当前位置:文档之家› 基于sift算法的图像匹配matlab实现

基于sift算法的图像匹配matlab实现

基于sift算法的图像匹配matlab实现
基于sift算法的图像匹配matlab实现

(1) 尺度不变特征变换(SIFT算法)概要

是一种计算机视觉的算法,用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量。

此算法由David Lowe 在1999年所发表,2004年完善总结。其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对。此算法有其专利,专利拥有者为英属哥伦比亚大学。

局部影像特征的描述与侦测可以帮助辨识物体,SIFT 特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。对于光线、噪声、些微视角改变的容忍度也相当高。基于这些特性,它们是高度显著而且相对容易撷取,在母数庞大的特征数据库中,很容易辨识物体而且鲜有误认。使用SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位。在现今的电脑硬件速度下和小型的特征数据库条件下,辨识速度可接近即时运算。SIFT特征的信息量大,适合在海量数据库中快速准确匹配。

(2 ) Matlab代码主要功能函数如下:

match.m:测试程序

功能:该函数读入两幅(灰度)图像,找出各自的SIFT 特征, 并显示两连接两幅图像中被匹配的特征点(关键特征点(the matched keypoints)直线(将对应特征点进行连接)。判断匹配的准则是匹配距离小于distRatio倍于下一个最近匹配的距离( A match is accepted only if its distance is less than distRatio times the distance to the second closest match. 该程序返回显示的匹配对的数量。(It returns the number of matches displayed.)调用实例:match('desk.jpg','book.jpg');

( 假如,想测试一个含有一本书的桌面的图像和一本书的图像之间特征匹配)

调用方法和参数描述:略。

注意:(1)图像为灰度图像,如果是彩色图像,应该在调用前利用rgb2gray转换为灰度图像。

(2)参数distRatio 为控制匹配点数量的系数,这里取0.6,该参数决定了匹配点的数量,在Match.m文件中调整该参数,获得最合适的匹配点数量。

sift.m :尺度不变特征变换(SIFT算法)的核心算法程序

功能:该函数读入灰度图像,返回SIFT 特征关键点(SIFT keypoints.)

调用方法和参数描述:

调用方式:[image, descriptors, locs] = sift(imageFile)

输入参数(Input parameters):

imageFile: 图像文件名.

输出或返回参数(Returned):

image: 是具有double format格式的图像矩阵

descriptors:一个K-by-128的矩阵x, 其中每行是针对找到的K个关键特征点(the K keypoints)的不变量描述子. 这个描述子(descriptor)是一个拥有128个数值并归一化为单位长度向量.

locs: 是K-by-4 矩阵, 其中的每一行具有四个数值,表示关键点位置信息(在图像中的行坐标,列坐标(row, column) ,注意,一般图像的左上角为坐标原点), 尺度scale,高斯尺度空间的参数,其中该参数也决定了frame(结构)确定的图像disk的大小, 最后一个参数是方向orientation). 方向参数的范围是[-PI, PI] 单位为弧度.

appendimages.m: 该函数创建一个新的图像分别包含两个匹配的图像和他们之间

的匹配对的连接直线.

(3)实际案例执行结果:

程序代码使用matlab和c混合编程。用matlab打开文件中的sift_match.m文件,并执行。如下图所示:

从上图可以看出,共有17个匹配点。

50

100

150

200

250

300

350

400

100200300400500600

匹配效果如上图所示。

(4) 源代码见附件。

matlab的图像拼接程序(20210119152549)

mat lab的图像拼接程 序 -CAL-FENGHAI-(2020YEAR-YICAI) JINGBIAN ll=imread{,,);%6dTAEuODpAp¥dy2All%6D j u j A ll=double(ll); [hl wl dl]=size(ll);%TEOEdl±al2lldU±a>>0dl I2= imread(n);

