当前位置:文档之家› 高分子材料研究方法论文

高分子材料研究方法论文

高分子材料研究方法论文
高分子材料研究方法论文

核磁共振波谱法

摘要:本文主要论述了核磁共振波谱法的发展,测试方法的发展和其仪器,还有核磁共振波谱法在高分子材料领域中的应用与发展,介绍了核磁共振波谱法的定义与基本原理和主要作用。

关键词:核磁共振波谱、NMR

核磁共振波谱法测试方法的发展

什么叫核磁共振波谱法?将有磁矩的核放入磁场后,用适宜频率的电磁波照射,它们会吸收能量,发生原子核能级的跃迁,同时产生的核磁共振信号,得到核磁共振谱。利用核磁共振波谱进行分析的方法,叫做核磁共振波谱法。

核磁共振波谱与红外光谱一样,本质上都是一种吸收光谱。红外光谱法是分子的振动和转动能级的跃升产生的吸收光谱,而核磁共振波谱是分子中原子自旋能级的跃升产生的吸收光谱,前者的吸收频率在红外光频率区域,而后者的吸收频率较低,在射频区(107~108Hz)。核磁共振波谱(Nuclear Magnetic Resonance,NMR)是一种分析高聚物的微观化学结构、构象和驰豫现象的有效手段。

早在1924年Pauli就预言了核磁共振的基本原理;预见某些原子核具有自旋和磁矩的性质,它们在磁场中可以发生能级的分裂。

这个预言直到1946年才由哈佛大学的Purcell及斯坦福大学的Block所领导的两个实验室分别得到证实,他们在各自实验室中观察到核磁共振现象,因此他们分享了1952年的诺贝尔物理奖。

1949年,Knight第一次发现了化学环境对核磁共振信号的影响,并发现了信号与化合物结构有一定的关系。

核磁共振现象是Bloch及Purcell等发现的,这一发现当时引起了科学界很大的兴趣。Bloch及Purcell因此同时获得诺贝尔物理奖。20世纪70年代后,核磁共振技术有了迅速的发展,高强磁场核磁共振仪的发展,大大的提高了仪器的灵敏度。在生物、医学上应用的发展也非常迅速,已能制成大孔径超导磁体,成为可容纳整个人体的核磁共振仪。傅里叶变换核磁共振仪的发展更使这一技术迈向新的台阶,使13C和15N等核磁共振得以广泛的应用。固体核磁共振仪的发展也很快,已有许多专著和论文介绍应用固体核磁共振技术研究聚合物,它的发展无疑为高分子材料的微观结构的分析研究提供了广阔的前景。电子计算机的广泛应用不仅为核磁共振仪的发展作出了很大贡献,也为核磁共振谱的分析提供了有力的工具。

核磁共振按照被测定对象可分为氢谱和碳谱,氢谱常用1H-NMR(或1HNMR)表示,碳谱常用13C-NMR表示,其他还有19F、31P、15N及29Si等的核磁共振谱,其中应用最广泛的是氢谱和碳谱。核磁共振还可按测定样品的状态分为液体NMR 和固体NMR。测定溶解于溶解中的样品的称为液体NMR,测定固体状态样品的称为固体NMR,其中最常用的是液体NMR,而固体NMR则在高分子结构研究中起重要作用。

核磁共振技术是从研究氢核1H的共振开始的,它也是目前这一技术中最成熟,应用最广的。至于13C-NMR,其基本原理与1H-NMR类似,当由于12C没有自旋,不能产生核磁共振,只有13C才能产生核磁共振,而13C的自然丰度只有1.1%,所以它的整个灵敏度只有1H的1/5700。因此,很长时间以来,13C-NMR得不到发展。后来,由于电子技术和计算机的发展,才使13C-NMR技术得到迅速发展。目前,13C-NMR已成为阐明有机化合物及高聚物结构的常规方法,在结构测定、构象分析、动态过程研究、活性中间体及反应机理的研究、聚合物立体规整性和序列分布的研究以及定量分析各方面都已取得了广泛的应用。

测试仪器的发展情况

核磁共振仪有两大类型:宽谱线核磁共振仪和高分辨核磁共振仪。早期利用NMR研究高聚物,多使用宽谱线核磁共振仪研究高分子固体的结构,但因为谱线宽,分辨不佳,得到的信息不多。而利用傅立叶变换技术的高分辨核磁共振仪成为目前主要的研究手段。通常,高分辨核磁共振仪可采用两种方法来研究聚合物,一种是选用合适的溶剂的液体高分辨技术;另一种是利用固体高分辨NMR,采用魔角旋转及其他技术,直接得出分辨良好的窄谱线。目前,高分辨核磁共振技术已广泛应用于聚合物样品的结构研究中。

核磁共振波谱仪器的发展也是迅速的。

1953年出现了世界上第一台商品化的核磁共振波谱仪。1956年,曾在Block 实验室工作的Varian制造出第一台高分辨率的仪器,

八十年代以来,又不断出现高精密,高灵敏仪器,如高强磁场的超导核磁共振波谱仪,脉冲傅里叶变换核磁共振波谱仪,核磁共振成像波谱仪在医学上也已得到广泛的应用。

核磁共振波谱仪按照仪器的工作方式,可将高分辨率的核磁共振仪分为两种类型:一是连续波核磁共振波谱仪及脉冲傅里叶变换核磁共振谱仪。连续波核磁共振波谱仪主要是由磁铁、射频振荡器、扫描发生器、射频接受器、样品管等组成,其中磁铁有是NMR仪中最基本的部分,NMR的灵敏度和分辨率主要决定于磁铁的质量和强度。磁铁还分永久磁铁(一般可提供0.7046T或1.4092T的磁场,

对应质子共振频率为30MHz和60MHz);电磁铁(可提供对应60MHz、90MHz、100MHz的共振频率,由于电磁铁的热效应和磁场强度的限制,目前应用不多);超导磁铁(可以提供更高的磁场,可达100KGS以上,最高可达到800 MHz的共振频率),扫描发生器,可在小范围内调节外加磁场强度进行扫描。射频接受器,检测被吸收的电磁波能量;样品管,玻璃管,要粗细均匀并且旋转(10~20 r/s以上),常量管0.4ml,微量管0.1ml,样品几十毫克,几毫克

二是脉冲傅里叶变换核磁共振波谱仪(PFT-NMR),连续波NMR仪在进行频率扫描时,是单频发射和单频接收的,一定时间内只能记录谱图中的很窄的的一部分信号,即单位时间内的信息量少,信号弱,虽然也可以进行扫描累加,以提高灵敏度,但累加的次数有限,因此灵敏度仍不高。PFT-NMR仪是以适当宽度的射频脉冲作为“多道发射机”,使所选范围内的所有自旋核同时发生共振吸收而从低能态取向激发到高能态取向,得到核的多条谱线混合的自由衰减信号(FID),即时间域函数,然后以快速傅立叶变换作为“多道接收机”,变换出各条谱线在频率中的位置及其强度。PFT-NMR仪获得的光谱背景噪声小,灵敏度及分辨率高,分析速度快,可用于动态过程、瞬时过程及反应动力学方面的研究。而且由于灵敏度高,所以PFT-NMR仪成为对13C、14N等弱共振信号的测量是不可少的工具。

