当前位置:文档之家› 基于MATLAB的升压-降压式变换器的仿真

基于MATLAB的升压-降压式变换器的仿真

基于MATLAB的升压-降压式变换器的仿真
基于MATLAB的升压-降压式变换器的仿真

基于MATLAB的升压-降压式变换器的仿真

自动0703 祁婕

一、摘要(150-250字)

直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器( DC/DC Converter)。直流斩波电路的种类很多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路,Zeta斩波电路,前两种是最基本电路。应用Matlab的可视化仿真工具Simulink建立了电路的仿真模型,在此基础上对升降压斩波Boost—Buck电路进行了较详细的仿真分析。

本文先分析了降压斩波电路,升压斩波电路,升降压斩波电路的工作原理,又用Matlab 对升压-降压变换器进行了仿真建模,最后对仿真结果进行了分析总结。

二、设计目的和意义

通过本次设计,希望达到以下目的:

1、理解直流斩波电路中:降压斩波电路、升压斩波电路、升降压斩波电路的工作原理,熟悉其原理图及工作时的波形图,掌握着两种电路的输入输出关系、电路解析方法、工作特点,并在理解的基础上会对直流斩波电路进行分析计算,加深对直流斩波电路的掌握及应用。

2、掌握应用Matlab的可视化仿真工具Simulink建立电路的仿真模型的方法,在此基础上对升降压斩波Boost—Buck电路进行详细的仿真分析,以提高设计建模的能力及加强对Matlab/Simulink软件的熟练程度。

3、认真分析总结仿真结果,将仿真波形与常规分析方法得到的结果进行比较,总结结论,体会Matlab软件在电力电子技术学习和研究中的应用价值。

三、设计原理

1、降压斩波电路(Buck Chopper)工作原理

(1)t=0时刻驱动V导通,电源E向负载供电,负载电压uo=E,负载电流io按指数曲线上升。

(2)t=t1时控制V关断,二极管VD续流,负载电压uo近似为零,负载电流呈指数曲线下降。通常串接较大电感L使负载电流连续且脉动小。

(3)t=t2时刻,再次驱动V导通,重复上述过程。

a) 原理图

b) 电流连续时的波形图

图(1) 降压斩波电路的原理图及波形图

数量关系: 负载电压平均值:E E T t E t t t U on off on on α==+=0

ton ——V 在一个周期内的导通时间 toff ——V 在一个周期内的关断时间

T 为斩波周期,T =ton +t0ff

a--导通占空比 负载电流平均值:R E U I M -=00

2、升压斩波电路(Boost Chopper )工作原理

(1)假设L 和C 值很大。

(2)V 处于通态时,电源E 向电感L 充电,电流恒定I1,电容C 向负载R 供电,输出电压Uo 恒定。

(3)V 处于断态时,电源E 和电感L 同时向电容C 充电,并向负载提供能量。

a)

原理图

b) 波形图

图(2) 升压斩波电路的原理图及波形图

数量关系:

设V 通态的时间为ton ,此阶段L 上积蓄的能量为 on t EI 1

设V 断态的时间为toff ,则此期间电感L 释放能量为 off t I E U 10)(-

稳态时,一个周期T 中L 积蓄能量与释放能量相等:off off t I E U t EI 101)(-= 化简得: E t T E t t t U

on on off on =+=0 T/off>1,输出电压高于电源电压,故为升压斩波电路。

3、升降压斩波电路(buck -boost Chopper)工作原理

(1)V 通时,电源E 经V 向L 供电使其贮能,此时电流为i1。同时,C 维持输出电压恒定并向负载R 供电。

(2)V 断时,L 的能量向负载释放,电流为i2。负载电压极性为上负下正,与电源电压极性相反,该电路也称作反极性斩波电路。

a) 原理图

b) 波形图

图(3) 升压/降压斩波电路的原理图及波形图

数量关系:

稳态时,一个周期T 内电感L 两端电压uL 对时间的积分为零,即:

00=?t T

L d u

当V 处于通态时,E u L =;当V 处于断态时,o L u u -=;于是:

off on t U Et 0=

所以输出电压为: E E t T t E t t U on on off on αα-=-==10

由此可见,改变导通占空比α,就能够控制斩波电路输出电压U 。的大小。当0<α<1/2

时为降压,当1/2<α<1时为升压,故称作升降压斩波电路。

图(3)b)中给出了电源电流i1和负载电流i2的波形,设两者的平均值分别为I1和I2,当电流脉动足够小时,有:

off on t t I I =2

1

由上式可得: 1121I I t t I on off αα-==

如果V 、VD 为没有损耗的理想开关时,则:21I U EI o =

其输出功率和输入功率相等,可将其看作直流变压器。

四、 详细设计步骤

1、根据升降压斩波电路原理图,如图(3),建立升压-降压式变换器仿真模型,如图(4)所示:

图(4)升压-降压式变换器仿真模型

2、由IGBT 构成直流降压斩波电路(Buck Chop-per)的建模和参数设置:

(1)电压源参数取Uo=100V ;

(2)IGBT 按默认参数设置,并取消缓冲电路;

(3)二极管按默认参数设置;

(4)负载参数取R =50 Ω,C =3e -06 F ;

(5)电感支路L =95e-5H

(6)打开仿真参数窗口,选择ode23tb 算法,相对误差设置为1e-03,开始仿真时间设置为0,停止仿真时间设置为0.002 s ;

