当前位置:文档之家› 各种常见电机工作原理

各种常见电机工作原理

各种常见电机工作原理
各种常见电机工作原理

1、电磁感应定理

在磁场中运动的导体将会感应电势,若磁场、导体和导体的运动方向三者互相垂直,则作用导体中感应的电势大小为: e = B?l?v

电势的方向用右手定则

2.电磁力定律

载流导体在磁场中将会受到力的作用,若磁场与载流导体互相垂直 (见下图),作用在导体上的电磁力大小为:f = B·l·i

力的方向用左手定则

一、直流发电机

1.直流发电机的原理模型

2、发电机工作原理

a、直流电势产生

用电动机拖动电枢使之逆时针方向恒速转动,线圈边 a b 和 c d 分别切割不同极性磁极下的磁力线,感应产生电动势。

直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势。

因为电刷 A 通过换向片所引出的电动势始终是切割N 极磁力线的线圈边中的电动势。所以电刷 A 始终有正极性,同样道理,电刷 B 始终有负极性。所以电刷端能引出方向不变但大小变化的脉动电动势

b、结论

线圈内的感应电动势是一种交变电动势,而在电刷 A B 端的电动势却是直流电动势。

1.直流电动机的原理模型

2.直流电动机的工作原理

要使电枢受到一个方向不变的电磁转矩,关键在于:当线圈边在不同极性的磁极下,如何将流过线圈中的电流方向及时地加以变换,即进行所谓“换向”。为此必须增添一个叫做换向器的装置,换向器配合电刷可保证每个极下线圈边中电流始终是一个方向,就可以使电动机能连续的旋转

三、变压器

1、变压器的工作原理

变压器的基本工作原理是电磁感应原理。当交流电压加到一次侧绕组后交流电流流入盖绕组就产生励磁作用,在铁芯中产生交变的磁通,这个交变磁通不仅穿过一次侧绕组,同时也穿过二次侧绕组,它分别在两个绕组中引起感应电动势。这时如果二次侧与外电路的负载接通,便有交流电流流出,于是输出电能。

2、变压器工作的原理图

1、三相异步电动机工作原理

当向三相定子绕组中通过入对称的三相交流电时,就产生了一个以同步转速n1沿钉子和转子内圆空间作顺时针方向旋转的旋转磁场。由于旋转磁场以n1转速旋转,转子导体开始时是静止的,故转子导体将切割定子旋转磁场而产生感应电动势(感应电动势的方向用右手定则判定)。由于转子导体两端被短路环短接,在感应电动势的作用下,转子导体中将产生与感应电动势方向基本一致的感生电流。转子的载流导体在定子磁场中受到电磁力的作用(力的方向用左手定则判定)。电磁力对转子轴产生电磁转矩,驱动转子沿着旋转磁场方向旋转。

通过上述分析可以总结出电动机工作原理为:当电动机的三相定子绕组(各相差120度电角度),通入三相对称交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组,从而在转子绕组中产生感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。

五、异步发电机

异步发电机工作原理

利用定子与转子间气隙旋转磁场与转子绕组中感应电流相互作用的一种交流发电机,其转子的转向和旋转磁的转向相同,但转速略高于旋转磁场的同步转速。常用作小功率水轮发电机。

六、同步发电机

同步发电机工作原理

和其它类型的旋转电机一样,由固定的定子和可旋转的转子两大部分组成。一般分为转场式同步电机和转枢式同步电机。

最常用的是转场式同步发电机,其定子铁心的内圆均匀散布着定子槽,槽内嵌放着按规律排列的三相对称绕组。这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁心和电枢绕组。

转子铁心上装有制成必定形状的成对磁极,磁极上绕有励磁绕组,通以直流电流时,将会在电机的气隙中形成极性相间的散布磁场,称为励磁磁场(也称主磁场、转子磁场)。

原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。

由于电枢绕组与主磁场之间的相对切割活动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。

所谓的同步就是转子的转速等于定子旋转磁场的转速

七、同步电动机

同步电动机工作原理

主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场。

载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。

切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。

交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。

感应电势频率:感应电势的频率决定于同步电机的转速n和极对数p,

即f=np/60

交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。

永磁同步电机的原理及结构

. . . . 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

单相异步电动机的工作原理

单相鼠笼式异步电动机的工作原理 单相鼠笼式异步动机由单相电源供电,它直接接到220伏单相交流电源上就能工作,但要采取一定的措施,否则启动不起来。我们日常生活用的一些家用电器,如空调器、电冰箱、洗衣机、电扇等广泛应用着单相异步电动机。 单相异步电动机的工作原理 当给三相异步电动机的定子三相绕组通入三相交流电时,会形成一个旋转磁场,在旋转磁场的作用下,转子将获得启动转矩而自行启动。当三相异步电动机通入单相交流电时就不能产生旋转磁场。 下面来分析单相异步电动机定子绕组通入单相交流电时产生的磁场情况。如下图所示为一台简单的单相异步电动机原理图,定子铁心上布置有单相定子绕组,转子为鼠笼结构。 交流电流波形

电流正半周产生的磁场 电流负半周产生的磁场 当向单相异步电动机的定子绕组入单相交流电后,由上图可见,当电流在正半周及负半周不断交变时,其产生的磁场大小及方向也在不断变化(按正弦规律变化),但磁场的轴线则沿纵轴方向固定不动,这样的磁场称为脉动磁场。 当转子静止不动时转子导体的合成感应电动势和电流为0,合成转矩为0,因此转子没有启动转矩。故单相异步电动机如果不采取一定的措施,单相异步电动机不能自行启动,如果用一个外力使转子转动一下,则转子能沿该方向继续转动下去。 单相异步电动机根据其启动方法或运行方法的不同,可分为单相电容运行电动机;单相电容启动电动机;单相罩极式电动机等。下面分别介绍。单相异步电动机容量一般较小,运行性能较差。 t 45 90 135 180 225 270 360 315

