当前位置:文档之家› 中空聚合物微球结构形貌的控制_江一明

中空聚合物微球结构形貌的控制_江一明

中空聚合物微球结构形貌的控制_江一明
中空聚合物微球结构形貌的控制_江一明

凝胶微球深部调剖体系研究综述

中国石油大学(北京)研究生考试答题纸 姓名:赵胜绪学号: 2015212184 考试课程:油气田开发工程系统导论课程编号: 1302053 装 订 线 第1页(共 8 页)

凝胶微球深部调剖体系研究综述 摘要 随着常规堵水调剖的效果日渐式微,凝胶微球深部调剖体系作为一项有效的稳油控水技术,得到了国内外油田的广泛应用。本文从发展现状、注入封堵性能评价、与储层孔喉尺度的匹配关系、深部调剖机理以及现场应用5个方面对国内外凝胶微球深部调剖体系研究的最新进展进行了总结和分析,系统梳理了凝胶微球注入封堵性能的基本要求、表征参数、影响因素、存在的问题及对策,并对凝胶微球的发展前景进行展望,以期为凝胶微球更进一步的研究和应用提供参考。 关键词:提高采收率;油藏深部调剖;凝胶微球;综述 1 引言 近些年,针对水驱低效或无效循环的问题,国内外在深部调剖体系的研究与应用方面取得了许多新进展。凝胶微球深部调剖体系,以其良好的注入封堵性能和调剖效果,被国内外油田广泛地用于研究和现场应用,为高含水油田改善水驱开发效果,提高采收率发挥着至关重要的作用[1]。 “微球”指的是纳/微米级的聚合物凝胶颗粒,在溶剂中有一定的膨胀性,受力易变形,广泛用于涂料、制药、水净化等多个领域。1949年Baker首先引入了凝胶微球的概念,1999年Saunders B R和Vincent B从凝胶微球的合成理论、性能和应用方面做了系统总结,此阶段的合成工艺通常采用的是无皂乳液聚合,可形成空间上稳定的无胶核凝胶颗粒,颗粒具有窄尺寸分选[2]。此后,分散聚合、乳液聚合、悬浮聚合等多种聚合方式都成功合成出了单分散的聚合物微球[3]。 2凝胶微球的发展现状 凝胶微球随水注入油层,通过孔喉向油层深部运移,有效封堵高渗层或大孔道,不断改变注入水流向,从而实现深部调剖。基于这种思路,研究人员相继开展了很多该方面的研究工作。 1997年BP,Mobil,Chevron-Texaco和Ondeo Nalco能源服务公司进行技术合作,率先研发了一种具有延时性、膨胀性和热敏性的磺化聚丙烯酰胺凝胶微球用于深部调剖,该技术被命名为“Bright Water”,而且经十多年不断完善,被证明是一种成功的深部调剖技术。Chauveteau等(1999)研究出了一项粒径可控的乳酸锆/磺化聚丙烯酰胺凝胶微球深部调剖技术。大量研究表明,该凝胶微球体系与本体凝胶相比较为优越,微球是通过聚合物交联体系在剪切作用下形成的,具

聚合物微球深部调剖剂

聚合物微球深部调剖剂技术方案及说明 在油田注水开发过程中,由于地层非均质性的存在,注入水沿高渗层突进,油井产水率逐年上升。在水驱和聚合物驱过程中,注入水和聚合物溶液沿高渗透层不均匀推进,纵向上形成单层突进,横向上形成舌进,造成注入水和聚合物溶液提前突破,致使中低渗透层波及程度低、驱油效果差,严重影响了水驱和聚合物驱的开发效果,注水井调剖、油井堵水已成为油田稳产增产的重要措施。但随着常规调堵措施轮次的增加,近井地带剩余油饱和度下降,增油效果变差。只有通过深部调堵才能更有效地调整、改善油藏的非均质性,从而提高注入液体积波及系数,提高注水采油阶段的原油采收率。目前,现有深部调剖存在无机堵剂易沉淀,不能进入地层深部封堵;可动弱凝胶交联不可控性、成本高;水膨体聚合物凝胶颗粒大、存在注入深度与封堵强度之间的矛盾、破胶较快等缺点,导致现有调剖技术的深部调剖效果不佳。 针对如上情况,我公司开发了以AMPS、AM、氢氧化钠、特殊交联剂、司班、吐温、引发剂等合成的聚合物微球深部调剖剂。该聚合物微球深部调剖剂依靠纳米/微米级聚合物微球遇水膨胀来逐级封堵地层孔喉实现其深部调剖堵水的目的。该聚合物微球最外层是水化层,使微球在水中稳定存在,不会沉淀;微球具有弹性及变形性。由于聚合物微球机械封堵位置为渗水通道的孔喉,大幅度提高微球的使用效率。由于聚合物微球的初始尺寸小,且水相中呈溶胶状态,是稳定体系,可以实现进入地层深部。 该产品作为一种新型聚合物微球深部调剖剂,具有以下技术优势: 1、各项指标均达到标准要求 (1)外观:棕黄色半透明均相液体; (2)固含量≥45.0%; (3)密度(25℃):0.95—1.05g/cm3;