(7)控制脉冲周期设置为1e-04s ,控制脉冲占空比分别设为50%、33.3%、75%。

五、 设计结果及分析

参数设置完毕后,启动仿真,得到如下仿真结果。其中,Ic 为IGBT 电流,Id 为二级管电流,I1为电感电流,V 为负载电压。

1、脉冲发生器中的脉冲宽度设置为脉宽的50%,仿真结果如图(5)所示:

图(5)控制脉冲占空比50%

从图5可以看出,负载上平均电压为100 V ,波形为有少许波纹的直流电压; 理论计算:V E E U 10010==-=αα,Uo 与E 极性相反;

仿真结果与升降压斩波理论分析吻合。

2、脉冲发生器中的脉冲宽度设置为脉宽的33.3%,仿真结果如图(6)所示:

图(6)控制脉冲占空比33.3%

从图6可以看出,负载上平均电压为50 V ,波形为有少许波纹的直流电压; 理论计算:V E E U 5021

10==-=αα,Uo 与E 极性相反;

仿真结果与升降压斩波理论分析吻合。

3、脉冲发生器中的脉冲宽度设置为脉宽的75%,仿真结果如图(7)所示:

图(7)控制脉冲占空比75%

从图7可以看出,负载上平均电压为300 V ,波形为有少许波纹的直流电压; 理论计算:V E E U 300310==-=αα,Uo 与E 极性相反;

仿真结果与升降压斩波理论分析吻合。

六、 总结

通过以上的仿真过程分析,可以得到下列结论:

(1)直流斩波电路可将直流电压变换成固定的或可调的直流电压,使用直流斩波技术,不仅可以实现调压的功能,而且还可以达到改善网侧谐波和提高功率因数的目的。直流斩波技术主要应用于已具有直流电源需要调节直流电压的场合。

(2)升降压斩波电路(Boost- Buck Chopper )能够方便的调节输出电压,由于输出电压为: E E t T t E t t U on on off on αα-=-==10 ;若改变导通比α,则输出电压可以比电源

电压高,也可以比电源电压低,当0<α<1/2时为降压,当1/2<α<1时为升压,轻松实现直流变换中的升压和降压作用,工业生产应用广泛。

(3)直流变换电路主要以全控型电力电子器件作为开关器件,通过控制主电路的接通与断开,将恒定的直流斩成断续的方波,经滤波后变为电压可调的直流输出电压。利用Simulink 对降压斩波电路和升降压斩波的仿真结果进行了详细分析,与采用常规电路分析方法所得到的输出电压波形进行比较,进一步验证了仿真结果的正确性。

(4)采用Matlab/Simulink 对直流斩波电路进行仿真分析,避免了常规分析方法中繁琐的绘图和计算过程,得到了一种较为直观、快捷分析斩波电路的新方法。同时其建模方法也适用于其他斩波电路的方针,只需对电路结构稍作改变即可实现,因此实用性较强。

(5)应用Matlab/Simulink 进行仿真,在仿真过程中可以灵活改变仿真参数,并且能直观的观察到仿真结果随参数的变化情况,方便学习与研究。

七、 体会

本次设计中我查阅了相关书籍、资料,首先对直流斩波电路有了大致的掌握,直流变换电路主要以全控型电力电子器件作为开关器件,通过控制主电路的接通与断开,将恒定的直流斩成断续的方波,经滤波后变为电压可调的直流输出电压。

进一步复习了直流斩波电路的基本类型,包括降压斩波电路、升压斩波电路、升降压斩波电路等,理解了其工作原理,熟悉其原理图及工作时的波形图,掌握了这几种电路的输入输出关系、电路解析方法、工作特点,并在理解的基础上能对直流斩波电路进行分析计算,加深了对直流斩波电路的掌握及应用。

通过使用Matlab 的可视化仿真工具Simulink 对升降压斩波Boost —Buck 电路建立仿真模型,我更加熟悉了仿真库里的原器件,增强了画图能力,使用SCOPES (示波器),可以在运行方针时简明地观察到仿真结果,还可将多个结果放在一起以便对比,使我体会到了Matlab 的可视化仿真工具Simulink 的功能的齐全及使用的便捷。同时在仿真建模的

基础上对升降压斩波Boost—Buck电路进行了详细的仿真分析,将仿真波形与常规分析方法得到的结果进行比较,提高了我设计建模的能力、分析总结能力及加强了对Matlab/Simulink软件的熟练程度。

总之,通过这次基于MA TLAB的升压-降压式变换器的仿真的设计,我无论在理论分析上还是在建模仿真上都是受益颇多,体会到了Matlab软件在电力电子技术学习和研究中的应用价值,同时它也是能让我们将理论与实践相结合、将所学知识系统化联系在一起的很好的工具,经过仿真能使所学的概念理解的更清晰、知识掌握的更牢固。

八、参考文献(递增引用,引用相关内容)

