当前位置:文档之家› 非常规油气田(页岩气)的酸化压裂及采工艺

非常规油气田(页岩气)的酸化压裂及采工艺

非常规油气田(页岩气)的酸化压裂及采工艺
非常规油气田(页岩气)的酸化压裂及采工艺

非常规油气田(页岩气)开发压裂的相关工艺与要

一、页岩气的基本简介

关于页岩气的定义,Curtis 认为页岩气可以是储存在天然裂隙和颗粒间孔隙中的游离气,也可以是干酪根和页岩颗粒表面的吸附气或者是干酪根和沥青质中的溶解气。中国地质大学张金川教授给出的定义是: 主体位于暗色泥页岩或者高碳泥页岩中,以吸附和游离状态为主要存在方式的地层中的天然气聚集。页岩气以多相态存在于致密页岩中以游离、吸附和溶解状态存在于暗色泥页岩中的天然气,其赋存形式具有多样性,但以游离态和吸附态为主,溶解态仅少量存在,游离气主要存在于粒间空隙和天然裂隙中,吸附气则存在于基质表面。对于页岩储层评价:页岩的埋深和厚度、孔隙度和渗透率、裂缝是页岩气储集的衡量条件,页岩气藏富集程度的关键因素主要包括页岩厚度、有机质含量和页岩储层空间三大因素。

1、美国页岩气的勘探开发现状。20世纪30年代,美国密歇根州的Antrim页岩气藏进入中等程度开发阶段。到80年代已钻井9000口,美国开发最积极的页岩气富集带位于Texas的FortWorth盆地的Barnett页岩气藏它的成功开发。得到了工业界的广泛关注,1986年首次在Barnett页岩气藏采用大规模的水力压裂。1992年在Barnett页岩气藏完成第一口水平井通过不断提高的水力压裂技术和工艺,加速了Barnett页岩气藏的开发。在此后的20年里Barnett页岩气藏的开发生产模式在北美工业界得到了推广。在过去的10年间Barnett页岩气的采收率从2%增加到50%在美国48个州。除阿拉斯加和夏威夷,广泛分布高有机质页岩,资源量在1483×10121859×1012m3加之煤层气和低渗透气藏的开发,将对美国能源形势起到重要的贡献。

2、开发瓶颈

中国页岩气开发还处于探索阶段,仅松辽、伊通盆地有几口井开始试气,初产在1000立方米左右,四川盆地和鄂尔多斯盆地也已经着手准备成立先导试验区。

作为一个新兴的非常规能源,页岩气资源的开发需要大量技术、资金和人员投入。而中国页岩气资源的开发刚刚起步,经验匮乏,技术不成熟,这些因素制约着中国页岩气的发展,页岩气资源的规模开发还有很长的路要走。页岩气开发对技术的要求很高,相对常规天然气来说,开采起来比较难,这主要是由页岩气藏的特点决定的。

页岩气开采的核心技术是水平井钻井法和水力压裂法(或称压裂法)。美国超过一半的天然气都是通过压裂法开采获得。该方法是用“压裂液体”,即化学物质夹杂着大量水、泥沙,用高压注入地下井,压裂邻近的岩石构造,扩张裂口,使天然气能流入井中得以收集。但是这些活动可能会对环境和人类健康产生负面影响,其中包括污染空气、水源和土壤等。更何况,页岩气生产区往往是缺水区,而该产业又必须消耗大量水资源,这就形成了一对矛盾,使其生产不可能无限制地快速增加。[4]

二、页岩气的开采工艺

从化学组成上说,页岩气是典型的干气,其主要成分是CH4(CH4含量大于等于90%)但是某些储层也产出湿气。页岩气储层是富含有机质的岩层,其组成中占首要地位

的是坚硬的黏土颗粒,片状沉降的黏土矿物颗粒以及层状的沉积物使得岩石水平渗透率很小,垂向渗透率更小。因此,采用水平井钻井。

1、水平井钻井。在页岩气的开发中,水平井已成为主流,在相同的页岩储层中,水平井垂直于裂缝的方向,有效地增加与气藏的接触面积一般水平段的长度从705——1600m,比直井的产量和采收率高。水平井的完井方式为:套管固井、使用分隔器以便于多级压裂。

一般而言水平井的走向对提高产能非常重要,一般应横切裂缝,但是Barnett页岩气藏的开发表明:在气藏较厚的区域内,即使有压裂阻挡层,井眼的走向并不是提高产能的最决定性的因素。但是在断层带和气藏的边部,井的走向和压裂缝的方向对井的产能有很大的影响。主裂缝通常近似垂直于最小水平应力的方向,在一个气田中,主要的自然裂缝和人工裂缝的走向是一致的。当然也不排除局部的应力变化水平井距主要取决于对裂缝方向和最优化井筒方向的了解,加强岩石力学的了解,能减少或取消水平井集成射孔从而能够压裂出主裂缝和纵横交错的裂缝分支。当然,水平井的井距应该使单井和邻井之间裂缝的也能交联,使裂缝的实际连通达到最大化,还要考虑是否可采用邻近的2口以上的井同时压裂,使气藏在更大的压力下产生更复杂的裂缝系统。

1、压裂技术。常规酸化压裂技术一般采用前置液酸压,先用高粘度前置液压开延伸裂缝,然后泵入低粘度酸液,使酸液从高粘度前置液中指状穿过,形成指状酸蚀缝。一般采用多级交替前置液酸压工艺,即先用高粘度前置液造缝,然后交替泵入酸液和前置液,利用多级前置液填充并封堵被前面一级酸液溶蚀出的孔洞,迫使后续酸液在裂缝中流动反应,溶蚀具有高导流能力的指进沟槽,并在酸液进一步溶蚀前使溶蚀出的酸蚀缝进一步延伸。

页岩气压裂技术一般采用水力压裂。清水压裂(Water Fracturing)是在清水中加入少量的减阻剂,稳定剂,表面活性剂等添加剂作为压裂液进行的压裂作业,又叫做减阻水压裂。水力压裂已经形成了工业标准,水力压裂目前的进展包括泵入量低黏度近纯水的稀砂液段塞到页岩层中,以诱发新裂缝以及扩大页岩层中的原始裂缝。压裂作业过程分成几级,每级集中对一个连续的气层段压裂。使得压裂设备的所有压裂能力都被集中应用到单个气藏单元中这,也被称为体积压裂。降阻水压裂液在很多低渗透储层中效果好。从20世纪80年代以来,降阻水压裂已应用于Barnett页岩气田的8000口井,多级水平井压裂和采用低黏度压裂液的2口以上邻井的同期压裂有效地增加了裂缝的复杂性。根据统计数据,裂缝系统和气藏的接触面积可以达到9.2×106m2。该项技术简单实用,但是对某些页岩可能并不适用,则可以采用凝胶压裂,气体辅助压裂或复合压裂等其他压裂技术。此外,降阻水压裂液的黏度太低,所以砂和支撑剂的携带能力有限。目前,复合压裂液的使用日渐广泛,在这项技术中,降阻水用于打开裂缝,黏度大的压裂液则用于运输支撑剂到裂缝的远端。不同压裂方式的确定根本依据还是取决页岩的性质,希望达到的裂缝与页岩的接触面积,撑剂要达到的位置和预期的产量要求等。

除了水力压裂,还有泡沫压裂,凝胶压裂,多级压裂,同步压裂,水力喷射压裂,重复压裂等。多级压裂是利用封堵球或限流技术分隔储层不同层位进行分段压裂的技术。

多级压裂能够针对储层特点进行有针对性的施工,目标准确,压裂效果明显。多级压裂有 2 种方式一是滑套封隔器分段压裂,二是可钻式桥塞分段压裂。目前,在美国页岩气生产井中,有85%的井采用水平井和多级压裂技术结合的方式开采,增产效果显著。多级滑套封隔器分段压裂是目前页岩水平井多段压裂中前沿的完井方式,它能够在水平井或直井中同时压裂多个层段而不必使用桥塞分隔。滑套完井方法是一种可以通过机械或水力的方法,进行操作的完井方式。它使用滑动套管和可膨胀的封割器,使作业者通过关闭一个和多个层段在一个井筒中选择性地进入多个不同的油层,而不需要使用连续油管或铰接管来分隔层段。在压裂流体中投入直径逐渐增大的封隔球,可以将已经压裂的层段封隔起来,

