当前位置:文档之家› 机械手外文翻译

机械手外文翻译

机械手外文翻译
机械手外文翻译

机械手外文翻译

LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

本科毕业设计(论文)

外文翻译(附外文原文)学院:机械与控制工程学院

课题名称:搬运机械手的结构和液压系统设计

专业(方向):机械设计制造及其自动化(机械装备)班级:

学生:

指导教师:

日期: 2015年3月10日

Proceedings of the 33rd Chinese Control Conference

July 28-30, 2014, Nanjing, China

The Remote Control System of the Manipulator

SUN Hua, ZHANG Yan, XUE Jingjing , WU Zongkai College of Automation, Harbin Engineering University, Harbin 15000

E-mail:

Abstract: A remote control system of the 5 degree of freedom manipulator was designed. This manipulator was installed into our

mobile robot to constitute a remote rescue robot. The Denavit-Hartenberg method was used to establish the kinematic models and the path planning of the manipulator was researched. The operator could remote control the manipulator by the interactive interface of PC

which could display moving picture and various data of the manipulator. The servos of the manipulator were controlled by the slave FPGA controller. In addition, the slave FPGA controller communicated with

the PC via the wireless communication module. Owing to the embedded Nios II program and IP (Intellectual Property) core generating PWM waves in FPGA, the system could control the multiple servos fast and flexible. In order to achieve real-time operation and simulation, the interactive interface was established by the mixed programming of VC and MATLAB.

Key Words: The manipulator; Remote control; Denavit-Hartenberg; FPGA; Human-computer interaction

1 Introduction

With the development of the microelectronic technique and the computer technology, the manipulator has become essential equipment in the manufacturing industry. As we all known, the manipulator is

usually applied to accomplish dull, onerous and repeated physical work, especially used to substitute the manual operation under the dangerous and the hazardous environment such as the corrosion and the high temperature.

In this paper, the manipulator was installed our mobile robot. The tele-operation system of this manipulator was designed. The whole system is onstituted by PC and slave FPGA. The operator can remote control the manipulator by PC. The wireless communication was used for transmitting data between PC and FPGA. FPGA is controller of the the manipulator in the mobile robot. FPGA has the abundant internal resource and IP cores. And a central control option was built via an embedded Nios II program and an IP core in FPGA. Furthermore, Verilog language was adopted to design the IP core which generated digital PWM waves for controlling the manipulator. Therefore, this system could reach higher precision and easy to debug.

MATLAB software was adopted to build the kinematic models of manipulator. And using D-H (the acronym of Denavit-Hartenberg) method to solve the forward and inverse kinematic equations of the manipulator, to analyze the motivation, to plan and track the

motion’s path.

In addition, a good interface of human-computer interaction was enhanced in the remote control system of the manipulator in PC. Moreover, the manipulator simulation technology was built by using the mixed programming of VC and MATLAB. Thus, the motion choreographs was got quickly and easily, also greatly saved time and cut the cost.

2 Manipulator Model and Path Planning

At first, the motion model of the manipulator was built. Then, the kinematic simulation and its path planning were researched. These works provided the foundation for the design of the remote control system of the manipulator.

Motion Model of the Manipulator

The manipulator was regarded as an open loop kinematic chain. It was constituted by five rotary joints. And its one end was fixed on a base while the other end was used to achieve the ability of grabbing. Therefore, it is better to establish a chain coordinate frame as shown in . The terminal position and attitude was determined via using

forward kinematic equation after knowing the rotating angle of every joint. The D-H parameter table shown as Table 1 was established by using the frames in .

Coordinate frames of mechanical arm

Table 1 D-H Parameters of the Robot Arm

Due to D-H method:

T =T T +1T +1T =(TT T +1?TT T +1TT T +1TT T TT T +1TT T 0T T ?TT T ?TT T T T +1TT T +1TT T TT T +1TT T 00

TT T TT T T T +101)

Where C T T +1=cos T T +1 , S T T +1=sin T T +1 , C T T =cos T T , S T T =sin T T . The transformation matrix of every joint was given by

equation (2).

T 10=(

cos T 1

sin T 1sin T 1cos T 1000000001001) T 21=(cos T 2?sin T 200001T 1?sin T 2?cos T 2000001) T 3

2=(cos T 3

?sin T 3sin T 3cos T 3000000001T 201) T 43=(cos T 4?sin T 40000?1?T 3sin T 4cos T 4000001) T 54=(cos T 5

?sin T 5sin T 5cos T 5000

00000

1

T 401) T 50=(T T T T T T T T T T T T T T T T T T T T 00T T T T 01)=T 10T 2?1T 3?2T 4?3T 5?4 (2)

Where unit vector T →,T →,T → in equation (2) was T

→=TTTTTT , T →=TTTTTTTTTTT , T →=TTTTTTTT , T

→=TTTTTTTT . Parameters of mechanical arm were given by T 1=85mm , T 2=116mm , T 3=85mm , T 4=95mm . Therefore the forward kinematic

equation was determined by taking every parameter in equation (3).

T 50=(180TT 1T (T 2+T 3)+116TT 1TT 2180TT 1T (T 2+T 3)+116TT 1TT 285+116TT 2+180T (T 2+T 3)

) (3)

In practical application, the manipulator was adopted to grab

objects. This required that the fixed position was given from terminal

to target location. That was the inverse kinematic analysis of

manipulator. Inverse transformation was used to determine angle of every rotary joint toward the established coordinates. And the used method of inverse transformation was the common method to solve such problem (this method also known as algebraic method).Using inverse

transformation T T T ?1?1

separately to the left multiplication with

T =50T 10T 2?1T 3?2T 4?3T 5?4 , the angle of every rotary joint (T 1 T 2 T 3 T 4 T 5)was determined. Owing to these results, the rotary angles (T 1T 2T 3)at terminal position of manipulator were totally decided by the target position [T T T T T T ]. Angle T 4 was used to change terminal attitude of the manipulator and it was changed by the known normal vector. However, angle T 5, was decided by the size of target object.