I2=double(l2); [h2 w2 d2]=size(l2); %show input images and prompt for correspondences figure;subplot( 1,2,1); image(ll/255); axis image; hold on; title(*first input image'); [XI Yl]=ginput(2); %get two points from the usersubplot(l z2,2); image(l2/255); axis image; hold on; title('sec ond input image*); [X2 Y2]=ginput(2); %get two points from the user %estimate parameter vector(t); Z=[X2' Y2'; Y2'?X2'; HOOjOOll]1; xp=[Xl; Yl]; t=Z\xp; %solve the I in ear system a=t(l); %=s cos(alpha) b=t(2);%=s sin(alpha) tx=t(3); ty=t(4); % con struct transformation matrix(T) T=[a b tx;?b a ty; 0 0 1]; % warp incoming corners to determine the size of the output image(in to out) cp二T*[l 1 w2 w2; 1 h2 1 h2; 1 111]; Xpr=min([cp(l/:)/O]): max([cp(l/:)/wl]);%min x:maxx Ypr=min([cp(2/:)/0]): max([cp(2/:)/hl]); %min y: max y [Xp/Yp]=ndgrid(Xpr/ Ypr); [wp hp]=size(Xp); %=size(Yp) % do backwards transform (from out to in) X=T\[Xp(:) Yp(:) ones(wp*hp/l)]';%warp %re-sample pixel values with bilinear interpolation clear Ip; xl二reshape(X(b:)Mp,hp)‘; yl=reshape(X(2/:)/wp/hp)1; lp(:/:/l)=interp2(l2(:/:/l)/xl/ yl, '?bilinear*); %red Ip(:/:/2)=interp2(l2(:/:/2)/xl/ yl, '?bilinear1);%green lp(:z:/3)=interp2(l2(:/:/3)/xl/ yl, ^bilinear1);%blue % offset and copy original image into the warped image offset= -rounddmindcpfl/)^]) min([cp(2,:),0])]); lp(l+offset ⑵:hl+offset(2), 1+off set {1): wl+offset (1 )z:); doublefllflihl.liwl,:)); %show the result figure; image(lp/255); axis image; title('mosaic image'); ll=double(imread(n)); [hl wl dl]=size(ll);%TEOEdl±aPll6lJ±agl I2=double(imread(n)); [h2 w2 d2]=size(l2); %show input images and prompt for correspondences figure; subplot(l,2z l); image(ll/255); axis image; hold on; title('first input image'); [XI Yl]=ginput(2); %get two points from the user subplot(122); image(l2/255); axis image; hold on; title('sec ond input image1); [X2 Y2]=ginput(2); %get two points from the user %estimate parameter vector(t); Z=[X2' Y2'; Y2'-X2' ;1100;0011]'; xp=[Xl; Yl]; t=Z\xp; %solve the linear system %% a=t(l); %=s cos(alpha) b=t(2); %=s sin(alpha)

基于matlab的图像识别与匹配

基于matlab的图像识别与匹配 摘要 图像的识别与匹配是立体视觉的一个重要分支,该项技术被广泛应用在航空测绘,星球探测机器人导航以及三维重建等领域。 本文意在熟练运用图像的识别与匹配的方法,为此本文使用一个包装袋并对上面的数字进行识别与匹配。首先在包装袋上提取出来要用的数字,然后提取出该数字与包装袋上的特征点,用SIFT方法对两幅图进行识别与匹配,最终得到对应匹配数字的匹配点。仿真结果表明,该方法能够把给定数字与包装袋上的相同数字进行识别与匹配,得到了良好的实验结果,基本完成了识别与匹配的任务。

1 研究内容 图像识别中的模式识别是一种从大量信息和数据出发,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别、评价的过程。 图形辨别是图像识别技术的一个重要分支,图形辨别指通过对图形的图像采用特定算法,从而辨别图形或者数字,通过特征点检测,精确定位特征点,通过将模板与图形或数字匹配,根据匹配结果进行辨别。 2 研究意义 数字图像处理在各个领域都有着非常重要的应用,随着数字时代的到来,视频领域的数字化也必将到来,视频图像处理技术也将会发生日新月异的变化。在多媒体技术的各个领域中,视频处理技术占有非常重要的地位,被广泛的使用于农业,智能交通,汽车电子,网络多媒体通信,实时监控系统等诸多方面。因此,现今对技术领域的研究已日趋活跃和繁荣。而图像识别也同样有着更重要的作用。 3 设计原理 3.1 算法选择 Harris 角点检测器对于图像尺度变化非常敏感,这在很大程度上限制了它的应用范围。对于仅存在平移、旋转以及很小尺度变换的图像,基于Harris 特征点的方法都可以得到准确的配准结果,但是对于存在大尺度变换的图像,这一类方法将无法保证正确的配准和拼接。后来,研究人员相继提出了具有尺度不变性的特征点检测方法,具有仿射不变性的特征点检测方法,局部不变性的特征检测方法等大量的基于不变量技术的特征检测方法。 David.Lowe 于2004年在上述算法的基础上,总结了现有的基于不变量技术的特征检测方法,正式提出了一种基于尺度空间的,对图像平移、旋转、缩放、甚至仿射变换保持不变性的图像局部特征,以及基于该特征的描述符。并将这种方法命名为尺度不变特征变换(Scale Invariant Feature Transform),以下简称SIFT 算法。SIFT 算法首先在尺度空间进行特征检测,并确定特征点的位置和特征点所处的尺度,然后使用特征点邻域梯度的主方向作为该特征点的方向特征,以实现算子对尺度和方向的无关性。利用SIFT 算法从图像中提取出的特征可用于同一个物体或场景的可靠匹配,对图像尺度和旋转具有不变性,对光照变化、

