当前位置:文档之家› 地铁盾构隧道施工对周边环境影响的监测

地铁盾构隧道施工对周边环境影响的监测

地铁盾构隧道施工对周边环境影响的监测
地铁盾构隧道施工对周边环境影响的监测

地铁盾构隧道施工对周边环境影响的监测

摘要地铁盾构隧道在通过不良地质条件地段施工过程中会对地层产生扰动,可能引起地表及周边建筑物变形或沉降,尤其是隧道穿过正在施工的基坑止水幕墙时,可能会拉裂幕墙危及基坑及附近建筑物安全,因此必须进行监测。文章介绍了广州地铁盾构隧道施工过程中的第三方监测的经验和体会,可供同类工程施工中借鉴。关键词广州地铁盾构隧道环境影响监测

1 工程概况

广州地铁三号线珠-客区间盾构工程利安花园段通过正在施工的利安花园三期工地,盾构施工前该工地基坑土方开挖已经完成,正在进行工程桩施工。地铁盾构隧道将从工程桩中间穿过,两者最近距离1.7~1.8m。利安花园三期基坑用搅拌桩、旋喷桩止水,采用锚喷支护。该地段工程地质条件差,存在较厚的淤泥层和砂层。

盾构施工前利安花园三期周边较大范围内地面有明显

沉降,该区域建筑大部分为多层建筑,其基础采用静压桩(桩长12~18m)或采用锤击灌注桩(持力层为强风化层),还有部分建筑物基础形式不明。

由于地质和设计原因,该地段地铁隧道顶部部分需在砂层中成孔,成孔过程中流沙和降水均可能会对周边环境造成影响:①引起周边地面、建筑物沉降;②引起周边土体、工程桩位移;③引起周边水位下降,导致淤泥层固结压缩,引起周边地面、建筑物沉降;④隧道穿过止水幕墙时由于对止水幕墙及周边土体的扰动而引起止水幕墙的变形可能拉裂幕墙,造成基坑漏水,从而导致周边地面、建筑物沉降。基于上述考虑,在采取相关加固措施以保证周边已有构筑物安全的同时,应进行严密的监测,以确保周边构筑物的安全。

2 监测目的及监测内容

为了及时准确地掌握三号线珠-客区间盾构工程利安花园段施工时周边环境和建筑物的沉降、基坑变形以及对利安花园已成桩的影响,保证利安花园基坑及其前期的建筑物、艺苑小区和果园场小区的建筑物及其周边环境的安全,及时发现可能存在的危险并采取相应措施,将地铁施工对周边的不利影响减至最小,施工中以周边建筑物及地面(管线)沉降测

量、周边水位测量、基坑止水幕墙顶部位移和沉降测量、工程桩顶部水平位移测量为主要观测项目,并在隧道和止水幕墙交叉位臵、隧道和建筑物距离较近的位臵进行土体深层变形测量,以便根据监测成果及时反馈信息指导施工,为信息化施工管理提供可靠依据。

具体监测项目及内容如表1。3 监测方法和测点布臵

测点布臵以对周边建筑物沉降、利安花园三期基坑止水幕墙变形有较全面的了解为原则,同时,突出影响构筑物结构安全的重点项目和重点部位,如地铁隧道较近建筑物和隧道与止水幕墙交叉位臵增加水位测孔和土体变形测孔等。

具体情况如下述。

3.1 周边建筑物、地面(管线)沉降测量

沉降监测根据二等水准测量技术要求,按照先控制后加密的原则进行作业。选用进口精密水准仪配合铟钢尺测量,仪器标称精度为±0.4mm/km。

测量过程中采用相同的观测网形,选定使用仪器和观测

人员,并尽可能选择最佳观测时段,在基本相同的环境和条件下进行观测。

由于场区面积较大,为减少测量误差,共埋设6个测量基准点:在利安花园小区埋设3个测量基准点,其中2个为深埋式基准点;在艺苑小区和果园小区,埋设3个深埋式基准点。所有深埋式基准点均钻孔至岩层,然后在其顶部设臵护罩。水准测量在水准基点稳定后进行观测。

本项目监测以建筑物结构沉降测量为主,同时测量周边地面沉降,共布臵165个测点。每栋楼根据距离地铁隧道的远近、基础形式的不同布臵2~12个结构沉降测点和1~4个地面沉降测点;在利安花园三期基坑南侧管线位臵布臵8个地面沉降测点;在隧道与止水幕墙交叉的2个位臵各布臵6~8个地面沉降测点。

3.2 周边水位测量

地下水位测量通过钻孔埋设水位测管,测孔穿过砂层,到达岩层面,深度约18m。采用声响式水位计观测,通过每次监测的水面标高来计算地下水位在一段时间内的累计变化量和平均变化率,从而判断地下水位的变化对既有建筑物或构

筑物的影响。水位测量共布臵19个测孔:在基坑止水幕墙的周边布臵水位测孔,测量止水幕墙后的水位变化,测孔间距为20~40m;在距隧道较近的建筑物附近布臵水位测孔,测量该位臵的水位变化;在果园小区布臵2个水位测量剖面,按距离隧道边3m、10m、20m的距离布臵测孔,测量水位变化梯度。

3.3 基坑止水幕墙顶部位移和沉降测量

水平位移观测使用精密全站仪配合棱镜,采用极坐标法施测。监测工作基点在基坑四周布臵,同时在远处稳固的地方布臵基准点,测量工作基点的变化情况。采用二等水平位移监测标准进行测量,变形点的点位中误差≤3mm。测点采用强制对中,以减少对中误差。

其沉降测量方法与周边建筑物、地面(管线)的沉降测量方法相同。

在基坑止水幕墙顶部位移和沉降测量中共布臵了21个测点。在基坑止水幕墙的顶部布臵测点,测点间距15~30m。

基坑周边各项监测点布臵见图1。3.4 工程桩顶部水平位移测量

工程桩顶部水平位移测量方法与基坑止水幕墙顶部位移测量方法相同。

工程桩顶部水平位移测量共布臵20个测点。在隧道两边82根工程桩中选择20根桩,在桩顶布臵水平位移测点。

3.5 土体深层变形测量

土体深层变形测量(测斜)选用精密测斜仪观测。用测斜仪观测不同深度土体侧向位移时,首先将带有十字定向导槽的专用测斜管钻孔预埋在土体中,在隧道开挖前测量初值。其过程如下:将仪器探头沿十字定向导槽放至测管底,从底至顶每0.5m测一次数值;隧道开挖过程中测量值与初值比较的差值既是每0.5m由于开挖引起的位移量,从底至顶每0.5m的位移量累计即是不同深度的位移量(测管底埋入不动层,认为管底不动)。土体深层变形测量共埋设10个测斜测孔,测孔深度为20m。在隧道与止水幕墙交叉的2个位臵各布臵3个测斜测孔,测量土体深层变形;在距隧道较近的建筑物附近各布臵1个测斜测孔,测量土体深层变形。

4 监测频率

从工程实际情况出发,测量分为两部分,一部分是所有测点定期普遍测量,一部分是对盾构机刀盘位臵前后的测点进行加密观测。观测周期、次数:

(1)各监测项目测初值2次。

(2)地铁隧道施工前期阶段(1个月),7天测量一次。

(3)地铁隧道施工阶段(3个月),所有测点3天测量1次;盾构机刀盘通过利安花园三期基坑时对其位臵附近(盾构机前后50m、隧道左右边线15m范围内)的测点1天测量2次。