[1] 王兆安、黄俊.电力电子技术.机械工业出版社,2009.6

[2] 王忠礼、段慧达、高玉峰.MATLAB应用技术—在电气工程与自动化专业中的应用.清华大学出版社,2007.1

[3] 王辉、程坦.直流斩波电路的Matlab/Simulink仿真研究.现代电子技术,2009.5:174-175

DC降压转换器

TPS5405 是一款具有宽运行输入电压范围(6.5 V 至 28 V) 的单片非同步降压稳压器。此器件执行内部斜坡补偿的电流模式控制来减少组件数量。 TPS5405 还特有一个轻负载脉冲跳跃模式,此特性可在轻负载时减少为系统供电的输入电源的功率损失。 ?故定 5-V 输出 ? 6.5-V 至 28-V 的宽输入电压范围 ?高达 2-A 的最大持续输出负载电流 器件用途 ?9-V,12-V 和 24-V 分布式电源系统 ?消费类应用,诸如家用电器、机顶盒、CPE 设备、LCD 显示器、外设、和电池充电器 ?工业用和车载娱乐系统电源 TPS54495 是一款双路、自适应接通时间D-CAP2? 模式同步降压转换器。TPS54495 可帮助系统设计人员通过成本有效性、低组件数量、和低待机电流解决方案来完成各种终端设备的电源总线调节器集。TPS54495 的主控制环路采用D-CAP2? 模式控制,无需外部补偿组件即可提供极快的瞬态响应。自适应接通时间控制支持更高负载状态下的脉宽调制(PWM) 模式与轻负载下的Eco-mode? 工作模式之间的无缝转换。Eco-mode? 使TPS54495 能够在较轻负载条件下保持高效率。TPS54495 也能够去适应诸如高分子有机半导体固体电容器(POSCAP) 或者高分子聚合物电容器(SP-CAP) 的低等效串联电阻(ESR) ,和超低ESR,陶瓷电容器。此器件在输入电流为4.5V 至18V 之间时提供便捷和有效的运行。 特性 ?D-CAP2 控制模式 o快速瞬态响应 o环路补偿无需外部部件 o与陶瓷输出电容器兼容 ?宽输入电压范围:4.5V 至 18V ?输出电压范围:0.76V 至 7.0V ?针对低占空比应用对高效集成 FET 进行了优化 o90m?(高侧)和 60m?(低侧) ?高初始基准精度 ?支持恒定 4A 通道 1 和 2A 通道 2 负载电流 ?低侧 r DS(接通)低损失电流感测 ?可调软启动 ?非吸入预偏置软启动 ?700kHz 开关频率

MATLAB仿真三相桥式整流电路(详细完美)..

目录 摘要 (2) Abstract (3) 第一章引言 (4) 1.1 设计背景 (4) 1.2 设计任务 (4) 第二章方案选择论证 (6) 2.1方案分析 (6) 2.2方案选择 (6) 第三章电路设计 (7) 3.1 主电路原理分析 (7) 第四章仿真分析 (9) 4.1 建立仿真模型 (9) 4.2仿真参数的设置 (10) 4.3 仿真结果及波形分析 (11) 第五章设计总结 (26) 致 (27) 参考文献 (28)

摘要 目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。这类整流电路结构简单,控制技术成熟,但交流侧输入功率因数低,并向电网注入大量的谐波电流。据估计,在发达国家有60%的电能经过变换后才使用,而这个数字在本世纪初达到95%。 电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。 随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。Matlab提供的可视化仿真工具Simulink 可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析,既进一步加深了三相桥式全控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。 此次课程设计要求设计晶闸管三相桥式可控整流电路,与三相半波整流电路相比,三相桥式整流电路的电源利用率更高,应用更为广泛。 关键词:电力电子晶闸管simulink 三相桥式整流电路

第三章01-降压型直流变换器.

第二节降压型开关电源 第三章直流变换器 * VT "Ln lk? 第二节降压型开关电源 (&5祥Sfi开关电8电》图 4 0 t ----- t onr- J ???0 ;aa) VT—高频晶体开关管, 工作在:导通饱和状态 ?止状态 起开关作用,可用M OS管和IGBT管代 替; 开关管与负载RL侧电路相率联,VT的反复 周期性导通和《止,控制了U1是否加到负 ?R L的时间比例,起到斩波作用? VD—续流二极管?当开关管VT截止时? VD 提 供一个称为“续流辭电流的通路?使电感电流 不致迅变中断,避免电感感应出高压而将晶体 管击穿损坏-此续流通路也是电感能 量放出到负载的通路? L—储能电感.有两个作用,能a转换和滤波 C—滤波电容,減小负《电压的脉动成分和?小 输出阻抗? R L—等效负我电阻,用电设备.

lk? + vr __________ 95 ttS生开关电源电路图 + Eo U—输入直流电压?该电压大小不穂定或者有纹波卩0?输出直流电压,纹波小,稳定? 将?个直流电压Ui转换成另 4 0 t ■----- t onr- I ?13 Q * hl U L * 、丫〔二二+ 图S MSfi开*??鼻匕1?创6图?个宜流电压Uo, KUo

基于 MATLAB 的QPSK系统仿真设计与实现

通信系统仿真设计实训报告1.课题名称:基于MATLAB 的QPSK系统仿真设计与实现 学生学号: 学生姓名: 所在班级: 任课教师: 2016年10月25日

目录 1.1QPSK系统的应用背景简介 (3) 1.2 QPSK实验仿真的意义 (3) 1.3 实验平台和实验内容 (3) 1.3.1实验平台 (3) 1.3.2实验内容 (3) 二、系统实现框图和分析 (4) 2.1、QPSK调制部分, (4) 2.2、QPSK解调部分 (5) 三、实验结果及分析 (6) 3.1、理想信道下的仿真 (6) 3.2、高斯信道下的仿真 (7) 3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8) 总结: (10) 参考文献: (11) 附录 (12)

