当前位置:文档之家› 风力发电控制技术的发展现状

风力发电控制技术的发展现状

风力发电控制技术的发展现状
风力发电控制技术的发展现状

风力发电技术系列讲座(3)

风力发电控制技术的发展现状

王宏华

(河海大学自动化工程系,南京,210098)

摘要:本文阐述了风力发电控制系统的基本结构和工作原理,综述了风力发电控制技术的发展现状及发展趋势。

关键词:风力发电,系统,控制

The Series of Lectures on Wind Power Technology(Part 3)

Development of Control Technologies for Wind Power System

Wang Honghua

(Department of Automation Engineering ,Hohai University , Nanjing,210098,China) Abstract: This paper describes the principle and structure of wind power control system, and presents the latest development trend and research progress of control technologies for wind power system .

Key words: Wind power ,System,Control

0.引言

众所周知,风能是一种能量密度低、稳定性差的能源,保证运行的可靠性和安全性、提高风力发电的质量和效率、延长风电机组的寿命是风力发电控制系统的基本目标。图1为基于DCS技术的大型风电机组控制系统总体结构框图[1-5]。

图1 风电机组控制系统总体结构

主控制器监测电力参数、风力参数、机组状态参数,起/停其他功能模块,实时监控风电系统工作状态。人机界面主要实现运行操作、状态显示、故障记录、趋势曲线、绘制报表、用户管理等功能。软切入控制的主要功能是限制发电机并网和大小发电机切换时的冲击电流、平稳风力发电机并网过渡过程。偏航控制系统主要包括自动偏航、手动偏航、90o侧风、自动解缆等功能[2]。大型风电机组均采用主动对风控制,当风轮主轴方向与风向标指向偏离超出允许偏差范围且持续一定时间后,偏航系统控制伺服(偏航)电动机运转使风轮主轴方向跟踪主风向。液压系统执行风力机的变桨距和制动操作,实现风电机组的功率控制、转速控制及开停机控制。制动系统是风电机组安全保障的重要环节,在定桨距机组中,通过叶尖挠流器执行气动刹车;而在变桨距机组中,通过控制变桨距机构也可控制机械刹车机构。

另外,风电机组的控制设备还包含安全保护系统,其是传感器和工控机的集成,包括超速保护、电网失电保护、电气保护(过电压及短路保护、防雷击保护等)、机组振

作者简介:王宏华(1963—),男,江苏泰州人,博士。现为河海大学教授、博士生导师。研究方向为新型交直流电力传动等。

动保护、发电机过热保护等,主要执行停机和紧急停机程序,其具有最高优先权,可进入至少两套刹车系统。

以上概述了风电机组控制系统的一般功能,为了更好地实现提高风力发电质量、效率的目标,应对风电机组的稳态运行工作点进行精确控制,其控制技术发展的3个主要阶段为:从起源于丹麦的定桨距恒速恒频控制到20世纪90年代发展起来的变桨距恒速恒频控制;再到目前已广泛应用的变桨距变速恒频控制。本文总结了这3个发展阶段的运行控制技术,综述了风力发电控制技术的发展趋势。

1.定桨距失速控制

定桨距风力机的桨叶固定在轮毂上,桨叶的迎风角度不随风速的变化而改变,即叶片桨距角不可调。当风速高于额定风速(一般为12~16m/s)时,其依赖于叶片独特的翼形结构所具备的自动失速性能而将功率自动限制在额定值附近。20世纪80年代叶尖挠流器在定桨距风电机组得到成功应用,使桨叶自身具备了制动能力,有效解决了突甩负载情况下的安全停机问题。为了使机组在低风速段运行时具有较高效率,定桨距风电机组采用双速发电机、双绕组双速感应发电机等以实现不连续变速功能[2]。对联网运行的定桨距风电机组,晶闸管恒流软切入装置是其控制系统的重要部分。

定桨距失速控制无功率反馈系统和变桨距机构,结构简单,安全系数较高,不需要复杂的控制程序,但其性能受叶片失速性能限制,起动风速较高,在风速超过额定值时发电功率下降。为了提高功率调节性能,近年来又研制出主动失速型风电机组[1-2]。