(4)地铁隧道施工后(3个月),第一个月7天测量1次;第二个月15天测量1次;第三个月测量1次。

5 监测资料分析

5.1 周边建筑物、地面(管线)沉降测量

周边的新中国造船厂、利安花园、果园小区、艺苑小区建筑物沉降监测点及其范围内的地面点在地铁隧道施工期

间均没有较大沉降,处于稳定状态,特别是果园小区内加固注浆线以东的地面点沉降量较小,说明地铁隧道施工对周边建筑影响较小;地铁隧道经过位臵上方的地面监测点在盾构机通过时出现较大沉降,其中最大累计沉降量为154.4mm,说明地铁隧道施工对隧道经过位臵上方的地面影响较大。由于监测方及时反馈资料,通知施工方注意,进行加固注浆,通过采取措施使其逐渐趋于稳定,没有造成太大影响。盾构隧道工程通过淤泥层和砂层时对地面影响较大,在以后类似地质条件段施工中需要加强注意。

5.2 周边水位测量

在地铁盾构机通过基坑止水幕墙前,基坑止水幕墙周边布臵的水位测孔出现较大变化,而周边建筑物附近布臵的水位测孔变化较小,通过进行加密监测后分析,认为是由于利安花园三期基坑施工降水的影响,说明地下水的聚散与消散与地下应力变化有密切关系。在地铁盾构机快要通过基坑止水幕墙时,利安花园三期基坑施工降水井已填,所有水位测孔在地铁盾构机通过利安花园三期基坑过程中变化均较小,没有异常出现。

通过对所有水位观测资料的分析,说明地铁盾构工程由

于开挖面较小和及时注浆加固对周边水位影响较小。5.3 基坑止水幕墙顶部位移和沉降测量

地铁盾构隧道通过利安花园三期基坑是本项目监测的重点,在基坑止水幕墙顶部共布臵21个位移和沉降测点。在地铁盾构机通过利安花园三期基坑过程中,其中大部分观测点的水平位移小于20mm,位移大于20mm的有三个点,具体情况见表2。

表2中位移较大的点位均为地铁隧道和利安花园三期基坑止水幕墙交叉位臵处,而且在盾构隧道施工经过时出现较大位移,盾构隧道施工之后这些点位逐渐趋向稳定。

基坑止水幕墙顶部沉降监测点沉降位移较大的点也出现在地铁隧道和利安花园三期基坑止水幕墙交叉位臵处,其中最大累计沉降量为-32.5mm,说明地铁隧道施工对隧道经过位臵上方的基坑止水幕墙影响较大。

对所有基坑止水幕墙顶部水平位移和沉降位移观测资料进行分析的结果表明,地铁盾构工程通过地面既基坑下部过程中对基坑止水幕墙影响较大,尤其是地铁隧道和基坑止水幕墙交叉位臵处位移量超过警戒值。在施工过程中要采取

有效的控制措施使地铁盾构工程施工对地面即有工程的影响达到最小,以免造成基坑坍塌等不良后果。

5.4 工程桩顶部水平位移测量

由于基坑工程施工的影响,利安花园三期基坑内工程桩顶部平面位移监测工作仅在盾构施工进入基坑后才开展了一个月左右,监测期间位移量较小。后来因为基坑内工程桩顶受到施工影响,埋设的平面监测点位遭破坏,停止了对工程桩的监测。

5.5 土体深层变形测量

本项目共布设10个测孔,大部分测孔位移量小于10mm,土体主要位移范围为4~10m,最大位移位于6.0m处,位移量为13.25mm。在整个施工期间,土体均向开挖侧位移,且开挖过程中位移速率较大,开挖完成后变形逐渐缓和,并趋于稳定,位移变化在安全范围内,未出现异常。

6 结论

在广州地铁三号线珠-客区间盾构隧道施工中,通过第

三方监测,掌握了利安花园三期基坑及其前期的建筑物、艺苑小区和果园场小区的建筑物及其周边环境在地铁盾构隧道施工过程中的动态变化,及时地进行了预测和信息反馈,用监测成果调整设计并指导施工,达到了信息化施工的目的,为以后的工程作了技术储备。

在地铁隧道经过淤泥层和砂层等不良地质条件时,需要采取严密的监测措施,尤其是要进行第三方监测,通过第三方与施工方监测成果的比较分析,及时掌握施工对周边环境的影响,才能达到大型地下工程安全施工的目的。

参考文献

[1]夏明耀,曾进伦主编.地下工程设计施工手册[S].北京:中国建筑工业出版社.1999

[2]《广州地区建筑基坑支护技术规定》编委会.广州地区建筑基坑支护技术规定[R].1998

盾构现场施工隧道监测方法

精心整理上海长兴岛域输水管线工程盾构推进 环境监测 技术方案

目录 一工程概况 二盾构推进对周边环境影响程度的分析和估计三监测施工的依据 四监测内容

上海长兴岛域输水管线工程盾构推进环境监测技术方案 前言 科学技术的发展与试验技术的发展息息相关。历史上一些科学技术的重大突破都得益于试验测试技术。因此,试验测试技术是认识客观事物最直接、最有效的方法,也是解决疑难问题的必要手段,试验测试对保证工程质量、促进科学的发展具有越来越重要的地位和作用。测量技术在土建工程中同样占有重要地位,它在各类工程建筑,尤其是在地下工程中已成为一个不可或缺的组成部分。随着科学技术的发展,测量的地位更显关键和重要。早期地下工程的建设完全 工作井相连。 输水管线总长约10563.305m,其中东线长5280.993m,西线长5282.312m。全线最小平曲线半径为R=450m;最大纵坡为8.9‰。具体详见下表。

施工工序,第一台盾构自原水过江管工作井始发推进(东线)至中间盾构工作井进洞后盾构主机解体调头,继续西线隧道推进施工。第二台盾构自中间盾构工作井始发推进(东线)至水库出水输水闸井进洞后盾构转场回中间盾构工作井,继续进行西线隧道推进施工。总体筹划详见下图: 二盾构推进对周边环境影响程度的分析和估算 因很复杂,其中隧道线形、盾构形状、外径、埋深等设计条件和土的强度、变形特征、地下水位分 V l S (x )i Z -地面至隧道中心深度。 φ-土的内摩擦角。 在已知盾构穿越的土层性质、覆土深度、隧道直径及施工方法后,即可事先估算盾构施工可能引起的地面沉降量,同时可及时地采取措施把影响控制在允许范围内。在推进过程中根据盾构性能及监测数据及时调整施工参数,控制变形量,确保周边环境的绝对安全,实现信息化施工。 三监测施工的依据 3.1技术依据 1) 上海长兴岛域输水管道工程技术标卷(甲方提供)