聚合物型基质材料

聚合物型基质材料 高聚物微球作为色谱填料的基质树脂,因其可以广泛选择各种单体与交联剂为原料,并可采用不同聚合方法来制备,所以聚合产物的结构类型是很多的。同多糖型凝胶相比较,交联共聚物微球的颗粒骨架结构具有更高的机械强度和化学稳定性,所以更适合于能以经受高流速高压力操作的高效液相色谱使用。常见的合成树脂按其结构形态与性能,有多孔与非多孔之分,有疏水性与亲水性之分;部分树脂也可以不经改性而直接在用于色谱分离。 (一)交联聚苯乙烯树脂 苯乙烯与二乙烯基苯的交联共聚物(PS-DVB)微球,是各种液相色谱技术中应用最为广泛的一类基质树脂。常见的由美国、日本、英国等多家公司所推出的商品,诸如Pohm - Haas的Amberleite XAD 系列、Hamilton Co. 的PRP - 1(1μm)、Hitachi的Hitachigel 3010 与3011(10μm、25μm)、Japan Spectroscopics 的HP-01(10μm)、Mitsubara Chemicals的Diaion CHP -3C(10μm)、Poly - mer labs的PLRP - S 系列(8μm)等。这些 PS-DVB 微球因其具有良好的颗粒刚性、小而均匀的粒度和适宜的孔径大小与分布,所以均适于用作高效液相色谱填料的基质材料。 如前所述,颗粒均匀性呈现单分散的填料和具有贯穿性超大孔结构的填料,代表了当前高效填料的最新发展水平。这些具备特定物理结构的新一代产品,其基质树脂大都是高交联的PS-DVB微球。 颗粒单分散树脂的制备,在文献中已介绍过许多方法,如种子溶胀聚合法、有机介质中的分散聚合法、微重力环境中连续溶胀聚合法、单体气溶胶的阳离子聚合法、喷射 - 冷冻成形和辐射聚合法等。相比之下,由Ugelstad等人建立的种子溶胀聚合方法,对于制备液相色谱用的颗粒单分散PS-DVB树脂更为有效。用这类方法所合成的产品(包括大孔结构产品)作为填料已得到广泛应用。由Pharmacia公司先后发展出的颗粒分散高效填料,如Mono Beads系列(粒度10μm,包括强阴与强阳离子交换填料)和SOURCE系列(粒度15、30μm,包括阴阳离子交换、疏水层析和反相层析填料),都是以颗粒完全均一的多孔型PS-DVB树脂为基质的产品。 所谓贯流色谱填料,是由Regnier等人发展出的。前面已经提到,此类填料是以具有贯穿性超大孔结构的PS-DVB树脂为基质的。由这种树脂所派生的PORO系列产品(粒度、10、20μm),包括反相、离子交换、疏水性相互作用、金属螯合和生物亲和等快速高效填料。 颗粒小而均匀的非多孔型PS-DVB微球,也是非常有用的基质树脂,以其所制备的各种分离模式的填料,用于快速高效高分辨的分析检测和小量微量的分离制备,是很有意义的。 我国也相继发展出了各种类型颗粒单分散的多孔(包括大孔与超大孔)与非多孔的树脂。例如,用分散聚合与溶胀聚合相结合的方法,并采用高分子溶液致孔技术,制备出的颗粒单分散并具有大孔超大孔结构的PS-DVB微球,或者不经致孔而得到的颗粒单分散非多孔PS-DVB微球,以其作为高效填料的基质树脂,同样具有优异的性能。

中空二氧化硅微球的制备方法研究进展

技术进展 ,2009,23(4):257~264SI L I CONE MATER I A L 中空二氧化硅微球的制备方法研究进展 3 顾文娟 1,2 ,廖 俊2,吴卫兵2,易生平2,黄 驰 2,33 ,黎厚斌 1 (1.武汉大学印刷与包装系,武汉430072;2.有机硅化合物及材料教育部工程研究中心,武汉430072) 摘要:介绍了中空二氧化硅微球的性质特点和应用范围,归纳了中空微球的一些主要制备方法,重点介绍了模板法(溶胶-凝胶法、层层自组装法)和乳液法的研究进展,讨论了不同方法之间的的优缺点。在此基础上,对中空二氧化硅微球的研究前景进行了展望。 关键词:中空,二氧化硅,模板法,乳液法 中图分类号:TK12712 文献标识码:A 文章编号:1009-4369(2009)04-0257-08 收稿日期:20090226。 作者简介:顾文娟(1985—),女,博士生。 3基金项目:湖北省自然科学基金(2005ABA034);湖北省催化材料重点实验室基金(CHCL06003)。33联系人,E -mail:chihuang@whu 1edu 1cn 。 近年来,具有特殊拓扑结构的粒子引起了人 们广泛的关注。其中,有关中空微球的研究已经 成为材料科学领域的研究焦点[1] 。 中空微球是一类具有独特形态的材料,粒径在纳米级至微米级,具有比表面积大、密度低、稳定性好等特性。由于其内部中空,可以封装气体或者小分子物质(如水、烃类)等易挥发溶剂,当然也可以封装其它具有特殊功能的化合 物;因此可以应用到药物控释[2-4] 、形貌控制模板[5-6]或微胶囊封装材料 [7] (药物[8]、颜料、化妆品[9] 、油墨和生物活性试剂),处理水污染[10],化学催化[11]和生物化学[12]等方面;同时,通过调整微球尺寸以及空腔和壁厚可以有效 实现对隔声、光[13] 、热、机械等性能随心所欲的设计,在工业上有广泛的应用前景。 中空二氧化硅微球由于本身的高熔点、高稳定性、无毒等特殊性质,使其应用领域得到进一步的拓展。例如可以做成轻质填料、耐火材料应用到高端包装领域;在其空腔封装功能化合物[14],既可以制成具有缓释功能的药物[15],又能够在人造细胞、疾病诊治等方面具有一定的价 值,被应用到医药、医疗[16-17] 、防伪和香料等行业。因此,二氧化硅中空微球的制备受到了广大研究人士的关注。本文对二氧化硅中空微球的制备方法进行了总结。 1 制备方法 111 模板法 模板法是在制备特殊形貌材料中应用比较多 的一种方法。顾名思义,就是先以特定的物质作为形貌辅助物———模板,然后根据需要将材料包覆或填充在模板中得到所需的形貌。可以作为模板的材料有囊泡[18] 、胶束[19-22] 、聚合物乳胶粒[23-27]、无机物小颗粒[28-31]等等。 模板法按照壳层的生成方式不同又分为溶胶-凝胶法(s ol -gel )和层层自组装法(layer by layer )。11111 溶胶-凝胶法(s ol -gel )溶胶-凝胶法一般是先制备表面功能化的模板颗粒或者加入表面活性剂,利用有机硅烷的水解/缩合反应,在模板的表面形成二氧化硅壳层。 聚合物胶束和乳胶粒虽然都可被应用做模板。但一般来讲,乳胶粒作为模板粒径较大;在亚微米到微米范围,胶束作为模板粒径较小,大多低于100nm 。胶束作为模板的优点是:通过调整聚合物的尺寸、聚集情况以及溶剂可以实现对胶束的尺寸和形貌的控制。 迄今为止,应用的聚合物胶束都是由AB 或ABA 型聚合物组成的核-冠结构。在这些体系 中,胶束的“冠”可以汇集无机物前驱体,“核”则作为中空结构的模板。无机材料的前驱体被吸附到胶束的“冠”部,聚合形成中空颗粒的壳;聚合物核将通过煅烧或者其它方式去