1.1QPSK系统的应用背景简介 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 QPSK实验仿真的意义 通过完成设计内容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。了解QPSK的实现方法及数学原理。并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。 理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。复习MATLAB编程的基础知识和编程的常用算法以及使用MATLAB仿真系统的注意事项,并锻炼自己的编程能力,通过编程完成QPSK调制解调系统的仿真,以及误码率测试,并得出响应波形。在完成要求任务的条件下,尝试优化程序。 通过本次实验,除了和队友培养了默契学到了知识之外,还可以将次实验作为一种推广,让更多的学生来深入一层的了解QPSK以至其他调制方式的原理和实现方法。可以方便学生进行测试和对比。足不出户便可以做实验。 1.3 实验平台和实验内容 1.3.1实验平台 本实验是基于Matlab的软件仿真,只需PC机上安装MATLAB 6.0或者以上版本即可。 (本实验附带基于Matlab Simulink (模块化)仿真,如需使用必须安装simulink 模块) 1.3.2实验内容 1.构建一个理想信道基本QPSK仿真系统,要求仿真结果有 a.基带输入波形及其功率谱 b.QPSK信号及其功率谱

降压转换器的工作原理

降压转换器的工作原理 设计降压转换器并不是件轻松的工作。许多使用者都希望转换器是一个盒子,一端输入一个直流电压,另一端输出另一个直流电压。这个盒子可以有很多形式,可以是降阶来产生一个更低的电压,或是升压来产生一个更高的电压。还有很多特殊的选项,如升降压、反激和单端初级电感转换器(SEPIC),这是一种能让输出电压大于、小于或等于输入电压的DC-DC转换器。如果一个系统采用交流电工作,第一个AC-DC模块应当产生系统所需的最高的直流电压。因此,使用最广的器件是降压转换器。 使用开关稳压器的降压转换器具有所有转换器当中最高的效率。高效率意味着转换过程中的能量损耗更少,而且能简化热管理。 图1显示了一种降压开关稳压器的基本原理,即同步降压转换器。“同步降压”指的是MOSFET用作低边开关。相对应的,标准降压稳压器要使用一个肖特基二极管做为低边开关。与标准降压稳压器相比,同步降压稳压器的主要好处是效率更高,因为MOSFET的电压降比二极管的电压降要低。低边和高边MOSFET的定时信息是由脉宽调制(PWM)控制器提供的。控制器的输入是来自输出端反馈回来的电压。这个闭环控制使降压转换器能够根据负载的变化调节输出。PWM模块的输出是一个用来升高或降低开关频率的数字信号。该信号驱动一对MOSFET。信号的占空比决定了输入直接连到输出的导通时间的百分比。因此,输出电压是输入电压和占空比的乘积。

选择IC 上面提到的控制环路使降压转换器能够保持一个稳定的输出电压。这种环路有几种实现方法。最简单的转换器使用的是电压反馈或电流反馈。这些转换器很耐用,控制方式很直接,而且性价比很好。由于降压转换器开始用于各种应用中,这种转换器的一些弱点也开始暴露出来。以图形卡的供电电路为例。当视频内容变化时,降压转换器上的负载也会变化。供电系统能应付各种负载变化,但在轻负载条件下,转换效率降得很快。如果用户关心的是效率,就需要有更好的降压转换器方案。 一种改进方法是所谓的磁滞控制,Intersil的ISL62871就是采用这种控制方法的器件。转换效率与负载的曲线如图2所示。这些转换器是针对最差工作条件设计的,因此轻负载不是持续的工作条件。这些DC-DC转换器对负载波动变化的适应性更好,并且不会严重影响系统效率。

Matlab电气仿真

大连海事大学 题目:电气系统的计算机辅助设计 姓名: 学号: 学院:轮机工程学院 专业班级:电气工程及其自动化(4)班指导老师:郑忠玖王宁

设计任务(一) 一、实验目的: 1、掌握Matlab/Simulink 电气仿真的基本步骤; 2、掌握Matlab/Simulink中SimPowerSystems 工具箱的基本建模方法; 3、利用Matlab/Simulink 在整流电路方面的仿真设计。 二、实验原理: 220V 50HZ交流电源经变压器降压,输出交流24V 50HZ是交流电。经单相桥式整流电路加LC滤波电路后,由于电感和电容的作用,输出电压和电流无法突变,使输出电压波形在一定的电压附近形成正弦脉动。 三、实验内容: 1、单相桥式整流 (1)设计要求: a)单相桥式整流加LC滤波电路,电源为220V,50Hz; b)整流电路输入为24V; c)负载为10Ω阻性负载; d)滤波电感L=100mH,滤波电容C=200uF; (2)设计电路图:

(3) 仿真结果波形图: time v o l t a g e /c u r r e n t 单项桥式整流加LC 滤波电路VT3输出波形 time v o l t a g e 单相桥式整流加LC 滤波电路输出波形

00.0050.010.0150.020.0250.030.0350.040.0450.05 -35 -30 -25 -20 -15 -10 -5 5 time v o l t a g e / c u r r e n t 单项桥式整流加LC滤波电路VT4输出 (4)仿真结果分析: 1.在变压器输出正弦波的正半周期,二极管VT1和二极管VT4导通, 二极管VT2和二极管VT3被施以反压而截止;在变压器输出正弦波的负半周期,二极管VT2和二极管VT3导通,二极管VT1和二极管VT4施以反压而截止。由于电路中二极管的作用,负载两端的电压极性一定,达到整流的目的。 2.二极管导通时管压降理想为零,电流波形与负载输出电流波形保 持一致;二极管截止时,二极管承受反压,电压波形与变压器输出的负半周期的电压波形相一致,电流为零。 3.由于电感和电容的作用,输出电压和电流不能突变。使输出电压 波形形成正弦脉动。