盾构隧道穿越既有建筑物施工应对技术

盾构隧道穿越既有建筑物施工应对技术 文章摘要: 盾构隧道穿越既有建筑物施工应对技术摘要:随着近几年地下工程建设的不断发展,盾构施工技术已越来越成熟,特别是在城市轨道交通建设中更显示出其优越性。但是,对于盾构施工过程中穿越障碍物或近距离通过既有建(构)筑物的施工还缺少相应的工程实例,经验相对也较少。近年来,我国城市轨道交通建设发展迅速,但是面临着越来越复杂的周边环境和施工条件,因此研究和制定相应的施工技术和应对措施十分必要。文章针对盾构施工穿越城市内河、下穿既有隧道以及湖底施工、下穿古城墙等工程实例进行分析研究,提出了针对类似情况的应对技术措施。 1 引言 随着国民经济的发展和城镇化建设的加速,国内城市轨道交通建设发展也越来越迅速。在轨道交通建设中,盾构工法由于其优越性在国内的应用越来越多。为了使轨道交通尽快形成网络达到预期的规模效应,轨道交通的建设也在加速。随着初期单条线的建成,后续线路建设的难度会越来越大。同时,伴随城市规划建设,特别是通常伴随地铁建设的沿线开发的增多,工程建设所面临的是越来越复杂的周边环境,穿越障碍物或近距离通过既有建(构)筑物的情况也越来越多。工程施工时既需要对既有建(构)筑物进行保护,又要确保工程本身的安全性和进展顺利,因此对不同的情况采用相应的应对技术十分必要。本文以南京地铁施工中已成功完成的盾构施工穿越障碍物的几个实例为基础,研究分析相应的应对技术。 2 下穿既有河流 2.1 工程实例 金川河宽10.4m,河堤深4m, 水深1.3m,为污水河。盾构隧道与 该河近正交下穿通过,盾构机与 河床底净间距6.2m。该段 地质情况自上而下分别是:② -1d3-4粉细砂(3.5m)、②-2c2-3 粉土(约6.0m)、②-2b4淤泥质粉 质粘土(约3m)、③-2-1b2粉质粘 土(4m)、③-3-1(a+b)1-2粉质粘 土(约 4.7m)。隧道主要在② -2c2-3粉土、②-2b4淤泥质粉质 粘土(上部)和③-2-1b2粉质粘土 (下部)地层中穿过(图1)。 该工程盾构机于2002年5月 9日~2002年5月10日和2002年 12月28日~2002年12月29日分 别在下行线和上行线顺利通过金 川河,沉降监测结果良好,没有采 用应急预案。但是在下行线掘进

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技 术方案 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技术方案 1.施工流程图 1.1盾构法隧道施工流程图 图1盾构隧道施工流程图 1.2盾构始发流程图 图2 始发流程 图 2.盾构机下井 盾构机从盾构工作井吊入,每台盾构机本身自重约200t ,分解为 5 块,最大块重约60t 。综合考虑吊机的起吊 能力和工作半径,安排1 台200t 和一台40t 汽车吊机进行吊入任务。盾构机下井拼装顺序见图3。 图3盾构机下井拼装示意图 在吊入盾构机之前,依次完成以下几项工作: 1.将测量控制点从地面引到井下底板上; 2.铺设后续台车轨道; 3.依次吊入后续台车并安放在轨道上; 4.安装始发推进反力架,盾构管片反力架示意图见图4; 5.安装盾构机始发托架,盾构始发托架示意图见图5。 图4盾构管片反力架示意图 掘进

图5 盾构始发托架示意图 3.盾构机安装调试 3.1盾构机的安装主要工作 1.盾构机各组成块的连接; 2.盾构机与后续设备及后续台车之间各种线路、管线和机械结构的连接。 3.盾构机内管片安装器、螺旋输送器、保园器的安装; 4.台车顶部皮带机及风道管的连接; 5.刀盘上各种刀具的安装。 3.2盾构机的检测调试主要内容 1.刀盘转动情况:转速、正反转; 2.刀盘上刀具:安装牢固性、超挖刀伸缩; 3.铰接千斤顶的工作情况:左、右伸缩; 4.推进千斤顶的工作情况:伸长和收缩; 5.管片安装器:转动、平移、伸缩; 6.保园器:平移、伸缩; 7.油泵及油压管路; 8.润滑系统; 9.冷却系统; 10.过滤装置; 11.配电系统; 12.操作控制盘上各项开关装置、各种显示仪表及各种故障显示灯的工作情况。 盾构机在完成了上述各项目的检测和调试后(具体应遵照盾构机制造厂家提供的操作手册进行),即可判定该盾构机已具备工作能力。 4.盾构进洞 1.盾构进洞前50 环进行贯通测量,以确定盾构机的实际位置和姿态。此后的掘进不允许有大的偏差发生,逐渐按偏差方位调整盾构机姿态和位置,满足盾构进洞尺寸要求。这一调整应在盾构刀盘进入洞前加固土前完成,以避免盾构进洞发生意外。