乳液法制备中空聚合物微球

乳液法制备中空聚合物微球 白飞燕方仕江* (浙江大学化学工程与生物工程学系化学工程联合国家重点实验室聚合反应工程实验室杭州 310027) 摘要介绍了最近国内外有关乳液法技术,包括SPG(Shirasu Porous Glass)膜乳化聚合法、W/O/W乳液聚合法和封装非溶剂乳液聚合法制备中空聚合物微球的研究进展,着重分析了上述几种 方法的成孔机理及其优缺点,并简单介绍了中空聚合物微球的应用领域。 关键词中空聚合物 SPG膜乳化法W/O/W乳液聚合法封装非溶剂乳液聚合法 Preparation of Hollow Polymer Particles by Emulsion Polymerization Bai Feiyan, Fang Shijiang* (State Key Laboratory of Chemical Engineering, Polymer Reaction Engineering Division, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027) Abstract The progress in the preparation of hollow polymer particles by various novel emulsion polymerization techniques including SPG emulsification technique, W/O/W and nonsolvent-encapsulating emulsion polymerization was introduced. The applications of hollow polymer particles were briefly introduced, too. Key words Hollow polymer particles, SPG emulsification technique, W/O/W emulsion polymerization, Nonsolvent-encapsulating emulsion polymerization 中空聚合物微球是在高分子合成技术进步的基础上进行粒子形态控制的典型产物之一。中空聚合物微球其内部的空腔,可以直接封装气体或小分子物质,如水、烃类等挥发性溶剂以及其它具有特殊功能的化合物[1]。由于空气/聚合物界面处的折光指数的差异和中空结构的特殊性,使得中空聚合物微球具有优良的遮光性能和良好的可形变性,因而也可用作优质的聚合物系遮盖性颜料、抗紫外填料和手感改性剂等,而且材料具有质量轻的特点。目前,中空聚合物微球已广泛地应用于涂料、油漆、造纸、皮革、化妆品等行业,同时它在轻量化剂、保温剂、微胶囊材料、医药保健等各种不同领域也有着广阔的应用前景[2~4]。 中空聚合物微球的用途广泛,已引起了人们越来越多的关注,特别是对其制备方法和工艺条件的研究也日益深入。乳液聚合法可以说是目前最成熟的制备方法之一,如碱溶胀法已成功实现了工业化,另外碱酸逐步处理法和动态溶胀法也已为人们所熟知,对此国内已有不少作者进行过综述[5~7]。然而,随着对乳液聚合研究的深入,多种新颖的乳液聚合技术逐渐被开发出来制备中空微球,最具代表性的有Shirasu多孔玻璃(SPG)膜乳化法,W/O/W乳液聚合法和封装非溶剂乳液聚合法,已成为最近的一个研究热点,本文将主要对上述几种新方法的进展进行介绍。 白飞燕女,23岁,硕士生,现从事中空聚合物微球的研究。*联系人,E-mail: latex@https://www.doczj.com/doc/af11268785.html, 教育部留学回国人员基金资助

高聚物结构-问答计算题

1.简述聚合物的结构层次。 答聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构和远程结构。一级结构包括化学组成,结构单元链接方式,构型,支化与交联。二级结构包括高分子链大小和分子链形态。三级结构属于凝聚态结构,包括晶态结构,非 态结构,取向态结构和织态结构。 2.高密度聚乙烯,低密度聚乙烯和线形低密度聚乙烯在分子链上的主要差别是什么 答高密度聚乙烯为线形结构,低密度聚乙烯为具有长链的聚乙烯,而线形低密度聚乙烯的支链是短支链,由乙烯和高级的a–烯烃如丁烯,己烯或辛烯共聚合而生成。共聚过程生成的线形低密度聚乙烯比一般低密度聚乙烯具有更窄的相对分子质量分布。高密度聚乙烯易于结晶,故在密度,熔点,结晶度和硬度等方面都高于低密度聚乙烯。 3.假若聚丙烯的等规度不高,能不能用改变构象的办法提高等规度 答不能,提高聚丙烯的等规度须改变构型,而改变构型与构象的方法根本不同。构象是围绕单键内旋转所引起的分子链形态的变化,改变构象只需克服单键内旋转位垒即可实现;而改变够型必须经过化学键的断裂才能实现。 4.试从分子结构分析比较下列各组聚合物分子的柔顺性的大小:

(1)聚乙烯,聚丙烯,聚丙烯腈; (2)聚氯乙烯,1,4-聚2-氯丁二烯,1,4-聚丁二烯; (3)聚苯,聚苯醚,聚环氧戊烷; (4)聚氯乙烯,聚偏二氯乙烯。 答(1)的柔顺性从大到小排列顺序为:聚乙烯>聚丙烯>聚丙烯腈; (2)的柔顺性从大到小排列顺序为:1,4-聚丁二烯>1,4-聚2-氯丁二烯>聚氯乙烯 (3)的柔顺性从大到小排列顺序为:聚环氧戊烷聚苯醚聚苯 (4)的柔顺性从大到小排列顺序为:聚偏二氯乙>烯聚氯乙烯 5.请排出下列高聚物分子间的作用力的顺序,并指出理由: (1)顺1,4-聚丁二烯,聚氯乙烯,聚丙烯腈; (2)聚乙烯,聚苯乙烯,聚对苯二甲酸乙二酯,尼龙66。 答(1)分子间作用力从大到小的顺序为:聚丙烯腈>聚氯乙烯>顺1,4-聚丁二烯 聚丙烯腈含有强极性基团,所以分子间作用力大;聚氯乙烯含有极性基团,分子间作用力较大;顺序1,4-聚丁二烯是非极性分子,不含庞大的侧基,所以分子间力作用小。 (2)分子间作用力从大到小的顺序为:尼龙66>聚对苯二甲酸乙二酯>聚苯乙>烯聚乙烯 尼龙66分子间能形成氢键,因此分子作用力最大;聚对苯二甲酸乙二酯含有强极性基团,分子间作用力比较大;聚苯乙烯含有