Motion Simulation of the Manipulator

The manipulator model was built and simulated via MATLAB toolbox. We could verify the rationality of the mathematical model. While the MATLAB model was established by table 1 and shown as

MATLAB simulation of the manipulator

Comparing to the and , the simulation model of the manipulator was coincided to the reference frame model. That was to say, the given coordinate frame was correct. These results also could be proved by the determined inverse kinematic equations via MATLAB shown in the table (2) and table (3).

The target position was solved by forward kinematics. After that, the rotary angles were calculated by inverse kinematical equation. It turned out that these rotary angles coincided to the given angles. Therefore, these results verified the correctness of forward and inverse kinematical equation.

Table (2) Forward Kinematics Analyze

Table (3) Inverse Kinematics Analyze

3 Path Planning of the Manipulator

The total displacement of joint was calculated by inverse

kinematical equation when the manipulator moved to new position. Thus, the manipulator could move to new position. Although the manipulator finally moved to the expected position in such condition, the motion of the manipulator between these two points was unknown. Due to space limitations, motion and some certain position requirements, the manipulator was often unable to move as the above mentioned method. Therefore, the motion path was designed to coincide with the limited conditions.

In this paper, we could use these certain limitations to decide some expected points. And these expected points were used to match the planning path of the manipulator’s movement. Owing to the planning path, coordinate in every part could be calculated. The rotary angle

of every joint was calculated via inverse kinetical equation and these angles realized the movement of planning path. Movement of the manipulator was shown in (Where‘

’ represented the points would be p assed by the manipulator;

‘*’represented the expected points of every segment; ‘-

’represented path planning of the manipulator). In , we could see

that the motion of the manipulator passed every planning point and the movement path coincided to the planning path.

The path planning simulation of the manipulator

4 Remote Control System of the Manipulato r

The remote control system of the manipulator contains the main PC and the slave FPGA controller using DE2 Board of ALTER Company. The motors of the manipulator were controlled by multipath PWM waves. And the PWM waves were generated by IP core. The FPGA controller Communicated with PC via wireless serial port. While in the PC interaction, the operator could observe the move of the manipulator in real-time and tele-control the motion of the manipulator. Also every movement of manipulator could be observed in advance via the

simulation technique. The general design of the manipulator remote control system was shown in .

The block diagram of the remote control system

Control Mode of the Manipulator

There were two control modes of the manipulator. One mode is that

the inverse kinematical equations are calculated by FPGA straightly to determine angle of every rotary joint. Thus, the control of the manipulator was achieved. The advantage of this mode is more direct and independent to finish the control of the manipulator without the external devices. At the same time, this mode has large quantities of calculations, which occupy more internal storage and running time of FPGA. Resources of FPGA are wasted under this mode.

The other mode accomplished the control of the manipulator by using VC and MATLAB in PC. Using VC and MATLAB finished a large number of complex calculations and determined angle of every rotary joint. And the angle results were transmitted to FPGA in order to accomplish the control of the manipulator. This manner saved lots of internal storage and running time. In addition, FPGA could finish other works under

this mode. But the manipulator was not under fast control in this mode.

In this system, a new mode was adopted in the manipulator remote control system depending on the advantages of the two modes. Specifically, when the manipulator accomplished the specified and repeated movement the former mode was adopted under direct control by FPGA. When the manipulator wanted to achieve new motions the latter mode was used to be commanded by orders from PC. This new mode was made good use of advantages of the two modes in the above. And this new mode lightened computational burden and improved working

efficiency of the manipulator.

SOPC Design for the Remote Control System

Movement of the manipulator was controlled by servos. And the servos were controlled by PWM waves with the cycle of 20ms. Pulse width of these PWM waves was ~ corresponding to the rotary angle of servo with

-90 degree to 90 degree. High precision of PWM waves were generated by IP core via Verilog in this system. The results were shown in . PWM waves controlled rotary angles of the servos via the servo drivers.

The PWM IP core

Multiple of IP cores were able to be downloaded into FPGA. And

multiple PWM waves with high precision were generated in the output. As shown in , the pulse width of these waves could be settled by

program of Nios II. The movement of the manipulator was more flexible and in higher precision in this system.

The IP cores generating PWM wave

The movement of the manipulator was accomplished by the duty ratio of PWM waves. Formula (4) inverted rotary angle T T to the

corresponding amount of the duty ratio of PWM waves. The duty ratio of PWM waves corresponded to the Nios II output.

TTT T =1000000?(T T ?50000+75000) (4) Wireless serial of 9600 baud rate was used to transmit the

coordinate and the angle information from host computer to FPGA. After that, the data and orders were analyzed by FPGA Then FPGA transmitted the movement results to interactive interface of host computer via wireless transition model. This communication was realized through adding UVRT communication protocol to FPGA.

The Interactive Interface of the Remote Control System

The interactive interface of the remote control system was shown in . There were some functions in the interactive interface: video

observation, the manipulator control and the simulation modeling. At first, the manipulator video could be seen from camera to

interactive interface. The operator could monitor the manipulator in real-time.

Secondly, the angle and the coordinate could be set in control zone of the interactive interface. The angle of the manipulator could be

set independently to each single joint. In addition, the angle setting

could be shown in real-time in the list of interactive interface (as shown in . In the set of coordinates, judging of coordinate setting assured that the total coordinates could achieve to the target points. Thus the manipulator could be controlled to move in the settled path depend on the angle information.

Lastly, the MATLAB robot toolbox was embedded into this interactive interface. One interface was integrated both the control and

simulation of the manipulator. MATLAB robot toolbox was directly used by interactive interface in the manipulator modeling. Each group of information was simulated separately in order to detect whether each movement was correct. And the general simulation could test whether movement arrangement of the manipulator was reasonable. Combining with multiple simulation methods made the movement arrangement more flexible, the operation of the manipulator simpler and interface interaction more perfect.