图1 单相电容运行异步电动机原理图 (a)接线图 (b)电流相量图 图1是单相电容运行异步电动机工作原理图。单相电容式异步电动机的定子铁芯上嵌放两套绕组:主绕组U1—U2(主绕组又称工作绕组)和副绕组Z1—Z2(副绕组又称启动绕组)。两套绕组在空间的位置上互差90度电角度。在启动绕Z1—Z2中串入一个电容器C后再与工作绕组并联,然后接到单相电源上。设流过启动绕组Z1-Z2的电流为iz,流过工作绕组U1—U2的电流以为iu,当接上电源后,由于电容的充放电作用,iz落后于iu90度,流过两套绕组的电流iz与iu在相位上相差90度,如图2所示。 设电动机两个绕组接上交流电源后,电流为正值时,电流从绕组的头端进去尾端出来;电流为负值时,电流从绕组的尾端进去头端出来。 从图2可看到:在t=0瞬间,iz=0,绕组Z1—Z2中无电流流过;而这瞬时iu为负的最大值,绕组U1—U2中电流由U2进Ul出。用右手定则可判断,此时电动机中会产生如图2所示磁场,其合成磁场方向向下。 从图2可看到:在ωt=π/2瞬间,iu=0,绕组U1—U2中无电流流过;这瞬间iz为正的最大值,绕组Z1-Z2中电流从Z1进Z2出。此时电动机磁场分布如图2所示,其合成磁场方向较t=0时刻顺时针方向旋转了90角度。

单相电动机工作原理

单相电动机工作原理教案(详案) 三门职业中专何邦先 课程名称:《电机与变压器》(电类专业通用) 适用专业层次:中职电子专业所需课时数:2课时 教材分析 《电机与变压器》是一门纯理论的专业基础课,理论知识也相当的深奥,普遍认为是老师难教,学生难学,学生很容易失去这门的学习兴趣,但电机、变压器使用非常的普遍,特别是电动机工厂到处多是;不学又不行。没能打好基础,对后续专业课程的学习,对考证和就业都带来不良的影响。 学生分析 电机与变压器课程理论普遍具有抽象性,而我们中职类学生基础较薄弱,所以中职生在学习基础理论的过程就较吃力。同时班级同学学习能力参差不齐。 教学目标与价值观 认知目标:1、旋转磁场形成 2、单相电动机工作原理 技能目标:1、学会单相电动机三个接线端的判断 2、学会单相电动机的正确接线 情感目标:1、培养学生养成良好的理科思维; 2、培养学生动手能力。 教学重点

1、单相电动机的正确接线 2、电容器大小对风扇运行的影响 教学难点 旋转磁场形成 课前材料准备(每组) 单相风扇一台(三根线),万用表一个,电源引线一个,小一字十字螺丝刀各一把 教学方法 做中学,任务驱动法 教学活动 一、组织教学(约2分钟) (1) 师生致礼(2) 考勤登记、清点人数 二、导入新课(约1分钟) 老师:你们家有单相电动机吗? 学生:不知道。 老师:那你们家有吊扇吗? 学生:有(没有)。 老师:你家新买的吊扇或者把吊扇移动位置,你会接线吗? 学生:不会。 老师:我们电气技术应用专业的学生这点小事该不该完成啊?有没有信心完成? 学生:有。

老师:下面我们就进行吊扇电动机的试接线。 三、讲授新课(约60分钟) 任务一风扇电动机的试接线 1、观察器材:风扇三个接线孔,电源和电容器共四个接线头,怎 么办? 老师:有些同学会想,学都没学过,怎么接啊?我告诉你,今天你必须得接,有些同学说:那我就乱接,没关系,你乱接好了;但是我先 要强调安全问题首先要注意人身安全,严防触电事故发生;其次要注意电路安全,不要出现短路事故,造成停电,所以电源的相线L 和零线N不能短接在一起。 2、开始接线(3-5分钟)(学生动手操作) 老师:只要接好的就请举手,结果怎样不要管。(叫一个学生) 老师:结果怎样? 学生:有响声,但不转。 老师:不同结果请举手

开关磁阻电机工作原理及其驱动系统

开关磁阻电机工作原理及其驱动系统 开关磁阻电机 Switched Reluctance Drivesystem, SRD 开关磁阻电机驱动系统(Switched Reluctance Drive system, SRD)具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,起动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率范围内都具有高输出和高效率而且有很好的容错能力。这使得SR电机驱动系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用。 SR电机是一种机电能量转换装置。根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能——电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能——发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程。 开关磁阻电机的发展概况和发展趋势 “开关磁阻电机(Switched reluctance motor)”一词源见于美国学者 S.A.Nasarl969年所撰论文,它描述了这种电机的两个基本特征:①开关性——电机必须工作在一种连续的开关模式,这是为什么在各种新型功率半导体器件可以获得后这种电机才得以发展的主要原因;②磁阻性——它是真正的磁阻电机,定、转子具有可变磁阻磁路,更确切地说,是一种双凸极电机。开关磁阻电机的概念实际非常久远,可以追溯到19世纪称为“电磁发动机”的发明,这也是现代步进电机的先驱。在美国,这种电机常常被称为“可变磁阻电机(variable reluctance motor, VR电机)”一词, 但是VR电机也是步进电机的一种形式,容易引起混淆。有时人们也用“无刷磁阻电机(Brushless reluctance motor)”一词,以强调这种电机的无刷性。“电子换向磁阻电机(Electronically commutated reluctance motor)”一词也曾采用,从工作原理来看,甚至比“开关磁阻”的说法更准确—些,但也容易与电子换向的水磁直流电机相混淆。毫无疑问,正是由于英国 P.J.Lawrenson教授及其同事们的杰出贡献,赋予了现代SR电机新的意义,开关磁阻电机一词也因此逐渐为人们所接受和采用。 从电机结构和运行原理上看,SR电机与大步距角的反应式步进电机十分相似,因此有人将SR电机看成是一种高速大步距角的步进电机。但事实上,两者是有本质差别的,这种差别体现在电机设计、控制方法、性能特性和应用场合等方面,见表11-1。