中空微球的制备

中空微球的制备方法 摘要: 中空微球具有低密度、高比表面积且可以容纳客体分子等特点, 在众多领域受到广泛关注。本文对中空微球的制备方法进行了综述, 主要介绍了乳液聚合法、模板法、自主装法制备中空微球。 关键词: 中空微球; 乳液聚合法;模板法;自主装法 引言: 具有特殊结构和特殊形貌的微球材料近年来备受人们关注。相比于实心微球材料,中空微球由于内部具有空腔结构而表现出低密度、高比表面积且可以容纳客体分子等特点, 因此在涂料、电子、催化、分离、生物医药等众多领域有着广阔的应用前景[ 1~ 5]。随着中空微球的特殊功能逐渐为人们所认识,对其制备方法的研究也日益深入。目前,制备中空微球的方法主要有乳液聚合法、模板法、自组装法等。不同的制备方法对应于不同材料、不同结构和不同尺度的中空微球。许多材料如有机高分子材料、无机材料、聚合物/无机复合材料都可以用来制备中空微球。 1、乳液聚合法 根据单体选择和制备方法的不同,乳液聚合法可以进一步细分为:渗透膨胀法、动态溶胀法、W/O/W乳液聚合法等。 (l)渗透膨胀法 渗透膨胀法是利用渗透膨胀机理制备中空聚合物微球的方法。首先要选用带羧酸基团的单体(如丙烯酸、甲基丙烯酸、丙烯酸丁酯等)与其它不饱和单体进行乳液共聚制得酸性的核乳胶粒;再选择合适的壳层单体(如苯乙烯、丙烯氰等单体)包裹在酸性聚合物核上聚合成硬质聚合物壳,得到核/壳乳胶粒;然后在接近壳聚合物玻璃化温度时,碱溶液透过壳层中和核中的羧基使之溶解,获得中空聚合物微球。渗透膨胀法制备中空聚合物微球的过程可以用图1说明[6]。

图1碱溶涨法制备中空微球示意图 根据膨胀方式的不同,渗透膨胀法可以进一步细分为:碱溶胀法和碱/酸溶胀法。碱溶胀法是在制得的核/壳聚合物的基础上加入碱溶液调节初始pH值,然后在壳层聚合物的玻璃化温度以上,对乳胶粒子进行碱溶胀。在碱溶胀过程中,碱液进入乳胶粒子内部与酸性核中和,使其离子化,同时水化作用使核的体积膨胀至原来的几倍至几十倍。由于操作温度在壳层聚合物的玻璃化温度以上,壳层也相应地发生膨胀,当再冷却至室温时,壳在膨胀状态下固化冻结而不能回缩,从而在乳胶粒的内部产生中空结构。Kowalski等最早开发了通过碱溶胀法来制备中空乳胶粒子的方法,在此方面做出了巨大贡献。图1.2为Rohm & Hass公司使用碱溶胀法制备的空心聚合物粒子的TEM照片,该方法制得的空心粒子粒径约为1微米,中空的体积分数约为50%。图1.3为空心粒子的SEM冷冻切片照片能清楚地显示渗透溶胀法制备的中空乳胶粒的内部中空结构[7-9] 图2空心粒子TEM照片

高分子微球

1.1 高分子微球概述 高分子微球应用几乎涉及到所有领域。高分子微球的起源非常悠久,最早的天然高分子微球来自天然的橡胶树的树液,被称为乳胶(Latex)。也许由于这个原因,最早的合成高分子微球被应用于橡胶制品或橡胶制品的添加剂,这些高分子微球都是由具有弹性的聚合物组成,如聚丁二烯、聚异戊二烯等。以后,随着微球制备技术的发展,聚合物微球又开始被应用于涂料、纸张的表面加工、胶粘剂、塑料添加物、建筑材料等领域。近十几年来,由于高分子微球应用领域又从以往的一般工业应用发展到高尖端技术领域,如医疗和医药领域、生物化学领域和电子信息领域等。在高分子微球应用方面,传统应用领域的产品得到进一步提升,如在涂料应用领域,产品的结构已经从大众化走向个性化,即品种多样化和少量化,但附加价值较高。高分子微球在药物输送系统的应用应该是近年来发展最为迅速的领域,这是因为人们对医疗质量的要求越来越高。 复合高分子微球又称核壳高分子微球,是制备共混高聚物的一种新技术。它是材料科学发展的重要方向,现已从宏观的聚合物共混物发展到亚微观的复合高分子乳胶。近年来,通过复合技术制备复合乳胶以及对复合型乳胶的研究十分活跃。其中,核壳结构乳胶聚合物尤其令人感兴趣。核壳结构乳胶聚合物属于异种高分子复合乳胶,是由性质不同的两种或多种单体分子在一定条件下进行聚合,即种子聚合或多阶段聚合,一般以先聚合的材料为中心,后形成的聚合物为外层,使乳胶粒子的内侧和外侧分别富集不同种成分,通过核壳的不同组合,得到不同形态的非均相乳胶,从而可赋予核、壳各不相同的功能,可获得一般无规共聚物、机械共混物难以具有的优异性能。 核壳高分子的性能与其结构关系十分密切。80年代初,Okubo等提出“粒子设计”的新方法,主要内容包括控制乳胶粒子的形状、异相结构、粒径分布及功能基的分布等。复合乳胶能有效改善材料的力学性能,在塑料、涂料和油漆方面有重要的应用。近年来,人们通过化学和物理的手段(如:交联、包埋、附着和反应)赋予乳胶颗粒以光导、电导、热敏和磁等功能,广泛应用于电子、生物、医药和照相工业[1~5]。 1.2 高分子微球的合成方法 1.2.1 乳液聚合 高分子微球的合成一般采用乳液聚合技术。乳液聚合是有单体和水在乳化剂作用下配制的乳液中进行的聚合,聚合体系主要有单体、水、乳化剂及溶于水的引发剂四种基本组分组成。该技术开发起始于本世纪早期,二十年代末已有和目前生产配方类似的乳液聚合过程的专利出现。二十世纪三十年代初,乳液聚合方