The interactive interface of the manipulator

5 Experiment and Simulation

In order to verify properties of the remote control system of the manipulator, experiments of the system were under way and were comparing to the simulation system. To be specific, manipulator modeling was built by interactive interface and a group of coordinates could be designed. we could see that the manipulator modeling and control of the interactive interface design comforted to the design requirement. The comparing between experiment and simulation was shown in .

The experiment and the simulation

6 Conclusion

In the experiment, the 5-DOF manipulator modeling was simulated by MATLAB. In the slave FPGA board, control of the manipulator was accomplished via IP core based on the Verilog language. That greatly reduced design of the peripheral circuit, cut the cost, improved the precision and made the movement smoother without shaking. While in the

interactive interface, the mixed programming method of VC and MATLAB was embedded into the MATLAB simulation function. Thus the operability of this manipulator was enhanced. The system had a good ability of interactive interface. The whole system was verified and achieved to the expected effect. One new thing in this system was that embedded the MATLAB robot toolbox in the interactive interface. The D-H modeling, path planning and tele-operation and so on were accomplished by using this interactive interface directly. Compared to the other development tools, this interactive interface had portability, good compatibility, short development cycle and simple operation. References

[1] Saeed B. Niku write, Sun Fuchun, Zhu Jihong, Liu Guodong

etc translate: Robotics Introduction, Beijing, Electronic

Industry Press, 2004(1):60-63,132-137.

[2] Brady, , , , and

, editors, Robot Motion; Planning and Control,

MIT Press, Cambridge, Mass, 1982.

[3] Paul Richard P., Robot Manipulators, Mathematics,

Programming, and Control, The MIT Press 1981.

[4] Li Jian, Design and Research of Multi-DOF Robot, Master

degree theses of master of university of technology, Chinese

acaedemy of sciences, 2009?20-31.

[5] Cheng Liyan, Fei Ling, Su Zelang, The 5-DOF Manipulator

Kinematics Simulation Analysis Based on MATLAB,

Mechanical Research & Application, 2011(06).

[6] Zhang Puxing Jia Qiuling, Mechanical Arm Multi-channel

Servo Control Design based on FPGA, Small and special

electrical machine. 2011, 39(4)

第33届中国控制会议论文集

中国,南京,2014年28-30日

机械手的远程控制系统

孙华、张媛、薛晶晶、吴宗凯

哈尔滨工程大学,哈尔滨15000学院,自动化专业

电子油箱:

摘要:一种5自由度机械手的远程控制系统的设计。这种机械手被安装到我们的移动机器人构成远程救援机器人。这种Denavit-Hartenberg方法被用于建立运动学模型和机械手操作的路径规划的研究。操作者可以通过个人电脑来显示移动图像和操纵器的各种数据的交互式界面远程控制机械手。操纵器的伺服系统是由从属的FPGA控制器控制。此外,从属的FPGA控制器经由所述无线通信模块的个人计算机进行通信。由于嵌入的Nios II程序和IP(知识产权)核生成PWM波,该系统可以控制多个伺服的快速性和灵活性。为了实现实时操作和仿真,人机交互界面,建立了VC和MATLAB的混合编程。

关键词:机械手、远程控制;、Denavit-Hartenberg;、FPGA、人机交互

1.绪论

随着微电子技术的发展和计算机技术,机械手在制造业中已经成为必不可少的设备。正如我们所熟知的,机械手常适用于完成乏味的、繁重的和反复的体力劳动,特别是用于替代在危险和有害环境的手动操作,例如腐蚀和高温。

在本文中,机械手安装在我们移动机器人上。这种机器手的远程操作系统的设计。整个系统由个人电脑和从属的FPGA构成。操作者可以通过个人电脑远程控制该机器人。无线通信被用于发送个人电脑和FPGA之间的数据。 FPGA是在移动机器人上机械手的控制器。 FPGA具有丰富的内部资源和IP内核。和一个中央控制选项,通过内嵌的Nios II程序和IP核心FPGA.建立,Verilog语言采用设计出生成的数字PWM波来控制机械手的IP核。因此,该系统可以达到较高的精度,易于调试。

MATLAB软件采用建立机械手的运动模型,并使用DH(Denavit-Hartenberg的缩写)的方法来解决前进和操纵逆运动学方程,分析动机,计划和跟踪运动路径。此外,人机交互的良好的界面增强在PC上的机械手的远程控制系统。而且,机器人仿真技术是通过使用VC和MATLAB的混合编程建成。因此,运动编排变得快速,方便,也大大节省了时间,降低了成本。

2 机械手的模型和路径的规划

首先,建立机械手的运动模型。然后,研究它的运动学仿真和路径规划。这些工作被用于基础的操纵器的遥控系统的设计。

机械手的运动模型

机械手就被视为开环运动链。它由五个旋转接头构成。其一端被固定在一个基座上,同时另一端被用来实现敛的能力。因此,最好是建立一个链坐标帧,如图1所示。该终端的位置和姿态是通过使用正向运动学方程知道每个关节的旋转角度后确定。如1所示的DH 参数表,建立了使用框架如图1所示。

图1坐标机械手的帧

表1机器人手的D-h 参数值

由D-H 方法得:

T =T T +1T +1T =(TT T +1?TT T +1TT T +1TT T TT T +1TT T 0T T ?TT T ?TT T T T +1TT T +1TT T TT T +1TT T 00

TT T TT T T T +101) 当C T T +1=cos T T +1 , S T T +1=sin T T +1 , C T T =cos T T , S T T =sin T T ,每个关节的变换矩阵是由方程(2)给出。

T 1

0=(cos T 1

sin T 1sin T 1cos T 1000000001001) T 21=(cos T 2?sin T 200001T 1?sin T 2?cos T 2000001) T 3

2=(cos T 3

?sin T 3sin T 3cos T 3000000001T 201) T 43=(cos T 4?sin T 40000?1?T 3sin T 4cos T 4000001) T 54=(cos T 5

?sin T 5sin T 5cos T 5000

00000

1

T 401) T 50=(T T T T T T T T T T T T T T

T T T T T T 00T T T T 01)=T 10T 2?1T 3?2T 4?3T 5?4 (2)