利用MATLAB进行图像截取_拼接(灰色_彩色)

%灰色图像拼接 clc; clear; A=imread('C:\Documents and Settings\s35\桌面\新建文件夹\v1.jpg'); figure,imshow(A) A1=im2bw(A); A2=double(A1); se=strel('disk',20); A4=imdilate(A2,se); figure,imshow(A4) A5=double(A4); A6=not(A5); A7=double(A6); B=imread('C:\Documents and Settings\All Users\Documents\My Pictures\示例图片\Water lilies.jpg'); C=imread('C:\Documents and Settings\All Users\Documents\My Pictures\示例图片\Winter.jpg'); [m,n]=size(A4); B2=rgb2gray(B); B3=imresize(B2,[m,n]); B4=double(B3); C2=rgb2gray(C); C3=imresize(C2,[m,n]); C4=double(C3); D=A5.*B4; E=A7.*C4; F=uint8(D+E); figure,imshow(F) %彩色图像拼接 clc; clear; A=imread('C:\Documents and Settings\s35\桌面\新建文件夹\v1.jpg'); figure,imshow(A) A1=im2bw(A); A2=double(A1); se=strel('disk',20); A4=imdilate(A2,se); figure,imshow(A4)

SIFT算法原理

3.1.1尺度空间极值检测 尺度空间理论最早出现于计算机视觉领域,当时其目的是模拟图像数据的多尺度特征。随后Koendetink 利用扩散方程来描述尺度空间滤波过程,并由此证明高斯核是实现尺度变换的唯一变换核。Lindeberg ,Babaud 等人通过不同的推导进一步证明高斯核是唯一的线性核。因此,尺度空间理论的主要思想是利用高斯核对原始图像进行尺度变换,获得图像多尺度下的尺度空间表示序列,对这些序列进行尺度空间特征提取。二维高斯函数定义如下: 222()/221 (,,)2x y G x y e σσπσ-+= (5) 一幅二维图像,在不同尺度下的尺度空间表示可由图像与高斯核卷积得到: (,,(,,)*(,)L x y G x y I x y σσ)= (6) 其中(x,y )为图像点的像素坐标,I(x,y )为图像数据, L 代表了图像的尺度空间。σ称为尺度空间因子,它也是高斯正态分布的方差,其反映了图像被平滑的程度,其值越小表征图像被平滑程度越小,相应尺度越小。大尺度对应于图像的概貌特征,小尺度对应于图像的细节特征。因此,选择合适的尺度因子平滑是建立尺度空间的关键。 在这一步里面,主要是建立高斯金字塔和DOG(Difference of Gaussian)金字塔,然后在DOG 金字塔里面进行极值检测,以初步确定特征点的位置和所在尺度。 (1)建立高斯金字塔 为了得到在不同尺度空间下的稳定特征点,将图像(,)I x y 与不同尺度因子下的高斯核(,,)G x y σ进行卷积操作,构成高斯金字塔。 高斯金字塔有o 阶,一般选择4阶,每一阶有s 层尺度图像,s 一般选择5层。在高斯金字塔的构成中要注意,第1阶的第l 层是放大2倍的原始图像,其目的是为了得到更多的特征点;在同一阶中相邻两层的尺度因子比例系数是k ,则第1阶第2层的尺度因子是k σ,然后其它层以此类推则可;第2阶的第l 层由第一阶的中间层尺度图像进行子抽样获得,其尺度因子是2k σ,然后第2阶的第2层的尺度因子是第1层的k 倍即3 k σ。第3阶的第1层由第2阶的中间层尺度图像进行子抽样获得。其它阶的构成以此类推。 (2)建立DOG 金字塔 DOG 即相邻两尺度空间函数之差,用(,,)D x y σ来表示,如公式(3)所示: (,,)((,,)(,,))*(,)(,,)(,,)D x y G x y k G x y I x y L x y k L x y σσσσσ=-=- (7) DOG 金字塔通过高斯金字塔中相邻尺度空间函数相减即可,如图1所示。在图中,DOG 金字塔的第l 层的尺度因子与高斯金字塔的第l 层是一致的,其它阶也一样。