聚合物结构的三个层次

1.1 聚合物结构的三个层次 近程结构——系指单个大分子链内部一个或几个结构单元的化学结构和立体化学结决 定聚合物性能的根本性物质基础,亦是决定远程结构和凝聚态结构的重要因素。 远程结构——系指由数目众多的结构单元组成的单个大分子链的长短及其在空间存在的各种形态(是直链还是有支链?是刚性的还是柔性的?是折叠状,还是螺旋状的?)。 凝聚态结构——系指聚合物在宏观上所表现出的分子凝聚结构类型。包括非晶态、结晶态、 取向态、液晶态、织态结构,前四个描述是聚合物的堆砌方式,织态为不同聚合物分子链或与添加剂间的结合和堆砌方式,以结晶态和非晶态最常见。分子链结构是决定聚合物性质最基本、最重要的结构层次。熔点、密度、溶解性、溶液或熔体的粘度、粘附性能很大程度上取决于分子结构;而凝聚态结构是决定聚合物材料和制品的使用性能,尤其是力学性能的重要因素。 关于化学结构与物理结构的确切划分,普遍认同的是 H.G .Elias 提出的界定原则: 化学结构:除非通过化学键的断裂,即同时生成新的化学键才能够产生改变的分子结构。 聚合物结构中所包括的结构单元的组成及其空间构型属于化学结构。 物理结构:将大分子内部、之间或者基团与大分子之间的形态学表述。 取向、结晶和分子链的构象则属于物理结构 1.2 大分子链的近程结构 大分子链的近程结构包括结构单元的化学组成,连接方式、结构异构、立体异构、以及共聚物的序列结构等五个主要方面。 1.2.1 结构单元的化学组成 结论1:聚合物的近程结构,即结构单元的化学组成和结构是决定其远程结构和凝聚态结构以及聚合物性能最重要的决定性因素。 尼龙-66、PET 、PBT ~缩聚物, PP 、PS 、PMMA 、PB ~加聚物 归纳表中三条主要规律: 1)杂链聚合物(多为缩合聚合物)与碳链聚合物(多为加成聚合物)相比较,前者的各项物理性能均优于后者; 2)在碳链聚合物中,侧基带有极性基团的PVC 和带有苯基的PS 的相对密度和熔点均高于非极性和低位阻侧基的PE 和PP ; 3)缩聚物尼龙和涤纶等的相对密度、熔点、强度和使用温度均普遍高于一般加聚物。 PA-66、PET 、PBT ~PE 、PP 强调:聚合物的近程结构,即结构单元的化学组成和结构始终是决定聚合物及其制品几乎所有物理化学性能的最重要因素。 1.2.2 结构单元的结构异构 结构单元的结构异构是指单体由聚合反应转化成结构单元的过程中由于部分原子或原子团的空间位置发生变动,生成化学组成相同但结构完全不同的另一种结构单元的现象。即生成不同构型的结构单元的过程。 两个重要的概念:构型和构象 所谓构型,乃是分子内相邻原子或原子团之间所处的空间相对位置的表征。换言之,构型是分子内通过化学键连接 的原子或原子团之间空间几何排列的状态,构型的特点在空间上和时间上是确定而不变的。 由此区别于下一节将要讲述的另一个概念:“构象”—在空间上和时间上是不确定而可变的。阳离子聚合链增长反应中常常发生原子或原子团的重排过程,也称异构化过程。这是阳离子聚合反应的最大特点! 以在二氯乙烷溶剂中,用三氯化铝,引发3-甲基丁烯的阳离子聚合反应为例: —————— 分子链结构凝聚态结构(一级结构) (二级结构)近程结构 远程结构 结构单元的化学组成结构单元的键合方式结构单元的构型分子链的几何形态 分子链的长短及分布晶态结构 非晶态结构 取向态结构液晶态结构织态结构 常规固态 特殊固态熔体、溶液聚 合 物 结 构 溶液结构熔体结构第三章第一章 第九章第二章C CH 3 CH 3 _CH 2 = CH CH +HCl +AlCl 3C 3CH 3 ~ [ CH 2 CH]n _~H CH 2C ~ []n CH 2CH 33 _ _~

