总体积的百分数。 24、多晶型:有些固态金属在不同的温度和压力下具有不同的晶体结构,即具有多晶型,转变产物为同素异形体。 25、合金:指由两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成并具有金属特性的物质。 26、相:指合金中具有同一聚集状态、同一晶体结构和性质并以界面相互隔开的均匀组成部分。 27、固溶体:是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶质原子)所形成的均匀固态溶体,它保持着溶剂的晶体结构类型。 28、中间相:两组元A和B组成合金时,除了可形成以A为基或以B为基的固溶体(端际固溶体)外,还可能形成晶体结构与A,B两组元不同的新相,由于它们在二元相图上位置总是位于中间,故通常把这些相称为中间相。 29、置换固溶体:当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。

【上海交大材料科学基础复习要点(原版)】材料科学基础习题及参考答案

材料科学基础参考答案 材料科学基础第一次作业 1.举例说明各种结合键的特点。 ⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。 ⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。 ⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。 ⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。结合较弱。 ⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。 2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。 (213) 3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。 {1120}的等价晶面:(1120)(2110)(1210)(1120)(2110)(1210) {1012}的等价晶面:(1012)(1102)(0112)(1012)(1102)(0112) (1012)(1102)(0112)(1012)(1102)(0112) 2110 <>的等价晶向:[2110][1210][1120][2110][1210][1120] 1011 <>的等价晶向:[1011][1101][0111][0111][1101][1011] [1011][1101][0111][0111][1101][1011]

材料科学基础最新考题总结_百度文库

#名词解释(5*4) 1、萤石结构:Ca2+作立方紧密堆积 ,F-充填于全部的四面体空隙,八面体空隙全部空着,因此在八个F-之间存在有较大的空洞,为阴离子F-的扩散提供条件。 2、反萤石结构:晶体结构与萤石完全相同,只是阴、阳离子的位置完全互换。 3、正尖晶石 答:在尖晶石AB2O4型结构中,如果A离子占据四面体空隙,B离子占据八面体 空隙,则称为正尖晶石。(A)[B2]O4。 4、反尖晶石型结构 答:如果半数的B离子占据四面体空隙,A离子和另外半数的B离子占据八面体空隙,则称为反尖晶石。 (B)[AB]O4。 5、二八面体:在层状结构硅酸盐晶体中,二八面体以共棱方式相连,但八面体中的离子被其他两个阳离子所共用,因而称为二八面体。 6、三八面体:仍共棱方式相连,但八面体中的离子被其他三个阳离子所共用,因此成为三八面体。 7、位移性转变:这种改变不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子位置发生少许位移。是高低温转变,所需能量低,属于可逆转变,转变速度快。 8、重建性转变:是破坏原有原子间的化学键,改变原子最邻近的配位数,是晶体结构完全改变。使晶体结构完全改变原样的一种多晶转变形式。需要破坏化学键,所需能量高,有些是不可逆转变,转变速率慢。 9、同质多晶现象:相同的化学组成,在不同的热力学条件下却能形成不同的晶体的结构,表现出不同的物理、化学性质。 10、类质同晶现象:化学组成相似或相近,在相同的热力学条件下,形成的晶体具有相同的结构。 11、弗仑克尔缺陷:正常格点离子和间隙位置反应生成间隙离子和空位的过程。特征:当晶体中剩余空隙比较大时,如萤石CaF2型结构等,容易产生弗仑克尔缺陷。 12、肖特基缺陷:正常格点位置的离子跃迁到晶体表面的位置上,在原来的各点留下空位。 特征:当晶体中剩余空隙比较小,如NaCl型结构,容易形成肖特基缺陷。 13、置换式固溶体:亦称替代固溶体,其溶质原子位于点阵结点上,替代(置换)了部分溶剂原子。 14、间隙式固溶体,亦称填隙式固溶体,其溶质原子位于点阵的间隙中

相关主题
文本预览
相关文档 最新文档