当单位矢量T →,T →,T →在方程(2)为T

→=TTTTTT , T →=TTTTTTTTTTT , T →=TTTTTTTT , T

→=TTTTTTTT ,机械手臂参数被赋予T 1=85mm,T 2=116mm,T 3=85mm,T 4=95mm

因此,正向运动方程通过取在公式(3)每一个参数来确定。

T 50=(180TT 1T (T 2+T 3)+116TT 1TT 2180TT 1T (T 2+T 3)+116TT 1TT 285+116TT 2+180T (T 2+T 3)

) (3)

在实际应用中,机械手要求能抓住物体。这要求不断该修正位置给出终端给目标位置。这是机械手的逆运动学分析。逆变换被用来确定朝着既定的坐标的每个旋转接头的角,并且逆变换的使用的方法是为了解决这样的问题(该方法也被称为代数方

法)的常用方法。使用逆变换T T T ?1?1

分别向左侧乘以T =50T 10T 2?1T 3?2T 4?3T 5?4,每个旋转接头的角(T 1 T 2 T 3 T 4 T 5)被确定,通过这些结果,旋转角度(T 1T 2T 3)在机械手的末端位置被完全的目标位置决定[T T T T T T ],角θ4被用于改变机械手的终端的姿态,并改变由已知的法线向量。然而,倾斜的θ5,由目标对象的大小来决定。

机械手的运动仿真

建立机械手模型,并通过MATLAB 仿真工具箱。我们可以验证的数学模型的合理性。同时MATLAB 模型建立了表1和如图2所示

图2 MATLAB 仿真机械手

比较于图1和2所示,机械手的仿真模型与参照帧的模型相吻合。这是说,在给定的坐标系是正确的。这些结果还可以通过经由MATLAB 所确定的逆运动学方程表中的(2)和表(3)所示来证明。

表(2)正向运动学分析

表(3)反向运动学分析

目标位置由正向运动学解决。在此之后,在旋转角度的计算采用逆运动学方程。事实证明,这些旋转角度正好给定的角度。因此,这些结果验证了正向和反向运动的正确性。

3. 机械手的路径规划

联合的总量进行了计算和反向运动学方程当机器人移动到新的位置。因此,机械手可以移动到新的位置,但是机械手最后移动到预期位置在这样的条件下,这两个点之间的机械手的运动是未知的。由于篇幅的限制,运动和一定的位置要求,机械手往往无法移动的上述方法。因此,该运动路径被设计为在有限的条件下重合。

在本文中,我们可以利用这些一定的局限性来决定了一些预期的点。这些预期的点被用于匹配操作者的运动的规划路径。由于规划路径,在每一个部分的坐标可以被计算出来。每个关节的旋转角度是通过逆运动学方程计算和这些角度实现规划路径的运动。机械手的运动是如图3所示(其中'o'代表的点由机械手传递;'*'代表每一段的预期点;'-'代表机械手的路径规划)。在图3中,我们可以看到,手的动作通过每一个规划点和移动路径相吻合的规划路径。

图3路径规划仿真机械手

4 机械手的远程控制系统

机械手的远程控制系统包含有主机PC和使用ALTER公司董事会DE2从属的FPGA 控制器。操纵器的马达是由多路径的PWM波控制。并且PWM波是由IP内核生成的。该FPGA控制器通过无线串口通讯PC。而在PC的交互中,操作者可观察到的操纵器的实时和移动远程控制的操纵器的运动。同时机械手的每一个动作可以事先通过模拟技术进行观察。机械手远程控制系统的总体设计

其占据更多的内部存储和FPGA的运行时间。 FPGA的资源在此模式下浪费。

另一种模式通过PC使用的VC和MATLAB实现了机械手的控制。用VC和MATLAB完成了大量复杂的计算,每个旋转接头的决心角度。角度的结果传送到FPGA中以实现机械手的控制。这种方式节约了大量的内部存储和运行时间。此外,FPGA可以在此模式下完成其他工作。但机械手不是在该模式下快速控制。

在这个系统中,在机械手远程控制系统中,一种依赖于两种模式的优点的新模式被采用。具体地,当机械手完成的指定和反复运动,前者模式通过从属的FPGA控制器实现控制。当机械手想要实现新的提案,后一种模式被订单者从个人PC指挥。这种新模式是取得了良好的使用在以上两种模式的优点。这种新的模式减轻了计算负担,提高了机械手的工作效率。

SOPC设计的远程控制系统

机械手的运动是通过伺服控制的,而伺服机构是由PWM 波以20毫秒的周期来控制。这些PWM 波的脉冲宽度是,对应伺服的旋转角度-90度到90度。由通过的Verilog IP 核在本系统中生成PWM 波的高精度。该结果示于图5。 PWM 波通过伺服驱动器控制伺服电机的旋转角度。

图5的PWM IP 核

IP 核的多个能够被下载到FPGA 。并以高精度多路PWM 波在输出生成。如图6所示,这些波的脉冲宽度将由Nios II 的方案来解决。操纵器的运动是更灵活的,并且在该系统中更高的精度。

图6的IP 内核生成PWM 波

机械手的运动是由PWM 波的占空比来实现。式(4)倒转角T T 至PWM 波的占空比的相应量。这种PWM 波的占空比对应于Nios II 的输出。

TTT T =1000000?(T T ?5000090

+75000) (4) 9600波特率无线串行被用来传送坐标,并从主计算机的角度信息的FPGA 。在这之后,数据和命令由FPGA 进行分析。然后FPGA 发送的运动的结果到主计算机的交互式接口经由无线过渡模式。这种通信是通过增加UART 通信协议FPGA 实现。 远程控制系统的交互界面

远程控制系统的人机交互界面示于图7。还有,在人机交互界面的一些功能:视频观察,操纵控制与仿真建模。

首先,机械手的视频可以从相机传到人机交互界面看到。操作人员可以监测实时操纵。

其次,角度和坐标可以在交互界面的控制区进行设置。机械手的角度可以被独立地设置到每个单关节。另外,该角度设定可显示在实时交互界面的列表(如图7所示)。在该组坐标,判断坐标设定保证,总坐标能够达到目标点。因此,机械手可以被控制以在结算路径移动取决于所述角度信息。