直流变换器的设计(降压)

直流变换器的设计(降压) 一、设计要求: (1) 二、题目分析: (1) 三、总体方案: (2) 四、原理图设计: (2) 五、各部分定性说明以及定量计算: (5) 六、在设计过程中遇到的问题及排除措施: (6) 七、设计心得体会: (6)

直流变换器的设计(降压) BUCK降压斩波电路就是直流斩波中最基本的一种电路,是用BUCK作为全控型器件的降压斩波电路,用于直流到直流的降压变换。IGBT是MOSFET与双极晶体管的复合器件。它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。所以用BUCK作为全控型器件的降压斩波电路就有了IGBT易驱动,电压、电流容量大的优点。 BUCK降压斩波电路由于易驱动,电压、电流容量大在电力电子技术应用领域中有广阔的发展前景,也由于开关电源向低电压,大电流和高效率发展的趋势,促进了IGBT 降压斩波电路的发展。 一、设计要求: 技术参数:输入直流电压Vin=36V 输出电压Vo=12V 输出电流Io=3A 最大输出纹波电压50mV 工作频率f=100kHz 二、题目分析: 电力电子器件在实际应用中,一般是由控制电路,驱动电路和以电力电子器件为核心的主电路组成一个系统。由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断来完成整个系统的功能,当控制电路所产生的控制信号能够足以驱动电力电子开关时就无需驱动电路。 课程设计步骤分析(顺序): 1.设计主电路,主电路为:采用BUCK变换器,主功率管用MOSFET; 2.选择主电路所有图列元件,并给出清单; 3.设计MOSFET驱动电路及控制电路; 4.绘制装置总体电路原理图,绘制: MOSFET驱动电压、BUCK电路中各元件的电压、电流以及输出电压波形; 5.编制设计说明书、设计小结。

buck降压升压电路知识

Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。 图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。 Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。 开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。电感Lf在输入侧,称为升压电感。Boost变换器也有CCM和DCM两种工作方式 Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。

Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。 LDO的特点: ①非常低的输入输出电压差 ②非常小的内部损耗 ③很小的温度漂移 ④很高的输出电压稳定度 ⑤很好的负载和线性调整率 ⑥很宽的工作温度范围 ⑦较宽的输入电压范围 ⑧外围电路非常简单,使用起来极为方便 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类: (1)Buck电路——降压斩波器,其输出平均电压 U0小于输入电压Ui,极性相同。

升压降压电源电路工作原理

b o o s t升压电路工作原理 boost升压电路是一种开关直流升压电路,它可以是输出电压比输入电压高。 基本电路图见图一: 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。 下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。 如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。

如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 一些补充1 AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上). 1.电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大). 2 整流管大都用肖特基,大家一样,无特色,在输出时,整流损耗约百分之 十. 3 开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过单只做不到就多只并联....... 4 最大电流有多大呢?我们简单点就算1A吧,其实是不止的.由于效率低会超过,这是平均值,半周供电时为3A,实际电流波形为0至6A.所以咱建议要用两只号称5A实际3A的管子并起来才能勉强对付.

(完整版)三相逆变器matlab仿真

三相无源逆变器的构建及其MATLAB仿真1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)……………. 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路

日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。 4MATLAB仿真 Matlab软件作为教学、科研和工程设计的重要方针工具,已成为首屈一指的计算机仿真平台。该软件的应用可以解决电机电器自动化领域的诸多问题。利用其中的Simulink模块可以完成对三相无源电压型SPWM逆变器的仿真,并通过仿真获取逆变器的一些特性图等数据。 图 2 系统Simulink 仿真 所示为一套利用三相逆变器进行供电的系统的Matlab仿真。系统由一个380v的直流电源供电,经过三相整流桥整流为三相交流电,并进行SPWM正弦脉宽调制。输出经过一个三相变压器隔离后通入一个三相的RLC负载模块(Three phase parallel RLC)。加入了两个电压测量单元voltage measurement和voltage measurement1,并将结果输出到示波器模块Scope1.

降压式变换电路(Buck电路)详解

降压式变换电路(Buck电路)详解 一、BUCK 电路基本结构 开关导通时等效电路开关关断时等效电路 二、等效的电路模型及基本规律 (1)从电路可以看出,电感L 和电容C 组成低通滤波器,此滤波器设计的原则是使us(t)的直流分量可以通过,而抑制us(t) 的谐波分量通过;电容上输出电压uo(t)就是us(t) 的直流分量再附加微小纹波uripple(t) 。 (2)电路工作频率很高,一个开关周期内电容充放电引起的纹波uripple(t) 很小,相对于电容上输出的直流电压Uo 有:电容上电压宏观上可以看作恒定。电路稳态工作时,输出电容上电压由微小的纹波和较大的直流分量组成,宏观上可以看作是恒定直流,这就是开关电路稳态分析中的小纹波近似原理。(3)一个周期内电容充电电荷高于放电电荷时,电容电压升高,导致后面 周期内充电电荷减小、放电电荷增加,使电容电压上升速度减慢,这种过程的延续直至达到充放电平衡,此时电压维持不变;反之,如果一个周期内放电电荷高于充电电荷,将导致后面周期内充电电荷增加、放电电荷减小,使电容电压下降速度减慢,这种过程的延续直至达到充放电平衡,最终维持电压不变。这种过程是电容上电压调整的过渡过程,在电路稳态工作时,电路达到稳定平衡,电容上充放电也达到平衡,这是电路稳态工作时的一个普遍规律。(4)开关S 置于1 位时,电感电流增加,电感储能;而当开关S 置于2 位时,电感电流减小,电感释能。假定电流增加量大于电流减小量,则一个开关周期内电感上磁链增量为:此增量将产生一个平均感应电势:此电势将减小电感电流的上升速度并同时降低电感电流的下降速度,最终将导致一个周期内电感电流平均增量为零;一个开关周期内电感上磁链增量小于零的状况也一样。这种