渗透溶胀法制备中空聚合物微球

渗透溶胀法制备中空聚合物微球 程建丽1,2孙静1*林浩强1魏德卿1 (1中国科学院成都有机化学研究所成都 610041 2中国科学院研究生院北京 100039) 摘要介绍了渗透溶胀法制备中空聚合物微球,着重分析了此方法在形态控制方面的影响因素,并且总结了表征中空聚合物微球结构的实验手段,同时对它的发展进行了展望。 关键词中空聚合物微球乳液聚合形态控制表征 Hollow Polymer Microsphere made by Osmotic Swelling Method Cheng Jianli1,2, Sun Jing1*, Lin Haoqiang1, Wei Deqing1 (1Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 2Graduate School of Chinese Academy of Sciences, Beijing 100039) Abstract This paper introduces the development of the hollow polymer microsphere made by osmotic swelling method , with the emphasis on discussing of the polymerization condition affecting on morphology control. The characterization techniques of the hollow polymer microsphere and the prospects are also presented. Key words Hollow microsphere, Emulsion polymerization, Morophology control, Characteriztion 中空聚合微球(又称中空微球)是一种特殊的核/壳复合材料,可以通过调节核壳材料的结构、尺寸以及组成来达到对其光学、热学、电学、磁学性质的调控[1,2]。由于聚合物和其中空部分的折光指数有较大差异,使光能够有效地散射和折射,可以作为遮光剂、抗紫外线添加剂和手感改进剂应用于涂料、皮革、化妆品、油墨、造纸行业[3,4],专家认为中空聚合物微球的开发是近40年来改变涂料工业的三大成就之一[5]。中空微球具有低密度、高比表面积、粒径分布均匀的性质,还可以用于药物筛选、药物控释、催化剂载体、离子色谱柱[6,7]等。目前,制备中空微球的方法主要有:萃取法[8]、模板法[9]、自组装法[10]、渗透溶胀法[11]。萃取法难以实现对粒径的控制,此外,使用溶剂不仅危害健康,影响环境,而且还是火灾隐患,溶剂的挥发和回收装置也花费不少。而模板法、自组装法虽然可以准确的控制中空聚合物微球的形貌、大小,但是整个制备过程繁琐,耗时耗资,通常需要一些非常昂贵的仪器来表征制备过程,对反应体系的要求很严,因此实际应用受到限制。渗透溶胀法是经典的制备中空微球的方法,其制备出的微球粒径分布均匀、形态容易控制,是目前最具工业前景的方法。本文主要介绍近几年渗透溶胀法制备中空微球的发展以及形态控制方面的研究展。 程建丽女,25,硕士生,现从事高分子材料的合成及性能研究。﹡联系人,E-mail: sunjingqu@https://www.doczj.com/doc/af11268785.html, 中国科学院西部之光资助项目 2005-04-07收稿,2005-05-17接受

磁性聚合物微球研究进展_邓勇辉

磁性聚合物微球研究进展 邓勇辉1,汪长春1,杨武利1,胡建华1,金 岚1,褚轶雯1,府寿宽1*,沈锡中2 (1.复旦大学高分子科学系,教育部聚合物分子工程实验室,上海 2000433; 2.复旦大学附属中山医院消化科,上海 200032) 摘要:磁性聚合物微球作为一种新型功能材料,在许多领域尤其是生物医药、生物工程等方面具有广阔的应用前景。本文综述了近年来磁性聚合物微球的制备及应用等方面的最新进展。 关键词:磁性聚合物微球;制备;应用;研究进展 引 言 磁性聚合物微球是一种由磁性材料和非磁性聚合物材料复合而成的新型功能微球,其中磁性成分主要是铁、钴、镍,或者它们的氧化物以及合金等,非磁性聚合物材料可以是合成聚合物如聚苯乙烯和各种丙烯酸树脂或天然聚合物蛋白质、淀粉、葡聚糖、琼脂糖等,也可以是无机聚合物如二氧化硅等。以无机聚合物作为非磁性组分的磁性聚合物微球方面的文献报道得不多,因此本文着重综述有机-无机复合的磁性聚合物微球,并将这类微球称为磁性聚合物微球。磁性聚合物微球通常由无机磁性材料和有机聚合物材料构成,一方面,它具有有机聚合物微球的众多特性,如可通过共聚、表面改性等途径,赋予其表面多种反应性官能团(如羟基、羧基、氨基、醛基等),通过吸附或共价键合的方式与酶、细胞、药物等生物活性物质结合;另一方面,由于它具有超顺磁性可以很方便地在外加磁场作用下从介质中分离出来。因此,磁性聚合物微球被广泛地应用作分离材料和载体,如免疫分析、固定化酶、靶向给药、细胞分离等。另外磁性聚合物微球也被广泛应用于磁共振成影、磁记录、环境保护以及磁性塑料和磁性橡胶等领域。 1 磁性聚合物微球的分类 磁性聚合物微球按照其结构特点可以大致分为以下几种类型,第一类,核壳式,即内核是无机磁性颗粒,外壳是聚合物,这种复合微球中,无机磁性颗粒完全被聚合物包埋,形成典型的核壳结构,如图1A所示;第二类,反核壳式,即内核是聚合物,外壳是无机磁性颗粒,在这类复合微球中无机颗粒通过静电作用或络合等方式沉积在聚合物微球的表面从而形成无机磁性壳层,如图1B所示;第三类,夹心式,即内外层均为聚合物,中间为无机磁性颗粒,这类复合微球往往是通过对第二类微球再包裹一层聚合物而制备的,如图1C所示;第四类,弥散式,即无机磁性颗粒遍布在聚合物微球中,如图1D所示,这类微球最早是由荷兰科学家Ugelstad等报道的。 2 磁性纳米颗粒(磁流体)的制备 磁性纳米颗粒可以是金属铁、镍、钴或其合金或其氧化物等,由于镍、钴等存在毒性,在生物、医药等领域的应用受到严格限制,而铁的氧化物(Fe3O4,γ-Fe2O3)因其低毒(LD50约2000mg kg体重,远远高于目前临床应用剂量)、易得等特点通常被用作磁性聚合物微球的磁性组分。制备磁性纳米颗粒的方法主要 基金项目:NSFC(No50173005,50343019)和STCS M(03JC14012)资助项目; 作者简介:邓勇辉(1977-),男,江西临川人,复旦大学高分子科学系博士研究生,研究方向为磁性聚合物微球的制备及其应用。 *通讯联系人E_mail:skfu@https://www.doczj.com/doc/af11268785.html,.