无刷直流电机工作原理详解

无刷直流电机工作原理详解 日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 2.1 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图2.1.1。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。

BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图2.1.2和图 2.1.3所示。

单相电机的倒顺开关正反转接线图及原理(一看便能搞懂)

单相电机的倒顺开关接线及原理 有不少电工对单相电机的接线搞不清。我先对单相电机的正反转原理讲一下。单机电机里面有二组线圈,一组是运转线圈(主线圈),一组是启动线圈(副线圈),大多的电机的启动线圈并不是只启动后就不用了,而是一直工作在电路中的。启动线圈电阻比运转线圈电阻大些,量下就知了。启动的线圈串了电容器的。也就是串了电容器的启动线圈与运转线圈并联,再接到220V电压上,这就是电机的接法。当这个串了电容器的启动线圈与运转线圈并联时,并联的二对接线头的头尾决定了正反转的。比起三相电动机的顺逆转控制,单相电动机要困难得多,一是因为单相电动机有启动电容、运行电容、离心开关等辅助装置,结构复杂;二是因为单相电动机运行绕组和启动绕组不一样,不能互为代用,增加了接线的难度,弄错就可能烧毁电动机。 有接线盒的单相电动机内部接线图

上图,是双电容单相电动机接线盒上的接线图,图上清晰的反映了电动机主绕组、副绕组和电容的接线位置,你只需要按图接进电源线,用连接片连接Z2和U2,UI和VI,电动机顺转,用连接片连接Z2和U1,U2和VI,电动机逆转。 单相电动机各个元件也好鉴别,电容都是装在外面,用肉眼就可以看清楚接线位置(如上图)启动电容接在V2—Z1位置,运行电容接在V1—Z1间,从里面引出的线也好鉴别,接在(如上图)UI—U2位置的是运行绕组,接在Z1—Z2位置的是启动绕组、接在V1—V2位置的是离心开关。用万用表也容易区分6根线,阻值最大的是启动绕组,阻值比较小的运行绕组,阻值为零的是离心开关。如果运行绕组和启动绕组阻值一样大,说明这两个绕组是完全相同的,可以互为代用。单相电动机的绕组两端和电容两端不分极性,任意接都可以,但启动绕组和运行绕组不能接反,启动电容和运行电容不能接反,否则容易烧启动绕组 以下是自己为了消化吸收而画的接线图,在此献给广大电工朋友,希望能给大家带来一些帮助。本人学识粗浅,特建立 QQ群:79694587 以便大家相互学习。

开关磁阻电机驱动系统的运行原理及应用

开关磁阻电机驱动系统的运行原理及应用(二) (低轴阻发电机参考资料) 1 引言 开关磁阻电机驱动系统(SDR)具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,启动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率访问内都具有高输出和高效率而且有很好的容错能力。这使得SR电机系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用。 SR电机是一种机电能量转换装置。根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能—电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能—发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程。本文将从SR电机电动和发电运行这两个角度阐述SR电机的运行原理。 2 电动运行原理 2.1 转矩产生原理 控制器根据位置检测器检测到的定转子间相对位置信息,结合给定的运行命令(正转或反转),导通相应的定子相绕组的主开关元件。对应相绕组中有电流流过,产生磁场;磁场总是趋于“磁阻最小”而产生的磁阻性电磁转矩使转子转向“极对极”位置。当转子转到被吸引的转子磁极与定子激磁相相重合(平衡位置)时,电磁转矩消失。此时控制器根据新的位置信息,在定转子即将达到平衡位置时,向功率变换器发出命令,关断当

前相的主开关元件,而导通下一相,则转子又会向下一个平衡位置转动;这样,控制器根据相应的位置信息按一定的控制逻辑连续地导通和关断相应的相绕组的主开关,就可产生连续的同转向的电磁转矩,使转子在一定的转速下连续运行;再根据一定的控制策略控制各相绕组的通、断时刻以及绕组电流的大小,就可使系统在最隹状态下运行。 图1 三相sr电动机剖面图 从上面的分析可见,电流的方向对转矩没有任何影响,电动机的转向与电流方向无关,而仅取决于相绕组的通电顺序。若通电顺序改变,则电机的转向也发生改变。为保证电机能连续地旋转,位置检测器要能及时给出定转子极间相对位置,使控制器能及时和准确地控制定子各相绕组的通断,使srm能产生所要求的转矩和转速,达到预计的性能要求。 2.2 电路分析

交流单相电动机正反转接线示意图

交流单相电动机正反转接线(图) 220V交流单相电机一般都有两个绕组,其中阻值大的是启动绕组(也叫副 绕组),阻值小的是运行绕组(也叫主绕组),如果两绕组阻值相同,则不用区分启动绕组和运行绕组,任一组都可作启动绕组或运行绕组。用万用表找到引出端测量电阻就可以发现了:对于起动绕组与运行绕组的判断,通常起动绕组比运行绕组直流电阻大很多,用万用表可测出。一般运行绕组直流电阻为几欧姆,而起动绕组的直流电阻为十几欧姆到几十欧姆。电阻最大的是两线圈的串联阻值,最小的是运行绕组,连接电源,阻值在中间的就是启动绕组,串联电容后连接电源。 起动方式一般都是分相起动式,可分为以下几种: 第一种,系由辅助起动绕组来辅助启动,其起动转矩不大。运转速率大致保持定值。主要应用于电风扇,空调风扇电动机,洗衣机等电动机,如图1所示。 图1电容运转型接线电路 第二种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开,不参与运行工作,而电动机以运行绕组线圈继续动作。 图2电容起动型接线电路 第三种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。而运行电容串接到起动绕组参与运行工作。这种接法一般用在空气压缩机,切割机,木工机床等负载大而不稳定的地方,如图3所示。带有离心开关的电机,如果电机不能在很短时间内启动成功,那么绕组线圈将会很快烧毁。电容值:双值电容电机,起动电容容量大,运行电容容量小,耐压一般大于400V。