2.变桨距控制

变桨距风轮的桨叶与轮毂不象定桨距那样采用刚性联接,其叶片的桨距角可随风速变化进行调节,以调节风电机组的功率。在额定功率以下时,为最大限度获得风能,控制器将桨距角调至0o附近并固定,发电机的功率根据叶片的气动性能随风速变化而变化;当风速过高,高于额定功率时,增大桨距角使风轮迎风面积减小,从而将发电机功率保持在额定值。变桨距调节具有额定点风能利用系数较高、起/制动性能好、输出功率平稳等优点,故成为大型风电机组的最佳选择。但随着并网机组向大型化方向发展,桨叶转动惯量巨大(大型风机的单个叶片重达数吨,有的风轮直径已达一百多米),仅采用桨距角控制难以适应风速的快速变化。为了有效控制快速变化的风速引起的功率波动,近年来出现了采用转子电流控制(RCC)技术以调整绕线型异步发电机转差率的新型变桨距控制系统[1],如图2所示。

图2 带转差率调节的变桨距控制系统

图2中,转速控制器的输出为桨距给定,桨距控制器为非线性比例控制器,其输出控制液压伺服系统,使桨距角变化。其中,转速控制器A在发电机并网前工作,即在机组进入待机状态或从待机状态重新起动时投入工作,通过调节桨距角,使发电机以一定的加速度升速,当发电机在同步转速(50Hz时1500r/min) 10 r/min(可调)内持续1s (可调)时发电机将切入电网,并切换为转速控制器B和功率控制器工作。

转速控制系统B的输入为速度偏差和风速,在达到额定值前,速度给定随功率给定按比例增加。若风速和功率输出一直低于额定,将根据风速输出最佳的桨距给定,以优化叶尖速比;若风速超出额定,通过改变桨距角使发电机转速跟踪给定,将输出功率稳定在额定。图2中,风速信号是经低通滤波器后参与桨距控制的,即桨距控制对瞬变风速并不响应。在瞬变风速下维持输出功率稳定是通过功率控制器进行的,其通过绕线型异步发电机转子电流控制环实现(参见本系列讲座(2)中的图1“绕线转子电流受控的

异步风力发电机”结构),即根据功率控制器输出的电流给定值,通过电力电子装置调整转子回路等效电阻(其动作时间在毫秒级以下),从而迅速调节发电机转差率,即迅速改变风轮转速,吸收瞬变风速引起的功率波动,实现额定风速以上且风速频繁变化时的发电机输出额定功率,减少变距机构的动作频率和幅度。

3.变速控制 目前,变桨距变速恒频风电机组已成为大型并网风电机组的主流机型,其基本控制策略为:低于额定风速时,控制发电机转速以跟踪风速变化,使风轮叶尖速比保持在最佳值,实现最大风能跟踪(MPPT )控制;高于额定风速时,调节桨距以限制风力机吸收的功率不超过极限值,并在风速大幅度变化时使发电机保持输出功率恒定。 3.1 额定风速以下实现MPPT 的转速控制 图3为桨距角不变,不同风速V i 下风力机的输出功率特性。图中,ωi 是对应V i 使风力机具有最佳叶尖速比λopt 的风轮角速度,将V i 、ωi 对应的各风速下最大输出功率点相连即为最大功率曲线P opt 。

图3 风力机功率特性 在P opt 曲线上运行的风力机将输出最大功率P opt ,即 3

i opt ωK P =

式中,2/)/(max 3p opt C R S K λρ=,ρ为空

气密度,S 为风轮扫风面积,R 为风轮半径,λopt 为最佳叶尖速比,C pmax 为最大风能利用系数。 目前常用的最大风能跟踪控制方法有如下3种基本方法。

3.1.1 风速跟踪控制

实时测量风速,然后依据风电机组的功率特性,推算出使风轮叶尖速比保持在最佳值的发电机所需最佳转速n opt ,控制变速发电机的转速使其跟踪最佳转速n opt ,从而实现MPPT 。

虽然这种方法的原理简单明了,但必须

已知风力机特性,且要求测量的风速与作用

在桨叶上的风速有良好的关联性。然而,由于风速在时间、空间上的随机变化,很难精确测得与到达风轮上的风速一致的结果,这限制了该方法的工程应用。为了克服风速跟踪控制方法的缺点,出现了多种基于风速预

测方法的改进控制系统[1]

。 3.1.2 功率反馈控制 实时测量发电机转速(则可得到风轮角速度ω),依据风轮角速度ω和风力机最大功率曲线P opt ,实时计算发电机的输出有功

功率指令P *

,控制发电机的输出有功功率使

其跟踪指令P *

,即可实现MPPT 。以上实现

MPPT 的过程可用图2说明[10]