SIFT算法实现及代码详解

经典算法SIFT实现即代码解释: 以下便是sift源码库编译后的效果图:

为了给有兴趣实现sift算法的朋友提供个参考,特整理此文如下。要了解什么是sift算法,请参考:九、图像特征提取与匹配之SIFT算法。ok,咱们下面,就来利用Rob Hess维护的sift 库来实现sift算法: 首先,请下载Rob Hess维护的sift 库: https://www.doczj.com/doc/a817919820.html,/hess/code/sift/ 下载Rob Hess的这个压缩包后,如果直接解压缩,直接编译,那么会出现下面的错误提示: 编译提示:error C1083: Cannot open include file: 'cxcore.h': No such file or directory,找不到这个头文件。 这个错误,是因为你还没有安装opencv,因为:cxcore.h和cv.h是开源的OPEN CV头文件,不是VC++的默认安装文件,所以你还得下载OpenCV并进行安装。然后,可以在OpenCV文件夹下找到你所需要的头文件了。 据网友称,截止2010年4月4日,还没有在VC6.0下成功使用opencv2.0的案例。所以,如果你是VC6.0的用户请下载opencv1.0版本。vs的话,opencv2.0,1.0任意下载。 以下,咱们就以vc6.0为平台举例,下载并安装opencv1.0版本、gsl等。当然,你也可以用vs编译,同样下载opencv(具体版本不受限制)、gsl等。 请按以下步骤操作: 一、下载opencv1.0 https://www.doczj.com/doc/a817919820.html,/projects/opencvlibrary/files/opencv-win/1.0/OpenCV_1.0.exe

基于MATLAB的图像处理字母识别

数字图像处理 报告名称:字母识别 学院:信息工程与自动化学院专业:物联网工程 学号:201310410149 学生姓名:廖成武 指导教师:王剑 日期:2015年12月28日 教务处制

目录 字母识别 1.---------------------测试图像预处理及连通区域提取 2.---------------------样本库的建立采集feature 3.---------------------选择算法输入测试图像进行测试 4.---------------------总结

字母识别 1.imgPreProcess(联通区域提取)目录下 conn.m:连通区域提取分割(在原图的基础上进行了膨胀、腐蚀、膨胀的操作使截取的图像更加接近字母) %%提取数字的边界,生成新的图 clear; clc; f=imread('5.jpg'); f=imadjust(f,[0 1],[1 0]); SE=strel('square',5); %%膨胀、腐蚀、膨胀 A2=imdilate(f,SE); SE=strel('disk',3) f=imerode(A2,SE) SE=strel('square',3); f=imdilate(f,SE); gray_level=graythresh(f); f=im2bw(f,gray_level); [l,n]=bwlabel(f,8) %%8连接的连接分量标注 imshow(f) hold on for k=1:n %%分割字符子句 [r,c]=find(l==k); rbar=mean(r); cbar=mean(c); plot(cbar,rbar,'Marker','o','MarkerEdgeColor','g','MarkerFaceColor',' y','MarkerSize',10); % plot(cbar,rbar,'Marker','*','MarkerEdgecolor','w'); row=max(r)-min(r) col=max(c)-min(c) for i=1:row for j=1:col seg(i,j)=1; end