最后,MATLAB 机器人工具箱被嵌入到这个互动界面。一个接口被集成在控制和模拟操盘。 MATLAB 机器人工具箱是直接使用在机器人造型的人机交互界面。每个组的信息是为了检测各个动作是否是正确的单独的模拟。和一般的模拟可以测试机器人的运动安排是否合理。结合多种模拟方法所做的运动安排更加灵活,在操纵简单,界面交互的操作更加完美。

图7操纵的人机交互界面

5.实验与仿真

为了验证操作者的远程控制系统的性能,该系统的实验正在进行,并进行比较,以模拟系统。具体地,机械手的建模由交互式接口内置和一组坐标可以设计。这些坐标被传输到FPGA,从而控制舵机来完成机器人的运动。关节角度,末端坐标通过接口的视频拍摄。

图8实验和仿真

6.总结

在实验中,将5自由度机械手模型利用MATLAB模拟。利用MATLAB。在从属FPGA 板,机械手的控制是基于Verilog语言经由IP核来完成的。这大大降低了外围电路的设计,降低成本,提高了精确度和取得的运动更平滑无晃动。而在人机交互界面,VC和MATLAB的混合编程方法嵌入到MATLAB仿真功能

因此,这个操纵器的可靠性得到加强。该系统具有人机交互界面的良好能力。整个系统进行了验证,并取得所预期的效果。在这个系统中的一个新的东西体现在人机交互界面的MATLAB机器人工具箱上,对于D-H模型,路径规划和远程操作等方面进行了直接使用这个交互界面完成。相比于其他的开发工具,这个互动接口的便携性,良好的兼容性,开发周期短,操作简单。

参考文献

[1] SaeeB ,Niku.机器人介绍[M].孙富春,朱继宏,刘成国栋翻译.北京:电子工业出版社,2004(1):60 - 63132 - 137。

[2] Brady Johnson.,和 .机器人运动、计划和控制[M].美国:麻省理工学院(剑桥)出版,1982年。

[3] Paul Richard P.机器人机械手、数学、编程和控制[M].美国:麻省理工学院出版社,1981年。

[4]李健.多自由度机器人的设计和研究[D].合肥:中国科学技术大学, 。

[5]程立艳,费凌,苏泽郎.基于MATLAB五自由度机械手运动学仿真分析[D].成都:西华大学机械工程及自动化学院,2011(06)。

[6]张普行,贾秋玲.基于FPGA的机械臂多路舵机控制器设计[D],西安:西北工业大学 2011,39(4)

机械手机械设计中英文对照外文翻译文献

(文档含英文原文和中文翻译) 中英文对照翻译 机械设计 摘要: 机器由机械和其他元件组成的用来转换和传输能量的装置。比如:发动机、涡轮机、车、起重机、印刷机、洗衣机和摄影机。许多机械方面设计的原则和方法也同样适用于非机械方面。术语中的“构造设计”的含义比“机

械设计”更加广泛,构造设计包括机械设计。在进行运动分析和结构设计时要把产品的维护和外形也考虑在机械设计中。在机械工程领域中,以及其它工程领域,都需要机械设备,比如:开关、凸轮、阀门、船舶以及搅拌机等。关键词:设计流程设计规则机械设计 设计流程 设计开始之前就要想到机器的实用性,现有的机器需要在耐用性、效率、重量、速度,或者成本上得到改善。新的机器必需能够完全或部分代替以前人的功能,比如计算、装配、维修。 在设计的初级阶段,应该充分发挥设计人员的创意,不要受到任何约束。即使有一些不切实际的想法,也可以在设计的早期,即在绘制图纸之前被改正掉。只有这样,才不致于阻断创新的思路。通常,必须提出几套设计方案,然后进行比较。很有可能在这个计划最后指定使用某些不在计划方案内的一些想法的计划。 一般当产品的外型和组件的尺寸特点已经显现出来的时候,就可以进行全面的设计和分析。接着还要客观的分析机器性能、安全、重量、耐用性,并且成本也要考虑在内。每一个至关重要的部分要优化它的比例和尺寸,同时也要保持与其它组成部分的平衡。 选择原材料和工艺的方法。通过力学原理来分析和实现这些重要的特性,如稳定和反应的能量和摩擦力的利用,动力惯性、加速度、能量;包括材料的弹性强度、应力和刚度等物理特性,以及流体的润滑和驱动器的流体力学。设计的过程是一个反复与合作的过程,无论是正式的还是非正式的,对设计者来说每个阶段都很重要。。产品设计需要大量的研究和提升。许多的想法,必须通过努力去研究成为一种理念,然后去使用或放弃。虽然每个工

机器人外文翻译

英文原文出自《Advanced Technology Libraries》2008年第5期 Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal. Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal. The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity. Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding. With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration,