:设原先在风速V 5下机组稳定运行在P opt 曲线的E 点,此时

风力机输出功率和发电机输入功率均为P E ,两者平衡,风轮以最佳角速度ω5稳定运行;若风速由V 5突升至V 4,风力机的工作点将由E 跳动至F ,对应的输出功率跃变至P F ,而发电机却因惯性和控制滞后仍暂时工作在E 点,因P F >P E ,发电机将升速;在升速过程中,风轮沿其固有的功率特性FD 曲线增速,而采用功率反馈控制的发电机则沿最大功率曲线增速,两者到达D 点时,重新建立起功率平衡,风轮以与风速V 4相对应最佳角速度ω4

稳定运行。

该方法不需要测量风速,但需要已知风力机最大功率曲线和发电机损耗特性,以获

得有功功率指令P *。研究表明[10]:即使在P *

的计算不很准确时,也可使发电系统运行在“次最佳状态”,获得较理想的最大风能跟

踪控制效果,故该方法颇具实用价值。

3.1.3 最大功率搜索控制 其依据是在某一固定风速下,风力机的功率特性P(ω)为凸函数。在有的文献中,

该方法也称为爬山搜索算法[9]、功率扰动控制[12],其通过施加人为的功率扰动进行离散迭代控制,使风轮机的工作点“一步一步”地沿其功率曲线移动到最大值附近,且保持一定的波动。以人为施加转速扰动引起功率变化从而自动搜索发电机最佳转速n opt实现MPPT为例说明如下[9]:计算当前风力机功率P(k),并和上一控制周期的风力机功率P(k-1)比较,若ΔP(k)= P(k)- P(k-1)>0,则保持发电机转速指令的扰动值Δn的符号不变,继续进行下一周期的转速扰动;否则,若ΔP(k)= P(k)- P(k-1)<0,则应将转速指令的扰动值Δn的符号反号,继续进行下一周期的转速扰动。因当前的Δn与上周期的转速指令相加即为新的转速指令,故若风机功率渐增,则将保持转速指令值渐增(或渐减);若风机功率减小,则应改变转速指令变化的方向。

该方法的优点是无需测风装置,对风力机功率特性的了解要求不高,系统有自动跟随与自适应能力;缺点是即使风速稳定,发电机稳态功率输出仍有波动,控制周期不能太小,系统调节时间较长[12]。

3.2 额定风速以上的功率控制[1]

在风速超过额定风速时,变速风电机组的控制系统通过调节风力机风能利用系数,实现保持发电机输出功率恒定、使机组传动系统具有良好柔性的基本目标。

目前,有两种改变风力机风能利用系数的方法。其一,控制发电机电磁制动转距,以调节发电机转速,进而调整叶尖速比;其二,调节桨距角以改变风轮迎风面积,从而调节空气动力转矩。应该指出,理想的控制方案是采用转速与桨距双重调节。

4.风电机组控制技术的发展趋势

4.1风力发电系统智能控制

风电机组是一类复杂的非线性系统,其精确的数学模型难以建立,采用基于数学模型的传统控制难以使系统在全部运行状态下获得满意的动、静态性能。随着不依赖于数学模型的智能控制技术的发展,模糊控制和人工神经网络在风电机组控制领域应用方兴未艾,并成为研究热点之一[1][6]。

文献[13]在桨距控制器设计中引入2维模糊控制算法,仿真结果验证了在风速高于额定风速且频繁变化时,基于模糊控制算法的变桨距控制器能够随风速变化不断调节桨距角,使风力发电机输出功率稳定在额定值附近。文献[14]对基于模糊控制的双馈风力发电空载并网技术进行了研究,其在有刷双馈异步发电机转子可逆变流装置的控制中,采用了参数自整定模糊PI控制器,即利用模糊控制规则对PI算法的比例参数和积分参数在线调整,仿真表明该控制算法可有效提高系统的鲁棒性。文献[15]则在基于爬山搜索算法实现小型风电系统MPPT的控制系统中引入模糊/PI D双模控制,大范围搜索用模糊控制,小范围搜索则用PID,仿真表明:模糊/PI D双模控制能使系统平稳跟踪最大功率点,发电机稳态输出功率波动较小。