图像拼接原理及方法

第一章绪论 1.1图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系 列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制( IBR )成为结合两个互补领域 ――计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化 场景描述(Visual Seene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以 使IBR从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360度的环形图片了。但是在实际应用中,很 多时候需要将360度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360度景物的多幅图像进行拼接,从而实时地得到 超大视角甚至是360度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目 视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双 目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360度全景图像,用来虚拟实际场景。 这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四 周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图 像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。 从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重 要的意义 1.2图像拼接算法的分类 图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算 法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型: (1) 基于区域相关的拼接算法。 这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对 待配准图像中一块区域与参考图像中的相同尺寸的区域使用最小二乘法或者其它数学方法 计算其灰度值的差异,对此差异比较后来判断待拼接图像重叠区域的相似程度,由此得到待

SIFT算法英文详解

SIFT: Scale Invariant Feature Transform The algorithm SIFT is quite an involved algorithm. It has a lot going on and can be come confusing, So I’ve split up the entire algorithm into multiple parts. Here’s an outline of what happens in SIFT. Constructing a scale space This is the initial preparation. You create internal representations of the original image to ensure scale invariance. This is done by generating a “scale space”. LoG Approximation The Laplacian of Gaussian is great for finding interesting points (or key points) in an image. But it’s computationally expensive. So we cheat and approximate it using the representation created earlier. Finding keypoints With the super fast approximation, we now try to find key points. These are maxima and minima in the Difference of Gaussian image we calculate in step 2 Get rid of bad key points Edges and low contrast regions are bad keypoints. Eliminating these makes the algorithm efficient and robust. A technique similar to the Harris Corner Detector is used here. Assigning an orientation to the keypoints An orientation is calculated for each key point. Any further calculations are done relative to this orientation. This effectively cancels out the effect of orientation, making it rotation invariant. Generate SIFT features Finally, with scale and rotation invariance in place, one more representation is generated. This helps uniquely identify features. Lets say you have 50,000 features. With this representation, you can easily identify the feature you’re looking for (sa y, a particular eye, or a sign board). That was an overview of the entire algorithm. Over the next few days, I’ll go through each step in detail. Finally, I’ll show you how to implement SIFT in OpenCV! What do I do with SIFT features? After you run through the algorithm, you’ll have SIFT features for your image. Once you have these, you can do whatever you want. Track images, detect and identify objects (which can be partly hidden as well), or whatever you can think of. We’ll get into this later as well. But the catch is, this algorithm is patented. >.< So, it’s good enough for academic purposes. But if you’re looking to make something commercial, look for something else! [Thanks to aLu for pointing out SURF is patented too] 1. Constructing a scale space Real world objects are meaningful only at a certain scale. You might see a sugar cube perfectly on a table. But if looking at the entire milky way, then it simply does not exist. This multi-scale nature of objects is quite common in nature. And a scale space attempts to replicate this concept

模板匹配MATLAB实现及算法优化

模板匹配MATLAB实现及算法优化 一、引言 现代社会已进入信息时代,随着计算机技术、通信技术和数学的发展,图像信息处理能力和水平也不断提高,相应的也得到和更多关注、研究和更加广泛的应用。图像匹配是图像处理的一项关键技术,可广泛用于目标识别与跟踪、立体视觉、变化检测、车场车牌识别、人脸识别、机器人导航、测绘、等领域,已成为一门新兴的分支学科。由于拍摄时间、拍摄角度、自然环境的变化、多种传感器的使用和传感器本身的缺陷,使拍摄的图像不仅受噪声的影响,而且存在严重的灰度失真和几何畸变。在这种条件下,如何有效地进行图像匹配一直是人们研究的热点和难点。 要研究模板匹配,首先必须明确模板匹配的定义:模板匹配是指通过一定的匹配算法在两幅或多幅图像之间识别同名点,如二维图像匹配中通过比较目标区和搜