进行下一个层段的压裂,整个操作过程连续进行,不用停止泵入压裂液。

同步压裂指对 2 口或2 口以上的配对井进行同时压裂。同步压裂采用使压裂液和支撑剂在高压下从一口井向另一口井运移距离最短的方法,来增加水力压裂裂缝网络的密度和表面积,利用井间连通的优势来增大工作区裂缝的程度和强度。最大限度地连通天然裂缝同步压裂最初是 2 口互相接近且深度大致相同的水平井间的同时压裂。目前已发展成 3 口井同时压裂,甚至4 口井同时压裂。同步压裂对页岩气井短期内增产非常明显,而且对工作区环境影响小,完井速度快,节省压裂成本,是页岩气开发中后期比较常用的压裂技术。

水力喷射压裂是集水力射孔、压裂、隔离一体化的水力压裂技术。对裸眼水平井进行水力压裂,当储层发育较多的天然裂缝时,大而裸露的井壁表面会使大量流体损失,影响压裂效果。水力喷射压裂技术不使用密封元件而维持较低的井筒压力,迅速准确地压开多条裂缝,解决了裸眼完井水力压裂的难题。水力喷射压裂由3 个过程共同完成,水力喷砂射孔,水力压裂和环空挤压。优点是不受水平井完井方式的限制,可在裸眼和各种完井结构水平井实现压裂,缺点是受到压裂井深和加砂规模的限制重复压裂。

重复压裂除了用来恢复低产井的产能外,同样也用于有些产量相对较高的井。事实上,生产状况良好的井经常具备实施重复压裂的条件,高潜力的井具备的条件是实施重复压裂增产成功的关键。

总之,(1)水力压裂技术是页岩气开发的核心技术之一,现已广泛应用在页岩气井的增产作业中,目前常用的水力压裂技术有多级压裂、清水压裂、同步压裂、水力喷射压裂和重复压裂。

(2)多级压裂技术是目前页岩气水力压裂作业中应用最广泛的技术。多级压裂加水平井是合理的页岩气开发方式,清水压裂改变了以往依靠交联冻胶延长裂缝的手段,既达到了增产效果,又减小了对地层的伤害。,同步压裂技术作业的特点是2 口或2口以上的井同时压裂尤其适用于开发中后期井眼密集时的压裂作业。水力喷射压裂的应用不受完井方式的限制,可在裸眼和各种完井结构水平井实现压裂,缺点是受到压裂井深和加砂规模的限制。重复压裂能够有效地改善单井产量与生产动态特性,除用来恢复低产井的产能外,对于那些产量相对较高的井提高产量同样适用。

(3)清水压裂作业成本低,地层伤害小,在国内常规油气开发中应用成熟,是现阶段中国页岩气开发储层改造的适用技术。对于开采长度、厚度、大的页岩气井,可以使用多级分段清水压裂。在开发中后期产量下降时,可以使用重复压裂技术重新改造,随着中国页岩气开发技术的成熟和开发规模的扩大同步压裂技术是规模化页岩气开发的客观需要。

废水处理实验方案

实验方案 为满足目前纺织染整行业印染废水排放标准的要求,原有的处理工艺已无法满足当前的排放要求,需要对其进行提标改建。从而达到更低的排放要求。由于当前污水处理车间占地面积有限,新建场地较少。根据目前的实际情况,设计了如下小试实验方案: 方案1:基于完全混合活性污泥,根据镜检污泥结构、实际生化池泡沫等问题提出的PACT工艺,即:通过向活性污泥中投加粉末活性炭。一方面,改善污泥结构;另一方面,对生化池泡沫起到一定的吸附消泡,提高污水处理效果的方法。 控制节点:主要对活性炭的加入量以及污泥浓度等进行调控,连续运行观察试验效果及处理效率。 所需材料:活性炭 方案2:由于粉末活性炭的比表面积大,孔隙率小;吸附作用占主体;并且随着实验的进行,活性炭逐渐趋于饱和。受活性炭再生困难的影响,活性炭与活性污泥完全混合,随污泥排放逐渐流失,进而失去其可持续效果。针对此情况,提出向小试实验中投加悬浮载体,形成MBBR工艺,对污水进行强化处理。该

工艺是活性污泥法与生物膜法的结合,集活性污泥法运转灵活,生物膜法污泥浓度高、生物相丰富、可有效避免污泥膨胀等优势相结合。 控制节点与关键:启动过程填料添加过程,分次添加,每次添加以不拥堵为准,均匀分布于废水中,静置30 min;曝气,静置;添加填料(填料填充比例按照30%);运行过程按照活性污泥法,污泥浓度与活性污泥法一致。填料无须冲洗;生化池出口以滤网或筛网拦截悬浮轻质填料;主要观察试验处理效果。 所需材料:轻质悬浮载体填料(鲍尔环、多面空心球、花环填料、全新PP 悬浮生物填料等)

方案3:从污水处理的整个污水处理工艺单元来看,退浆水经过了厌氧处理,进入调节池,然后与东西进水混合,由于东西进水的成分中依然含有一些难降解的成分需要进行预处理,建议对调节池的出水进行水解酸化处理后,然后进入后续单元;小试装置基于此原理设计了以调节池作为进水的实验流程。

页岩气开采压裂技术分析与思考

页岩气开采压裂技术分析与思考 摘要:目前,社会进步迅速,页岩气存储于致密泥页岩地层中,页岩连续分布、区域广,含有一定量的黏土矿物,塑性强,在高应力载荷下易发生形变,页岩储 层具有低孔低渗等特性,需对页岩储层进行改造才具备商业开发价值。目前涪陵 区块和川东南区块,均已实现页岩气大规模开发,形成一套成熟的页岩气开采工艺,工艺实施需借助现场施工实现,只有严格把控施工质量,确保工艺有效实施,才能够实现对页岩气资源的高效开发。下文对此进行简要的阐述。 关键词:页岩气;开采压裂技术分析;思考 引言 伴随着油田行业的深入发展,如今能源紧缺问题已经成为了社会性现实。页 岩气储层低孔低渗,往往要投入巨大的精力对其进行压裂改造才能够保障产能稳定。水力压裂中压裂液性能带来的影响十分直观与突出。 1页岩气压裂施工质量技术现状 当前,经常使用的技术大多是多级压裂、清水、压裂、水力喷射压裂、重复 压裂与同步压裂等等,页岩气开发过程中所使用的储层改造技术还有氮气泡沫压 裂和大型水力压裂也是国内外目前的主流压裂技术。影响页岩气产量的主要原因 是裂缝的发育程度,如何得到较多的人造裂缝是压裂设计主要应该考虑的。如何 才能得到有效而又经济的压裂成果,在实行水力压裂以前,经常要实行压裂的设计。然而,压裂设计的工作确双有许多,最为主要的核心应属压裂效果的模拟, 经过压裂的模拟才可以预测裂缝发育的宽度及长度,从而知道压裂能否顺利成功。 2页岩气压裂开采中对环境的影响 页岩气压裂在开采的过程当中必定会因为一些噪声及废水废气等开采事故灾 害对环境造成一些污染影响,通常会对水资源进行大量的消耗以及地下水层进行 污染。目前,有些专家和环保人士在对页岩气压裂开采的过程也是提出了很多相 关环境污染的影响问题,同时,岩气压裂在开采过程中确实造成了较为严重的环 境污染。 2.1大量消耗水资源 页岩气压裂的开采使用的水力压裂法是压裂液最为重要的,分别由高压水、 砂以及化学添加剂而组成的。页岩气压裂的开采其用水量也是较大的,一般情况 页岩气压裂开采需消耗四至五百万加化的水资源才能使页岩断裂。 2.2污染地下水层 页岩气压裂开采过程当中,其化学物质有可能会直接通过断裂及裂缝由地下 深处慢慢转向向上移动到地表或者浅层,同时也可能页岩气压裂开采过程中由于 质量问题或者某些操作的不当导致破裂或者空洞。某些石油公司把页岩气压裂使 用过程中的的压裂液中的化学添加剂当成非常重要化学物质,然而,也因为这些 化学物质就可能会造成地下水层的污染。其中的化学物质可能会泄露到地下水层 当中,从而就污染了湖泊及蓄水池等等的地下水资源。当整个开采过程完成以后,其很大部分的压裂液又转回流向了地面,而流回地面的压裂液当中不光只有压裂 液里面某些化学物质,也还有部分地壳中原本就存在的放射性物质以及大量盐之类。当一些有毒污水再流回现场时,转而再流向污水处理厂以及回收再利用,当 遇到雨季来临时,整个过程就造成了严重的地下水层污染。 3页岩气压裂施工工艺 随着页岩气开发力度的不断增大,常规的压裂施工技术已经不能满足大规模