核磁共振波谱法在高分子材料研究中的应用情况

固体NMR一出现人们就开始用它来研究高分子化合物。利用固体NMR谱图和各种弛豫参数,人们可以表征材料的分子结构进而监视反应的进度。固体NMR

谱可以显示出聚丙烯腈在热降解过程中的结构变化。未处理的PAN样本及其不同条件下的热解产物会产生明显不同的共振信号。1HNMR谱的半高宽△H1/2代表聚合物体系的流动性。较小的△H1/ 2意味着较高的流动性。由此可以用于研究聚合物链段降解时因断链与交联而引起的活动性的变化。

在材料的机械及物理性能的研究方面,NMR波谱也是一种重要的分析手段。对冷拉高密度聚乙烯的研究表明其中间体组分主要是全反式构象,比结晶组分的

无序性更大。有人利用固体NMR对小麦蛋白P 聚乙烯醇共混物的机械性能和相结构进行了研究。转纺丝速度下的尼龙26 纤维的固体NMR参数的测定,可以得出局部分子运动与机械性能之间的相互关系。Ronald 等研究了氘代聚二乙基硅氧烷的单轴拉伸试样的氘核NMR谱,并利用其分析了局部取向部分的分子结构,进而得出取向对分子结构的影响。Maria 等测定了环氧树脂的13C固体NMR 谱及其弛豫参数,分析了硬化剂的含量对材料机械性能的影响。分散到推进剂里的粘合剂的机械性能不方便直接测定,交叉极化时间常数TCH对聚合物的低频长程协作运动很敏感,而这些运动与材料机械性能有密切关系。实验结果证明交叉极化时间

常数TCH与聚合物试样的模量及断裂伸长率有很好的相关性。

动态核磁共振(dynamicNMR) 一般用于研究物质内部分子、原子运动对核磁共振信号的影响,例如化学交换、弛豫、构象等。高分子动态NMR方法被用来研究高分子体系的时间相关性。可通过测定分子弛豫数据考察分子运动的速度,研究分子运动与大分子结构的内在关系。在很多情况下,通过测定峰强度可获得化学反应速率,峰形的变化可揭示高分子弛豫机理和交换过程。可以通过分析NMR谱的线形、弛豫时间等参数来揭示分子结构和分子运动的信息,比如对聚乙烯动力学性能的测定。Brus等]研究了固体1H和29SiNMR谱并且结合量子力学从头计算来揭示复杂的动力学过程。Mercier 等对官能化的交联的结构和链运动进行了分析,并对其改性后的结晶度进行了测定,显示出固体NMR方法的优越性。测定单轴拉伸聚碳酸脂的弛豫时间,可以分析拉伸取向对聚合物链段结构和局部分子运动的影响。Atsushi 等利用变温实验对无定型聚合物的

13CNMR谱线宽度与温度的相关性进行了研究,进而估计材料中自由体积的大小。还有人研究了压力对无规聚丙烯分子链运动的影响,其平均相关时间符合

V ogel2Fulcher2Tammann2Hesse (VFTH)关系。聚ε2己内酯P 粘土纳米复合材料的研究表明,旋转坐标系下碳的纵向弛豫时间T1 ρC对kHz 范围的分子运动很敏感,是研究分子链运动的一种重要手段。

由于不同的组分有各自独立的NMR参数,多组分多相高分子材料也可以用固体NMR来研究。为了得到结构稳定、性能优异的多组分高分子复合材料,研究聚合物之间的相容性是非常必要的。两个相容的聚合物,其共混物应该有共同的弛豫时间( T1 , T2 和T1ρ) ,若二者不相容,则他们的共混物发生相分离应该有各自的弛豫时间。例如由聚丙烯酸和聚乙烯吡咯烷酮共混物的NMR谱图可以看出两组分之间存在强的氢键相互作用, T1ρ的测定表明其相容程度已达到分子水平。

总结:分析法(NMR)是分析分子内各官能团如何连接的确切结构的强有力的工具。磁场中所处的不同能量状态(磁能级)。原子核由质子、中子组成,它们也具有自旋现象。描述核自旋运动特性的是核自旋量子数I。不同的核在一个外加的高场强的静磁场(现代NMR仪器由充电的螺旋超导体产生)中将分裂成2I+1个核自旋能级(核磁能级),其能量间隔为ΔE。对于指定的核素再施加一频率为ν的属于射频区的无线电短波,其辐射能量hν恰好与该核的磁能级间隔ΔE相等时,核体系将吸收辐射而产生能级跃迁,这就是核磁共振现象。

参考文献

1 曾幸荣,吴振耀,侯有军,刘岚.高分子近代测试分析技术,广州:工大学出版社,2007.5

2 玉英, 孙平川, 林海,等. 波谱学杂志.2005,22(3)

3 姚叶峰,杨光,陈群. 高等学校化学学报.2004,25

4孔旭新,徐昆,王丕新,等. 高等学校化学学报,2005,26

5林伟信,张莉莉,张惠平,等. 高分子学报,2005, (3)

6张磊,杨光,陈群. 波谱学杂志,2005,22 (3)

7赵晓东,刘文广,姚康德. 高分子材料科学与工程,2004,20

8赵辉鹏,林伟信,杨光,等. 高分子学报,2003, (5)