纳米聚合物微球调剖性能研究

纳米聚合物微球调剖性能研究 X 付 欣1,刘月亮1,葛际江1,俞 力2,朱伟民2 (1.中国石油大学(华东)石油工程学院,山东青岛 266555;2.中石化江苏油田分公司工程院,江苏扬州 225000) 摘 要:聚合物微球具有在地层孔道中运移、封堵、改变注入水渗流方向的特点,可以持续提高注入水的波及体积,是一种很有潜力的深部调剖剂。微球的调剖性能对其在油田上的应用起着至关重要的作用,本文运用T EM 、并联填砂管模型等实验分析手段,考察了MG-5型聚合物微球在75℃油田注入水环境下,经过不同膨胀时间后的粒径,以及不同膨胀时间下的聚合物微球对非均质地层的调剖性能。实验结果显示,由油田注入水配制的MG -5型微球在75度下膨胀5d 时粒径达到175nm ,膨胀15d 时粒径达到375nm 、膨胀15d 时粒径达到500nm 。随着微球粒径大增大,微球对填砂管的封堵效率越来越高,调剖效果越来越明显。可见,微球的粒径与地层渗透率的具有良好的配伍性能。同时从压力变化曲线可以看出,MG -5微球具有很好的运移性能和封堵性能。 关键词:聚合物微球;深部调剖;TEM;并联填砂管模型 中图分类号:T B383∶T E357.6 文献标识码:A 文章编号:1006—7981(2012)07—0001—05 我国大部分油田的开发已经进入到中后期,油 井平均含水已达80%以上,东部地区的一些老油田 含水高达90%以上,因此选择一种合适的调剖剂,对 于提高采收率至关重要。由于普通调剖剂无法实现 深部封堵,并且对地层伤害较大,成本高等缺点[1]。 近年来,聚合物微球作为一种新型的深部调驱剂,被 广泛应用。它是以交联聚合物溶液为基础开发出来 的新型交联聚合物,是采用目前国内外研究较多的 乳液、微乳液及分散聚合技术制备的,微球尺寸可 控,分散性能好,可用油田污水配制工作液,在油田 中后期开发中使用。因此研究清楚聚合物微球的使 用条件、调驱性质,对于聚合物微球进一步应用具有 重大意义[2]。目前的室内研究大多利用单一渗透率 的岩心或填砂管模型对聚合物微球的封堵特性、运 移性开展研究。而对其在非均质地层中的调剖性能 的研究则开展较少。本文利用并联填砂管模型,针对 不同粒径下(粒径随膨胀时间增加而增大)的MG- 5型聚合物微球,研究其对非均质地层运移性质和 封堵性质。 1 实验部分 1.1 实验仪器与药品 1.1.1 实验药品与材料 1.1.1.1 聚合物微球 实验中所用聚合物微球,MG -5型聚合物微 球,由江苏油田工程院送样。  油田水 试验中用到江苏油田提供的注入水和地层水,组成分别见表1和表2。 1  2012年第7期 内蒙古石油化工X 收稿日期5 基金项目国家自然科学基金青年基金项目(5)。 作者简介付欣(),男,中国石油大学(华东)在读研究生,从事油田化学与提高采收率方面研究。1.1.1.2:2012-02-1:1104170:1987-

聚合物结构与性能

一、名词解释(5个) 聚合物分子(高聚物分子,通常简称为高分子):(1)这些部分是由相对低分子质量的分子衍生的单元(所谓的单体单元或链节) (2)并且只有一种或少数几种链节(3)这些需要的链节多重重复重现。 长周期:在纤维轴方向片晶和非晶能重复出现的最短距离,即片晶和非晶的平均厚度之和缚结分子:连结至少两个晶体的分子。 初期结晶:是指液态或气态初步形成晶体的过程 预先成核:晶核预先存在,成核速率与时间无关。 二、概念的区别与联系(4对) 1、微构象与宏构象 微构象:分子中的一小部分由于一个或数个键的内旋转所引起的构象。 宏构象:表示在单键周围的原子和原子基团的旋转产生的空间排列。 2、玻璃化转变温度与熔融温度 玻璃化转变温度:非晶态聚合物或部分结晶聚合物中非晶相发生玻璃化转变所对应的温度。熔融温度:晶体物质由固态向液态转变时固液两相共存的温度。 3. 应力与应变 应力:受力物体截面上内力的集度,即单位面积上的内力。 应变:物体内任一点因各种作用引起的相对变形。 4、质量结晶度与体积结晶度 质量结晶度:X-射线被高聚物中原子散射的强度与原子所处的状态无关,原子的聚集状态只决定衍射线的位置与形状,不影响总强度。因此可以认为非晶部分的质量与结晶部分的质量之比,等于非晶部分的衍射强度与结晶部分的衍射强度之比。即()。理论上,只要知道晶区和非晶区衍射的X射线的总强度,就可计算结晶度。在实际工作中,只能在一定的角度范围收集衍射强度数据,无法收集到样品衍射或散射X射线的总强度。这样,在所收集的数据中,晶区或非晶区对衍射强度的贡献可能偏高或偏低。所以,应加入比例常数即,,式中,K为比例常数。 体积结晶度:用X-射线衍射法体积结晶度。根据微原纤结构模型即可测得结晶度式中,D为晶片厚度,L为长周期。 三、球晶的光学性质与其内部结构的关系 在正交偏光显微镜下,球晶呈现特有的黑十字消光图像及明暗相间的消光环,其中黑十字消光图像反映的是球晶中晶片的径向生长,消光环反映的是球晶中晶片的扭曲生长。 四、什么是超分子结构?超分子结构参数有哪些?用简述或图示法说明用X-射线图确定超分子结构参数的基本依据。 答:超分子结构:高分子链之间通过强的或弱的相互作用所形成的聚集体。 结构参数:1.结晶度 2. 取向度 3 .晶粒尺寸 4.长周期 X-射线可测定质量结晶度和体积结晶度。 假设:X-射线被高聚物中原子散射的强度与原子所处的状态无关,原子的聚集状态只决定衍射线的位置与形状,不影响总强度。因此可以认为非晶部分的质量与结晶部分的质量之比,等于非晶部分的衍射强度与结晶部分的衍射强度之比。 理论上,只要知道晶区和非晶区衍射的X射线的总强度,就可根据上式计算结晶度。在实际工作中,只能在一定的角度范围收集衍射强度数据,无法收集到样品衍射或散射X射线的总强度。这样,在所收集的数据中,晶区或非晶区对衍射强度的贡献可能偏高或偏低。所以,