压裂酸化控制程序

1 目的 本程序规定了压裂酸化施工工序QHSE方面的要求,旨在确保环境、健康安全的基础上提高施工质量,满足用户要求,降低或避免压裂酸化施工过程对环境的影响和员工的职业健康安全风险程度。 2 适用范围 本程序适用于压裂酸化施工过程各工序的控制。 3 参照文件 QHSE/FYXJ-M-2007《QHSE管理手册》 4 术语与定义 4.1 压裂(油层水力压裂):利用地面高压泵组,向井内高速注入具有一定粘度的液体,利用液体传压性质,在井底形成某一足够高的压力,将油层中原来的岩石压力作用下的致密油(气)层压开,形成一条或数条裂缝,然后加入支撑剂,支持已形成的裂缝,增加油层的渗滤能力,减少油层中的油流阻力,提高油(气、水)井生产能力的工艺方法。 4.2 酸化:利用酸液与油层岩石中的矿物和粘土成份起化学作用,提高油层渗透性,增加产油(气)量和注水量的办法。 4.3 入井材料:压裂、酸化施工时注入井内的施工液体(压裂液、酸化液)、支撑剂以及配制施工液体所使用的化工原料的总称。 5 职责 5.1生产管理部负责压裂酸化施工设计的接收及数据参数的确认工作,对生产施工所需的入井材料、设备、施工技术人员进行合理调配、组织衔接。 5.2作业队负责配合压裂酸化作业施工。 5.3承包商负责压裂酸化施工。 6 实施步骤 6.1 接收设计 生产管理部接收用户或用户委托部门提供的《××井地质设计》、《××井压裂(酸化)工艺设计》,并进行登记,下发给作业队。 6.2 生产管理部对《××井压裂(酸化)工艺设计》的内容进行了解、确认,若发现以

下方面与施工现状不适宜时,应及时与用户进行沟通,并协调修改。 a)施工井的基础数据,工艺数据; b)选择的入井材料规格和性能; c)施工设备能力; 6.3承包商的选择 承包商的选择,执行QHSE/FYXJ-P12-2007《供方(承包商)控制程序》。 6.4 生产组织、衔接: 作业队按《××井地质设计》、《××井压裂(酸化)工艺设计》的要求合理调配、组织、衔接,编写《××井施工设计》和《××井施工大表》,由相关部门签字认可,做到均衡生产,执行QHSE/FYXJ-P11-2007《设计控制程序》。 6.5 施工准备: 6.5.1 作业队接到施工任务后,应: a)进行井况调查,落实施工作业环境,保证道路、井场满足施工作业条件,并填写《××井井史井况调查》; b)搬上开工前,安排专人与用户进行井口、场地等的现场交接,并填写《××井现场交接及施工质量验收记录》,由用户和作业队保存; c)作业队技术员组织有关人员进行技术交底,填写相关记录; d)生产管理部协调生产计划,值班调度填写《调度值班记录》并保存。 6.5.2 安全机动部对施工作业现场进行开工验收,并填写《××井安全标准化验收开工通知单》,验收合格后方可进行施工。 6.5.3 用户提出对施工准备情况进行现场验收时,由生产管理部调度室负责联络。 6.6 施工过程控制 6.6.1 施工作业设备的使用、维护保养执行QHSE/FYXJ-P08-2007《设备控制程序》。6.6.2 施工作业中各工序的风险和重要环境因素的控制 6.6.2.1 作业队在施工过程中风险控制,执行: a)QHSE/FYXJ-P18-2007《危险化学品搬运贮存使用控制程序》; b)QHSE/FYXJ-P17-2007《职业健康安全和环境运行控制程序》。

压裂酸化技术服务中心及特色技术简介

压裂酸化技术服务中心(以下简称“中心”)自1985年成立以来,始终强调发展和创新,长期致力于压裂酸化应用技术与基础理论的研究,努力解决生产中的技术难题,为低渗透油气藏的勘探与开发提出新理论、新工艺、新技术、新方法、新材料,逐渐形成了一系列压裂酸化特色技术。“十五”期间,“中心”在国内外开展了卓有成效的现场技术服务。在国内,为16个油田的450余口重点井或疑难井提供了综合性科研攻关和技术服务,解决了塔里木、玉门等十几个油田的众多压裂酸化改造技术难题,为中石油的增储上产做出了贡献;在国外,为哈萨克斯坦、阿塞拜疆等8个国家(地区),设计施工180余口井,增产效果显著,为中国石油在国际上赢得了声誉。 “中心”获得了50项科研成果,其中获省部级以上科研成果奖14项,2004年获得中国石油天然气股份公司“油气田开发先进技术”金牌,2005年获中国石油天然气集团公司“优秀科技创新团队”等多项荣誉称号。

一、低渗透油藏开发压裂技术

二、复杂岩性储层酸压技术 研究对象:复杂岩性储层——碎屑岩、碳酸盐岩、粘土矿物各占1/3;以砂砾岩为主,交互白云质细砂岩、白云质泥岩。 累产113000吨,有效期2060天,目前41m 3/d。 累产123000吨,有效期910天,目前167.9m 3/d。 0.01 0.11101001000100000 10 20 30 40 50 60 70 闭合压力(MPa) 导流能力(μm 2.c m ) 复杂岩性:碎‘屑岩、碳酸盐岩、粘土矿物各占1/3

三、低渗油藏重复压裂技术 ●研究对象:针对低渗透油气藏前次压裂失效的井层,以增产稳产、提高开发效果为目的。 ●技术内容:该技术主要包括重复压裂井油藏与工程研究(复压前储层物性评价、剩余可采储量及地层能量评估、原有水力裂缝及其工艺技术评估等)、重复压裂前地应力场及重复压裂时机研究,转向重复压裂优化设计及其实施工艺技术,选井选层研究,中高含水期油藏重复压裂的油藏数值模拟技术,重复压裂材料与施工参数的研究、高砂比压裂施工工艺技术,重复压裂诊断与压后效果评价等技 主应力差值为3MPa 重复压裂选井

7大方法处理酸化油废水

7大方法处理酸化油废水,设备防腐很简单 发布时间:2015.04.07 11:47:42信息来源:价值中国作者:常治辉 在工业脂肪酸生产过程中所产生的一种废水叫酸化油水解废水,这类废水除了含有5%~8%的甘油之外,还含有有机酸、无机酸、无机盐及粘液质等杂质,其酸性杂质会对生产设备的腐蚀。为了使甘油生产的蒸发脱水操作顺利进行,有技术人员采用脱酸、脱胶等化学试剂即“化学净化法”对酸化油水解废水进行净化性废水处理。 近10年来,在福建、浙江、广东等地兴起了不少以酸化油为原料生产脂肪酸的工厂,并具一定规模,但由于酸化油水解废水的产生,对环境造成较大的污染,使这些企业的正常生产和经营受到影响。 在废水中的三种油类物质 1、浮上油,油滴粒径大于100μm,易于从废水中分离出来。油品在废水中分散的颗粒较大,粒径大于100微米,易于从废水中分离出来。在石油污水中,这种油占水中总含油量60~80%。