关于地铁盾构隧道工程测量技术分析 张德明

关于地铁盾构隧道工程测量技术分析张德明 发表时间:2018-04-08T17:00:21.050Z 来源:《基层建设》2017年第36期作者:张德明 [导读] 摘要:地铁工程的测量师建设与地下表面项目建筑的测量工作,关键是地下施工运营、地下勘察设计等每一个阶段的测量工作。 中国水利水电第八工程局有限公司湖南长沙 410000 摘要:地铁工程的测量师建设与地下表面项目建筑的测量工作,关键是地下施工运营、地下勘察设计等每一个阶段的测量工作。盾构隧道施工测量技术的任务就是在规定的时间之内与误差之内确保项目的正常实施,确保项目能够依照施工设计完成。本文结合笔者多年从事地铁建设工作的有关经验,以盾构隧道测量技术为对象,分别从盾构隧道概述、贯通误差介绍、贯通误差测量和盾构隧道测量程序这4个方面实施了探讨。 关键词:地铁盾构;隧道测量;误差;贯通 引言: 在城市轨道迅速发展的今天,尤其是在盾构法隧道机内台车狭小的空间里,既要满足施工过程中运输材料,又要经常性对盾构姿态实施人工测量。而盾构法施工中的测量工作,是保证项目施工安全、质量、高效的一项关键的保证工作。 1、盾构隧道概述 盾构法是隧道施工使用的一项综合性施工技术,它是把隧道的定向掘进、运输、衬砌、安装等各类工种组合成一体的施工技术。其工作深度能够很深,不受地面建筑与交通的影响,机械化与自动化程度非常高,是一种先进的土层隧道施工技术,普遍用于城市地下铁道,越江隧道等项目的施工中。盾构施工测量关键是控制盾构的部位与推进方向。运用洞内导线点测定盾构的部位,用激光全站仪或者激光定向仪指示推进方向,用千斤顶编组施以不一样的推力,实施纠偏,就是调整盾构的部位与推进方向。 盾构法隧道施工中,需要测量的关键工作包含下面几点。(1)地面控制措施:建设平面与地面高程控制网,(2)地面坐标接触测量,方向与高度到地面,修建地下统一坐标体系接地;(3)地下控制测量:包含地下平面与高程控制(4)测量隧道施工放样依据隧道设计,引导线与开挖与高程测量。 2、隧道工程贯通测量介绍 隧道贯通测量是检核测量工作质量,也是地铁隧道项目质量控制的重点,隧道贯通前约200米左右施工测量的次数要增加,并实施洞内控制导线的全线复测,直到确保隧道贯通。 隧道施工中与贯通后的测量是贯通测量,包含平面贯通测量与高程贯通测量。平面贯通测量是测定现实的横向与纵向贯通误差,测量方法随洞内控制的方式而异:对于使用中线法施工的隧道贯通以后,要从相向测量的2个方向各自向贯通面延伸中线,并各钉一临时桩,量取两桩之间的间距,就能得到隧道的现实横向贯通误差,两临时桩的里程之差就是隧道的现实纵向贯通误差;使用单导线作为洞内控制时,贯通以后在贯通面上钉一临时桩,从相向测量的2个方向各自向临时桩实施支导线测量,临时桩点的平面坐标要分别测取,把两组坐标的差值分别投影到贯通面上与隧道中线上,则贯通面上的投影就是横向贯通误差,在中线上的投影就是纵向贯通误差。其他种类的控制图形能根据现实状况设计适合的方法。 高程贯通测量是测定现实的竖向贯通误差,一般使用水准测量方法,从隧道两端洞口周围的水准点开始,各自向洞内实施,把贯通面上同一点的高程分别测出,即得到这点的两个高程之差。 3、对影响盾构隧道贯通误差来源的解决方案 3.1合理优化水平控制网,提高地面控制测量精度 对于地面控制测量引进的横向误差,相对有效的方法是对网形实施合理的优化。在项目控制网的技术设计中,第一要思考的是精度指标,第二才是网的费用指标。盾构隧道项目的控制网,是由业主提供的,而在业主提供的控制中,因为在布控时思考和随着四周环境的改变与应用的仪器不一样等,施工单位在应用业主供应的控制网时,通常都要对网点实施增设加密,产生有利的闭合检核条件,从而确保地面控制网的精度指标。 3.2应用几种测量方法,使竖井联系测量误差减小 盾构始发井与接收井处竖井联系测量,之前由于思考多是短边传递坐标方位角,在标准中联系测量为±20mm的允许误差。而盾构隧道设计要求隧道应为±50mm的最终贯通误差。这时竖井联系测量误差所占整个隧道的贯通误差的比例就相对大。所以,一定要提高竖井联系测量的精度,才可以更加有利于确保隧道内导线的精度。现在相对有效的方法是在竖井处的联系测量应用红外线铅垂仪竖井投点、吊钢丝测量联系三角形与增设陀螺定向。尽管几种方法的工作量与成本都比短边直接传递要大很多,可是几种方法都比短边直接传递的精度要高,更有利于确保隧道内导线传递的精度与隧道最后的贯通技术指标要求。 3.3使用不一样的方法,精测盾构隧道洞门钢环中心坐标 有关盾构隧道的始发井与接收井门洞,俗称之为进洞出洞。对于盾构进出洞洞门,现在长三角地区定义为:出洞为盾构始发井处洞门,进洞为盾构接收井处洞门,由于其关键是把竖井看作洞来说。其他区域对于隧道进出洞的定义或许有异,在这不作多述。 对于盾构进出洞洞门钢环中心坐标的测量,相对直接的方法是钢环分中法,可以相对快的把圆心测出洞门中心坐标找出。还能测量钢环圆弧上几个点的坐标实施拟合求出圆心坐标,用两种测量方法实施比较,既可以互相复核测量成果,也能提升洞门中心坐标成果的精度。 4、盾构隧道测量步骤 4.1 高程放样 在盾构隧道的断面测量中高程放样在部分需要测量的断面中的隧道管片中,放样出详细的部位,高程放样通常放置在离轨面一定距离的部位。盾构隧道施工中,在数据采集的时候,需要依据资料把需要测量的桩面放样出来,并标记清楚,把现实的高程记录下来,记录下来现实高程与路线方向和中桩的关系,最关键的是中桩的右侧、左侧与中桩的间距。 等测断面中桩或边桩放样完成后,在刚刚放样并标记的待测断面的中桩或边桩上放置全站仪,对中调平,进入全站仪里的测量流程,首先把工作名输入--文件名最好是测量日期,这样方便内业处理时要处理的断面在电脑上快速找到;之后设站,要注意每一个站名只可以测一个断面,像测K10+200右洞,则测站能设为Y10200;量取而且把仪器高度输入,接下来输入这点X、Y、Z坐标,X-指该点和中桩的偏移

盾构区间监测方案

南昌市轨道交通1号线一期工程土建施工三标段 长江路站~珠江路站区间上行线 盾构推进监测方案 编制: 审核: 审批: 中铁十六局集团有限公司 南昌市轨道交通1号线一期工程土建施工三标段项目经理部 2011年12月22日

目录 一、工程概况...................................................................................................................... - 1 - 二、监测方案编制原则与依据.......................................................................................... - 4 - 三、监测范围及内容.......................................................................................................... - 5 - 四、监测点的布设.............................................................................................................. - 5 - 五、监测作业方法.............................................................................................................. - 6 - 六、监测相关技术要求...................................................................................................... - 7 - 七、仪器设备选用.............................................................................................................. - 8 - 八、监测施工人员组织计划(管理网络图)................................................................ - 10 - 九、监测信息反馈体系.................................................................................................... - 10 - 十、监测质量保证措施.................................................................................................... - 15 - 十一、安全保证措施............................................................................................................ - 16 -

地铁隧道盾构施工安全管理(标准版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 地铁隧道盾构施工安全管理(标 准版) Safety management is an important part of production management. Safety and production are in the implementation process

地铁隧道盾构施工安全管理(标准版) 1引言 安全管理工作己在我国得到了日益重视,尤其是在加入了WTO 后,全球经济趋于一体化,要求发展中国家的安全生产管理水平赶上世界先进水平,企业安全管理工作已作为和生产管理并列的一项企业管理重要内容。而建筑业是伤亡事故多发的行业,仅次于矿山作业。隧道施工具有建筑业和矿山业的一些共同特点,施工危险程度大,安全隐患多。盾构施工隧道技术是一项先进的隧道施工技术,开挖面处在盾构体的保护下,可以最大程度避免土体失稳或冒顶带来的人身伤亡事故,近年来,在上海、广州、北京和深圳等地得到了较为广泛的应用。 盾构法隧道施工技术由英国工程师布鲁诺尔发明于1818年,并于1825年运用于工程实践。我国从1956年开始引进盾构施工技术,从20世纪80年代开始得到了快速发展,目前,在上海、广州等大

城市中逐渐成为城市地下铁道施工的主流方法,其特有的安全施工和管理问题引起犷广泛注意,本文为结合多年的盾构施工实践和安全管理经验的总结。 2盾构机刀盘前的压气作业 2.1盾构机的压气作业 当操作人员必须进人盾构机前体刀盘内作业时,如果盾构机前方或上方的土体不能自稳,上体可能通过刀盘的开日处进人刀盘内,威胁作业人员的安全。大多先进的盾构机均配备了压气系统,即通过密封刀盘和盾构前体的通道,向刀盘内注入无油空气,使刀盘内的压力升高,以达到平衡外侧土体压力的目的,压力最大可达到3-4kg/cm2。为了保证操作人员的适应性,一般在通道卜设置密闭的过渡增压舱,这将在很大程度上缓解压力变化带给操作人员的影响。由于操作人员是在一个密闭的环境中工作,刀盘内空间狭窄,不能有多人同时作业,压人的空气质量也可能含有一定的杂质,且工作面的环境温度将会很高,当操作人员出现不适时,需要经过一定时间减压过渡后才能得到医疗。因此,压气作业是盾构安全施工的一