开关磁阻电动机原理

开关磁阻电动机原理 Switched Reluctance Motor 开关磁阻电动机(SR)是近些年发展的新型调速电机,结构简单结实、调速范围宽且性能好,现已广泛用在仪器仪表、家电、电动汽车等领域。 下面通过一个开关磁阻电动机原理模型来介绍工作原理。 双凸极结构 磁阻电机的定子铁芯有六个齿极,由导磁良好的硅钢片冲制后叠成,见下图。 磁阻电机定子铁芯 磁阻电机的转子铁芯有四个齿极,由导磁良好的硅钢片冲制后叠成,见下图。 磁阻电机转子铁芯

与普通电机一样,转子与定子直接有很小缝隙,转子可在定子内自由转动,见下图。 双凸极结构的定子铁芯与转子铁芯 由于定子与转子都有凸起的齿极,这种形式也称为双凸极结构。在定子齿极上绕有线圈(定子绕组),是向电机提供工作磁场的励磁绕组。 定子铁芯上有励磁绕组 在转子上没有线圈,这是磁阻电机的主要特点。在讲电动机工作原理时常用通电导线在磁场中受力来解释电动机旋转的道理,但磁阻电机转子上没有线圈,也无“鼠笼”,那是靠什么力推动转子转动呢?磁阻电动机则是利用磁阻最小原理,也就是磁通总是沿磁阻最小的路径闭合,利用齿极间的吸引

力拉动转子旋转。 三相6/4结构工作原理 下面通过图示来说明转子的工作原理,下面是磁阻电动机的正视图,定子六个齿极上绕有线圈,径向相对的两个线圈连接在一起(标有紫色圆点的线端连接在一起),组成一“相”,该电机有3相,结合定子与转子的极数就称该电机为三相6/4结构。在下图标注的A相、B相、C相线圈仅为后面分析磁路带来方便,并不是连接普通的三相交流电。 磁阻电机励磁绕组分布图 在下面有一组磁阻电动机运转原理动画的截图,从中我们将看到磁阻电动机是如何转动起来的。A 相、B相、C相线圈由开关控制电流通断,图中红色的线圈是通电线圈,黄色的线圈没有电流通过;通过定子与转子的深蓝色线是磁力线;约定转子启动前的转角为0度。 从左面图起,A相线圈接通电源产生磁通,磁力线从最近的转子齿极通过转子铁芯,磁力线可看成极有弹力的线,在磁力的牵引下转子开始异时针转动;中间图是转子转了10度的图,右面图是转到20度的图,磁力一直牵引转子转到30度为止,到了30度转子不再转动,此时磁路最短。

同步电机的基本工作原理和结构

同步电机的基本工作原理和结构 第一节精编资料 本章主要介绍同步电机的结构和基本工作原理,同步电机的电动势和磁动势,异步电动...二,同步电机的工作原理1磁场:三相同步电机运行时存在两个旋转磁场: 定子旋转磁场... 原理,结构 同步电机的基本工作原理和结构 本章主要介绍同步电机的结构和基本工作原理、同步电机的电动势和磁动势、异步电动机的电势平衡,磁势平衡、等值电路及相量图、功率转矩、同步发电机运行原理等内容。本章共有10节课,内容和时间分配如下: 1.掌握同步电机的结构特点及工作原理。(2节) 2.掌握同步电机绕组有关的结构、额定参数(1节) 3.掌握同步电机机绕组的磁动势、等效电路,一般掌握相量图。(3节) 4.掌握同步电机功率、转矩和同步电机启动特性。(2节) 5.了解同步发电机的运行原理。(2节) 一、简介 交流电机,根据用途,可以分为同步发电机、同步电动机和同步补偿机三类。 (交流电能几乎全部是由同步发电机提供的。目前电力系统中运行的发电机都 是三相同步发电机。 同步电动机可以通过调节其励磁电流来改善电网的功率因数,因而在不需要调速的低速大功率机械中也得到较广泛的应用。随着变频技术的不断发展,同步电动机的起动和调速问题都得到了解决,从而进一步扩大了其应用范围。

同步补偿机实质上是接在交流电网上空载运行的同步电动机,其作用是从电网汲取超前无功功率来补偿其它电力用户从电网汲取的滞后无功功率,以改善电网的供功率因数。) 二、同步电机的工作原理 1磁场:三相同步电机运行时存在两个旋转磁场: 定子旋转磁场和转子旋转磁场。定子旋转磁场—又常称为电枢磁势,而相应的磁场称为电枢磁场60f1n,速度:同步速度,即 1p 方向:从具有超前电流的相转向具有滞后电流的相。 形成原因:以电气方式形成。 (当对称三相电流流过定子对称三相绕组时,将在空气隙中产生旋转磁通势。它的旋转速度 60f1n,1p为同步速度,即;它的旋转方向是从具有超前电流的相转向具有滞后电流的相;当某相电流达到最大值的瞬间,旋转磁势的振幅恰好转到该相绕组轴线处。这个旋转磁通势是以电气方式形成的。同步电机不论作为发电机运行还是作为电动机运行,只要其定子三相绕 组中流通对称三相电流,都将在空气隙中产生上述旋转磁通势,建立旋转磁场。同步电机的定子绕组被称为电枢绕组,因此,上述磁势又常称为电枢磁势,而相应的磁场称为电枢磁场。转子旋转磁场—直流励磁的旋转磁场。 60f1n, 速度:同步速度,即1p 方向:与定子相同。 形成原因:机械方式形成。 (在同步电机的转子上装有由直流励磁产生的磁极,磁极与转子无相对运动。当转子旋转时, 以机械方式形成旋转磁通势,并在气隙中形成另一种旋转磁场。由于磁场随转子一同旋转,被称为直流励磁的旋转磁场。) 2 电动势—两个旋转磁场切割绕组产生。