纳米级聚合物微深度调剖及驱油技术研究

纳米级聚合物微深度调剖及驱油技术研究 Zhao Hua*, Meiqin Lin, Zhaoxia Dong, Mingyuan Li, Guiqing Zhang, Jie Yang Research Institute of Enhanced Oil Recovery, China University of Petroleum, Beijing, China 摘要 通过扫描电子显微镜(SEM)、动态光散射(DLS)和HAAKE流变仪实验,研究纳米级聚合物微球的形状、大小及流变特性。此外,通过核孔膜过滤、填砂管驱替、岩心驱替、微可视化模型和毛细管流实验,研究纳米级聚合物微深度调剖及驱油机理。结果表明,纳米级聚合物微球的初始形状为30-60nm的球形,微球分散在水中后,由于形成分散液且发生膨胀而使其大小增加了3-6倍,但球形构造仍然保持不变。在一定剪切速率范围内,微球分散液(100-600mg/L)表现出剪切增稠特性,有利于增加驱替相的流动阻力。聚合物微球分散液能够有效堵塞孔径为0.4μm核孔膜,并且运移至核心部位;在平行填砂管实验中,该体系也倾向于封堵高渗透层,从低渗层中驱替原油。交联聚合物微球可以减少水相渗透率,是因为微球在孔喉处吸附、积累和“架桥”,而且由于微球良好的形变性能,在压力作用下形成的吸附层发生破碎,从而到达储层深部。同时,微球在多孔介质中运移时驱替孔喉处的原油,实现深度调剖和驱油,从而达到提高原油采收率的最终目的。 关键词:纳米级聚合物微球;膨胀性能;流变特性;深部调剖机理;驱油机理 1 引言 该地区由于成岩作用强,岩石密度大,以及脆性岩石的存在,导致成岩和构造裂缝在低渗透储层中普遍存在[1]。通道的低效循环已经成为裂缝储层中存在的最重要问题之一,因为它导致大量产水和油井产能的快速下降。基于这种情况,石油工业必须控制产水量,改善高含水油藏的采收率以提高原油采收率,缓解产出水对环境的影响。因此,发展更可靠的,例如“绿色”堵水、调剖和驱油技术,对石油工业而言是非常重要的。目前,基于近井堵塞和调剖技术问题[2-6],许多深部调剖技术被成功应用于提高采收率;交联聚合物微球由于抗温、抗盐和相对较低的成本而倍受关注[7-9]。然而,工业生产的交联聚合物微球仅限于实验室研究和小规模试验。来自法国石油研究所的Chauveteau等人[10]对交联聚合物微球主要的物理和化学性质进行研究,结果表明微球有很好的抗温、抗盐和抗剪切的性能。中国的林、郭等人[11]研究了微米级微球在实验膨胀前后的大小和形状以及封堵性能,由于粒径太大,微球不能进入低渗透储层中1-20μm宽的微裂缝;因此,必须研发用于深部调剖技术的纳米级聚合物微球。Dong等人[12]研究了微凝胶分散液的膨胀和流变性能,微球表现出很好的膨胀性和流变性。但是,以往的文献中有关纳米级聚合物微球的封堵性能以及封堵机理的研究很少。本文对纳米级聚合物微球的形状、大小、流变性能、封堵性能、调剖机理和驱油机理进行了详细地研究。 2 实验 2.1 材料 HPAM(部分水解的聚丙烯酰胺)(粘均分子量1.4×107,水解度25.8%,大庆油田化学助剂厂);丙烯酰胺,丙烯酸和NaOH(AR)(北京益利精细化工有限公司);亚甲基蓝(AR), Span-60和Span-80(CP)(北京瀛海精细化工有限公司);去离子水(经0.22μm 微孔纤维素膜过滤得到);核孔膜(0.4μm孔径,厚度10μm,中国原子能科学研究院);

(整理)高分子结构的层次

高分子结构的层次: 表1-1高分子的结构层次及其研究内容 第1章高分子链的结构 1.1组成和构造 按化学组成不同聚合物可分成下列几类: 1、碳链高分子(C)分子链全部由碳原子以共价键相连接而组成,多由加聚反应制得。 如:聚苯乙烯(PS)、聚氯乙烯(PVC)、聚丙烯(PP)、聚丙烯腈(PAN)、聚甲基丙烯酸甲酯PMMA。 2、杂链高分子(C、O、N、S)分子主链上除碳原子以外,还含有氧、氮、硫等二种或二种以上的原子并以共价键相连接而成。由缩聚反应和开环聚合反应制得。 如:聚酯、聚醚、聚酰胺、聚砜。POM、PA66(工程塑料)PPS、PEEK。 3、元素高分子(Si、P、Al等)主链不含碳原子,而由硅、磷、锗、铝、钛、砷、锑等元素以共价键结合而成的高分子。 侧基含有有机基团,称作有机元素高分子,如:有机硅橡胶。 侧基不含有机基团的则称作无机高分子。 梯形和双螺旋型高分子,分子的主链不是一条单链而是像“梯子”和“双股螺线”那样的高分子链。 第1章高分子链的结构 1.1组成和构造 1.1.2高分子的构型 构型(configurafiom):指分子中由化学键所固定的原子在空间的几何排列。这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。

1、旋光异构(空间立构) 饱和碳氢化合物分子中的碳,以4个共价键与4个原子或基团相连,形成一个正四面体,当4个基团都不相同时,该碳原子称作不对称碳原子,以C*表示,这种有机物能构成互为镜影的两种异构体,d型、l型,表现出不同的旋光性,称为旋光异构体。 高分子链节都有两种旋光异构体。高分子中不关心具体的构型,只关心构型的异同。由于内、外消旋的作用,高分子无旋光性,但旋光异构带来结构的差别。共有三种键接方式: 全同立构(或等规立构):当取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成。 间同立构(或间规立构):取代基相间的分布于主链平面的二侧或者说两种旋光异构单元交替键接。 无规立构:当取代基在平面两侧作不规则分布或者说两种旋光异构体单元完全无规键接时。

相关主题
文本预览
相关文档 最新文档