浅谈地铁盾构隧道施工测量技术

浅谈地铁盾构隧道施工测量技术 发表时间:2019-01-21T15:41:47.030Z 来源:《建筑模拟》2018年第31期作者:宁安平杨兴元 [导读] 近年来,随着我国经济的快速发展以及城镇化进程的加快,城市人口不断增加,城市交通拥堵问题越来越突出,因此发展城市轨道交通、缓解紧张的交通运输压力也日益成为各大城市迫切需要解决的问题。 宁安平杨兴元 中国水利水电第四工程局有限公司测绘中心青海西宁 810007 摘要:近年来,随着我国经济的快速发展以及城镇化进程的加快,城市人口不断增加,城市交通拥堵问题越来越突出,因此发展城市轨道交通、缓解紧张的交通运输压力也日益成为各大城市迫切需要解决的问题。与其他交通形式相比,地铁以运量大、快速、准时、节能环保及安全舒适等特点受到了各大中型城市的青睐,也逐渐成为城市展示经济实力、城市化建设程度以及高新技术应用的重要标志。 关键词:地铁盾构;隧道施工;测量技术 盾构法施工是一种先进的隧道施工技术,与其他施工技术相比较,盾构施工引起的地表沉降较小,对施工现场周围环境的影响小,是目前地铁隧道施工中最安全有效也是应用最广泛的施工方法。本文结合某市地铁隧道盾构施工测量工作的具体问题和实际做法,总结出了某市地铁盾构施工建设各个阶段测量工作的要点,提出了一种适用于某市地铁盾构施工的的测量流程,以便为某市后续线路的建设提供测量依据,并且也能为其他地区和单位的地铁盾构施工测量管理提供一个有价值的参考。 一、盾构施工测量简介 盾构隧道施工测量是指为盾构掘进施工和管片拼装符合设计要求而进行的测量工作。盾构施工测量工作主要内容包括地面控制测量、联系测量、地下控制测量、和贯通测量等。 二、盾构施工测量 1、设计数据的复核 工程准备开工时,应进行图纸会审。图纸会审时,测量人员应根据图纸线路参数对盾构掘进轴线(隧道中线)三维坐标进行计算,计算资料必须做到两人独立计算复核,必要时经过第三者计算复核或用不同的方法进行计算复核,对比检查,自检合格后报监理单位及第三方控制测量单位复核,经多方确认的盾构轴线坐标数据由相关方各执一份,作为以后施工过程轴线偏位检查的重要依据。 2、盾构设计数据的导入验收 盾构施工隧道中线坐标进行计算完成之后,土建施工单位要将计算得到的数据导入到盾构机导向系统,这个过程要求业主、土建施工单位、监理单位和第三方控制测量单位共同参与,验收无误后要求各方签字确认,并且拍照留存。 3、地面控制测量 轨道交通平面控制测量,一般分为三级。首级控制网通常是整个轨道交通线路网的平面控制网,是整个城市的轨道交通线路网的控制骨架,二级平面控制网一般为某条线路的平面控制网,三级控制网是在施工过程中根据二级平面控制网形成的精密导线。高程控制测量一般分两个等级布设,一等高程控制网主要是某城市中某条线路的高程控制网,二等高程控制网是施工水准网的基础和起算依据。 地面平面控制测量:为方便施工,在一、二级平面控制网的基础上加密布设精密导线。精密导线一般采用附合导线、闭合导线或节点导线形式。地面导线平均边长宜在350米左右,精密导线相邻边的短边和长边的比例不宜过小,不宜小于1:2,且个别短边不应小于100米。精密导线外业观测应满足《城市轨道交通工程测量规范》中相应的技术要求。精密导线网应整体严密平差,平差计算前将观测边长进行高程归化和投影改化。并分段进行单导线平差验算。 地面高程控制测量:二等高程控制网沿轨道交通线路两侧布设,一般采用附合线路、闭合线路或节点网形式进行布设,水准点平均间距应小于2KM。水准测量外业观测应按照二等水准测量观测技术要求进行。高程控制网的内业数据处理必须采用严密平差,在处理过程中应注意每千米高差中数偶然中误差、高差中数全中误差及最弱点高程中误差。水准路线按测段往返测高差中数偶然中误差MΔ;MΔ按下列公式计算: 式中MΔ—— 每千米高差中数偶然中误差(mm); L ——水准测量的测段长度(km); Δ——水准路线测段往返高差不符值(mm); n ——往返测水准路线的测段数。 当附合路线和水准环多于20个时,每千米水准测量高差中数全中误差应按下式计算: 式中MW—— 每千米高差中数全中误差(mm); W——附合线路或环线闭合差(mm); L——计算附合线路或环线闭合差时的相应路线长度(km); N——附合线路和闭合线路的条数。 4、始发托架的定位 在盾构机始发托架安装前,利用联系测量引至井下控制点精确定位始发托架中心线,一般采用全站仪极坐标法现场放样。特别注意因盾构机是以隧道设计中心线为参考依据掘进的,托架中心一般由施工单位依据隧道中心线和洞门钢环实际中心自行设计托架中心线。始发托架放样时,如果在直线段(或大半径曲线段)始发时,托架前端和后端中心形成的直线应和设计线路(或线路对应的托架前端和后端位

工程盾构区间监测方案

珠江三角洲城际快速轨道交通广州至佛山段金融高新区站~龙溪站区间盾构施工区间施工监测技术方案 方案编制: 审核: 批准: 中交集团隧道工程局有限公司 二○○九年六月

目录 一、工程概况2 二、技术方案编制依据2 三、监测范围、内容及监测要求2 四、各监测项目实施方案3 (一)地表沉降4 1、监测仪器设备4 2、测点布设4 3、监测方法4 (二)隧道隆陷4 1、监测仪器设备4 2、测点布设4 3、监测方法5 (三)地面建(构)筑物监测5 1、监测仪器设备5 2、测点布设5 五、信息化监测及成果反馈6 (一)信息反馈流程6 (二)监测成果报告7 1、监测成果日常报表的内容8 2、监测总报告的内容8 六、监测工作质量控制措施9 (一)质量保证体系9 (二)质量保证措施10

金融高新区站至龙溪站盾构施工区间金融高新区站至中间风井段施工监测技术方案一、工程概况 珠江三角洲城际快速轨道交通广州至佛山段【金融高新区站至龙溪站区间】以直线延海八路下行。两侧地面建筑物较少,无高层建筑。主线在五丫口大桥南侧下穿珠江支流,珠江支流宽约100米,然后继续延龙溪大道下穿行。 本区间隧道平面最小曲线半径为800M,线路轨面埋深为14-26米,左右线间 距18-11米,区间隧道最大线路纵坡为24.90/ 00,最小纵坡为4.0000/ 00. 竖曲线半 径为5000米。 区段隧道顶板主要位于<1>、<2-1A>、<2-1B>、<2-2>、<2-3>、<2-4>、<5-1>、<5-2>、中,区间盾构隧道用两台盾构机由东向西掘进,到达中间风井起吊。 二、技术方案编制依据 1.珠江三角洲城际快速轨道交通金融高新区站至龙溪站盾构区间平纵断面及 设计说明(含区间监测图); 2.《城市轨道交通工程测量规范》GB50308-2008 3.《建筑变形测量规程》JGJ/T8-97 4.《工程测量规范》GB50026-2007 5.国家其他测量规范、强制性标准。 三、监测范围、内容及监测要求 本方案包含监测范围为:珠江三角洲城际快速轨道交通金融高新区站至龙溪站盾构施工区间金融高新区站至中间风井段。沿线既有管线及建(构)筑物详见表1。