基于MATLAB的QPSK通信系统仿真设计毕业设计论文

基于MATLAB的QPSK通信系统仿真设计 摘要 随着移动通信技术的发展,以前在数字通信系统中采用FSK、ASK、PSK 等调制方式,逐渐被许多优秀的调制技术所替代。本文主要介绍了QPSK调制与解调的实现原理框图,用MATLAB软件中的SIMULINK仿真功能对QPSK调制与解调这一过程如何建立仿真模型,通过对仿真模型的运行,得到信号在QPSK 调制与解调过程中的信号时域变化图。通过该软件实现方式,可以大大提高设计的灵活性,节约设计时间,提高设计效率,从而缩小硬件电路设计的工作量,缩短开发周期。 关键词 QPSK,数字通信,调制,解调,SIMULINK -I-

Abstract As mobile communications technology, and previously in the adoption of digital cellular system, ASK, FSK PSK modulation, etc. Gradually been many excellent mod ulation technology substitution, where four phase-shift keying QPSK technology is a wireless communications technology in a binary modulation method. This article prim arily describes QPSK modulation and demodulation of the implementation of the prin ciple of block diagrams, focuses on the MATLAB SIMULINK software emulation in on QPSK modulation and demodulation the process how to build a simulation model, through the operation of simulation model, I get signal in QPSK modulation and dem odulation adjustment process domain change figure. The software implementation, ca n dramatically improve the design flexibility, saving design time, increase efficiency, design to reduce the workload of hardware circuit design, and shorten the developmen t cycle. Keywords QPSK, Digital Communication,modulation,demodulation,SIMULINK -II-

光伏系统中,原电力降压变压器能否做升压用

光伏系统中,原电力降压变压器能否做升压用 问题点: 在分布式光伏系统中,一般是采用自发自用,余量上网的方式,国家规定,220V系统,最大接入8KW, 380V系统,最大接入400KW, 10KV系统,最大接入6MW;还有一个条件,光伏最大容量不得超过上一级变压器容量的25%。在分布式光伏电站中,大部份光伏发电都是在低电侧消耗了,但在节假日,工厂放假,本身消耗不了,这部分光伏发电能否能过电力降压变压器反过来做升压用,通过这个变压器升到10KV电网系统中。这个问题是很多业主、设计院、供电公司共同关心的问题,由于没有先例,大家的观点也不一样,下面是根据变压器的原理和实际应用,参考了国内几家变压器研发人员的意见,做了一个调查,供各位参考,我的目的是抛砖引玉,希望能得到真正专家的意见。 1、不同意方论点 原则上升压变压器与降压变压器不能反向替代使用的。因为,升压变压器,等于将低压电升成高压电,那么对于系统来讲,其低压侧等于是吸收电能相当于负荷,高压侧送出电能相当于电源,系统的负荷接受的标准的额定电压,而电源侧输出的电压考虑到线路及变压器本身的压降约10%,为了保证送到用户正好是额定电压,那么高压侧输出的电压等于是比额定电压高10%的电压。举例,一台降压变低压侧额定电压为380V,高压侧额定电压为10KV,那么,低压侧受电电压为额定电压就是380V,而高压侧送出的就不能是额定电压了,应当比额定电压高10%即11KV。如果考虑变比的话,低压侧为380匝(打个比方),高压侧不能是10000匝而必须是11000匝了。这台降压变压器如果当作升压变压器来用的话,其低压侧电压要升到420V,高压侧输出的电压才能达到10KV,而低压侧电压升高,会损坏运行设备。 另外,从结构上说,降压变压器的低压绕组在内侧,高压绕组在外侧,分接开关都装在高压绕组上,不仅便于分接头的抽出,还因高压绕组电流小,线细,好焊接分接头。降压变压器调高压侧分接头就可调节低压侧电压。用作升压变压器,则应将分接开关接在低压侧才能满足调压要求,且低压绕组的电流大,导线截面也大,切换时危险明显增加。 再则,降压变压器为了抑制三次谐波对电压波形的影响,一般都采用三角形接线,平时只带少量的站用负载和一些无功补偿设备,特别是三绕组变压器,一般低压侧容量较小,很难胜任升压变压器的工作。