2、分散油.油滴粒径介于10一100μm之间,恳浮于水中。 3、乳化油,油滴粒径小于10μm,油品在废水中分散的粒径很小,呈乳化状态,不易从废水中分离出来。 含油废水中所含的油类物质,包括天然石油、石油产品、焦油及其分馏物,以及食用动植物油和脂肪类。从对水体的污染来说,主要是石油和焦油。不同工业部门排出的废水所含油类物质的浓度差异很大。如炼油过程中产生的废水,含油量约为150~1000毫克/升,焦化厂废水中焦油含量约为500~800毫克/升,煤气发生站排出的废水中的焦油含量可达2000~3000毫克/升。 由于不同工业部门排出的废水中含油浓度差异很大,如炼油过程中产生废水,含油量约为150一1000mg/L,焦化废水中焦油含量约为500一800mg/L,煤气发生站排出废水中的焦油含量可达2000一3000mg/L。因此,含油废水的治理应首先利用隔油池,回收浮油或重油,处理效率为60%一80%,出水中含油量约为100一200mg/L;废水中的乳化油和分散油较难处理,故应防止或减轻乳化现象。方法之一,是在生产过程中注意减轻废水中油的乳化;其二,是在处理过程中,尽量减少用泵提升废水的次数、以免增加乳化程度。处理方法通常采用气浮法和破乳法。 含油废水如果不加以回收处理,会造成浪费;排入河流、湖泊或海湾,会污染水体,影响水生生物生存;用于农业灌溉,则会堵塞土壤空隙,妨碍农作物生长。 含油废水的处理应首先考虑回收油类物质,并充分利用经过处理的水资源。因此,含油废水的处理可首先利用隔油池,回收浮油或重油。隔油池适用于分离废水中颗粒较大的油品,处理效率为60~80%,出水中含油量约为100~200毫克/升。废水中的细小油珠和乳化油则很难去除。 7种主要处理方法 1、上浮法。主要用于隔油池出水的高级处理,去除细小油珠和乳化油。经过上浮处理后,出水含油量、含油废水处理设施可降至30毫克/升。其方法是:将适量的空气通入含油废水中,形成许多微小气泡,在气泡作用下构成水、气、油珠三相非均一体系。在界面张力、气泡上浮力和静水压力差的作用下形成气-油珠

页岩气开采技术

页岩气开采技术 1 综述 页岩气是一种以游离或吸附状态藏身于页岩层或泥岩层中的非常规天然气,是一种非常重要的天然气资源,主要成分是甲烷。页岩气的形成和富集有其自身的特点,往往分布在盆地内厚度较大、分布广的页岩烃源岩地层中。如图1.1所示。页岩气一般存储在页岩局部宏观孔隙体系中、页岩微孔或者吸附在页岩的矿物质和有机质中。页岩孔隙度低而且渗透率极低,可以把页岩理解为不透水的混凝土,这也是页岩气与其他常规天然气矿藏的关键区别。可想而知,页岩气的开采过程极为艰难。根据美国能源情报署(EIA)2010年公布的数据,全球常规天然气探明储量有187.3×1012m3,然而页岩气总量却高达456×1012m3,是常规天然气储量的2.2倍。与常规天然气相比,页岩气具有开采潜力大,开采寿命长和生产周期长等优点,至少可供人类消费360年。从我国来看,中国页岩气探明储量为36×1012m3,居世界首位,在当今世界以化石能源为主要消费能源的背景下,大力发展页岩气开采技术,对我国减少原油和天然气进口,巩固我国国防安全有很重要的意义。我国页岩气主要分布在四川盆地、长江中下游、华北盆地、鄂尔多斯盆地、塔里木盆地以及准噶尔盆地,如图1.2所示。 图1.1页岩气藏地质条件图1.2中国页岩气资源分布页岩气开采是一种广分布、低丰度、易发现、难开采、自生自储连续型非常规低效气藏,气开采过程需要首先从地面钻探到页岩层,再通过开凿水平井穿越页岩层内部,并在水平井内分段进行大型水力加砂压裂,获得大量人工裂缝,还需要在同一地点,钻若干相同的水平井,对地下页岩层进行比较彻底的改造,造成大面积网状裂缝,最后获得规模产量的天然气。因此,水平井技术和水力压裂技术的页岩气成功开采的关键。 2 页岩气水平井技术 1821年,世界上第一口商业性页岩气井在美国诞生,在井深21米处,从8米厚的页岩裂缝中产出了天然气。美国也是页岩气研究开采最先进的国家,也是技术最成熟的国家。国外页岩气开采主要在美国和加拿大(因为加拿大和美国地质条件类似,因此可以承接美国的开采技术),主要得益于水平井技术、完井及压裂技术的成功应用。 2.1 开采技术 早期的页岩气开采主要运用直井技术,直井开采技术简单,开始投入成本低,但是开采

压裂酸化技术手册

《压裂酸化技术手册》 前言 近几年来,随着新压裂设备机组、连续油管设备和液氮泵车设备的引进以及对外合作的加强,施工工艺技术呈现出多样化,施工作业难度加大,施工技术要求较高,为了满足工程技术人员对装备的深入了解,提高施工技术、保证施工质量,组织技术人员历经两年时间编写了这本《压裂酸化技术手册》。该手册收集了井下作业处压裂酸化主要设备、液氮设备、连续油管设备等的性能规范和作业技术要求,井下工具、油套管、添加剂、支撑剂等的常用数据,以及单位换算、常用计算公式、摩阻曲线,地面工艺流程等内容。该手册目前仅在处内发行,请大家在使用中多提精品文档,知识共享,下载可修改编辑!

宝贵意见,以便今后修订。谢谢!精品文档,知识共享,下载可修改编辑!

目录 第一章压裂酸化设备 (1) 一、车载式设备 (1) (一) HQ2000型压裂车 (1) (二) BL1600型压裂车(1650型) (3) (三) SMT型管汇车 (7) (四) FBRC100ARC型混砂车 (9) (五) CHBFT 100ARC型混砂车 (14) (六) FARCVAN-Ⅱ型仪表车 (19) (七) GZC700/8型供液车 (22) (八) NC5200TYL70型压裂车 (23) (九) HR10M型连续油管作业机组 (24) (十) TR6000DF15型液氮泵车 (42) (十一) NTP400F15型液氮泵车 (44) (十二) NC-251-F型液氮泵车 (46) (十三) 赫洛ZM443液氮槽车 (48) (十四) 东风日产液氮槽车 (48) (十五) 赫洛ZM403运砂车 (49) (十六) YY10型运液车 (50) (十七) CTA12型运酸车 (50) (十八) NC5151ZBG/2500Y型背罐车 (51) (十九) CYPS-Ⅱ型配酸车 (51) 精品文档,知识共享,下载可修改编辑!