单相交流电机的工作原理

单相交流电机的工作原理 一、单相交流电动机只有一个绕组,转子是鼠笼式的。当单相正弦电流通过定子绕组时,电动机就会产生一个交变磁场,这个磁场的强弱和方向随时间作正弦规律变化,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场。这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子静止时,这两个旋转磁场在转子中产生两个大小相等、方向相反的转矩,使得合成转矩为零,所以电动机无法旋转。当我们用外力使电动机向某一方向旋转时(如顺时针方向旋转),这时转子与顺时针旋转方向的旋转磁场间的切割磁力线运动变小;转子与逆时针旋转方向的旋转磁场间的切割磁力线运动变大。这样平衡就打破了,转子所产生的总的电磁转矩将不再是零,转子将顺着推动方向旋转起来。 要使单相电动机能自动旋转起来,我们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个合适的电容,使得与主绕组的电流在相位上近似相差90度,即所谓的分相原理。这样两个在时间上相差90度的电流通入两个在空间上相差90度的绕组,将会在空间上产生(两相)旋转磁场,在这个旋转磁场作用下,转子就能自动起动,起动后,待转速升到一定时,借助于一个安装在转子上的离心开关或其他自动控制装置将起动绕组断开,正常工作时只有主绕组工作。因此,起动绕组可以做成短时工作方式。但有很多时候,起动绕组并不断开,我们称这种电动机为电容式单相电动机,要改变这种电动机的转向,可由改变电容器串接的位置来实现。 在单相电动机中,产生旋转磁场的另一种方法称为罩极法,又称单相罩极式电动机。此种电动机定子做成凸极式的,有两极和四极两种。每个磁极在1/3--1/4全极面处开有小槽,把磁极分成两个部分,在小的部分上套装上一个短路铜环,好象把这部分磁极罩起来一样,所以叫罩极式电动机。单相绕组套装在整个磁极上,每个极的线圈是串联的,连接时必须使其产生的极性依次按N、S、N、S排列。当定子绕组通电后,在磁极

开关磁阻电机的基本了解

开关磁阻电机的基本学习内容 1 开关磁阻电机的基本原理以及结构 开关磁阻电动机(Switched Reluctance Motor ,简称SRM) 定转子为双凸极结构,铁心均由普通硅钢片叠压而成,其定子极上有集中绕组,径向相对的两个绕组串联构成一相,转子非永磁体,其上也无绕组[1,3]。SRM 的定转子极数必须满足如下约束关系: s r s N =2km N = N + 2k (1-1) 其中,Ns ,Nr 分别为电机定、转子数;m 为电机相数值减1;k 为一常数。以下图1-1所示一个典型四相8/6极SRM 为例,相数为4,因而m=3,取k=1,则Ns=6,Nr=8。m 及k 值越高,越利于高控制性能控制,但相应成本越高,结构越复杂。目前技术较为成熟,发展较为迅速的产品多为三、四相SRM [2]。

图1-1即为一典型四相8/6结构的SRM电机本体及其不对称功率变换器主电路的示意图(图1-1在末尾手画)。为表述清晰,图中仅画出不对称半桥电路的一相,其他各相均与该相相同,并省略了相应的驱动及检测电路。完整的开关磁阻电机调速系统(Switched Reluctance Motor Drive,简称SRD)则由SRM、功率变换器、控制器、位置检测器等四大部分组成,如下图1-2示。 SRM可以认为是同步电机的一个分支,它运行时遵循磁阻最小原理,同步进电机较为类似[2,30]。其具体运行原理如下:首先要保证励磁相的定子凸极和最近的转子凹极中心线不重合,也即初始位移不能位于磁阻最小位置。通以交流电后,经过一个整流桥变为直流电源,当开关S1和S2开通时,AA’相通电励磁,产生一个磁拉力。在该电磁力的轴向分量作用下,产生电磁转矩,凸极转子铁心趋向于旋转到定转子极轴线B-B’与A-A’重合的位置;而电磁力的径向力分量则造成定子的“变形”,这也是产生转矩脉动和电机噪声的根本原因之一。在该过程中电机吸收电能。关断S1和S2,开通BB’相,此时AA’相经续流二极管VD1、VD2将电能回馈给电源,同时BB’相趋向运行到定转子极轴线C-C’与B-B’重合的位置。以此类推,顺次给A→B→C→D相循环励磁,在惯性和轴向力的作用下,转子将一直逆着励磁顺序旋转,从而完成自同步运行。同理若改变励磁顺序为C→B→A→D,则转子沿顺时针方向转动。由此可以看出, SRM与直流电机不同,其运行方向与相电流方向无关,而仅与相绕组通电顺序有关。 图1-2开关磁阻电机调速系统构成

开关磁阻电机的原理及其控制系统

开关磁阻电机的原理及其控制系统 开关磁阻电机80年代初随着电力电子、微电脑和控制理论的迅速发展而发展起来的一种新型调速驱动系统。具有结构简单、运行可靠、成本低、效率高等突出优点,目前已成为交流电机调速系统、直流电机调速系统、无刷直流电机调速系统的强有力的竞争者。 一、开关磁阻电机的工作原理 开关磁阻电机的工作原理遵循磁磁阻最小原理,即磁通总是要沿着磁阻最小路径闭合。因此,它的结构原则是转子旋转时磁路的磁阻要有尽可能大的变化。所以开关磁阻电动机采用凸极定子和凸极转子的双凸极结构,并且定转子极数不同。 开关磁阻电机的定子和转子都是凸极式齿槽结构。定、转子铁芯均由硅钢片冲成一定形状的齿槽,然后叠压而成,其定、转子冲片的结构如图1所示。