从入门到应用,关于LTC3115同步降压-升压转换器

从入门到应用,关于LTC3115同步降压-升压转换器 LTC3115同步降压-升压型转换器入门指南 凌力尔特公司推出LTC3115-1的高温H级(-40C 至150C 结温)和高可靠性MP 级(-55C 至150C)版本,器件采用了20引脚耐热性能增强型TSSOP封装。LTC3115-1是同步降压-升压型转换器,可从单节锂离子电池、24V/28V 工业电源、以至40V汽车输入等宽电源范围获得高达2A的连续输出电流。 LTC3115-1的2.7V至40V输入和输出范围提供了一个稳压输出,而输入可高于、低于或等于调节输出。LTC3115-1 中采用的低噪声降压-升压拓扑实现了降压和升压模式之间的连续无抖动转换,使其非常适合于RF和其他噪声敏感型的应用,这些应用必须在可变的输入电源中维持低噪声恒定输出电压。高达95%的效率延长了电池供电系统的运行时间。用户可在100kHz至2MHz 之间设置LTC3115-1 的开关频率,并可同步至外部时钟。专有的降压-升压PWM 电路确保了低噪声和高效率,同时减小了外部元器件的尺寸。纤巧的外部组件和TSSOP-20E 封装相结合,构成了占板面积紧凑的解决方案。 H级版本可工作在-40℃至最大结温150℃,在该温度范围内可确保正常工作。同样地,MP级版本的工作结温范围在-55℃至150℃,在该温度范围内得到了保证和经过了测试。H级和MP级的电气规范均与工业级一致。器件非常适合需要满足极端环境温度情况的汽车、工业和军事等应用。 性能概要: LTC3115H/MP: 宽VIN 范围:2.7V 至40V 宽VOUT 范围:2.7V 至40V 1A 输出电流(对于VIN 3.6V,VOUT = 5V )

三相桥式全控整流电路Matlab仿真

三相桥式全控整流电路的MATLAB仿真及其故 障分析 摘要:设计一种以三相桥式全控整流电路的MATLAB仿真及其故障分析。以三相桥式全控整流电路为分析对象,利用Matlab/Simulink环境下的SimPowerSystems仿真采集功率器件在开路时的各种波形,根据输出波形分析整流器件发生故障的种类,判断故障发生类型,确定发生故障的晶闸管,实现进一步故障诊断。运用matlab中的电气系统库可以快速完成对三相整流电路故障仿真,通过分析可以对故障类型给予初步判断,对电力电子设备的开发、运用以及维修有极大的现实意义。 关键词:Matlab;三相整流桥;电力电子故障 Matlab Simulation and Trouble Analysis of the Three-Phase Full-Bridge Controlled Rectifier Zhang lu-xia College of Physics& Electronic Information Electrical Engineering &Automation No: 060544076 Tutor: Wu yan Abstract: the article introduces a design of Matlab Simulation and Trouble Analysis of the Three-Phase Full-Bridge Controlled Rectifier. using the three-phase full-bridge controlled rectifier circuit for analysis, the output waveform in each kind of fault can be simulated through the circuit with the SimPower Systems under the Matlab/Simulink surroundings, for sure the SCR of having troubles in order to fulfill further trouble diagnoses. it can finish Matlab Simulation ahout electrical system1quickly and fulfill further trouble diagnoses. it will play an important role in the field of electric power & electron on equipment exploration and maintenance.. key words: Matlab; three-phase rectifier bridge; power electronics trouble 目录 1 引言 (2)

基于matlab的QPSK与BPSK信号性能比较仿真

┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 第一章概述 (1) 第二章QPSK通信系统原理与仿真 (1) 2.1 QPSK系统框图介绍 (1) 2.2QPSK信号的调制原理 (2) 2.2.1QPSK信号产生方法 (2) 2.2.2QPSK星座图 (2) 2.3QPSK解调原理及误码率分析 (3) 2.3.1QPSK解调方法 (3) 2.3.2QPSK系统误码率 (3) 2.4QPSK信号在AWGN信道下仿真 (4) 第三章BPSK通信系统原理与仿真 (4) 3.1BPSK信号的调制原理 (4) 3.2BPSK解调原理及误码率分析 (4) 第四章QPSK与BPSK性能比较 (5) 4.1QPSK与BPSK在多信道下比较仿真 (5) 4.1.1纵向比较分析 (5) 4.1.2横向比较分析 (7) 4.2仿真结果分析 (7) 4.2.1误码率分析 (7) 4.2.2频带利用率比较 (7) 附录 (8) 代码1 (8) 代码2 (8) 代码3 (10) 代码4 (12)

┊ ┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 第一章概述 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。它以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接人、移动通信及有线电视系统之中。 BPSK是英文Binary Phase Shift Keying的缩略语简称,意为二相相移键控,是利用偏离相位的复数波浪组合来表现信息键控移相方式的一种。它使用了基准的正弦波和相位反转的波浪,使一方为0,另一方为1,从而可以同时传送接受2值(1比特)的信息。 本文所研究的QPSK系统与二进制的BPSK系统相比,具有以下特点: 1.在传码率相同的情况下,四进制数字调制系统的信息速率是二进制系统的2倍。 2.在相同信息速率条件下,四进制数字调制系统的传码率是二进制系统的1/4倍,这一特 点使得四进制码元宽度是二进制码元宽度的2倍,码元宽度的加大,可增加每个码元的 能量,也可减小码间串扰的影响。 3.由于四进制码元速率比二进制的降低,所需信道带宽减小。 4.在接收系统输入信噪比相同的条件下,四进制数字调制系统的误码率要高于二进制系 统。 5.四进制数字调制系统较二进制系统复杂,常在信息速率要求较高的场合。 基于以上优点,在数字信号的调制方式中QPSK(Quadrature Phase Shift Keying)四相移键控是目前最常用的一种卫星数字信号调制方式,它具有较高的频谱利用率、较强的抗干扰性,在电路上实现也较为简单,因而被WCDMA和CDMA2000等第三代移动通信系统采用。 第二章QPSK通信系统原理与仿真 2.1 QPSK系统框图介绍 在图2.1的系统中,发送方,QPSK数据源采用随机生成,信源编码采用差分编码,编码后的信号经QPSK调制器,经由发送滤波器进入传输信道。 接收方,信号首先经过相位旋转,再经匹配滤波器解调,经阈值比较得到未解码的接收信号,差分译码后得到接收信号,与信源发送信号相比较,由此得到系统误码率,同时计算系统误码率的理论值,将系统值与理论值进行比较。 对于信道,这里选取的是加性高斯白噪声(Additive White Gaussian Noise)以及多径Rayleigh