地铁隧道盾构法施工

地铁隧道盾构法施工 导语:盾构法施工是一种机械化和自动化程度较高的隧道掘进施工方法,从20世纪60年代开始,西方发达国家大量将这种技术应用于城市地铁和大型城市排水隧道施工。我国近年来也开始在城市地铁隧道、越江越海隧道、取排水隧道施工中采用此项技术,以替代原来落后的开槽明挖或浅埋暗挖等劳动密集型施工方法。 关键词:地铁盾构施工盾构施工技术盾构施工测量点击进入VIP充值通道 地铁盾构机分类及组成 地铁盾构机根据其适用的土质及工作方式的不同主要分为压缩空气式、泥浆式,土压平衡式等不同类型。盾构机主要由开挖系统、推进系统排土系统管片拼装系统、油压、电气、控制系统、资态控制装置、导向系统、壁后注浆装置、后方台车、集中润滑装置、超前钻机及预注浆、铰接装置、通风装置、土碴改良装置及其他一些重要装置如盾壳、稳定翼、人闸等组成。海瑞克公司在广州地铁使用的典型土压平衡式盾构机为主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。主要由已下部分构成:刀盘、主轴承、前体、中体、推进油缸、

铰接油缸、盾尾、管片安装机。主机外形尺寸:7565mm(L)X6250(前体)X6240(中体)X6230(盾尾)。 ①压缩空气式盾构 1886 年Greatbhad 首次在盾构掘进隧道中引了这种工法,该工法利用压缩空气使整个盾构都防止地下水的侵入, 它可在游离水体下或地下水位下运作。其工作原理是利用用压缩空气来平衡水压和土压。传统的压缩空气式盾构要求在隧道工作面和止水隧道之间封闭一个相对较大的工作腔,大部分工人经常处于压缩空气下, 这会对掘进隧道和衬砌造成干扰,为了解决这些问题,又出现了用无压工作腔及全断面开挖的压缩空气式盾构和带有无压工作腔及部分断面开挖的压缩空气式盾构等。 ②土压平衡式盾构 20 世纪70 年代日本就开发土压平衡式盾构,不用辅助的支撑介质,切割轮开挖出的材料可作为支撑介质。该法用旋转的刀盘开挖地层,挖下的渣料通过切割轮的开口被压入开挖腔,然后在开挖腔内与塑性土浆混合。推力由压力舱壁传递到土浆上。当开挖腔内的土浆不再被当地的土和水压固化时就达到平衡。如果土浆的支撑压增大超过了平衡,开挖腔的土浆和在工作面的地层将进一步固化。与泥浆式盾构相比优点在于:无分离设备在淤泥或粘土地层中使用,覆盖层浅时无贯穿浆化的支撑泥浆泄露的危险。 ③泥浆式盾构 1912 年,Grauel 首次建造了泥浆式盾构。该法可以适用于各种松

盾构施工隧道监测方案

上海长兴岛域输水管线工程盾构推进 环境监测 技术方案 上海东亚地球物理勘查有限公司 二00八年五月

目录 一工程概况 二盾构推进对周边环境影响程度的分析和估计三监测施工的依据 四监测内容 五监测技术方案 六监测人员安排 七技术及质量保证措施 八附图

上海长兴岛域输水管线工程盾构推进环境监测技术方案前言 科学技术的发展与试验技术的发展息息相关。历史上一些科学技术的重大突破都得益于试验测试技术。因此,试验测试技术是认识客观事物最直接、最有效的方法,也是解决疑难问题的必要手段,试验测试对保证工程质量、促进科学的发展具有越来越重要的地位和作用。测量技术在土建工程中同样占有重要地位,它在各类工程建筑,尤其是在地下工程中已成为一个不可或缺的组成部分。随着科学技术的发展,测量的地位更显关键和重要。早期地下工程的建设完全倚赖于经验,19世纪才逐渐形成自己的理论,开始用于指导地下结构设计与施工。于是在重大或长大隧道中,及时掌握现场的第一手资料,进行动态分析,就成为施工控制的重要项目之一。 因此施工量测项目显得更加突出和重要。为了验证设计和计算是否合理,运营是否安全,各种工程试验与测试技术的研究和应用也越来越受到施工和科研工作者的重视。地下工程的设计,必须将现场监控量测列入设计文件,并在施工中实施。现场监控量测是判断围岩和隧道的稳定状态,保证施工安全,指导施工顺序,进行施工管理,提供设计信息的重要手段。掌握围岩和支护动态,按照动态管理量测断面的信息,正确而经济的施工;量测数据经分析处理与必要的计算和判断,预测和确定到最终稳定时间,指导施工工序和实施二次衬砌的时间;根据隧道开挖后围岩稳定性的信息,进行综合分析,检验和修正施工前的预设计;积累资料,已有工程的量测结果可应用到其他类似的工程中,作为其他工程设计和施工的参考依据。 盾构在推进过程中必然会造成地面沉陷、位移现象,针对这种情况本监测工程设置了相应的监测手段,对在盾构推进过程中产生的各种变形进行实时监测。 一工程概况 长兴岛域输水管线工程位于长兴岛上,起点于牛棚圩以北的丁字坝附近,与青草沙水库出水输水闸井相接;终止于永和路以南120m左右的上海崇明越江通道东侧绿化带内,与长江原水过江管工作井相连。 输水管线总长约10563.305m,其中东线长5280.993m,西线长5282.312m。全线最小平曲线半径为R=450m;最大纵坡为8.9‰。具体详见下表。

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技术方案

艮丿丿架安■ 苗沟机就位调试 --------- A 丿- 达- 止加掘逬 洒门螯封陽住妓 盾构札托歆- iVt 汕 涧门处牟站) 1 隆护舞曲除1 头 再次琥程啊试 期门篷刘圈安寢 — "L J V 割门处牢站 再就解1 側护堆凿陈■ 图1盾构隧道施工流程图 地铁盾构法隧道施工技术方案 1.施工流程图 1.1盾构法隧道施工流程图 初蜡掘it 到ii 终点

1.2盾构始发流程图 图2始发流程图 2.盾构机下井 盾构机从盾构工作井吊入,每台盾构机本身自重约 200t ,分解为5块,最 大块重约60t 。综合考虑吊机的起吊能力和工作半径,安排 1台200t 和一台 40t 汽车吊机进行吊入任务。盾构机下井拼装顺序见图 3。 始 发 准 备 拆 除 临 时 墙 掘 进

图3盾构机下井拼装示意图 在吊入盾构机之前,依次完成以下几项工作: 1.将测量控制点从地面引到井下底板上; 2.铺设后续台车轨道; 3.依次吊入后续台车并安放在轨道上; 4.安装始发推进反力架,盾构管片反力架示意图见图4; 5.安装盾构机始发托架,盾构始发托架示意图见图5。

8储口F诧 5*注腿諜 >—£ L27KW 图4盾构管片反力架示意图 3盾构机安装调试 3.1盾构机的安装主要工作 1?盾构机各组成块的连接; 2.盾构机与后续设备及后续台车之间各种线路、管线和机械结构的连接 3.盾构机内管片安装器、螺旋输送器、保园器的安装; 4?台车顶部皮带机及风道管的连接; 5?刀盘上各种刀具的安装。 3.2盾构机的检测调试主要内容 1?刀盘转动情况:转速、正反转; 2?刀盘上刀具:安装牢固性、超挖刀伸缩; 3.铰接千斤顶的工作情况:左、右伸缩;