图1:开关磁阻电机定、转子结构图 图1所示为12/8极三相开关磁阻电动机,S1. S2是电子开关,VD1, VD2是二极管,是直流电源。 电机定子和转子呈凸极形状,极数互不相等,转子由叠片构成,定子绕组可根据需要采用串联、并联或串并联结合的形式在相应的极上得到径向磁场,转子带有位置检测器以提供转子位置信号,使定子绕组按一定的顺序通断,保持电机的连续运行。电机磁阻随着转子磁极与定子磁极的中心线对准或错开而变化,因为电感与磁阻成反比,当转子磁极在定子磁极中心线位置时,相绕组电感最大,

当转子极间中心线对准定子磁极中心线时,相绕组电感最小。 当定子A相磁极轴线OA与转子磁极轴线O1不重合时,开关S1, S2合上,A相绕组通电,电动机内建立起以OA为轴线的径向磁场,磁通通过定子扼、定子极、气隙、转子极、转子扼等处闭合。通过气隙的磁力线是弯曲的,此时磁路的磁导小于定、转子磁极轴线重合时的磁导,因此,转子将受到气隙中弯曲磁力线的切向磁拉力产生的转矩的作用,使转子逆时针方向转动,转子磁极的轴线O1向定子A相磁极轴线OA趋近。当OA和O1轴线重合时,转子己达到平衡位置,即当A相定、转子极对极时,切向磁拉力消失。此时打开A相开关S1, S2,合上B相开关,即在A相断电的同时B相通电,建立以B相定子磁极为轴线的磁场,电动机内磁场沿顺时针方向转过300,转子在磁场磁拉力的作用下继续沿着逆时针方向转过15,。依此类推,定子绕组A-B-C三相轮流通电一次,转子逆时针转动了一个转子极距Tr(T.=2π/N,),对于三相12/8极开关磁阻电机, T=3600/8=o 45,定子磁极产生的磁场轴线则顺时针移动了3×30'=90'空间角。可见,连续不断地按A-B-C-A的顺序分别给定子各相绕组通电,电动机内磁场轴线沿A-B-C-A的方向不断移动,转子沿A-C-B-A的方向逆时针旋转。如果按 A-C-B-A的顺序给定子各相绕组轮流通电,则磁场沿着A-C-B-A的方向转动,转子则沿着与之相反的A-B-C-A方向顺时针旋转。 二、开关磁阻电机的控制原理 传统的PID控制一方面参数的整定没有实现自动化,另一方面这种控制必须精确地确定对象模型。而开关磁阻电动机( SRM) 得不到精确的数学模型, 控制参数变化和非线性, 使得固定参数的PID 控制不能使开关磁阻电动机控制系统在各种工况下保持设计时的性能指标。

同步电机原理和结构

每相感应电势的有效值为

(15.2) ◆ 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 同步转速 ◆同步转速 从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz ,故有: (15.3) ◆要使得发电机供给电网50Hz 的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min ,4极电机的同步转速为1500r/min ,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。 运行方式 ◆同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。 作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。 同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 ? 西安交通大学电机教研室 版权所有,侵权必究 2000.12?

水轮发电机 水轮发电机的特点是:极数多,直径大,轴向长度短,整个转子在外形上与汽轮发电机大不相同。大多数水轮发电机为立式。水轮发电机的直径很大,定子铁心由扇形电工钢片拼装叠成。为了散热的需要,定子铁心中留有径向通风沟。转子磁极由厚度为1~2mm 的钢片叠成;磁极两端有磁极压板,用来压紧磁极冲片和固定磁极绕组。有些发电机磁极的极靴上开有一些槽,槽内放上铜条,并用端环将所有铜条连在一起构成阻尼绕组,其作用是用来拟制短路电流和减弱电机振荡,在电动机中作为起动绕组用。磁极与磁极轭部采用 T 形或鸽尾形连接,如图15.4所示。 隐极式转子 隐极式转子上没有凸出的磁极,如图15.2b 所示。沿着转子本体圆周表面上,开有许多槽,这些槽中嵌放着励磁绕组。在转子表面约1/3部分没有开槽,构成所谓大齿,是磁极的中心区。励磁绕组通入励磁电流后,沿转子圆周也会出现 N 极和 S 极。在大容量高转速汽轮发电机中,转子圆周线速度极高,最大可达170米/秒。为了减小转子本体及转子上的各部件所承受的巨大离心力,大型汽轮发电机都做成细长的隐极式圆柱体转子。考虑到转子冷却和强度方面的要求,隐极式转子的结构和加工工艺较为复杂。

详解单相电机电容接线图

详解单相电机电容接线图 220V交流单相电机起动方式大概分一下几种:第一种,分相起动式,如图1所示,系由辅助起动绕组来辅助启动,其起动转矩不大。运转速率大致保持定值。主要应用于电风扇,空调风扇电动机,洗衣机等电机。接线图 第二种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。起动绕组不参与运行工作,而电动机以运行绕组线圈继续动作,如图2。 第三种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。而运行电容串接到起动绕组参与运行工作。这种接法一般用在空气压缩机,切割机,木工机床等负载大而不稳定的地方。如图3。838电子 带有离心开关的电机,如果电机不能在很短时间内启动成功,那么绕组线圈将会很快烧毁。 电容值:双值电容电机,起动电容容量大,运行电容容量小,耐压一般都大于400V。 正反转控制: 图4是带正反转倒顺开关的接线图,通常这种电机的起动绕组与运行绕组的电阻值是一样的,就是说电机的起动绕组与运行绕组是线径与线圈数完全一致的。一般洗衣机用得到这种电机。这种正反转控制方法简单,不用复杂的转换开关。 图1,图2,图3,图5 正反转控制,只需将1-2线对调或3-4线对调即可完成逆转。 对于图1,图2,图3,的起动与运行绕组的判断,通常起动绕组比运行绕组直流电阻大很多,用万用表可测出。一般运行绕组直流电阻为几欧姆,而起动绕组的直流电阻为十几欧姆到几十欧姆。

图1 电容运转型接线电路 图2 电容起动型接线电路 图3 电容启动运转型接线电路(双值电容器)