9MercierA,KurokiS,AndoI,etal.JPolymSci,PartB:PolymPhys,2001,39

10 AsanoA,TakegoshiK.JChemPhys,2001,115

11 HollanderAGS,PrinsKO.IntJThermophys,2001,22

功能高分子材料论文黄俊强

功能高分子材料课程论文 生物降解高分子材料的研究现状 及应用前景 姓名:黄俊强 班级:高分子08-1班 老师:齐民华 日期:2010.12.18

生物降解高分子材料的研究现状及应用前景 摘要:目前,处理高分子材料的一些传统方法,如焚烧法、掩埋法、熔融共混挤出法、回收利用等都存在一定的缺陷和局限性,给环境保护带来严重的困难。因此,开发环境可接受的降解性高分子材料是解决环境污染的重要途径。生物降解高分子是指通过自然界或添加的微生物的化学作用,将高分子物质分解成小分子化合物,再进入自然的循环过程。论述了生物降解高分子材料的研究现状,并对生物降解高分子材料的降解机理、影响因素及其在医学、农业、包装业和其他领域的潜在应用前景进行了探讨。 关键词:生物降解高分子材料定义降解机理影响因素研究现状应用前景 0 引言 随着大量高分子材料在各个领域的使用,废弃高分子材料对环境的污染有着日益加剧的趋势。塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废塑料所造成的白色污染已成为世界性的公害。目前,处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。生物降解高分子是指通过自然界或添加的微生物的化学作用,将高分子物质分解成小分子化合物,再进入自然的循环过程,这种方法简洁有效,而且对环境的保护有积极的作用。同时,随着高新技术的发展,生物降解高分子材料也满足了医学和农业及其他方面的需求,成为近年来研究的热点。 1.生物降解高分子材料的定义和分类 生物降解高分子材料( Biodegradable polymeric materials)是指在一定的条件下,一定的时间内, 能被微生物( 细菌、真菌、霉菌、藻类等) 或其分泌物在酶或化学分解作用下发降解的高分子材料。生物降解的高分子材料具有以下特点: 易吸附水, 含有敏感的化学基团, 结晶度低,分子量低,分子链线性化程度高和较大的比表面积等。按照来源, 生物可降解高分子材料可分为天然高分子和人工合成高分子两大类;按照用途,分为医用和非医用生物降解高分子材料两大类;按照原料组成和制造工艺不同可分为天然高分子合成材料、微生物合成高分子材料和化学合成生物可降解高分子材料。 天然高分子包括淀粉、纤维素、甲壳质、木质素等,这些高分子可被微生物完全降解, 但因纤维素等存在物理性能上的不足,不能满足工程材料的性能要求, 因此,它大多与其它高分子, 如由甲壳质制得的脱乙酰基多糖等共混, 得到有使用价值的生物降解材料; 微生物合成高分子是生物通过各种碳源发酵制得的一

高分子材料论文:高分子材料相关研究

高分子材料论文: 高分子材料相关研究 摘要:包括塑料、橡胶、纤维、薄膜、胶粘剂和涂料等。其中,被称为现代高分子三大合成材料的塑料、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。 关键词:高分子材料化学分子 高分子材料:macromolecular material,以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。 一、按特性分析高分子材料 高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。 ①橡胶是一类线型柔性高分子聚合物。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。有天然橡胶和合成橡胶两种。 ②高分子纤维分为天然纤维和化学纤维。前者指蚕丝、棉、麻、毛等。后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。 ③塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。其分子间次价力、模量和形变量等介于橡胶和纤维之间。通常按合成树脂的特性分为热固性塑料和热塑性塑料;按用途又分为通用塑料和工程塑料。 ④高分子胶粘剂是以合成天然高分子化合物为主体制成的胶粘材料。分为天然和合成胶粘剂两种。应用较多的是合成胶粘剂。 ⑤高分子涂料是以聚合物为主要成膜物质,添加溶剂和各种添加剂制得。根据成膜物质不同,分为油脂涂料、天然树脂涂料和合成树脂涂料。⑥高分子基复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。它综合了原有材料的性能特点,并可根据需要进行材料设计。 二、现代新型高分子材料 高分子材料包括塑料,尽管高分子材料因普遍具有许多金属和无机材料所无法取代的优点而获得迅速的发展,但目前业已大规模生产的还是只能寻常条件下使用的高分子物质,即 所谓的通用高分子,它们存在着机械强度和刚性差、耐热性低等缺点。而现代工程技术的发展,则向高分子材料提出了更高的要求,因而推动了高分子材料向高性能化、功能化和生物化方向发展,这样就出现了许多产量低、价格高、性能优异的新型高分子材料。 1.高分子分离膜 高分子分离膜是用高分子材料制成的具有选择性透过功能的半透性薄膜。采用这样的半透性薄膜,以压力差、温度梯度、浓度梯度或电位差为动力,使气体混合物、液体混合物或有机物、无机物的溶液等分离技术相比,具有省能、高效和洁净等特点,因而被认为是支撑新技术革命的重大技术。膜分离过程主要有反渗透、超滤、微滤、电渗析、压渗析、气体分离、渗透汽化和液膜分离等。用来制备分离、渗透汽化和液膜分离等。用来制备分离膜的高分子材料有许多种类。现在用的较多的是聚枫、聚烯烃、纤维素脂类和有机硅等。膜的形式也有多种,一般用的是平膜和空中纤维。推广应用高分子分离膜能获得巨大的经济效益和社会效益。例如,利用离子交换膜电解食盐可减少污染、节约能源:利用反渗透进行海水淡化和脱盐、要比其它方法消耗的能量都小;利用气体分离膜从空气中富集氧可大大提高氧气回收率等。 2.高分子磁性材料

功能高分子小论文

功能高分子材料 指导教师:王明罡 姓名:丁彦红 学号: 班级:100202

有机硅高分子材料综述 摘要:有机硅高分子材料由于结构比较特殊, 使这类合成材料具有良好的耐热性、耐寒性、电绝缘性、疏水性、耐候性、抗粘性和生理惰性等优良特性。在国防、建筑、纺织、医药、电子、电器和日用化工等领域得以广泛应用。本文就有机硅高分子材料的定义、分类、基本理论、制备方法、发展、性能和应用进行了阐述。其中较详细的讨论了有机硅聚合物中的硅油、硅橡胶和硅树脂。通过将硅油分为线型硅油和改性硅油两方面,讲述了它的性能和制备。将硅橡胶分为高温硫化硅橡胶和室温硫化硅橡胶两方面进行阐述。讨论了纯硅树脂的制备和几种常用的改性方法. 关键词:有机硅高分子;硅油;硅橡胶;硅树脂;应用 有机硅高分子概述 硅在地壳中是仅次于氧的第二丰富元素。正像碳在生命化学中占主要地位那样,碳的同族(IV A族)元素硅,是岩石和许多矿物质的关键元素。电子技术的突飞猛进,半导体的广泛用,使硅越来越被人们所广知。然而,有机硅高分子的研究和应用起步较晚,它是第二次世界大战以后才孕育而生的一种重要的高分子合成材料。 有机硅高分子是分子结构中含有元素硅、且硅原子上连接有机基的聚合物。以重复的Si—O键为主链、硅原子上连接有机基的聚硅氧烷则是有机硅高分子的主要代表与结构形式。由于有机硅高分子结构的特殊性, 使有机硅高分子具备许多优良特性,如耐高低温性、耐候性、耐老化等。 有机硅高分子的分类[6] 有机硅高分子可以从不同的角度进行分类,如从单体的来源、合成方法、分子结构、 I 产品用途等角度进行分类。 (1)从单体的来源和合成方法分类 从单体的来源分类,有机硅高分子可分为均聚物和共聚物;从合成方法进行分类,有机硅高分子又可分为接枝共聚物、嵌段共聚物、交替共聚物、无规共聚物等。 (2)从产品形态分类 II

高分子材料论文

高 分 子 材 料 论 文 课题名称:高分子材料导论学院: 班级: 姓名: 学号:

高分子材料回收利用与发展可降解材料现代文明以经济腾飞和生活水平的提高为主要标志。随着经济发展,大规模的物质循环不可避免地引起各种问题,如资源短缺、环境恶化已为全球所关注。科学家预言地球能源(煤、石油、天然气等)不久将消耗完,会发生严重的能源危机;现代工业以及消费业的发展已给大自然带来严重的影响,大气、海洋等受污染,温室效应发生和臭氧层的破坏等等。所有这些已严重影响着自然界的生态平衡,最终必然会阻碍世界经济的高速发展。 材料的制造、加工、应用等均与环境和资源有直接的关系。高分子材料自从上世纪初问世以来,因重量轻、加工方便、产品美观实用等特点,颇受人们欢迎,其应用越来越广,从而使用过的高分子材料日益增加。据统计,2011年,我国塑料制品的产量达5474万吨,同比增长22%。其中,塑料薄膜的产量为844万吨,占总产量的15%;日用塑料制品的产量为458万吨,占总产量的8%;塑料人造革、合成革的产量为240万吨,占总产量的4%。如何处理这些废料已成为非常重要的课题。 处理废旧高分子材料比较科学的方法是再循环利用。循环是废旧高分子材抖利用的有利途径,不仅使环境污染得到妥善的解决,而且资源得到最有效的节省和利用。从资源利用的角度,对废旧高分子材料的利用首先应考虑材料的循环,然后考虑化学循环及能量回收。 回收:我国塑料回收面临的困难是数量大、分布广、品种多、体积大,许多废塑料与其它城市垃圾混在一起。处理废塑料的主要方法是:填埋和简单焚烧,但可供填埋场地不断减少,填埋费用急剧上升以及简单焚烧带来的二次污染等问题也给我们敲响了警钟。国外在废塑料回收方面已积累了不少经验,他们把废塑料的回收作为一项系统工程,政府、企业、居民共同参与。德国于1993年开始实施包装容器回收再利用,1997年回收再利用废塑料达到60万t,是当年消费量(80万t)的75%。目前,德国在全国设立300多个包装容器回收、分类网点,各网点统一将塑料制品分为瓶、薄膜、杯、PS发泡制品及其他制品,并有统一颜色标志[2]。利用:主要有再生利用、热能利用以及分解产物的利用(包括热分解和化学分解)。 1、再生利用:再生利用分简单再生和改性再生两类。 简单再生,指废塑料经过分类、清洗、破碎、造粒后直接进行成型加工,一般只能制成档次较低的产品。 改性再生,指通过化学或机械方法对废塑料进行改性。改性后的再生制品力学性能得到改善,可以做档次较高的制品。在化学添加剂方面,汽巴-嘉基公司生产出一种含抗氧剂、共稳定剂和其他活性、非活性添加剂的混合助剂,可使回收材料性能基本恢复到原有水平;荷兰有人开发了一种新型化学增容剂,能将包含不同聚合物的回收塑料键合在一起。美国报道采用固体剪切粉碎工艺(Solid State Shear Pulverization, S3P)进行机械加工,无须加热和熔融便可将树脂进行分子水平剪切,形成互容的共混物。共混物大部分由HDPE和LLDPE组成,极限拉伸强度和挠曲模量可与HDPE和LLDPE纯料相媲美[5]。 2、焚烧回收热能: 对于难以进行清洗分选回收的混杂废塑料,可以在专门的焚烧炉中焚烧以回收热能。木材的燃烧热为14.65 GJ/kg,聚乙烯为46.63 GJ/kg,聚丙烯为43.95 GJ/kg,聚氯乙烯为18.08 GJ/kg,ABS为35.26 GJ/kg,均高于木材,若能将这部分热能加以回收是很有意义的。废塑料热能回收可最大限度减少对自然环境的污染,不需要繁杂的预处理,也不需与生活垃圾分离,焚烧后废塑料的质量和体积可分别减少80%和90%以上,燃烧后的渣滓密度较大,

功能高分子材料论文.

纳米二氧化钛结构及性能 摘要 本文主要通过对纳米二氧化钛结构及性能的介绍,引出其应用,特别是在环境净化方面的应用。纳米二氧化钛是一种新型环境净化材料,有板铁矿、锐铁矿和金红石三种晶体结构,具有良好的光催化性能及亲水性,这也是其在环境净化方面的应用基础,主要用于净化水、空气和杀菌,另外还可做建筑涂料。本文着重介绍了其在废水处理方面的应用,有处理染料废水、处理农业废水和处理含表面活性剂的废水、处理含油废水和处理造纸废水。制备方法主要有:溶胶-凝胶法、化学气相沉积法、钛醇盐的气相水解法以及液相沉淀法其中液相沉淀法又包括直接沉淀法、均匀沉淀法以及共沉淀法。 关键词环境;材料;净化;纳米二氧化钛;结构;性能;应用;光催化技术;综述

目录 1 绪论 (4) 的结构 (5) 2 TiO 2 2.1 晶格结构 (5) 2.2 表面结构 (5) 的性质 (6) 3 纳米TiO 2 3.1 晶型的性质 (6) 3.2 光学性质 (6) 3.3 半导体性质 (6) 的应用 (6) 4 纳米TiO 2 4.1 充当太阳能电池原料 (7) 4.2 防紫外线功能 (7) 4.3 光催化功能 (8) 4.3.1 气体净化 (8) 4.3.2 处理有机废水 (8) 4.3.3 处理无机污水 (8) 4.3.4 防雾及自清洁功能 (8) 4.3.5 杀菌功能 (9) 5纳米TiO 的制备 (10) 2 水解法 (10) 5.1 TiCl 4 5.2 醇盐水解法 (10) 5.3 溶胶-凝胶法 (11) 5.4 水热合成法 (11) 5.5 微乳液法 (11) 6 结语 (12) 参考文献 (13) 致谢 (14)