地铁盾构隧道施工技术现状

地铁盾构隧道施工技术现状 发表时间:2019-04-26T15:54:01.173Z 来源:《建筑学研究前沿》2018年第36期作者:张磊翟宝伶[导读] 利用盾构法进行地铁工程建设有利于进行隧道挖掘,而隧道挖掘工作是地铁工程建设中最重要的内容。天津国际工程建设监理公司天津市 300191 摘要:随着我国私家车数量的不断增多,交通拥堵已成为城市发展难题之一,空气质量也受之影响,在一定程度上阻碍了社会的发展。在低碳环保,科学发展观的践行之下,必须行,绿色出行为前提下,乘坐公共交通地铁的出行为交通拥堵疏解了巨大的压力。截止目前,我国的很多城市都已经有了正式的轨道交通,并且各种线路在逐渐的发展和扩大,地铁轨道的运行在我国有了很大的突破和进步,取得了很大的成绩,对于社会的发展具有很强的推动作用。地铁轨道的优点较多,例如地下轨道交通快捷,节约资源,对环境破坏较小,以及可以抵抗自然风雪的伤害,安全舒适。当然地铁的运行离不开地下隧道,盾构法作为地铁工程建设的常用方法,在地铁工程建设中发挥了至关重要的作用。利用盾构法进行地铁工程建设有利于进行隧道挖掘,而隧道挖掘工作是地铁工程建设中最重要的内容。 关键词:地铁;盾构;隧道;施工技术 1盾构的分类 盾构机按其适用的地质情况不同主要分为泥水式盾构机、土压平衡式盾构机等类型。下面简单介绍通用的两种:泥水盾构机是在盾构机前面设置挡板,与刀盘泥浆槽之间形成稳定的开挖面,泥土进入泥浆仓内,形成一个不透水的薄膜在掌子面以此为张力来保持水压力,与开挖面的土压和水压之和保持平衡。挖出的土泥以泥浆的方式运输到地面,然后泥浆和水通过处理设备将泥土分离出来,分离出来的泥水经过处理后再循环利用到开挖中。 土压平衡盾构机是当盾构机向前推时,通过前面刀盘旋转切削土体切下来的土被运到土仓。当土仓被削下来的土填满时,被动土压力与开挖面上的土压和水压力之和保持平衡,因此实现掌子面平衡。 2盾构法施工的原理 盾构法开挖隧道本质上就是在盾构机开挖的过程中同步进行管片的拼装和盾尾注入浆体。根据开挖面所处的土层条件等状况,选择相应的盾构机机型。现在常见的形式包括密闭式、敞开式、土压式、泥水式等类型的盾构机。盾构机开挖隧道的施工过程:1.在隧道两端各建造一个盾构工作井:2.在两端的工作井处分别安装盾构设备;3.当盾构区间较长时宜进行设置中间维修井并在起始工作井处由千斤顶来提供推力使盾构机从开孔位置顶出;4.盾构机进行掘进时是根据设计位置来开挖并在开挖过程中管片安装和土体的排出同步进行;5.对盾尾的注浆必须及时用以固定衬砌管片的位置和减小土体的变形。盾构机在开挖的整体流程下存在的重要技术分为四块:1刀盘切入土层过程2开挖土层过程3盾构时管片衬砌的安装过程和最后的盾尾同步注浆过程。 (a)切入土层:盾构顶推力的大小是由本身存在的千斤顶来进行支持,当盾构的切口环进入到土体所顶进的长度和千斤顶所顶进的距离相对等。 (b)土体开挖:相对应地区的地质特性和机械的类型不同所进行的开挖方式也会有着千差万别。具体开挖方式有:网格式机械切削式敞开式和挤压式等开挖方式。 (c)衬砌拼装:在地质情况或承载力较小时一般会使用衬砌管片预制拼接来施工,同时根据设计要求存在其他的衬砌施工方法例如现浇式和复合式。 (d)盾尾同步注浆:在实际盾构开挖过程中盾构机开挖出的洞口大小比要拼接管片外径还要大一些,所以在盾构继续开挖时前期拼装好的管片会受到周围围岩作用并在盾尾通过后形成盾尾空隙。这种空隙在盾构施工中是一种十分严重的问题,如果没有对空隙及时的进行填充就会严重影响到管片的整体安全性。 3盾构隧道工程施工工艺 3.1盾构机进出洞时作业控制 地铁工程施工人员在进行盾构机的进出洞操作时,必须对作业、操作进行严格控制。利用盾构机挖掘隧道,必然会涉及到盾构机的进出洞,而这一过程的作业控制直接关系到盾构法的施工质量。如果盾构机进出洞操作出现问题,则整个地铁工程建设都有可能失败。为此,施工人员必须充分重视盾构机的进出洞作业控制。通常情况下,盾构机首先进行进洞作业,而后再进行出洞作业。在盾构机进行进洞作业之前,施工人员必须明确地铁隧道的作业路线,避免出现较大的轴线误差。同时,施工人员还应仔细勘察施工路线周围的环境,根据实际情况进行具体的操作。如果存在威胁盾构机施工作业的潜在因素,则必须在作业前制定好预防措施以及应急措施,避免在施工过程中出现重大事故,干扰盾构机的顺利施工。在进行盾构机的出洞作业前,施工人员需彻底审查各项工作,避免存在漏洞影响出洞作业。 3.2盾构机挖掘施工时作业控制 盾构机的挖掘作业是地铁施工盾构法的主要工作,此项作业在地铁工程建设的盾构施工中具有十分重要的作用。在盾构机进行挖掘施工的过程中,应尽量避免挖掘施工对周边土层产生较大影响,以保证开挖土层的稳定性。要减少盾构机挖掘施工对周边土层稳定性产生的影响,施工人员必须在挖掘作业前科学合理地调整盾构机的参数。同时,在挖掘施工过程中,使用人员应注意盾构机的姿态,避免盾构机因姿态问题影响挖掘工作的顺利进行。盾构机的姿态不仅会影响挖掘工作的进行,还会影响管片作业的拼装质量。为此,在盾构机的挖掘施工过程中必须严格控制其姿态。盾构机的姿态控制与注浆方式、盾构坡度等各项参数具有十分密切的关系,只有在控制好各项参数的前提下才能真正实现对盾构机姿态的有效控制。盾构机各项参数量的控制需要建立在可靠的测量工作之上,在进行可靠性的测量之后,才能实现对盾构机各项参数量的精准控制。此外,要将土体压力控制在可控范围内,还需严格调控盾构机的前进速度和排土容量。 3.3推进操作和纠偏 盾构在实施的时候,首先需要对围岩的范围进行观察,以此确保实施的安全性,实时对千斤顶的行程和推力进行观察,沿既定路线方向准确掘进。因此,有必要正确推进盾构的运行,随时纠正偏差。盾构掘进过程中,为了保证盾构掘进功能在计划路线上的正确性,防止偏移、偏转和俯仰,应适当调整千斤顶行程和推力,破坏不方便掘进面的稳定性。一般采用开挖后立即推进。或者一边挖一边推。因此,任何时候都要正确操作屏蔽体,任何时候都要进行纠偏的路线。