钻井废水和酸化压裂作业废水处理技术研究进展

钻井废水和酸化压裂作业废水处理技术研究进展 发表时间:2019-07-16T09:06:31.650Z 来源:《工程管理前沿》2019年第08期作者:牛丽 [导读] 钻井废水是这些有机物作为护胶剂通过官能团和粘土颗粒形成的一种多分散的带负电荷的胶体溶液,具有高度不稳定性、多变性、复杂性和分散性等特点。 新疆油田公司实验检测研究院, 新疆克拉玛依 834000 摘要:钻井废水是钻井泥浆的高倍稀释物,既含有细小粘土悬浮颗粒、重金属离子、油、酚类和硫化物,又含有可溶性有机处理剂。钻井废水是这些有机物作为护胶剂通过官能团和粘土颗粒形成的一种多分散的带负电荷的胶体溶液,具有高度不稳定性、多变性、复杂性和分散性等特点。 关键词:钻井、废水、技术 1 前言 目前,国内油气田钻井过程使用的泥浆主要有:钙盐处理泥浆、聚合物泥浆和磺化泥浆三大体系。钙处理泥浆主要由水溶性钙盐、烧碱、清水、膨润土、降粘剂及降滤失剂等有机处理剂组成,有机处理剂包括腐植酸钾(KHm)、铁铬木质素磺酸盐(FCLS)和CMC等。聚合物泥浆主要是由清水、膨润土和聚合物类处理剂组成,聚合物类处理剂包括聚丙烯酸钾、聚丙烯酸钙、丙烯酸和丙烯酰胺共聚物及丙烯酸和不饱和磺酸的二元和多元共聚物等。磺化泥浆体系主要是由清水、膨润土、烧碱和各种有机处理剂组成,处理剂包括磺化褐煤(SMC)、磺酸栲胶、磺化酚醛树脂、磺化丹宁、FCLS和磺化沥青等。 2 酸化和压裂废水处理研究现状 2.1酸化废水处理技术 酸化废水常规处理方法为就近挖池用石灰或氨水中和,达到中性后就地储存和转运回注。如四川油气田天然气所开发了中和—混凝沉降—活性炭吸附三段联合处理工艺,处理后的COD可达标;尹代益等开发了由作业乏酸废水加浓硫酸制取稀盐酸的新型处理工艺,得到的稀盐酸与新盐酸复配可用于酸化,残留的原缓蚀剂和缓速剂对二次酸化有利,无需清除;万里平等研究了活性炭吸附—催化氧化联合法和中和—微电解—化学氧化—活性炭吸附四段联合法处理酸化废液,可使酸化废液的COD大为降低,达到排放标准。 2.2压裂废水处理技术 压裂废水具有浊度高、黏度大和COD高等特点,达标处理难度大,有关其处理技术研究的国内报道很少。 如刘真针对井下作业压裂废水特点,先采用混凝—隔油法进行预处理,再用次氯酸钠结合紫外光进行深度处理,可氧化分解一部分难处理的高分子有机物,结果表明该法可去除水中绝大部分COD和油类物质,达到排放标准;何焕杰等开发了化学混凝与高级氧化联合法处理压裂废液技术,处理的压裂废水与采油污水以1:10体积比掺混,用水质改性技术处理后净化水可以达标,该项技术已在中原油田现场应用。目前钻井废水处理技术的不足: (1)处理剂效能不高 化学混凝法处理钻井废水所用凝聚剂和絮凝剂的效能直接影响处理效果。无机凝聚剂硫酸铝、PAC和PFS及有机絮凝剂HPAM去除废水中黏土悬浮物、油类和重金属离子等污染物效果较好,但去除COD和色度能力较差。 (2)处理方法单一,污染物深度去除能力有限钻井废水除含有大量悬浮物和胶体粒子之外,还含有一定量可溶性有机小分子化合物和高分子聚合物。化学混凝法处理去除可溶性有机物的能力非常有限,必须配套采用其他方法如活性炭吸附、催化氧化和生物氧化法等形成多元综合处理技术进行深度处理。 (3)连续式处理装置针对性不强,处理费用高 目前国内油田使用的钻井废水连续式处理装置不足在于钻井废水水质变化不定,处理药剂种类无法定型,用量不易确定;连续式处理装置使用不方便;设备造价较高,运行费用较高。 3 废钻井液处理技术 钻井作业废液处理的最终目的是选择最佳钻井作业技术,使废弃物排放量和对环境污染程度达到最小。目前国内外用于处理废钻井液技术包括简单处理排放、注入安全地层或井下环形空间、集中处理、坑内密封、土地耕作、固化、固液分离、焚烧、微生物处理等方法。 3.1坑内密封掩埋 当废泥浆坑露天存放足够长时间,大部分失水固结后,向泥浆坑中填土掩埋的处理方式。该法实施的前提是土壤自净化能力较强,废钻井液所含毒性物质较少。废钻井液组分通过与土壤发生吸附、离子交换、沉淀、生物化学降解等过程,减弱毒物的毒性。其局限性是土壤自净化能力有限且有一定选择性,无法对全部有害物进行无害化处理。随着环保要求的不断提高,这种方法逐渐被淘汰。 3.2运离现场集中处理 当井点比较集中的钻井区域距污水处理站较近时,可以考虑将废钻井液和钻井污水集中预处理后送至污水处理设施进行废水的回收和无害化处理。运输方式可以车载或铺设管道输送,如钻井污水和井下作业废水所采用的双管循环洗井流程和洗井水处理车技术。考虑到运输成本和效益,这种方法主要应用于距污水处理部门较近的井区且毒性较大的油基钻井液和现场操作不能完全处理至排放标准或是有回收利用价值的钻井作业废水。 3.3土地耕作法 废钻井液除去上部水后,将钻井液池中的污泥和废渣直接撒到土壤表面,厚度约为100毫米(具体情况视钻井液毒性而定),利用土地耕作机与土壤混合,利用土壤的净化特性,吸附、吸收和生物降解钻井液中的有毒组分,达到无害化处理的目的。该技术至今没有推广的主要原因有: (1)一部分可溶盐如氯盐,被土壤吸收后,会降低土壤肥效,使其部分盐碱化; (2)重金属离子和其他可溶性盐类会随水迁移,污染地下水源;且在土壤中逐步积累起来,最终远远超过土壤自身的吸收和净化能力,多余的重金属离子会转移到土壤中生存的植物体内,造成重金属离子向其他生态系统转移,从而对人类的生活环境造成危害;

页岩气开采压裂技术

页岩气开采压裂技术 摘要:我国页岩气资源丰富但由于页岩地层渗透率很低,页岩气井完井后需要经过储层改造才能获得理想的产量,而水力压裂是页岩气开发的核心技术之一。在研究水力压裂技术开发页岩气原理的基础上,剖析了国外的应用实例,分析了各种水力压裂技术( 多级压裂、清水压裂、水力喷射压裂、重复压裂以及同步压裂技术)的特点和适用性, 探讨了天然裂缝系统和压裂液配制在水力压裂中的作用。 关键词:水力压裂页岩气开采压裂液 0 前言 自1947年美国进行第1次水力压裂以来,经过50多年的发展,水力压裂技术从理论研究到现场实践都取得了惊人的发展。如裂缝扩展模型从二维发展到拟三维和全三维; 压裂井动态预测模型从电模拟图版和稳态流模型发展到三维三相不稳态模型,且可考虑裂缝导流能力随缝长和时间的变化、裂缝中的相渗曲线和非达西流效应及储层的应力敏感性等因素的影响; 压裂液从原油和清水发展到低、中、高温系列齐全的优质、低伤害、具有延迟交联作用的胍胶有机硼和清洁压裂液体系;支撑剂从天然石英砂发展到中、高强度人造陶粒,并且加砂方式从人工加砂发展到混砂车连续加砂;压裂设备从小功率水泥车发展到1000型压裂车和2000 型压裂车;单井压裂施工从小规模、低砂液比发展到超大型、高砂液比压裂作业;压裂应用的领域从特定的低渗油气藏发展到特低渗和中高渗油气藏(有时还有防砂压裂)并举。同时, 从开发井压裂拓宽到探井压裂,使压裂技术不但成为油气藏的增产增注手段,如今也成为评价认识储层的重要方法。 1 国内外现状 水力压裂技术自1947年在美国堪萨斯州试验成功至今近半个世纪了,作为油井的主要增产措施正日益受到世界各国石油工作者的重视和关注,其发展过程大致可分以下几个阶段: 60 年代中期以前, 以研究适应浅层的水平裂缝为主这一时期我国主要以油井解堵为目的开展了小型压裂试验。 60 年代中期以后, 随着产层加深, 以研究垂直裂缝为主。这一时期的压裂目的是解堵和增产, 通常称之为常规压裂。这一时期,我国进入工业性生产实用阶段,发展了滑套式分层压裂配套技术。 70年代,进入改造致密气层的大型水力压裂时期。这一时期,我国在分层压裂技术的基