索区中相同大小的窗口的相关系数,取搜索区中相关系数最大所对应的窗口中心点作为同名点。其实质是在基元相似性的条件下,运用匹配准则的最佳搜索问题。简单的讲就是,要判读一幅大图像中是否存在某种已知的图案,则以一幅与该图案有着相同尺寸和方向的小图像为模板,通过一定的算法可以在图中找到目标,确定其坐标位置。 那么如何实现模板与原图像的匹配呢?下面将结合一个具体例子说明模板匹配的实现过程。 二、 问题描述及解决方法 1. 问题描述 现有模板如下图: 原图如下图: 问题:如何在原图中找到模板所处的位置,并把该位置标记出来。 2. 解决方法 首先必须建立判断模板与原图相应位置相似程度的准则。对于彩色图像,是基于图像的特征匹配;而灰度图像,则是基于相关函数。本实验的处理对象主要是灰度图片。 相关函数又分成两类: (1) 差值测度。计算公式如下: max |(,)(,)|f x y g x y ε=- |(,)(,)|D f x y g x y dxdy ε=-?? 22[(,)(,)]D f x y g x y dxdy ε=-??

基于matlab的人脸识别算法(PCA)

3.基于matlab的人脸识别算法 3.1 问题描述 对于一幅图像可以看作一个由像素值组成的矩阵,也可以扩展开,看成一个矢量,如一幅 N*N 象素的图像可以视为长度为N2 的矢量,这样就认为这幅图像是位于N2 维空间中的一个点,这种图像的矢量表示就是原始的图像空间,但是这个空间仅是可以表示或者检测图像的许多个空间中的一个。不管子空间的具体形式如何,这种方法用于图像识别的基本思想都是一样的,首先选择一个合适的子空间,图像将被投影到这个子空间上,然后利用对图像的这种投影间的某种度量来确定图像间的相似度,最常见的就是各种距离度量。因此,本次试题采用PCA算法并利用GUI实现。 对同一个体进行多项观察时,必定涉及多个随机变量X1,X2,…,Xp,它们都是的相关性, 一时难以综合。这时就需要借助主成分分析来概括诸多信息的主要方面。我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。 任何一个度量指标的好坏除了可靠、真实之外,还必须能充分反映个体间的变异。如果有一项指标,不同个体的取值都大同小异,那么该指标不能用来区分不同的个体。由这一点来看,一项指标在个体间的变异越大越好。因此我们把“变异大”作为“好”的标准来寻求综合指标。3.1.1 主成分的一般定义 设有随机变量X1,X2,…,Xp,其样本均数记为,,…,,样本标准差记为S1,S2,…,Sp。首先作标准化变换,我们有如下的定义: (1) 若C1=a11x1+a12x2+ … +a1pxp,…,且使 Var(C1)最大,则称C1为第一主成分; (2) 若C2=a21x1+a22x2+…+a2pxp,…,(a21,a22,…,a2p)垂直于(a11,a12,…,a1p),且使Var(C2)最大,则称C2为第二主成分; (3) 类似地,可有第三、四、五…主成分,至多有p个。 3.1.2 主成分的性质 主成分C1,C2,…,Cp具有如下几个性质: (1) 主成分间互不相关,即对任意i和j,Ci 和Cj的相关系数 Corr(Ci,Cj)=0 i j (2) 组合系数(ai1,ai2,…,aip)构成的向量为单位向量, (3) 各主成分的方差是依次递减的,即 Var(C1)≥Var(C2)≥…≥Var(Cp)

模板匹配MATLAB实现及算法优化

模板匹配MATLAB实现及算法优化

一、引言 现代社会已进入信息时代,随着计算机技术、通信技术和数学的发展,图像信息处理能力和水平也不断提高,相应的也得到和更多关注、研究和更加广泛的应用。图像匹配是图像处理的一项关键技术,可广泛用于目标识别与跟踪、立体视觉、变化检测、车场车牌识别、人脸识别、机器人导航、测绘、等领域,已成为一门新兴的分支学科。由于拍摄时间、拍摄角度、自然环境的变化、多种传感器的使用和传感器本身的缺陷,使拍摄的图像不仅受噪声的影响,而且存在严重的灰度失真和几何畸变。在这种条件下,如何有效地进行图像匹配一直是人们研究的热点和难点。 要研究模板匹配,首先必须明确模板匹配的定义:模板匹配是指通过一定的匹配算法在两幅或多幅图像之间识别同名点,如二维图像匹配中通过比较目标区和搜索区中相同大小的窗口的相关系数,取搜索区中相关系数最大所对应的窗口中心点作为同名点。其实质是在基元相似性的条件下,运用匹配准则的最佳搜索问题。简单的讲就是,要判读一幅大图像中是否存在某种已知的图案,则以一幅与该图案有着相同尺寸和方向的小图像为模板,通过一定的算法可以在图中找到目标,确定其坐标位置。 那么如何实现模板与原图像的匹配呢?下面将结合一个具体例子说明模板匹配的实现过程。 二、问题描述及解决方法 1.问题描述 现有模板如下图: 原图如下图: 问题:如何在原图中找到模板所处的位置,并把该位置标记出来。 2.解决方法