高分子材料 论文高分子材料论文

实践实验教学 中国电力教育 2010年第28期 总第179期 高分子化学实验是高分子化学课程教学的一种最有效的实践教学形式,它可以帮助和促进学生课堂理论知识的学习与消化,建立和巩固高分子化学基本概念和理论,获取高分子化学知识,培养科学素质和操作技能。我国著名化学家戴安邦指出:“只传授化学知识和技术的化学教育是片面的,全面的化学教育要求既传授化学知识和技巧,又训练科学方法与思维,还培养科学精神和品德,学生在化学实验中是学习的主体,在教师指导下进行实验,训练用实验解决化学问题,使各项智力皆得到发展”。这番话指出了开设化学实验课的深刻内涵和重要价值。2004年国家教育部颁布的《普通高等学校本科教学工作水平评估方案》在评估指标的二级指标“实践教学”中,从“实践教学内容与体系,综合性、设计性实验课的比例及效果,实验室开放”三个方面明确了实践教学改革和发展的方向。近几年高校的化学类实验教学改革取得了令人瞩目的成果。高分子材料科学与工程专业是很多高校在近年来新开设的专业,在实验教学与改革方面的成果积累较少,尤其高分子化学实验教学采用陈旧的教学内容和教学方法依然居多。通过调研发现,目前国内高校高分子材料科学与工程专业的高分子化学实验教学依然不同程度地存在一些问题。 一、高分子化学实验教学现状剖析1.实验教学体系和内容欠合理 多数的实验教学附属于理论教学,没有单独设课和单独考核,实验课时相对较少。虽然有些高校高分子化学实验已经独立设课,但仅作为考查课。实验教学内容中传统的、陈旧的实验较多,而体现现代科学技术发展成果的实验很少。认知性、验证性实验所占的比例偏高,培养学生创新能力的综合性、设计性、应用性和创新性的实验偏少,而且实验环节偏重于理论,突出高分子材料应用性特点的实验太少,不利于培养学生的工程观念。 2.实验教学方法单一 学生按照实验讲义预习,然后进实验室。实验前教师把实 验目的、实验原理、仪器使用方法、测试方法、实验步骤和数据记录表格及数据处理方法等进行详细的集中讲解。学生只需按教师指导的过程按部就班或者依照讲义“照方抓药”,就可以完成一个实验。一部分学生糊里糊涂地来到实验室,只动手不动脑地完成实验,然后又迷迷糊糊地离开实验室。实验的现象和结果没有给他们留下太深的印象,对学生观察能力、分析问题和解决问题的能力以及创新意识的培养都很不够。这种统一模式、统一要求、齐步走的教学方法,一方面造成了学生对教师的过分依赖,另一方面抑制了学生个性思维的发展和创新能力的培养。 3.实验教学手段落后 在现代信息技术迅速发展的今天,虽然网络技术、多媒体技术等现代教学技术在理论教学中得到了普遍应用,但虚拟、仿真等实验技术手段未能在实验教学中推广应用。这样对于一些耗费过高、时间过长、毒性过大、危险性过高的实验,只能最低限度地开设,且开设过程中费用大和危险性高,导致学生对此类重要实验缺乏足够的认知和感受的机会。 二、新教学模块的实践性探索与成效 针对目前国内高校高分子材料科学与工程专业高分子化学实验教学中存在的一些问题,借鉴其他化学实验教学改革的优秀成果,提出了基础技能实验、综合设计实验、研究创新型实验的三个高分子化学实验教学模块体系,并在每个模块中结合常熟理工学院教师的科研成果引入一些新的实验教学内容,采用开放式实验教学方法。通过实验教学实践发现新的体系和教学方法在培养学生的创新意识和工程实践能力方面起到了较好的效果。 1.基础技能实验教学模块 基础技能实验模块构建的目的着重建立高分子化学实验与相关基础理论知识之间的有机联系。培养学生的实验安全意识、清洁卫生习惯和严谨的实验态度。训练学生掌握熟练规范的实 高分子材料与工程专业高分子化学实验教学体系的 构建与成效 左晓兵 俞丽珍 朱亚辉 摘要:概述了目前国内高校高分子材料与工程专业高分子化学实验教学存在的共性问题和关键问题。提出了高分子材料与工程专业高分子化学实验课程由基础技能实验,综合设计实验,研究创新实验三个模块组成的新教学体系, 并在每个模块中引入一些综合性和应用性的实验教学内容。实践证明所构建的实验教学体系在培养学生的创新意识、应用与实践能力方面起到了较好的效果。 关键词:高分子材料;高分子化学;实验教学 作者简介:左晓兵(1965-),男,安徽泾县人,常熟理工学院化学与材料工程学院,副教授,理学博士,主要研究方向:聚合物合成的教学与研究;俞丽珍(1966-),女,江苏常熟人,常熟理工学院化学与材料工程学院,高级工程师,主要研究方向:聚合物合成的实验教学与管理。(江苏 常熟 215500) 基金项目:本文系常熟理工学院课程建设基金资助项目(项目编号:W090029)的研究成果。 DOI 编码:10.3969/j.issn.1007-0079.2010.28.065

高分子材料论文

热塑性聚氨酯TPU 的发展现状 摘要:TPU 全称热塑性聚氨酯弹性体(Thermoplastic Polyurethane ),它是由 二异氰酸酯和大分子多元醇、扩链剂共同反应生成的线性高分子材料。同时,它 也是一种能够在一定热度下反复变软或改变的塑胶材料,而在常温下它却可以保 持形状不变,能起个支撑、保护的作用.TPU 为热塑性聚氨酯,有聚酯型和聚醚 型之分,TPU 成型品的用途广泛: 汽车部件,机械·工业用部件,管材·软管, 薄膜·板材,电线·电缆等等,本文主要叙述TPU 聚合工艺,各项性能,市场应 用,TPU 国内外发展的现状及其生产厂家等方面。 关键词:TPU 共混改性 聚氨酯 发泡剂 扩链剂 环保 一.TPU 的聚合工艺 TPU 全称热塑性聚氨酯弹性体(Thermoplastic Polyurethane ),它是由二 异氰酸酯和大分子多元醇、扩链剂共同反应生成的线性高分子材料。它在分子组 成上以重复氨基甲酸酯基团为特征,同时含有脲基甲酸酯、缩二脲、及酯键、醚 键等其它基团;从分子结构上看,它由刚性链段与柔性链段交替构成,其中刚性 链段是由二异氰酸酯和扩链剂反应得到的,柔性链段则是由二异氰酸酯和大分子 多元醇反应得到的。这种特殊的分子结构使TPU 具有其它各类热塑性弹性不可比 拟的优良性能。 按聚合工艺分为本体聚合和溶液聚合,在本体聚合中,又分为预聚法和一步 法,预聚法是将二异氰酸酯和大分子多元醇、扩链剂同时混合反应成TPU 。一步法是将二醇、二异氰酸酯和扩链剂同时反应成TPU 。 可采用注射、挤出、吹塑等方法生产加工。挤出成型、注射成型是TPU广 为采用的加工方法。挤出和注射成型的熔体温度范围较宽,一般在180-245摄氏度之间.塑化效果好,熔料均匀,易于成型加工。适合所有塑料生产加工工艺。 挤出成型的工艺过程: 聚合物 塑化 成型 定型 牵引 切割 堆放 冷却 成品

功能高分子材料

上海大学2015~2016学年冬季学期研究生课程报告课程名称:功能高分子材料课程编号:11S009005 论文题目:TPU防水透湿薄膜的研究进展 研究生姓名: 汪胜学号: 15722180 论文评语: 成绩: 任课教师: 陈捷贾少晋 评阅日期:

TPU防水透湿薄膜的研究进展 汪胜 (上海大学环境与化学工程学院,上海200444) 摘要:热塑性聚氨酯弹性体(TPU)是一种应用范围非常广的聚氨酯材料,兼具橡胶和塑料的特性,已经被广泛应用于汽车、鞋材、服饰、医疗、电线电缆、薄膜及薄板、胶黏剂等。其中,热塑性聚氨酯在服装行业中的应用是它可以制成薄膜贴附在织物上以提供给使用者更好的防护性、舒适感和美感。文在国内外文献的基础上,总结了近几年TPU防水透湿薄膜的制备与研究进展,以期为今后的TPU防水透湿薄膜的制备和应用发展提供参考。 关键词:热塑性聚氨酯弹性体;聚氨酯材料;TPU防水透湿薄膜;橡胶和塑料 The Research ProgressofTPU waterproof moisturepermeable membrane products Sheng Wang (School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China) Abstract: Thermoplasticpolyurethaneelastomer (TPU)whichischaracteristicofrubberandplastic's, cl othing, medical, wireare applied widely to the field of automotive, shoes, clothing, medical, wire and cable, thin film and sheet, adhesive composition ect. Among them,the application of thermoplastic polyurethane in the clothing industry is that it can be made into a film attached to the fabric in order to provide users with better protection, comfort and beauty.This paper, on the basis of the literature at home and abroad, summarizes preparation and research of TPU waterproof moisture permeable membrane, and also provides the reference the TPU waterproof moisture permeable membrane preparation and research in the future. Key word:thermoplasticpolyurethane elastomer; polyurethane materials; TPU waterproof moisture permeable membrane; rubber and plastic