外文翻译机械手

Hand Column Type Power Machine Follow with our country the rapid development of industrial production, rapidly enhance level of automation, implementation artifacts of handling, steering, transmission or toil for welding gun, spraing gun, spanner and other tools for processing, assembly operations for example automation, should cause the attention of people more and more. Industrial robot is an important branch of industrial robots. It features can be programmed to perform tasks in a variety of expectations, in both structure and performance advantages of their own people and machines, in particular, reflects the people's intelligence and adaptability. The accuracy of robot operations and a variety of environments the ability to complete the work in the field of national economy and there are broad prospects for development. With the development of industrial automation, there has been CNCmachining center, it is in reducing labor intensity, while greatly improved labor productivity. However, the upper and lower commonin CNCmachining processes material, usually still use manual or traditional relay-controlled semi-automatic device. The former time-consuming and labor intensive, inefficient; the latter due to design complexity, require more relays, wiring complexity, vulnerability to body vibration interference, while the existence of poor reliability, fault more maintenance problems and other issues. Programmable Logic Controller PLC-controlled robot control system for materials up and down movement is simple, circuit design is reasonable, with a strong anti-jamming capability, ensuring the system's reliability, reduced maintenance rate, and improve work efficiency. Robot technology related to mechanics, mechanics, electrical hydraulic technology, automatic control technology, sensor technology and computer technology and other fields of science, is a cross-disciplinary integrated technology. Current industrial approaches to robot arm control treat each joint of the robot arm as a simple joint servomechanism. The servomechanism approach models the varying dynamics of a manipulator inadequately because it neglects the motion and configuration of the whole arm mechanism. These changes in the parameters of the controlled system sometimes are significant enough to render conventional feedback control strategies ineffective. The result is reduced servo response speed and damping, limiting the precision and speed of the end-effecter and making it appropriate only for limited-precision tasks. Manipulators controlled in this manner move at slow speeds with unnecessary vibrations. Any significant performance gain in this and other areas of robot arm control require the consideration of more efficient dynamic models, sophisticated control approaches, and the use of dedicated computer architectures and parallel processing techniques. Manipulator institutional form is simple, strong professionalism, only as a loading device for a machine tools, special-purpose manipulator is attached to this machine.

机械手外文翻译 修改版

密级 分类号 编号 成绩 本科生毕业设计 (论文) 外文翻译 原文标题Simple Manipulator And The Control Of It 译文标题简易机械手及控制 作者所在系别机械工程系 作者所在专业xxxxx 作者所在班级xxxxxxxx 作者姓名xxxx 作者学号xxxxxx 指导教师姓名xxxxxx 指导教师职称副教授 完成时间2012 年02 月 北华航天工业学院教务处制

译文标题简易机械手及控制 原文标题 Simple Manipulator And The Control Of It 作者机电之家译名JDZJ国籍中国 原文出处机电之家 中文译文: 简易机械手及控制 随着社会生产不断进步和人们生活节奏不断加快,人们对生产效率也不断提出新要求。由于微电子技术和计算软、硬件技术的迅猛发展和现代控制理论的不断完善,使机械手技术快速发展,其中气动机械手系统由于其介质来源简便以及不污染环境、组件价格低廉、维修方便和系统安全可靠等特点,已渗透到工业领域的各个部门,在工业发展中占有重要地位。本文讲述的气动机械手有气控机械手、XY轴丝杠组、转盘机构、旋转基座等机械部分组成。主要作用是完成机械部件的搬运工作,能放置在各种不同的生产线或物流流水线中,使零件搬运、货物运输更快捷、便利。 一.四轴联动简易机械手的结构及动作过程 机械手结构如下图1所示,有气控机械手(1)、XY轴丝杠组(2)、转盘机构(3)、旋转基座(4)等组成。 图1.机械手结构 其运动控制方式为:(1)由伺服电机驱动可旋转角度为360°的气控机械手(有光电传感器确定起始0点);(2)由步进电机驱动丝杠组件使机械手沿X、Y轴移动(有x、y轴限位开关);(3)可回旋360°的转盘机构能带动机械手及丝杠组自由旋转(其电气拖动部分由直流电动机、光电编码器、接近开关等组成);(4)旋转基座主要支撑以上3部分;(5)气控机械手的张合由气压控制(充气时机械手抓紧,放气时机械手松开)。 其工作过程为:当货物到达时,机械手系统开始动作;步进电机控制开始向下

机械手设计英文参考文献原文翻译

机械手设计英文参考文 献原文翻译 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

翻译人:王墨墨山东科技大学 文献题目:Automated Calibration of Robot Coordinates for Reconfigurable Assembly Systems 翻译正文如下: 针对可重构装配系统的机器人协调性的自动校准 T.艾利,Y.米达,H.菊地,M.雪松 日本东京大学,机械研究院,精密工程部 摘要 为了实现流水工作线更高的可重构性,以必要设备如机器人的快速插入插出为研究目的。当一种新的设备被装配到流水工作线时,应使其具备校准系统。该研究使用两台电荷耦合摄像机,基于直接线性变换法,致力于研究一种相对位置/相对方位的自动化校准系统。摄像机被随机放置,然后对每一个机械手执行一组动作。通过摄像机检测机械手动作,就能捕捉到两台机器人的相对位置。最佳的结果精度为均方根值毫米。 关键词: 装配,校准,机器人 1 介绍 21世纪新的制造系统需要具备新的生产能力,如可重用性,可拓展性,敏捷性以及可重构性 [1]。系统配置的低成本转变,能够使系统应对可预见的以及不可预见的市场波动。关于组装系统,许多研究者提出了分散的方法来实现可重构性[2][3]。他们中的大多数都是基于主体的系统,主体逐一协同以建立一种新的

配置。然而,协同只是目的的一部分。在现实生产系统中,例如工作空间这类物理问题应当被有效解决。 为了实现更高的可重构性,一些研究人员不顾昂贵的造价,开发出了特殊的均匀单元[4][5][6]。作者为装配单元提出了一种自律分散型机器人系统,包含多样化的传统设备[7][8]。该系统可以从一个系统添加/删除装配设备,亦或是添加/删除装配设备到另一个系统;它通过协同作用,合理地解决了工作空间的冲突问题。我们可以把该功能称为“插入与生产”。 表1:合作所需的调节和量度 在重构过程中,校准的装配机器人是非常重要的。这是因为,需要用它们来测量相关主体的特征,以便在物理主体之间建立良好的协作关系。这一调整必须要达到表1中所列到的多种标准要求。受力单元和方向的调整是不可避免的,以便使良好的协同控制得以实现。从几何标准上看,位置校准是最基本的部分。一般来说,校准被理解为“绝对”,即,关于特定的领域框架;或者“相对”,即,关于另一个机器人的基本框架。后者被称为“机器人之间的校准”。 个体机器人的校准已被广泛研究过了。例如,运动参数的识别就非常受欢迎。然而,很少有对机器人之间校准的研究。玉木等人是用一种基于标记的方法,在一个可重构的装配单元内,校准机器人桌子和移动机械手之间的相互位置/方向联系。波尼兹和夏发表了一种校准方法。该方法通过两个机械手的机械接触来实现,实验非常耗时,并要求特别小心地操作。