酸化压裂技术

第二节酸化压裂技术 一、教学目的 了解酸化压裂的原理,掌握酸液的滤失,酸液的损耗,能够计算酸岩复相反应有效作用距离,了解前置液酸压设计方法。 二、教学重点、难点 教学重点 1、酸化压裂原理 2、酸液的损耗 3、前置液酸压设计方法 教学难点 1、酸液的滤失 2、酸岩复相反应有效作用距离 三、教法说明 课堂讲授并辅助以多媒体课件展示相关的数据和图表 四、教学内容 本节主要介绍四个方面的问题: 一、酸液的滤失 二、酸液的损耗 三、酸岩复相反应有效作用距离 四、前置液酸压设计方法 酸化压裂:用酸液作为压裂液,不加支撑剂的压裂。 作用原理:(1) 靠水力作用形成裂缝;

(2) 靠酸液的溶蚀作用把裂缝的壁面溶蚀成凹凸不平的 表面,停泵卸压后,裂缝壁面不能完全闭合,具有较 高的导流能力,可达到提高地层渗透性的目的。 酸压与水力压裂相比:相同点:基本原理和目的相同。 不同点:实现其导流性的方式不同。 酸压效果: ??? ?????????以及不均匀刻蚀程度量对底层岩石矿物的溶解导流能力:取决于酸液裂缝内的流速控制酸盐反应速度酸液的滤失特性裂缝有效长度 (一)酸液的滤失 滤失主要受酸液的粘度控制 控制酸液的滤失常用的方法和措施: (1)固相防滤失剂 刺梧桐胶质:在酸中膨胀并形成鼓起的小颗粒,在裂缝壁面形成 桥塞,阻止酸蚀孔道的发展,降低滤失面积。 硅粉:添满或桥塞酸蚀孔道和天然裂缝。 粒径大小不等的油溶树脂:大颗粒桥塞大的孔隙;亲油的树脂形 成更小的颗粒,变形后堵塞大颗粒的 孔隙,从而有效地降低酸液的滤失。 (2)前置液酸压 优点:①采用前置液破裂地层形成裂缝,并在裂缝壁面形成滤饼, 可以降低活性酸的滤失;

油田分层压裂(酸化)工艺技术探讨

油田分层压裂(酸化)工艺技术探讨 摘要:在油田勘探开采的发展中,常规石油中有诸多工艺技术,而分层压裂液液、酸化液工艺是中国油田试油作业中不可缺少的过程,也是从钻井步骤一直到油田生产过程中承上启下的关键工艺,同时也是油田开发工程中工艺技术服务的重要组成部分。本文阐述了我国油田的压裂液工艺技术以及酸化液工艺技术,并进一步研究这两种技术在油田施工过程中的应用、效果分析。 关键词:油田分层压裂液酸化液工艺技术效果分析 油田试油技术在广义上就是指试油施工的整个过程,其中包括了各方面的工艺技术例如:地层的测试、常规试油的工艺技术程序、试井测试和技术改造措施,这些工作全部是为了取得油田实际储油参数而进行的,压裂液工艺技术以及酸化液工艺技术,在中国石油集团渤海钻探工程技术研究院的工作学习中,我对石油技术做过颇多分析,本文就针对油田分层压裂酸化工艺技术展开探讨,分析压裂液技术与酸化液技术在我国油田种的应用、效果。 一、压裂技液术与酸化液技术的概述 1.压裂液技术 油田压裂液工艺技术应用上主要是压力将地层压开,形成裂缝并用支撑剂将它支撑起来,以减小流体流动阻力的增产、增注措施。 压裂液主要有前置液、携砂液、顶替液组成的。压裂液的性能要求:黏度高,润滑性好,滤失量小,低摩阻,对被压裂的流体层无堵塞及损害,对流体矿无污染,热稳定性及剪切稳定性能好、低残渣、配伍性好、破胶迅速、货源广,便于配制,经济合理。 压裂液主要作用在概括来说有以下几方面:1、携带支撑剂到地层;2、压开裂缝;3、降低地层温度。 2.酸化液技术 酸化液技术分为压裂酸化工艺技术和基质酸化工艺技术两种,主要是利用酸液解决生产井和注水井周围污染问题,进一步的清除缝隙中的堵塞物质,达到扩大地层裂缝,提高渗透率的一种工艺技术。压裂酸化技术指的是在酸化的基础上压裂,将天然裂缝加宽、扩大、延伸,或是通过压裂岩石形成新的岩缝。形成之后的岩缝凹凸不平,在施工后形成槽油、沟油等流通道,改善了之前的汽油景田流渗状况,提高产油量。还有一种普通盐酸的酸化工艺称之为解堵酸技术,用以压裂压力低于破裂压力时的酸化处理的工艺。这种技术用途不如前类宽泛,只能解除汽油井眼周围小范围的堵塞,但该技术具有低成本、工艺技术操作简单、对地层的溶解度高的优点;目前的酸化技术主要分为:酸洗酸化;解堵酸化;压裂

7大方法处理酸化油废水

7大方法处理酸化油废水,设备防腐很简单 在工业脂肪酸生产过程中所产生的一种废水叫酸化油水解废水,这类废水除了含有5%~8%的甘油之外,还含有有机酸、无机酸、无机盐及粘液质等杂质,其酸性杂质会对生产设备的腐蚀。为了使甘油生产的蒸发脱水操作顺利进行,有技术人员采用脱酸、脱胶等化学试剂即“化学净化法”对酸化油水解废水进行净化性废水处理。 近10年来,在福建、浙江、广东等地兴起了不少以酸化油为原料生产脂肪酸的工厂,并具一定规模,但由于酸化油水解废水的产生,对环境造成较大的污染,使这些企业的正常生产和经营受到影响。

在废水中的三种油类物质 1、浮上油,油滴粒径大于100μm,易于从废水中分离出来。油品在废水中分散的颗粒较大,粒径大于100微米,易于从废水中分离出来。在石油污水中,这种油占水中总含油量60~80%。 2、分散油.油滴粒径介于10一100μm之间,恳浮于水中。 3、乳化油,油滴粒径小于10μm,油品在废水中分散的粒径很小, 呈乳化状态,不易从废水中分离出来。 含油废水中所含的油类物质,包括天然石油、石油产品、焦油及其分馏物,以及食用动植物油和脂肪类。从对水体的污染来说,主要是石油和焦油。不同工业部门排出的废水所含油类物质的浓度差异很大。如炼油过程中产生的废水,含油量约为150~1000毫克/升,焦化厂 废水中焦油含量约为500~800毫克/升,煤气发生站排出的废水中的焦油含量可达2000~3000毫克/升。 由于不同工业部门排出的废水中含油浓度差异很大,如炼油过程中产生废水,含油量约为150一1000mg/L,焦化废水中焦油含量约为500一800mg/L,煤气发生站排出废水中的焦油含量可达2000一3000mg/L。因此,含油废水的治理应首先利用隔油池,回收浮油或重油,处理效率为60%一80%,出水中含油量约为100一200mg/L;废水中的乳化