高分子材料论文

高分子材料与成形 14商贸2班梅文祥10号 摘要: 高分子,即高分子化合物,是由千百万个原子彼此以共价起来的大分子,因此又称为高聚物或聚合物。髙分子的特点是分子量大,高达104~106,并且分子量具有多分散性,其相对分子质量一般都在几万到几百万。通常把相对分子质量在一万以上的分子称为高子。高分子是用相对分子质量、聚合度(重复的结构单元数)或分子链的长度来描述的。高分子材料的性能不仅与聚合物的化学性质有关,而且还与诸如结晶的程度和分布,高分子链长的分布,添加剂(如填料,增强剂和增塑剂等)的性质和用量等许多因素有关。 关键词:塑料、纤维、增塑剂、聚合物 前言:高分子,即高分子化合物,是由千百万个原子彼此以共价起来的大分子,因此又称为高聚物或聚合物。髙分子的特点是分子量大,高达104~106,并且分子量具有多分散性,其相对分子质量一般都在几万到几百万。通常把相对分子质量在一万以上的分子称为高分子。高分子是用相对分子质量、聚合度(重复的结构单元数)或分子链的长度来描述的。高分子材料的性能不仅与聚合物的化学性质有关,而且还与诸如结晶的程度和分布,高分子链长的分布,添加剂(如填料,增强剂和增塑剂等)的性质和用量等许多因素有关。 高分子材料的分类有:塑料、橡胶、纤维等;

高分子材料的添加剂有:增塑剂、防老剂、填充剂、阻燃剂等。 正文: 1-1 高分子材料的分类 一、塑料 塑料分为热塑性和热固性塑料。热塑性塑料是指在一定温度围具有可反复加热软化、冷却后硬化定型的塑料。常用的热塑性塑料有聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯等。热固性塑料是指经加热(或不加热)就变成永久的固定形状,一旦成形,就不可能再熔融成形的塑料。常用的热固性塑料有酚醛塑料、脲醛塑料等。塑料按使用情况又分为通用塑料、工程塑料及特种塑料。通用塑料价格便宜、产量大、成型性好,广泛用于日用品、包装、农业等领域,如聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、酚醛和脲醛塑料。工程塑料指能承受一定的外力作用,具有较高的强度和刚度并具有较好的尺寸稳定性,如聚甲醛、聚砜、聚碳酸酯、聚酰胺、ABS等。特种塑料具有如耐热、自润滑等特异性能,可用于特殊要求如氟塑料、有机硅塑料、聚酰亚胺等。 二、橡胶 橡胶具有高的弹性、电绝缘性和缓冲减振性。橡胶可分为天然橡胶和合成橡胶。天然橡胶的弹性好、强度高、耐屈挠性好、绝缘性好。这些性能都是合成橡胶所不及。因此,天然橡胶至今仍是最重要的一种橡胶。天然橡胶的加工性、粘合性、混合性良好。合成橡胶的种类很多,按其性能和用途可分为通用合成橡胶和特种合成橡胶。通用合成橡胶一般用以代替天然橡胶来制造轮胎及其它常用橡胶制品,如丁

医用高分子材料论文

医用高分子材料 高分子材料科学与工程,高材1006班,王中伟,20100221276 摘要:随着高分子材料在社会的各个领域的广泛应用,尤其是在航天工程、医学等领域的应用。功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。医用高分子材料是用以制造人体内脏、体外器官、药物剂型及医疗器械的聚合物材料。对医用高分子材料的目前需求作了简要分析,介绍了医用高分子材料的主要类别、用途及其特殊要求,并浅谈了医用高分子材料的发展及展望。 关键词:医用高分子材料人工人体器官对人类健康的促进相容性 前言:现代医学的发展,对材料的性能提出了复杂而严格的多功能要求,这是大多数金属材料和无机材料难以满足的;而合成高分子材料与生物体(天然高分子)有着极其相似的化学结构,化学结构的相似性决定了它们在性能上能够彼此接近从而可能用聚合物制作人工器官,作为人体器官的替代物。另外,除人工器官用材料之外, 医药用高分子材料、临床检查诊断和治疗用高分子材料的开发研究也在积极地展开,它们被统称为医用高分子材料.医用高分子材料是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。 正文: 一、医用高分子材料的概念及简介:医用高分子材料是依据高分子材料的某些特性及特征, 如其本身是惰性的,不参与药的作用,能只起增稠、表面活性、崩解、粘合、赋形、润滑和包装等特效,对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,用它制造成能有医学价值的产品。医用高分子材料是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。然而,医用高分子材料是一类根据医学的需求

高分子材料论文

高分子材料论文 在世界范围内, 高分子材料的制品属於最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势, 將是21世纪最活跃的材料支柱. 高分子材料是有机化合物, 有机化合物是碳元素的化合物.除碳原子外, 其他元素主要是氢、氧、氮等.碳原子与碳原子之间, 碳原子与其他元素的原子之间, 能形成稳定的结构.碳原子是四价, 每个一价的价键可以和一个氢原子键连接, 所以可形成为数众多的、具有不同结构的有机化合物.有机化合物的总数已接近千万种, 远远超过其他元素的化合物的总和, 而且新的有机化合物还不断地被合成出來.這样, 由於不同的特殊结构的形成, 使有机化合物具有很独特的功能.高分子中可以把某些有机物结构(又称为功能团)替换, 以改变高分子的特性.高分子具有巨大的分子量, 达到至少1万以上, 或几百万至千万以上, 所以, 人們將其称为高分子、大分子或高聚物.高分子材料包括三大合成材料, 即塑料、合成纤维和合成橡胶(未加工之前称为树脂). 面向21世纪的高科技迅猛发展, 带动了社会经济和其他产业的飞跃, 高分子已明确地承担起历史的重任, 向高性能化、多功能化、生物化三个方向发展.21世纪的材料將是一个光辉灿烂的高分子王国. 现有的高分子材料已具有很高的强度和韧性, 足以和金属材料相媲美, 我們日用的家 用器械、家具、洗衣机、冰箱、电视机、交通工具、住宅等, 大部分的金属构造已被高分子材料所代替.工业、农业、交通以及高科技的发展, 要求高分子材料具有更高的强度、硬度、韧性、耐温、耐磨、耐油、耐折等特性, 這些都是高分子材料要解决的重大问题.从理论上推算, 高分子材料的强度还有很大的潜力. 在提高高分子的性能方面, 最重要的还是制成复合材料第一代复合材料是玻璃钢, 是 以玻璃纤维和合成树脂为粘合剂制成.它具有重量轻、强度高、耐高温、耐腐蚀、导热系数低、易於加工等优良性能, 用於火箭、导弹、船只和汽车躯体及电视天线之中.其后, 人們把玻璃纤维换成碳纤维, 其重量更轻, 强度比钢要高3~5倍, 這就是第二代的复合材料.如果改用芳纶纤维, 其强度更高, 为钢丝的5倍.高性能的高分子材料的开拓和创新尚有极大的潜力.科学家预测, 21世纪初, 每年必须比目前多生产1500~2000万吨纤维材料才能满足需要, 所以必须生产大量的合成纤维材料, 而且要具有更轻型、耐火、阻燃、防臭、吸水、杀菌等特性.有许多新型纤维, 如轻型空腔纤维、泡沫纤维、各种截面形状的纤维、多组份纤维材料等纷纷被研制出來, 人們可指望会有耐静电、耐脏、耐油, 甚至不会沾灰的纤维材料问世.這些纤维材料將用於宇航天线、宇航反射器、心脏瓣膜和人体大动脉. 高分子功能材料, 在高分子王国里是一片百花争艳的盛景.由於高分子的功能团能够替代, 所以只要采用极为简便的方法, 就可以制造各种各样的高分子功能材料.常用的吸水性