首先必须建立判断模板与原图相应位置相似程度的准则。对于彩色图像,是基于图像的特征匹配;而灰度图像,则是基于相关函数。本实验的处理对象主要是灰度图片。 相关函数又分成两类: (1) 差值测度。计算公式如下: max |(,)(,)|f x y g x y ε=- |(,)(,)|D f x y g x y dxdy ε=-?? 22[(,)(,)]D f x y g x y dxdy ε=-?? (2) 相关测度。计算公式如下: 1222(,)(,)(,)[(,)(,)]D D D f x y g x y dxdy p x y f x y dxdy g x y dxdy = ??????? 显然,上式中的p(x,y)取值范围是0到1。越接近于0,表示两图像相差越大;越接近于1,表示两图像越相似。 有了描述相似程度的数学模型,接下来就可以用MATLAB 编程实现模板匹配,从而解决上述问题了。 三、 MATLAB 实现 要实现这个程序,必须有三个重要组成部分: 1. 模板循环 功能:实现模板扫过原图的每一个像素点。 语句: for i=1:M-m for j=1:N-n end end 描述:以模板左上角第一个点为标志点,使其依次从左到右、从上到下扫过原图每一个像素点。 2. 相似性判断 功能:在每一次循环时,计算模板与覆盖的原图区域的相似程度,并判断两图像是否相似。 语句: temp=imcrop(im,[j,i,n-1,m-1]);

图像拼接原理及方法

第一章绪论 1.1 图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制(IBR)成为结合两个互补领域——计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Scene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以使IBR从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360 度的环形图片了。但是在实际应用中,很多时候需要将360 度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360 度景物的多幅图像进行拼接,从而实时地得到超大视角甚至是360 度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。 从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重要的意义 1.2图像拼接算法的分类 图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型:(1) 基于区域相关的拼接算法。 这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对

SIFT 特征提取算法详解

SIFT 特征提取算法总结 主要步骤 1)、尺度空间的生成; 2)、检测尺度空间极值点; 3)、精确定位极值点; 4)、为每个关键点指定方向参数; 5)、关键点描述子的生成。 L(x,y,σ), σ= 1.6 a good tradeoff

D(x,y,σ), σ= 1.6 a good tradeoff

关于尺度空间的理解说明:图中的2是必须的,尺度空间是连续的。在 Lowe 的论文中, 将第0层的初始尺度定为1.6,图片的初始尺度定为0.5. 在检测极值点前对原始图像的高斯平滑以致图像丢失高频信息,所以Lowe 建议在建立尺度空间前首先对原始图像长宽扩展一倍,以保留原始图像信息,增加特征点数量。尺度越大图像越模糊。 next octave 是由first octave 降采样得到(如2) , 尺度空间的所有取值,s为每组层数,一般为3~5 在DOG尺度空间下的极值点 同一组中的相邻尺度(由于k的取值关系,肯定是上下层)之间进行寻找

在极值比较的过程中,每一组图像的首末两层是无法进行极值比较的,为了满足尺度 变化的连续性,我们在每一组图像的顶层继续用高斯模糊生成了 3 幅图像, 高斯金字塔有每组S+3层图像。DOG金字塔每组有S+2层图像.

If ratio > (r+1)2/(r), throw it out (SIFT uses r=10) 表示DOG金字塔中某一尺度的图像x方向求导两次 通过拟和三维二次函数以精确确定关键点的位置和尺度(达到亚像素精度)?