机械手文献综述

毕业设计(论文) 文献综述 设计(论文)题目:4自由度气动机械手设计 学院名称:机械工程学院 专业:机械设计制造及其自动化 学生姓名:卢锋学号:07403010309 指导教师:杨超珍 2010年12 月24 日

机械手的发展及应用 前言 机械工业是国民的装备部,是为国民经济提供装备和为人民生提供耐用消费品的产业。机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的要标志。因此,世界各国都把发展机械工业作为发展本国经济的战略重点之一。生产水平及科学技术的不断进步与发展带动了整个机械工业的快速发展。现代工业中,生产过程的机械化,自动化已成为突出的主题。然而在机械工业中,加工、装配等生产是不连续的。单靠人力将这些不连续的生产工序接起来,不仅费时而且效率不高。同时人的劳动强度非常大,有时还会出现失误及伤害。显然,这严重影响制约了整个生产过程的效率和自动化程度。机械手的应用很好的解决了这一情况,它不存在重复的偶然失误,也能有效的避免了人身事故。 1.机械手的组成 1.1 执行机构 机械手主要由执行机构、驱动机构和控制系统三大部分组成。其组成及相互关系如下图: (1)手部 手部安装在手臂的前端。手臂的内孔装有转动轴,可把动作传给手腕,以转动、伸屈手腕,开闭手指。 机械手手部的机构系模仿人的手指,分为无关节,固定关节和自由关节三种。手指的数量又可以分为二指、三指和四指等,其中以二指用的最多。可以根据夹持对象的形状和大小配备多种形状和尺寸的夹头,以适应操作需要。

(2)手臂 手臂有无关节和有关节手臂之分本课所做的机械手的手臂采用无关节臂手臂的作用是引导手指准确的抓住工件,并运送到所需要的位置上。为了使机械手能够正确的工作,手臂的三个自由度都需要精确的定位。 总括机械手的运动离不开直线移动和转动二种,因此,它采用的执行机构主要是直线油缸、摆动油缸、电液脉冲马达、伺服油马达、直流伺服马达和步进马达等。 躯干是安装手臂、动力源和执行机构的支架。 1.2 驱动机构 驱动机构主要有四种:液压驱动、气压驱动、电气驱动和机械驱动。其中以液压气动用的最多,占90%以上,电动、机械驱动用的较少。 液压驱动主要是通过油缸、阀、油泵和油箱等实现传动。它利用油缸、马达加上齿轮、齿条实现直线运动;利用摆动油缸、马达与减速器、油缸与齿条、齿轮或链条、链轮等实现回转运动。液压驱动的优点是压力高、体积小、出力大、运动平缓,可无级变速,自锁方便,并能在中间位置停止。缺点是需要配备压力源,系统复杂成本较高。 气压驱动所采用的元件为气压缸、气压马达、气阀等。一般采用4-6 个大气压,个别的达到 8-10 个大气压。它的优点是气源方便,维护简单,成本低。缺点是出力小,体积大。由于空气的可压缩性大,很难实现中间位置的停止,只能用于点位控制,而且润滑性较差,气压系统容易生锈。 电气驱动采用的不多。现在都用三相感应电动机作为动力,用大减速比减速器来驱动执行机构;直线运动则用电动机带动丝杠螺母机构;有的采用直线电动机。通用机械手则考虑用步进电机、直流或交流的伺服电机、变速箱等。电气驱动的优点是动力源简单,维护,使用方便。驱动机构和控制系统可以采用统一形式的动力,出力比较大;缺点是控制响应速度比较慢。机械驱动只用于固定的场合。一般用凸轮连杆机构实现规定的动作。它的优点是动作确实可靠,速度高,成本低;缺点是不易调整。 1.3 控制系统 机械手控制系统的要素,包括工作顺序、到达位置、动作时间和加速度等。 控制系统可根据动作的要求,设计采用数字顺序控制。它首先要编制程序加以存储,然后再根据规定的程序,控制机械手进行工作。随着科学技术的发展,机械手也越来越多的地被应用。

机械手臂外文文献翻译、中英文翻译、外文翻译

外文出处:《Manufacturing Engineering and Technology—Machining》 附件1:外文原文 Manipulator Robot developed in recent decades as high-tech automated production equipment. I ndustrial robot is an important branch of industrial robots. It features can be program med to perform tasks in a variety of expectations, in both structure and performance a dvantages of their own people and machines, in particular, reflects the people's intellig ence and adaptability. The accuracy of robot operations and a variety of environments the ability to complete the work in the field of national economy and there are broad p rospects for development. With the development of industrial automation, there has be en CNC machining center, it is in reducing labor intensity, while greatly improved lab or productivity. However, the upper and lower common in CNC machining processes material, usually still use manual or traditional relay-controlled semi-automatic device . The former time-consuming and labor intensive, inefficient; the latter due to design c omplexity, require more relays, wiring complexity, vulnerability to body vibration inte rference, while the existence of poor reliability, fault more maintenance problems and other issues. Programmable Logic Controller PLC-controlled robot control system for materials up and down movement is simple, circuit design is reasonable, with a stron g anti-jamming capability, ensuring the system's reliability, reduced maintenance rate, and improve work efficiency. Robot technology related to mechanics, mechanics, elec trical hydraulic technology, automatic control technology, sensor technology and com puter technology and other fields of science, is a cross-disciplinary integrated technol ogy. First, an overview of industrial manipulator Robot is a kind of positioning control can be automated and can be re-programmed to change in multi-functional machine, which has multiple degrees of freedom can be used to carry an object in order to complete the work in different environments. Low wages in China, plastic products industry, although still a labor-intensive, mechanical hand use has become increasingly popular. Electronics and automotive industries that