压裂酸化

压裂酸化技术难点和挑战 正如在我国石油工业“十五”规划报告指出的一样:现在我国石油工业面临的形势是新区勘探开发困难,老区的增产挖潜还有大量的工作要做。其中,常规的井网加密已经效果不大,对酸化压裂措施的认识不够。同时,增产措施改造的对象越来越复杂,改造目标已经从低渗、单井发展到了中、高渗和油田整体,主要的难题集中在以下几个方面: 1、复杂岩性油气藏 指的是陆源碎屑岩、碳酸盐岩和粘土矿物以一定比例均匀存在,没有任何一种成份占主导地位。典型的代表是玉门酒西盆地的清溪油田,该油田储量高、品位好,但是储层矿物组成十分复杂。由于矿物的不连续分布,酸压后只能形成均匀、低强度的刻蚀;而水力压裂由于发生支撑剂嵌入和粘土矿物的水敏、碱敏现象严重,因此目前酸压和水力压裂技术对这类储层多为低效或无效。只能考虑从液体体系上改进工艺措施。 2、高温、超高温、深层、超深层和异常高压地层 以准葛尔盆地、克à玛依、塔里木和吐鲁番为代表,如柯深101井,压力系数为2.0,温度135摄氏度,千米桥潜山地区井深4000m —5700m,温度在150摄氏度到180度之间。这种地层的技术难点往往是需要的施工压力和压裂酸化液体不能达到要求;酸液的反应时间短,酸蚀作用距离短。 3、低渗、低压、低产、低丰度“四低”储层 如中石油的长庆苏里格气田压力系数在0.8—0.9,渗透率为0.5—3.0达西,中石化的大牛地油田压力系数0.67—.0.98,渗透率仅为0.3—0.9达西。类似的这种储层在我国占很大的比例,由于

产生水锁现象进而产生很难解除的水相圈闭,如果不采用特殊的工艺手段,很难得到高效开发。 4、凝析气藏 代表有千亿方的塔里木迪那气田和中?白庙深层凝析气藏。这类油田酸化压裂最大的问题是由于压力降低后凝析油的析出产生凝 析油环,大大降低了天然气的产量。 5、高含硫,高含二氧化碳油田 这类油田有被誉为“南方海相勘探之光”的普光气田(储量高达1144亿立方米);580亿立方米的罗家寨气田。这两个气田的含硫量都在10%—12%,远远超过3%的行业标准。硫化氢的高还?性和 化学反应活性容易产生单质硫和硫化亚铁沉淀,在酸化压裂施工中造成二次伤害。同时,高含硫还会加大钻、采、集、输、外运的困难,尤其是在地形复杂,自然条件恶劣的四川丘陵地区。 6、异常破裂压力油藏 这种油藏埋藏深度和破裂压力不成正比,以川西致密须家河组和赤水地区为例:2000多米的井深破裂压力高达90多兆帕,现场经预处理措施之后,施工压力仍然高达80多兆帕。造成的直接后果就 是压不开地层,酸液不能进入,对设备的损害比较大。 7、缝洞型、裂隙型碳酸盐岩 我国“九五”规划最大的整装油田——塔河油田就是这类油田的代表。塔河油田560万吨产量中有80%是依靠压裂酸化措施取得的。

酸化压裂课件

酸化、压裂作业课件 作业二大队作业八队 伍轲

酸化 一、概念:酸化是通过井眼向地层注入一种或几种酸液(或酸性混和液),利 用酸与地层可反应矿物的化学反应,溶蚀储层中的连通孔隙或天然(水力)裂缝壁面岩石,增加孔隙、裂缝的流动能力,从事使油气井增产(或注水井增注)的一种工艺措施。它是指一切以酸作工作液对油气(水)层进行的增产(注)措施的统称。 二、分类:如图1 图1 解堵酸化:靠酸液的溶解作用解除井筒附近地层内在钻井和完井过程中造成的损害,提高油气井的完善程度。 深穿透酸化:应用物理或(和)化学方法提高酸液在地层中的有效穿透距离,在较大范围内改善地层渗透性能。 基质酸化: 也称常规酸化,在低于储集层岩石破裂压力下将酸液挤入储集层孔隙间,使酸液沿径向渗入地层而溶解低层孔隙空间内的颗粒以及其他堵塞物,扩大孔隙空间而恢复或提高地层渗透率。 压裂酸化:其增产原理与水力压裂基本相同,即沟通井筒附近高渗带或其它裂缝系统、清除井壁附近污染、增大有其向井流通面积、改善油气向井流动方式和增大井附近渗流能力。 按酸液不同分:常规酸解堵酸化、泡沫酸酸化、乳化酸酸化、前置液与酸液多级交替注入、变粘度酸酸化等。 三、酸化机理: 1、碳酸盐岩酸化机理 碳酸盐岩经过成岩作用和次生作用,其岩石主要矿物成分是方解石[CaCO3]、白云石[CaMg(CO3)2],其储集空间可以分为孔隙型、裂缝型以及溶蚀孔洞型。按照施工压力,在碳酸盐岩中的酸化也分为基质酸化和酸压。

基质酸化是在小于地层破裂压力条件下泵酸,溶解基质、孔隙间的颗粒及堵塞物,溶蚀并扩大孔隙,解除近井地带的储层污染,从而达到增产增注的目的。 酸液与碳酸盐岩的化学反应 酸液与方解石、白云石反应式可以写为: ↑→++2223CO O H Ca CaCO 2H +++ ↑+→++22222 3CO 2O H 2Ca Mg CO MgCa 4H ++)(++ 2、碎屑岩酸化机理 碎屑岩矿物的化学成分非常复杂,常见的有二氧化硅(石英)、硅酸盐(长石和粘土等)及其它(如生物化石)碎屑。除石英外,其它矿物的化学分子式都十分复杂。 碎屑岩中所含矿物的化学成分都比较复杂。然而更复杂的是,在碎屑岩中一般都含有多种矿物,如典型的长石石英砂岩,组分分析后发现,除含主体成分石英和长石(一般为正长石和斜长石共存)外,胶结物通常为粘土类(或碳酸盐岩类),成分多达4-5种以上,所以很难用单一的化学分子式来描述。 碎屑岩储层空间和渗流通道就是砂粒与砂粒之间未被胶结物完全充填的孔隙,碎屑岩酸化施工通常使用由盐酸和氢氟酸组成的混和酸(如土酸,3%HF+12%HCl 等)。使用盐酸的目的主要有①用来首先溶解可与氢氟酸反应生产沉淀的钙质、铁质等堵塞;②保持较低的pH 值,防止产生氟化钙等沉淀。使用氢氟酸主要是解除储层空间的硅质矿物堵塞。主要化学反应方程式如下: ● 氢氟酸与碳酸盐矿物的化学反应 ↑++↓→+2223CO O H CaF HF 2CaCO ↑++↓+↓→+222223CO 2O H 2F M CaF HF 4)CaMg(CO g 可见氢氟酸会与地层中的Ca 2+、Mg 2+等矿物成分生成沉淀,所以在碎屑岩酸化时,在泵注土酸之前,首先泵注一定量的盐酸作为预处理(或称前置酸)液。 ● 氢氟酸与石英的化学反应 O H 2SiF HF 4SiO 242+?+ 624SiF H HF 2SiF ?+ 或 O H 2SiF H HF 6SiO 2622+?+ ● 氢氟酸与硅酸盐矿物的化学反应 O H 4NaF 4S iF HF 8S iO Na 2444++?+ 624SiF Na SiF 2NaF ?+ 624SiF H HF 2SiF ?+ 可见通过上述化学反应,从而解除地层中石英、粘土矿物等的堵塞,疏通地层中油流通道,提高地层渗透率,达到增产增注的目的。 四、酸液及添加剂的种类 其中酸液及添加剂选择是酸化技术关键,合理酸液及添加剂使用,对酸处理效果起着重要作用。随着酸化工艺及化学工业的发展,国内现场使用的酸液种类和添