地铁工程盾构测量方案

xx市轨道交通1号线一、二期工程 土建施工9标 盾构测量方案 中铁二十四局集团有限公司 二0XX年二月

xx市轨道交通1号线一、二期工程 土建施工9标 盾构测量方案 编制: 审核: 批准:

目录 一、工程概况及编制依据 (1) 二、编制依据 (2) 三、仪器配置 (2) 四、测量管理网络及人员配置 (3) 五、基本技术要求 (3) 六、前期准备 (4) 七、控制网测量和各项准备 (4) 八、盾构施工前期的测量 (8) 九、联系测量 (8) 十、地下施工测量 (11) 十一、盾构姿态日常测量 (12) 十二、曲线段盾构测量 (15) 十三、地表沉降测量 (16) 十四、隧道沉降测量 (16) 十五、贯通测量 (17) 十六、竣工测量 (17) 十七、提高贯通精度的方法和测量复核 (18) 十八、质量保证措施 (19) 十九、施工安全保证措施 (19)

一、工程概况及编制依据 xx市轨道交通1号线一、二期工程由xx站至徽州大道站,线路长约24.65km,其中地下线23.65km,地面线1km。一期工程共设车站22座,全部为地下站。 云谷路站~南宁路站区间为盾构区间,区间线路沿规划庐州大道向南敷设,区间沿线以荒地和水稻田为主,线路下穿规划岷江路及规划徐河,本区间上方无管线。本区间隧道为两条单洞单线圆形隧道,均采用盾构法施工,区间线间距为由北向南由12m渐变至15m;区间最大纵坡25.007‰,最小纵坡2‰;区间设计起讫里程右线:K25+421.529~K25+738.600,左线:K25+421.500~K25+738.600,区间线路长度右线317.071m,左线317.050m,不设置联络通道;隧道穿过土层主要为粘土②层、粘土③层;右线盾构区间在南宁路站始发掘进至云谷路站,于站内调头后始发掘进左线盾构区间至南宁路站,然后吊出。具体走向详见该区间隧道走向图。 南宁路站~贵阳路站区间为盾构区间,区间线路沿规划庐州大道向南敷设,区间沿线以荒地和水稻田为主,线路下穿规划漓江路、规划嘉陵江路及规划丙铺路,本区间上方无管线。本区间隧道为两条单洞单线圆形隧道,均采用盾构法施工,区间线间距为15m;区间最大纵坡6‰,最小纵坡2‰;区间设计起讫里程左、右线:K25+926.000~K26+508.911,区间线路长582.911m,不设置联络通道;隧道穿过土层主要为粘土③层;右线盾构区间在南宁路站始发掘进至贵阳路站,于站内调头后始发掘进左线盾构区间至南宁路站,然后盾构转运至南宁路站右线小里程端头井处。具体走向详见该区间隧道走向图。 盾构衬砌采用C50钢筋混凝土预制管片拼装而成,每环管片由3块标准块、2块邻接块及1块封顶块组成。管片采用错缝拼装。管片内径为Φ5400mm,厚度300mm,管片外径为Φ6000mm,每环管片宽度1.5m。衬砌内弧面,在隧道贯通后按设计要求作嵌缝、抹孔等防水处理。 本工程采用铁建重工ZTE6250土压平衡盾构机。刀盘开挖直径6280mm,采用

盾构施工监测方案

广州市轨道交通三号线北延段工程施工 8 标段 【龙归站~人和站盾构区间(二) 】土建工程 盾构隧道施工监测方案
§1 编制依据 §1 编制依据
1、 广州市轨道交通三号线北延段工程施工 8 标段工程合同文件 (GDJCDG-0521) 2、 《盾构法隧道工程施工及验收规程》 (DGJ08-233—1999) 3、 《地下铁道、轻轨交通工程测量规范》 (GB50308-1999) 4、 《地下铁道工程施工及验收规范》 (GB50299-1999) 5、 《建筑变形测量规范》 (JGJ/T8-97) 6、 《土木工程监测技术》 夏才初等编著,中国建筑工业出版社,2001.7
§2 工程概况 §2 工程概况
三号线延长线出龙归站沿 106 国道继续向北行进,穿过沙坑涌、北二环高速 公路、泥坑涌、流溪河后到人和站。本区间为龙归~人和区间的第二段盾构施工 段,由南端风井始发往北掘进至北端中间风井吊出,掘进长度为 1750.4 米(右 线) 。 本标里程范围 YCK19+830~YCK21+660,即南端风井终点~北端风井起点 段盾构和南端风井;含 4#、5#、6#联络通道。 南端风井起点里程 YCK19+830,终点里程 YCK19+909.6,结构净长度为 78m;4#联络通道里程 YCK19+900,与风井合建。 盾构区间起点里程 YCK19+909.6, 终点里程 YCK21+660, 右线盾构长 1750.4 米, 左线盾构长 1749.2 米, 区间盾构总长 3499.6 米; 5#联络通道里程 YCK20+500, 6#联络通道里程 YCK21+100。 见图 2-1。
1

轨道交通贯通测量方案

轨道交通贯通测量方案 区间贯通后,地下导线由支导线经与另一端基线边联测变成了附合导线,支水准变成了附合水准,当闭合差不超过限差规定时,进行平差计算。按导线点平差后的坐标值调整线路中线点,调整后再进行中线点的检测,高程应用平差后的成果。 1贯通精度预计的意义 镇龙站~中新站区间左右线各设置两个双向开挖面,区间中间右线一处施工竖井,左线通过联络通道进入开挖施工。因此必需严格保证各开挖面的贯通质量。由于本隧道施工是在洞内、外控制测量的基础上,以联系测量和竖井投点定向法结合,因此必须根据控制测量的设计精度或实测精度,在隧道施工前或施工中对其未来的贯通质量进行预计,以确保准确贯通,避免重大事故的发生,对于长隧道尤其如此。 2贯通误差预计概述 在进行隧道测量任务前,应先了解隧道设计的意图和要求,收集有关资料,进行实地勘测,然后提出若干测量方案,经比较、筛选后,确定出一种方案(即确定布网形式、观测方法、仪器设备类型、控制网的等级、误差参数等)。根据确定的方案进行贯通误差预计,若预计误差在工程设计要求范围之内,即可按此方案实施;否则,需对原方案进行修改调整,重新预计,直到符合要求为止。在施工过程中,根据洞内、外控制测量的实际精度,进行贯通误差预计。 3贯通误差预计 影响横向贯通误差的因素有:洞外平面控制测量误差、洞外与洞内之间的联系测量误差、洞内平面控制测量误差,而洞内、外的联系测量可以作为洞内控制的一部分来处理。洞内平面控制测量误差对横向贯通精度影响的估算方法与洞外导线测量完全相同,但需注意两点:一是两洞口和施工竖井处的控制点,在引入洞内导线时需要测角,因此这个测角误差算入洞内测量误差,即计算洞外导线测角误差时,不包括始终点的值。两洞口引入导线时不必单独计算,可以将贯通点当作一个导线点。把从一侧洞口控制点到另一端洞口控制点的连线(A-a-b-c…-F)当成一条导线来估算。把贯通点作为导线上的一点来进行估算。 3.1 平面贯通误差预计 3.1.1 平面贯通误差的主要来源

相关主题
文本预览
相关文档 最新文档