机械手设计外文翻译2

译文一 机械手 机器人是典型的机电一体化装置,它综合运用了机械与精密机械、微电子与计算机、自动控制与驱动、传感器与信息处理以及人工智能等多学科的最新研究成果,随着经济的发展和各行各业对自动化程度要求的提高,机器人技术得到了迅速发展,出现了各种各样的机器人产品。现代工业机器人是人类真正的奇迹工程。一个像人那么大的机器人可以轻松地抬起超过一百磅并可以在误差 +-0.006英寸误差范围内重复的移动。更重要的是这些机器人可以每天24小时永不停止地工作。在许多应用中(特别是在自动工业中)他们是通过编程控制的,但是他们一旦编程一次,他们可以重复地做同一工作许多年。机器人产品的实用化,既解决了许多单靠人力难以解决的实际问题,又促进了工业自动化的进程。 目前,由于机器人的研制和开发涉及多方面的技术,系统结构复杂,开发和研制的成本普遍较高,在某种程度上限制了该项技术的广泛应用,因此,研制经济型、实用化、高可靠性机器人系统具有广泛的社会现实意义和经济价值。由于我国经济建设和城市化的快速发展,城市污水排放量增长很快,污水处理己经摆在了人们的议事日程上来。随着科学技术的发展和人类知识水平的提高,人们越来越认识到污水处理的重要性和迫切性,科学家和研究人员发现塑料制品在水中是用于污水处理的很有效的污泥菌群的附着体。塑料制品的大量需求,使得塑料制品生产的自动化和高效率要求成为经济发展的必然。本文结合塑料一次挤出成型机和塑料抓取机械手的研制过程中出现的问题,综述近儿年机器人技术研究和发展的状况,在充分发挥机、电、软、硬件各自特点和优势互补的基础上,对物料抓取机械手整体机械结构、传动系统、驱动装置和控制系统进行了分析和设计,提出了一套经济型设计方案。采用直角坐标和关节坐标相结合的框架式机械结构形式,这种方式能够提高系统的稳定性和操作灵活性。传动装置的作用是将驱动元件的动力传递给机器人机械手相应的执行机构,以实现各种必要的运动,传动方式上采用结构紧凑、传动比大的蜗轮蜗杆传动和将旋转运动转换为直线运动的螺旋传动。机械手驱动系统的设计往往受到作业环境条件的限制,同时也要考虑价格因素的影响以及能够达到的技术水平。由于步进电机能够直接接收数字量,响应速度快而且工作可靠并无累积误差,常用作数字控制系统驱动机构的动力元件,因此,在驱动装置中采用由步进电机构成的开环控制方式,这种方式既能满足控制精度的要求,又能达到经济性、实用化目的,在此基础上,对步进电机的功率计一算及选型问题经行了分析。在完成机械结构和驱动系统设计的基础上,对物料抓取机械手运动学和动力学进行了分析。运动学分析是路径规

机械手外文翻译

机械手外文翻译 . Manipulator Along with our country the rapid development of industrial production, rapidly improve degree of automation, implementation artifacts of handling, steering, transmission or toil for welding gun, spray gun, spanner and other tools for processing, assembly operations such as automation, should cause the attention of people more and more. Manipulator is to imitate the people part of the action, according to a given program, track and demanding acquirement, handling or operation of the automatic device. Applied in the industrial production of the manipulator is referred to as "industrial manipulator". Application manipulator can improve the automation of production water in production and labor productivity; Can reduce labor fatigue strength, to ensure product quality, implement safety production; Especially in high temperature and high pressure, low temperature, low pressure, dust, explosive, toxic and radioactive gases such as harsh environment, it instead of people normal work, the more significant. Therefore, in the machining, casting, welding, heat treatment, electroplating, spray painting, assembly, and light industry, transportation industry get more and more extensive application, etc.

智能机器人外文翻译

Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal. Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal. The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity. Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding. With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration, electronic, software and hardware. In this article, the mechanical configuration combines the character of direction coordinate and the arthrosis coordinate which can improve the stability and operation flexibility of the system. The main function of the transmission mechanism is to transmit power to implement department and complete the necessary movement. In this transmission structure, the screw transmission mechanism transmits the rotary motion into linear motion. Worm gear can give vary transmission

工业机器人机械手外文翻译

外文翻译 Introduction to Robotics Mechanics and Control 机器人学入门 力学与控制 系别:机械与汽车工程系 专业名称:机械设计制造及其自动化学生姓名:郭仕杰 学号:06101315 指导教师姓名、职称:贺秋伟副教授 完成日期2014 年2 月28日

Introduction to Robotics Mechanics and Control Abstract This book introduces the science and engineering of mechanical manipulation. This branch of the robot has been in several classical field based. The main related fields such as mechanics, control theory, computer science. In this book, Chapter 1 through 8 topics ranging from mechanical engineering and mathematics, Chapter 9 through 11 cover control theory of material, and twelfth and 13 may be classified as computer science materials. In addition, this book emphasizes the computational aspects of the problem; for example, each chapter it mainly mechanical has a brief section calculation. This book is used to teach the class notes introduction to robotics, Stanford University in the fall of 1983 to 1985. The first and second versions have been through 2002 in use from 1986 institutions. Using the third version can also benefit from the revised and improved due to feedback from many sources. Thanks to all those who modified the author's friends. This book is suitable for advanced undergraduates the first grade curriculum. If students have contributed to the dynamics and linear algebra course in advanced language program in a basic course of statics. In addition, it is helpful, but not absolutely necessary, let the students finish the course control theory. The purpose of this book is a simple introduction to the material, intuitive way. Specifically, does not need the audience mechanical engineer strict, although much of the material is from the field. At the Stanford University, many electrical engineers, computer scientists, mathematicians find this book very readable. Here we only on the important part to extract. The main content 1、B ackground The historical characteristics of industrial automation is popular during the period of rapid change. Either as a cause or an effect of automation technology, period of this change is closely linked to the world economy. Use of industrial robots, can be identified in a unique device 1960's, with the development of computer aided design (CAD) system and computer aided manufacturing (CAM) system, the latest trends, automated manufacturing process. The technology is the leading industrial automation through another transition, its scope is still unknown. In

相关主题
文本预览
相关文档 最新文档