浅析废压裂液的危害及处理

浅析废压裂液的危害及处理 【摘要】油气井增产的主要措施之一就是通过油气井压裂技术完成的,为这一技术也被各油田普遍采用。油气井在压裂过程中产生的压裂返排液已成为当前油田水体污染源之一。而这些废压裂液的组成及其危害压裂液是压裂技术的重要组成部分。每年各大油田在进行油水井压裂作业、酸化施工过程中所产生了大量废液,若这些废液直接向外排出去,势必会给周边生态环境造成极大危害。本文阐述了剩余压裂液的危害和治理现状,通过对油田剩余压裂液中污染物组成的分析,以及污染问题的严重性,提出了一些处理方案。 【关键词】压裂作业废压裂液危害处理方案 压裂作业是油气田开采过程中的一个重要环节,通过压裂来改善油气层渗透能力和解堵等问题。压裂技术在老区油井挖潜、新井试油、和单井增产中发挥着非常重要的作用,各大油田通过压裂作业实现油气井增产,压裂技术在油田开发中占据着不可替代的位置。油气井在压裂过程中会不可避免的产生的废液,主要有返排压裂液和施工剩余的压裂液,这些在压裂作业过程中产生的返排废液成为了油田开采过程中一个不容忽视的污染源。废压裂液作为当前油气开采的主要水体污染源之一,对周围的生态环境有着极大的危害,因此深入研究剩余压裂液的处理方法,对油气田环境污染控制具有重要意义。 1 压裂作业的原理和废压裂液的产生 油层水力压裂的过程是:首先在地面采用高压大排量的泵,利用液体传压的原理,向油层注入以大于油层的吸收能力的压力的压裂液,然后逐渐升高井筒内压力,从而在井底产生高压,当此压力大于井壁附近的地应力和地层岩石的抗张强度时,井底附近地层便会产生裂缝:然后继续注入带有支撑剂的携砂液,裂缝随之继续延伸同时填以支撑剂,关井后裂缝闭合在支撑剂上,在井底附近地层内从而形成填砂裂缝,通过其一定的高导流能力和几何尺寸的特性,是以达到增产增注的目的。其中的裂缝延伸事添加的支撑剂又称为压裂液,在压裂施工完成后返排到地面的废液(压裂液)便是当前油田水体重要污染源之一的的废压裂液。 2 废压裂液的危害 油井压裂作业施工完成后的返排废液,组成极为复杂。压裂液体系往往需要杀菌剂、粘土稳定剂、水合缓冲剂、高温稳定剂、表面活性剂和稳定剂等十几个种类的添加剂如;同时废压裂液还含有原油及压裂液中的无机添加剂和有机等污染物质、从地层深处的岩屑和粘土颗粒,也有各种化合污染物,这些添加剂、污染物和化合物难以用生化降解法和普通化学法进行降解。特别是注聚压裂解堵的注入井的返排液为灰黑色溶液,是硫酸盐还原菌代谢的产物,具有刺激性臭味;如果大量的刺激性的、并带有各种添加剂的废压裂液不经过处理而返排到地面上,必定会对周围环境、人、动植物、土壤、尤其是农作物造成危害,以及对地表及地下水资源造成严重污染;废液与添加剂以及酸液作用可能会产生有毒气体

页岩气开采(压裂技术)对环境、健康的影响

页岩气开采(压裂技术)对环境、健康的影响 Shale gas exploitation (Fracking)and its environmental and health impact 周睿译普红雁程浩毅校 本译文由云南省健康与发展研究会提供 来源:《世界页岩气资源:美国以外14个区域的初步评估》,美国能源信息署,2011年,https://www.doczj.com/doc/af13874686.html, 页岩气开采也涉及到许多其他的环境和健康问题。欧盟2012年8月的一项研究表明,压裂法开采页岩气存在着较高的风险,它有可能引发一系列环境问题,例如污染地下水、地表水和空气,引发水资源安全问题,占用土地资源,影响生物多样性,产生噪声污染及交通问题。

(1)用水 页岩气开采需要大量的水,可能会(导致)对钻井所在地区造成供水压力。每一次压裂操作大约使用1500万升水,而钻井可被压裂多达10次。根据我们的计算,单独一口井所使用的水能够供大约10000欧洲人使用一年。 在水资源供应本已存在压力或是由于气候变化可能存在压力的地区,水量需求水平尤为重要。在欧洲,德国和波兰拥有有丰富的页岩气储量,但其人均可再生水资源位列欧盟国家最末。在英国,目前进行的页岩气开采的地区,其供水情况已经被认为处于“超负荷”水平。2012年美国大部分地区遭遇夏季干旱的侵袭,页岩气开采表现出这种缺水的影响,德克萨斯和堪萨斯的某些地区被迫停止了页岩气的开采,而在宾夕法尼亚州,页岩气的开采则被禁止使用河水。在其他地方,页岩气运营商试图通过收买农场主或向土地所有者支付大量金钱来获得水资源的使用权。 尽管通常认为压裂法比煤和核能用水更少,但却不太可能简单地替代上述两种能源。实际上,如果将多种装置的累积效应考虑在内时,压裂法反而可能会需要更多的水。

压裂液处理方案

日处理500m3油井压裂返排液系统处理设计方案成都净水源环保科技有限公司是一家以环保节能、净水、污水处理设备开发研究、生产、销售、售后服务为一体的实业公司。并同国内外许多公司,如陶氏、海德能、膜天、富莱克等公司有良好、长期的合作关系。公司向来以精湛的技术和优良的品质及一流的售后服务赢得广大用户的信赖和好评,从而树立良好的企业形象,成为业界中一颗灿烂的明珠。 公司位于西南政治经济交流中心——成都,下设装配分厂和新技术研发中心。研发中心独立开发、设计试验各类水处理和污水设备,以净水、污水设备为核心,开发有净水系列微电脑离子交换器和膜过滤设备、RO纯水设备及EDI高纯水设备;污水系列有一体化污水设备、MBR 生物膜反应设备、曝气过滤池系统、高难度污水设备、垃圾液处理回收系统、消毒设备等污水处理成套设备和行业内的污水治理营运。 公司愿与广大环保界的朋友和需求者一起真诚合作,共同努力,为我国环保事业发展做出贡献。公司真诚地为用户提供最优质的产品,最合理的价格,最满意的服务。我公司拥有一支事业心强、技术全面、经验丰富的科研队伍和施工队伍,近年来,在社会净水和污水处理行业得到很高的评价,还同国内知名科研院有着密切合作,积极关注和追踪世界先进技术,积累和发展自身的技术储备,使企业始终处于同行业的技术前沿,达到所治理的工程“设计先进,运行稳定、可靠,综合费用

低,达到设计标准”的最佳效果。让每一个用户满意、放心是我们公司最大的心愿! 公司经历了从起初单一过滤、软化、纯水、高纯水、生活净化水等净水设备的供应;经过团队长期的不懈努力和拼搏如今公司迈入了电镀废水、医院废水、学校污水、制药废水、食品废水、市政污水、煤矿污水、生活废水等污水处理的设计、设备供应、安装调试一体的工程项目总承包的行列。并对自来水站、地下水处理、回用水等给水工程和对工业循环水处理设备的设计安装调试都有重大突破;对高难度污水处理(垃圾渗透液等)和污水工艺升华改造的管理都有相关的经验 一.压裂液概述 压裂液是油气井增产的主要措施之一,为各油田普遍采用。常规压裂施工所采用的压裂液体系,以水基压裂液为主压裂施工后所产生的压裂废液主要来源于两个方面:一是施工前后采用活性水洗井作业产生的大量洗井废水;另一个方面就是压裂施工完成后从井筒返排出来的压裂破胶液,以及施工剩余的压裂原胶液(基液)。压裂废液组成复杂,与压裂液种类、地层性质等有关。总的来说,压裂废液具有以下特点: 1间歇排放,每口井排放量不定; 2 由于含有大量高分子有机物,COD浓度高,一般从数千到上万mg/L不等 3 废液中石油类含量在10~1000mg/L之间。另外,根据现场施工状况,压裂废液可能还具有粘度大、浊度高、含盐量高等特点 如果反排至地面不经过处理而外排,将会对周围环境,尤其是农作物及地表水系统造成严重的污染。常用的化学、物理化学方法处理该废水,COD去除率不高,多步处理后仍

相关主题
文本预览
相关文档 最新文档