电动机的基本结构及工作原理

电动机的基本结构及工作原理 交流电机分异步电机和同步电机两大类。异步电机一般作电动机使用,拖动各种生产机械作功。同步电机分分为同步发电机和同步电动机两类。根据使用电源不同,异步电机可分为三相和单相两种型式。 一、异步电动机的基本结构 三相异步电动机由定子和转子两部分组成。因转子结构不同又可分为三相笼型和绕线式电机。 1、三相异步电动机的定子: 定子主要由定子铁心、定子绕组和机座三部分组成。定子的作用是通入三相对称交流电后产生旋转磁场以驱动转子旋转。定子铁心是电动机磁路的一部分,为减少铁心损耗,一般由0.35~0.5mm厚的导磁性能较好的硅钢片叠成圆筒形状,安装在机座内。定子绕组是电动机的电路部分,安嵌安在定子铁心的内圆槽内。定子绕组分单层和双层两种。一般小型异步电机采用单层绕组。大中型异步电动机采用双层绕组。机座是电动机的外壳和支架,用来固定和支撑定子铁心和端盖。 电机的定子绕组一般采用漆包线绕制而成,分三组分布在定子铁心槽内(每组间隔120O),构成对称的三相绕组。三相绕组有6个出线端,其首尾分别用U1、U2;V1、V2;W1、W2表示,连接在电机机壳上的接线盒中,一般3KW以下的电机采用星形接法(Y接),3KW以上的电机采用三角形接法(△接)。当通入电机定子的三相交流电相序改变后,因定子的旋转磁场方向改变,所以电机的转子旋转方向也改变。

2、三相异步电动机的转子:

转子主要由转子铁心、转子绕组和转轴三部分组成。转子的作用是产生感应电动势和感应电流,形成电磁转矩,实现机电能量的转换,从而带动负载机械转动。转子铁心和定子、气隙一起构成电动机的磁路部分。转子铁心也用硅钢片叠压而成,压装在转轴上。气隙是电动机磁路的一部分,它是决定电动机运行质量的一个重要因素。气隙过大将会使励磁电流增大,功率因数降低,电动机的性能变坏;气隙过小,则会使运行时转子铁心和定子铁心发生碰撞。一般中小型三相异步电动机的气隙为0.2~1.0mm,大型三相异步电动机的气隙为1.0~1.5mm。 三相异步电动机的转子绕组结构型式不同,可分为笼型转子和绕线转子两种。笼型转子绕组由嵌在转子铁心槽内的裸导条(铜条或铝条)组成。导条两端分别焊接在两个短接的端环上,形成一个整体。如去掉转子铁心,整个绕组的外形就像一个笼子,由此而得名。中小型电动机的笼型转子一般都采用铸铝转子,即把熔化了的铝浇铸在转子槽内而形成笼型。大型电动机采用铜导条;绕线转子绕组与定子绕组相似,由嵌放在转子铁心槽内的三相对称绕组构成,绕组作星形形联结,三个绕组的尾端连结在一起,三个首端分别接在固定在转轴上且彼此绝缘的三个铜制集电环上,通过电刷与外电路的可变电阻相连,用于起动或调速。 3、三相异步电动机的铭牌: 每台电动机上都有一块铭牌,上面标注了电动机的额定值和基本技术数据。铭牌上的额定值与有关技术数据是正确选择、使用和检修电动机的依据。下面对铭牌中和各数据加以说明: 型号异步电动机的型号主要包括产品代号、设计序号、规格代号和特殊环境代号等。产品代号表示电动机的类型,用汉语拼音大写字母表示;设

单相电机启动原理与解析

单相电机启动原理 摘要: 220V交流单相电机起动方式大概分以下几种:第一种,分相起动式,如图1所示,系由辅助起动绕组来辅助启动,其起动转矩不大。运转速率大致保持定值。主要应用于电风扇,空调风扇电动机,洗衣机等电机。第二种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。 单相电不能产生旋转磁场.要使单相电动机能自动旋转起来,可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个合适的电容,使得与主绕组的电流在相位上相差90度,即所谓的分相原理。这样两个在时间上相差90度的电流通入两个在空间上相差90度的绕组,将会在空间上产生(两相)旋转磁场,在这个旋转磁场作用下,转子就能自行启动旋转起来。 它有两个绕组,一般主绕组线径较大一点,还有一个启动绕组(副绕组),启动绕组串联一个电容器,是它的电压迟后电流90度,这样两组绕组得到不同的磁场,形成了旋转磁场,电动机就转起来了。 220V交流单相电机起动方式大概分以下几种: 第一种,分相起动式,如图1所示,系由辅助起动绕组来辅助启动,其起动转矩不大。运转速率大致保持定值。主要应用于电风扇,空调风扇电动机,洗衣机等电机。 第二种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。起动绕组不参与运行工作,而电动机以运行绕组线圈继续动作,如图2。

第三种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。而运行电容串接到起动绕组参与运行工作。这种接法一般用在空气压缩机,切割机,木工机床等负载大而不稳定的地方。如图3。 带有离心开关的电机,如果电机不能在很短时间内启动成功,那么绕组线圈将会很快烧毁。电容值:双值电容电机,起动电容容量大,运行电容容量小,耐压一般大于400V。 正反转控制: 图4是带正反转开关的接线图,通常这种电机的起动绕组与运行绕组的电阻值是一样的,就是说电机的起动绕组与运行绕组是线径与线圈数完全一致的。一般洗衣机用得到这种电机。这种正反转控制方法简单,不用复杂的转换开关。 图1,图2,图3,正反转控制,只需将1-2线对调或3-4线对调即可完成逆转。 对于图1,图2,图3,的起动与运行绕组的判断,通常起动绕组比运行绕组直流电阻大很多,用万用表可测出。一般运行绕组直流电阻为几欧姆,而起动绕组的直流电阻为十几欧姆到几十欧姆。

无刷电机工作及控制原理(图解)