功能高分子材料论文

生物医用高分子材料 摘要:简述了对功能高分子材料的认识,功能高分子材料的特征和功能高分子材料的分类,接着重点写生物医用高分子的发展前景和趋势,对生物医用功能高分子的认识和其重要性的认识。 关键词:功能高分子材料,生物医用高分子材料。 功能高分子材料 功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50% 所谓功能性高分子材料,一般是指具有某种特别的功能或者是能在某种特殊环境下使用的高分子材料,但这是相对于一般用途的通用高分子材料而言。这一定义只是一个概括,不一定很确切,较多的人认为所谓功能性高分子材料是指具有物质能量和信息的传递、转换和贮存作用的高分子材料及其复合材料。如有光电、热电、压电、声电、化学转换等功能的一些高分子化合物。可以看出,这是一类范围相当大、用途相当广、品种相当多,而又是在生活、生产活动中经常遇见的一类高分子材料。 功能高分子材料按照功能特性通常可分成以下几类: (1)分离材料和化学功能材料;(2)电磁功能高分子材料;(3)光功能高分子材料;(4)生物医用高分子材料。功能高分子材料是高分子学科中的一个重要分支,它的重要性在于所包含的每一类高分子都具有特殊的功能。 随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。 一般归纳起来医用高分子材料应符合下列要求: 1、化学稳定性好,在人体接触部分不能发生影响而变化; 2、组织相容性好,在人体内不发生炎症和排异反应; 3、不会致癌变;

高分子材料论文

高分子药物载体的研究进展 (中国矿业大学李曲祥) 摘要:高分子材料越来越多的被应用于化工医药领域作为药物的载体,这一技术愈来愈受到研究者们的重视,并且得到了较好的发展。本文介绍了近年来研究比较广泛的高分子药物载体的应用情况及研究态势,展望了生物活性药物载体的应用前景。 关键词:高分子药物载体;生物活性;应用前景 引言: 高分子分为天然高分子和合成高分子。天然高分子用于药物已有很长的历史,例如,多糖、多肽和蛋白质及酶类药物的使用。目前,我们所使用的药物大多数为低分子药物,低分子药物疗效高,使用方便,但存在较大副作用。一般通过口服或注射使低分子药物进入体内,给药后短时间内,血液中药物的浓度往往高于治疗所需浓度,有时甚至高于最低中毒浓度,从而导致人体发生中毒、过敏等,有些低分子药物在人体内代谢速度快,半衰期短,易排泄。随着时间的推移,血液浓度会很快降低到最低有效浓度以下从而影响疗效。此外,由于低分子药物进入人体内后缺乏选择性,进而造成更多的毒副作用[1]。高分子药物是指将本身没有药理作用、也不与药物发生化学反应的高分子作为药物的载体,依靠二者间微弱的氢键结合形成、或者通过缩聚反应将低分子药物连接到聚合物主链上而得到的一类药物。其中高分子化合物充当低分子药物的传递系统,而发挥药理作用的仍是低分子药物基团。然而用高分子作为小分子药物的载体可实现下述目的:增加药物的作用时间;提高药物的选择性;降低小分子药物的毒性;载体能把药物输送到体内确定的部位(靶位);高分子载体不会在体内长时间积累,可排出或水解后被吸收。载体药物技术的关键是载体材料的选择, 目前已有各种高分子材料和无机材料被用于载体药物的研究, 但对材料的选择必须满足组织、血液、免疫等生物相容性的要求[2]。此外,载体药物的制备也很重要, 因为这将影响到载体药物的给药效率。

生物医用高分子材料论文

医用功能材料及应用学院化工学院 指导老师乔红斌 专业班级高091班 学生姓名张如心 学号 099034030

医用功能材料及应用 摘要:了解生物医用功能高分子材料近年来的应用研究及发展状况,综述国内外生物医用高分子材料的分类、特性及研究成果,展望对未来的生物医用高分子材料的发展趋势,通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题,形成对生物医用功能高分子的认识和其重要性的认识。 关键词:功能高分子材料生物医用高分子材料。 前言:现代医学的发展,对材料的性能提出了复杂而严格的多功能要求,这是大多数金属材料和无机材料难以满足的,而合成高分子材料与生物体(天然高分子)有着极其相似的化学结构,化学结构的相似决定了它们在性能上能够彼此接近从而可能用聚合物制作人工器官,作为人体器官的替代物。另外,除人工器官用材料之外,医药用高分子材料、临床检查诊断和治疗用高分子材料的开发研究也在积极地展开,它们被统称为医用高分子材料。 1.生物医用功能高分子 生物医用功能高分子材料主要以医疗为目的,用于与组织接触以形成功能的无生命材料。其被广泛地用来取代或恢复那些受创伤或退化的组织或器官的功能,从而达到治疗的目的。主要包括医用高分子材料(以修复、替代为主)、药用高分子材料(以药理疗效为主)。生物医用高分子材料融合了高分子化学和物理、高分子材料工艺学、药理学、病理学、解剖学和临床医学等方面的知识,还涉及许多工程学问题。由于其与人体的组织和器官接触,因此,医用高分子材料必须满足如下的基本要求:①在化学上是惰性的,会因为与体液接触而发生反应;②对人体组织不会引起炎症或异物反应;③不会致癌;④具有良好的血液相容性,不会在材料表面凝血;⑤长期植入体内,不会减小机械强度;⑥能经受必要的清洁消毒措施而不产生变形;⑦易于加工成需要的复杂形状。 2.医用高分子材料发展的4个阶段 第1阶段:时间大约是7千年前至19世纪中叶,是被动地使用天然高分子材料阶段。这一时期的高分子材料有,大漆及其制品、蚕丝及织物、麻、棉、羊皮、羊毛、纸、桐油等。 第2阶段:从19世纪中页到20世纪20年代,是对天然高分子材料进行化