LTC3441 - 大电流微功率同步降压-升压型 DC-DC 转换器 LTC3441EDE

1

LTC3441 2 sn3441 3441fs V IN , V OUT Voltage........................................ –0.3V to 6V SW1, SW2 Voltage DC ...........................................................–0.3V to 6V Pulsed < 100ns ...................................... –0.3V to 7V SHDN/SS, MODE/SYNC Voltage................. –0.3V to 6V Operating Temperature Range (Note 2)..–40°C to 85°C Maximum Junction Temperature (Note 4)........... 125°C Storage Temperature Range................ –65°C to 125°C ORDER PART NUMBER (Note 1) ABSOLUTE AXI U RATI GS W W W U PACKAGE/ORDER I FOR ATIO U U W Consult LTC Marketing for parts specified with wider operating temperature ranges. LTC3441EDE T JMAX = 125°C θJA = 53°C/W 1-LAYER BOARD θJA = 43°C/W 4-LAYER BOARD θJC = 4.3°C/W EXPOSED PAD IS PGND (PIN 13)MUST BE SOLDERED TO PCB DE PART MARKING 3441 121110987 123456 FB V C V IN PV IN V OUT MODE/SYNC SHDN/SS GND PGND SW1SW2PGND TOP VIEW 13 DE12 PACKAGE 12-LEAD (4mm × 3mm) PLASTIC DFN The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T A = 25°C. V IN = V OUT = 3.6V,unless otherwise noted. ELECTRICAL CHARACTERISTICS PARAMETER CONDITIONS MIN TYP MAX UNITS Input Start-Up Voltage ● 2.3 2.4V Output Voltage Adjust Range ● 2.4 5.25V Feedback Voltage ● 1.19 1.22 1.25V Feedback Input Current V FB = 1.22V 150nA Quiescent Current—Burst Mode Operation V C = 0V, MODE/SYNC = 3V (Note 3) 2540μA Quiescent Current—SHDN V OUT = SHDN = 0V, Not Including Switch Leakage 0.11μA Quiescent Current—Active MODE/SYNC = 0V (Note 3)520900μA NMOS Switch Leakage Switches B and C 0.17μA PMOS Switch Leakage Switches A and D 0.110 μA NMOS Switch On Resistance Switches B and C 0.10?PMOS Switch On Resistance Switches A and D 0.11 ?Input Current Limit ● 2 3.2A Max Duty Cycle Boost (% Switch C On)●7088 %Buck (% Switch A In) ●100% Min Duty Cycle ●0 %Frequency Accuracy ●0.851 1.15MHz MODE/SYNC Threshold ● 0.4 1.4V MODE/SYNC Input Current V MODE/SYNC = 5.5V 0.011 μA Error Amp AV OL 90dB Error Amp Source Current 14μA Error Amp Sink Current 300μA SHDN/SS Threshold When IC is Enabled ●0.41 1.4V SHDN/SS Threshold When EA is at Max Boost Duty Cycle 2 2.4V SHDN/SS Input Current V SHDN = 5.5V 0.01 1 μA

三相桥式全控整流电路的Matlab仿真及其故障分析资料讲解

三相桥式全控整流电路的M a t l a b仿真及其故障分析

三相桥式全控整流电路的MATLAB仿真及其 故障分析 摘要:设计一种以三相桥式全控整流电路的MATLAB仿真及其故障分析。以三相桥式全控整流电路为分析对象,利用Matlab/Simulink环境下的SimPowerSystems仿真采集功率器件在开路时的各种波形,根据输出波形分析整流器件发生故障的种类,判断故障发生类型,确定发生故障的晶闸管,实现进一步故障诊断。运用matlab中的电气系统库可以快速完成对三相整流电路故障仿真,通过分析可以对故障类型给予初步判断,对电力电子设备的开发、运用以及维修有极大的现实意义。 关键词:Matlab;三相整流桥;电力电子故障 Matlab Simulation and Trouble Analysis of the Three-Phase Full- Bridge Controlled Rectifier Zhang lu-xia College of Physics& Electronic Information Electrical Engineering &Automation No: 060544076 Tutor: Wu yan Abstract: the article introduces a design of Matlab Simulation and Trouble Analysis of the Three-Phase Full-Bridge Controlled Rectifier. using the three-phase full-bridge controlled rectifier circuit for analysis, the output waveform in each kind of fault can be simulated through the circuit with the SimPower Systems under the Matlab/Simulink surroundings, for sure the SCR of having troubles in order to fulfill further trouble diagnoses. it can finish Matlab Simulation ahout electrical system1quickly and fulfill further trouble diagnoses. it will play an important role in the field of electric power & electron on equipment exploration and maintenance.. key words: Matlab; three-phase rectifier bridge; power electronics trouble 目录 1 引言 (3)

相关主题
文本预览
相关文档 最新文档