无刷电机工作及控制原理(图解) 左手定则,这个是电机转动受力分析的基础,简单说就是磁场中的载流导体,会受到力的作用。 让磁感线穿过手掌正面,手指方向为电流方向,大拇指方向为产生磁力的方向,我相信喜欢玩模型的人都还有一定物理基础的哈哈。

让磁感线穿过掌心,大拇指方向为运动方向,手指方向为产生的电动势方向。为什么要讲感生电动势呢?不知道大家有没有类似的经历,把电机的三相线合在一起,用手去转动电机会发现阻力非常大,这就是因为在转动电机过程中产生了感生电动势,从而产生电流,磁场中电流流过导体又会产生和转动方向相反的力,大家就会感觉转动有很大的阻力。不信可以试试。 三相线分开,电机可以轻松转动 三相线合并,电机转动阻力非常大 右手螺旋定则,用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指的那一端就是通电螺旋管的N极。

状态1 当两头的线圈通上电流时,根据右手螺旋定则,会产生方向指向右的外加磁感应强度B(如粗箭头方向所示),而中间的转子会尽量使自己内部的磁感线方向与外磁感线方向保持一致,以形成一个最短闭合磁力线回路,这样内转子就会按顺时针方向旋转了。 当转子磁场方向与外部磁场方向垂直时,转子所受的转动力矩最大。注意这里说的是“力矩”最大,而不是“力”最大。诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。补充一句,力矩是力与力臂的乘积。其中一个为零,乘积就为零了。 当转子转到水平位置时,虽然不再受到转动力矩的作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管的电流方向,如下图所示,转子就会继续顺时针向前转动,

单相电机的工作原理

单相电机的工作原理 当绕组中通入单相交流电流后,产生一个强弱和正负不断变化的交变脉动磁场。这磁场没有旋转性,不能象三相电机那样使转子自行起动。但用外力使转子往任一方向转动一下,则转子便会按外力作用方向继续旋转,并逐步提高转速达到稳定运状态。为了克服不能自行起动的缺点,设计了各种起动方法,按起动方法的不同,电机可分成五类:罩极式、分相式、电容式、通用(串激)式和推斥式。这几种起动方式都是促使单相电源分裂为两相,从而产生旋转磁场,使电机自行起动旋转 单相异步电动机的工作原理 在交流电机中,当定子绕组通过交流电流时,建立了电枢磁动势,它对电机能量转换和运行性能都有很大影响。所以单相交流绕组通入单相交流产生脉振磁动势,该磁动势可分解为两个幅值相等、转速相反的旋转磁动势和,从而在气隙中建立正传和反转磁场和。这两个旋转磁场切割转子导体,并分别在转子导体中产生感应电动势和感应电流。 该电流与磁场相互作用产生正、反电磁转矩。正向电磁转矩企图使转子正转;反向电磁转矩企图使转子反转。这两个转矩叠加起来就是推动电动机转动的合成转矩。 电容分相式起动工作原理 启动时开关K闭合,使两绕组电流I1,I2相位差约为90°,从而产生旋转磁场,电机转起来;转动正常以后离心开关被甩开,启动绕组被切断。 罩极式单相电机的工作原理 定子通入电流以后,部分磁通穿过短路环,并在其中产生感应电流。短路环中的电流阻碍磁通的变化,致使有短路环部分和没有短路环部分产生的磁通有了相位差,从而形成旋转磁场,使转子转起来。

控制回路要先将分别控制正反转停止的两个按钮串联接好,随后将两个分别控制正反转启动的两个按钮并联接好后与停钮的一端接好,停钮的另一端准备与电源连接,然后再把分别正转反转主接触器的常开辅助接点分别并联在各自相对应的启动按钮两端,之后再将各自主接触器的常闭辅助接点串联到对方的启动回路中,也就是说正转的常闭串接在反转启动按钮的一端,相对应反转的常闭接点要与正转的启动按钮一端串联,起到互锁的作用,(就是说正转运行时期接触器常闭辅助接点会将反转的启动回路断开,反之则依然是这个道理,为的是防止同时期按下下按钮会造成一次回路的相间短路,这个待会再解释),然后将两个常闭接点的另一端分别与所对应的启动回路的主接触器的线圈一段进行连接(就是说控制正转地启动的回路就串接正转接触器的线圈一段,反转起动控制回路就与反转的主接触器线圈一端串接,不要弄混了)将两个线圈的另一端并联接在一起后接入热继电器的常闭接点的一端,热继电器常闭接点的另一端准备与中性点N或另一相线连接,这要看主接触器线圈的电压(220V就与中性点N连接,380v的话就接另外一相线),还需要在控制回路的最前端即停止按钮准备接电源的一端在接相线制前要经过一个控制保险,现在只能说控制回路接好了。 下面就接主回路,主回路需要2个接触器,分别用于正转和反转时接通主回路,所以将两个接触器主触头的上端分别与三相交流电源的3条相线连接,而主触头的下端对应的触头上则要将其中任意两条线互换一下,然后按照互换以后的顺序接入电动机绕组连接好以后的3个连接片上(比如说三相电源ABC顺序接到一个接触器上口,并在此处按照相同的顺序与另外一个接触器上口并联,然后其中一个接触器的下口还按照ABC的顺序引出线接到电机绕组连接片,而同时要按照ACB或BAC或CBA的顺序将引出线接到另外一个接触器的下口),另外还要在接触器到电机接线盒接线处之间先行串接热继电器的主接点,同时还要在电源引线与接触器上口之间串接熔断器。这样全部回路大致接好了。 短路保护由熔断器担负,过载有热继电器承担。 这个回路是比较简单的,大致原理是保证电机正转时反转不能接通,而反转时正转也不能接通,否则同时吸合接触器就会使三相交流电在接触器下口形成短路,所以要在回路中加闭锁,再有就是无论反转还是正转都要求随时可以停止电机运行,因此停止按钮要串联,起纽要并联。

相关主题
文本预览
相关文档 最新文档