直方图中的峰值就是主方向,其他的达到最大值80%的方向可作为辅助方向 Identify peak and assign orientation and sum of magnitude to key point The user may choose a threshold to exclude key points based on their assigned sum of magnitudes. 利用关键点邻域像素的梯度方向分布特性为每个关键点指定方向参数,使算子具备 旋转不变性。以关键点为中心的邻域窗口内采样,并用直方图统计邻域像素的梯度 方向。梯度直方图的范围是0~360度,其中每10度一个柱,总共36个柱。随着距中心点越远的领域其对直方图的贡献也响应减小.Lowe论文中还提到要使用高斯函 数对直方图进行平滑,减少突变的影响。

基于MATLAB的人脸识别

基于MATLAB的人脸识别

————————————————————————————————作者: ————————————————————————————————日期:

图像识别 题目:基于MATLAB的人脸识别 院系:计算机科学与应用系 班级: 姓名: 学号: 日期:

设计题目基于MATLAB的人脸识别设 计技术参数 测试数据库图片10张训练数据库图片20张图片大小1024×768 特征向量提取阈值 1 设计要求综合运用本课程的理论知识,并利用MATLAB作为工具实现对人脸图片的预处理,运用PCA算法进行人脸特征提取,进而进行人脸匹配识别。 工作量 两周的课程设计时间,完成一份课程设计报告书,包括设计的任务书、基本原理、设计思路与设计的基本思想、设计体会以及相关的程序代码; 熟练掌握Matlab的使用。 工作计划第1-2天按要求查阅相关资料文献,确定人脸识别的总体设计思路; 第3-4天分析设计题目,理解人脸识别的原理同时寻求相关的实现算法;第5-8天编写程序代码,创建图片数据库,运用PCA算法进行特征提取并编写特征脸,上机进行调试; 第9-12天编写人脸识别程序,实现总体功能; 第13-14天整理思路,书写课程设计报告书。 参考资料1 黄文梅,熊佳林,杨勇编著.信号分析与处理——MATALB语言及应用.国防科技大学出版社,2000 2 钱同惠编著.数字信号处理.北京:机械工业出版社,2004 3 姚天任,江太辉编著.数字信号处理.第2版.武汉:武汉理工大学出版社,2000 4 谢平,林洪彬,王娜.信号处理原理及应用.机械工业出版社,2004 5刘敏,魏玲.Matlab.通信仿真与应用.国防工业出版社,2005 6 楼顺天.基于Matlab7.x 的系统分析与设计.西安电子科技大学,2002 7孙洪.数字信号处理.电子工业出版社,2001 目录 引言?错误!未定义书签。 1 人脸识别技术?错误!未定义书签。 1.1人脸识别的研究内容?错误!未定义书签。 1.1.1人脸检测(Face Detection)........... 错误!未定义书签。

基于模板匹配的车牌识别及matlab实现

科类理工类编号(学号) 20082036 本科生毕业论文(设计) 基于模板匹配的车牌识别及matlab实现 License plate recognition based on template matching and matlab implementation 伏绍鸫 指导教师:朱玲职称讲师 云南农业大学昆明黑龙潭650201 学院:基础与信息工程学院 专业:电子信息工程年级: 2008级 论文(设计)提交日期: 2012年5月答辩日期: 2012年5月 答辩委员会主任:杨林楠 云南农业大学 2012年05 月

目录 摘要 (1) ABSTRACT (2) 1 前言 (3) 2 车牌识别系统分析 (4) 2.1 车牌识别的目的 (4) 2.2车牌识别现状分析 (4) 2.3车牌识别的意义 (4) 2.4 我国车牌分析 (6) 3 车牌识别系统的原理及方法 (6) 3.1车牌识别系统简述 (6) 3.2 车牌图像处理 (7) 3.2.1 图像灰度化 (7) 3.2.2 图像二值化 (8) 3.2.3边缘检测 (8) 3.2.4 图像闭运算 (9) 3.2.5图像滤波处理 (10) 3.4 车牌字符处理 (11) 3.4.1 阈值化分割原理 (11) 3.4.2 对车牌阈值化分割 (13) 3.4.3 字符归一化处理 (13) 3.5 字符识别 (13) 3.5.1 字符识别简述 (13) 3.5.2 字符识别的分类 (14) 3.5.3 基于模板匹配的字符识别 (15) 4 实验分析 (15) 4.1车牌定位过程及分析 (15) 4.2 车牌字符识别 (18) 4.3 车牌识别结果及分析 (21) 5 结论 (23) 参考文献 (24) 致谢 (24) 附录 (24)

相关主题
文本预览
相关文档 最新文档