功能高分子化学 课件 功能高分子论文

功能高分子化学课件功能高分子论文

二阶非线性光学聚酰亚胺的研究小结 方成092186 摘要:综述了近年来关于二阶非线性光学聚酰亚胺的研究情况,并根据目前存在的问题,展望了以后的研究方向。 关键词:二阶非线性;聚酰亚胺 引言 非线性光学(Nonlinear Optic , NL0) 是研究在强光(激光)作用下物质的响应与场强呈现的非线性关系的科学。与场强有关的光学效应称为非线性光学效应。[1]根据麦克斯威电磁场理论,物质在电磁场的作用下将被极化,其极化率可用外电磁场E的幂级数来描述: P=ε0*(αE+βE2+γE3+......). (1) P=ε0*(χ(1)E+χ(2)E2+χ(3)E3+......) (2) 式(1)和(2)分别表示了分子和宏观材料的极化率, 式中ε0为真空下的介电常数,α、β、γ为分子的线性系数和二阶、三阶极化系数,χ(n)为材料的n阶极化系数。因此,在一般的电磁场作用下可只考虑线性项的作用,这就是大家熟悉的线性光学所描述的情形。但在强激光作用下,第二项及以后的各阶非线性项的影响就不能再忽略了,物质的极化与场强就将呈现出非线性函数关系,产生了非线性光学效应。按照极化系数的幂次,可把非线性光学效应分为阶,其中以二阶和三阶效应最为重要,研究也最多。[2,3,4] 自60年代激光发现以来,非线性光学有了迅速的发展, 已经成为新兴学科 光电子学的前沿领域之一。同时近年来,以光为信息载体的光电子技术迅速发展,它就要求材料能满足高速度、高密度和对信息的多个并行处理。而非线性光学材料正是这样的关键材料,它具有非线性光学系数大、反应速度快、抗激光损伤性能小等一系列现有无机材料无法比拟的优点,因而在光电技术、集成光学及光通信等方面具有广阔的应用前景。[5,6]尤其是有机聚合物材料,由于它们具有设计方便、易于加工和结构稳定等特点, 聚合物非线性光学材料的研究受到普遍重视。其中, 芳香聚酰亚胺(Polyimide,PI)分子中的芳香环刚性结构赋予其优越的耐高温性能和环境稳定性, 这为提高性能及实现其长期稳定性提供了有利的条件, 使之成为难得的骨架聚合物之一。[7] 1 PI产生NLO的原理 非线性光学聚合物的制备通常是将本身具有较大二阶非线性系数(β)值的 不对称性共扼结构单元(常称作NLO生色团)连接到高分子的主链或侧链上, 或

高分子材料与化学论文

高分子材料在医学领域的应用 姓名:姚祥学号:6100211160班级:电子113班 摘要:这篇文章对高分子材料基础和生物医用高分子材料在医学上应用基本要求进行了简单的介绍。本文主要对高分子材料在医学领域上的应用,生物医用高分子的发展前景和趋势等发面进行了阐述。对生物医用功能高分子的概念及其重要性也有了一定的了解。 关键词:高分子材料基础医学领域应用生物医用高分子发展前景医用功能高分子 正文部分: 1.引言 近年来,随着对高分子材料的研究,高分子材料在各大领域的应用也不断地被人们发掘出来,各种功能型的高分子为人所利用。使得围绕高分子的产业链的都飞速发展。随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。 高分子材料在医学领域的应用主要是用于和活体组织接触,具有诊断、治疗或替换机体中组织、器官或增进其功能的作用。 2.高分子材料基础

高分子材料是以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。 研究高分子主要包括高分子化学、高分子物理、高分子工程几个领域。高分子化学主要研究高分子化合物的分子设计、合成及改性,担负为高分子科学研究提供新生化合物、为国民经济提供新材料及合成方法的任务。高分子物理主要研究高分子及其聚集态的结构、性能、表征以及结构与性能、结构与外场力的影响之间的相互关系,指导高分子化合物的分子设计和高聚物作为材料的合理使用。高分子工程是研究涉及聚合反应工程、高分子成型工艺及相应的理论、方法的研究,为高分子科学与高分子工业间的衔接点。 3.医用高分子及其在医学领域的应用 随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。 一般归纳起来医用高分子材料应符合下列要求: 1、化学稳定性好,在人体接触部分不能发生影响而变化; 2、组织相容性好,在人体内不发生炎症和排异反应; 3、不会致癌变; 4、耐生物老化,在人体内材料长期性能无变化; 5、耐煮沸,灭菌、药液消毒等处理方法; 6、材料来源广、易于加工成型。

功能高分子膜材料论文正稿

高分子功能膜材料 院、部: 学生姓名: 指导教师:职称 专业: 班级: 完成时间:

目录 摘要 (4) 1 高分子功能膜材料概述 (5) 1.1高分子功能膜材料简介 (5) 1.2高分子功能膜材料的研究分类 (5) 1.2.1膜分离技术 (6) 1.2.2气体膜分离法 (6) 2高分子膜材料的类别 (6) 2.1医用壳聚糖膜 (6) 2.2医用壳聚糖膜的制备 (6) 2.2.1制备膜的壳聚糖分子量的问题 (6) 2.2.2制备膜的壳聚糖溶液浓度的问题 (7) 2.2.3制备膜时干燥方法的问题 (7) 3高分子膜材料的性能 (8) 3.1膜的透过性 (8) 3.2膜的电性能 (8) 3.3膜的实用性 (8) 4高分子膜材料的应用 (9) 4.1气体膜分离法的应用 (9) 4.1.1石油采集中的应用 (9) 4.1.2天然气回收中的应用 (9) 4.1.3开发生物气中的应用 (9) 4.2离子交换膜的应用 (10) 5高分子膜材料的发展前景 (10) 5.1壳聚糖膜用于局部药物控释的进展 (10) 5.2高分子膜材料的发展前景 (10) 参考文献 (12)

致谢 (13)

摘要 高分子功能膜材料具有制备简单、性能稳定以及与指示剂相容性好等特点。本文介绍高分子功能膜材料的分类、性能,在工业、农业以及日常生活中的应用,以及高分子膜材料的研究进展和发展前景等。因本人在做壳聚糖方面的实验,故在此重点介绍医用壳聚糖膜。 关键词:高分子功能膜材料;医用壳聚糖膜;分类;性能;应用;研究进展;发展前景;制备 ABSTRACT Functional polymeric membrane materials with simple preparation, performance, stability and good compatibility with indicator. In this paper, the classification of functional polymeric membrane materials, performance and application in industry, agriculture and daily life, and the research progress of polymer membrane materials and the development prospect and so on.Because I’m doing the experiment of the Chitosan , so the emphasis is on the medical chitosan membrane Key words functional polymeric membrane materials; medical chitosan film; classification; performance; application; the research progress; prospects for development; the preparation

相关主题
文本预览
相关文档 最新文档