人工神经网络具有映射任意非线性输入-输出关系的能力。可基于BP网建立桨距角全范围变化时的风能利用系数模型;也可建立以风速、风轮角速度、功率为输入,桨距角指令值为输出的BP网,构成基于BP网的桨距控制器[1],实现桨距控制的目标。文献[16]选择风力机转速和风速作为直接样本数据,计算得到的风力机输出功功率为间接样本数据,经离线训练,建立了以风力机转速和功率为输入、风速为输出的BP网风速预测模型,并将该风速预测模型应用于采用风速跟踪控制方法的直驱式风力发电系统MPPT控制,仿真结果表明基于BP网的风速预测模型正确、可行。文献[17]在变速恒频双馈异步发电机定子有功功率控制中引入单神经元控制算法,实现MPPT,仿真结果验证了控制算法的有效性。

目前,风电机组智能控制研究多数停留在仿真阶段,尚缺乏实际工程应用。另一方面,模糊控制和人工神经网络具有互补性,两者相结合的神经网络模糊控制在风电机组控制领域中的应用研究尚少;基于数据驱动的机器学习方法与风能转换系统控制相结合的研究也有待深入。

4.2 风力发电系统低电压穿越技术[5][18-19] 随着风电机组装机容量不断增大,风力发电系统对现存电网稳定性的影响成为倍受

关注的课题,其中热点之一是研究电网电压瞬间跌落情况下风电机组对电力系统的影响。目前,世界各国纷纷制定了针对大型风电机组并网运行的标准,要求在电网发生故障如电压瞬间跌落时,风电机组仍能保持并网,且能向电网提供一定的无功功率支持,以提高电力系统的稳定性,这就要求风电机组具有一定的低电压穿越(LVRT)运行能力。

双馈异步发电机(DFIG)风电机组在电网电压跌落时将导致DFIG转子侧过电压、过电流。转子电路中的Crowbar(保护)电路是使DFIG风电机组具备LVRT能力的关键,其在电网电压故障时可有效对变流器进行保护,且可向电网发出无功功率,使电网电压迅速恢复正常。但转子Crowbar电路无法兼顾转子侧变流器及齿轮传动等机械部件实现全面保护,且不同故障类型及不同故障程度下的电路参数难以统一。目前, DFIG风电机组的LVRT运行研究仍是难点,主要集中于保护电路拓扑结构和变流器控制算法改进研究。

对采用多级永磁同步发电机的直驱型变速恒频风力发电系统而言,因为其与电网通过背靠背功率变换器隔离,且无功功率控制灵活,故在LVRT运行方面具有优势。在直流侧增加保护电路、在直流侧和电网间增加辅助变流器等保护措施可增强直驱型风电机组LVRT运行能力。

大容量并网型风电机组LVRT运行控制策略是有待深入研究的热点课题。但电网故障具有不可控性,故为了测试风电机组LVRT 运行性能,模拟电网电压跌落特性的“电压跌落发生器(VSG)”研发也成为一个热点。

参考文献

1.叶杭冶.风力发电机组的控制技术. 北京:机械工业出版社,第2版,2008

2.姚兴佳,宋俊.风力发电机组原理与应用. 北京:机械工业出版社,第1版,2009

3.宋海辉.风力发电技术及工程.北京:中国水利水电出版社,第1版,2009

4.牛山泉编著,刘薇,李岩译.风能技术. 北京:科学出版社, 第1版,2009

5.王志新,张华强.风力发电及其控制技术新进展.

低压电器,No.19:1-7,2009 6.徐大平,张新房,柳亦兵.风力发电控制问题综述.中国电力,No.4:70-74,2005

7.顾鑫,惠晶.风力发电机组控制系统的研究分析.华东电力,No.2:64-68,2007

8.夏毅琴.风力发电机组及其控制系统.电气技术,No.8:62-64,2009

9.闫永勤,乔明,林飞,等.变速恒频风力发电系统最大风能跟踪控制的研究.电气技术,

No.11:14-17,2006

10.刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制.电力系统自动化,

No.20:62-67,2003

11.凌禹,张同庄,邱雪峰.直驱式风力发电系统最大风能追踪策略研究.电力电子技术,No.7:1-2,2007

12.朱学忠,张琦雪,刘迪吉.开关磁阻风力发电机系统的控制方案研究.数据采集与处理,No.1:

81-85,2001

13.张玉华,李振凯.基于模糊控制的风力发电系统变桨距控制器的设计.现代电力,No.6:58-61,2007

14.康忠健,陈天立,王升花,等.基于模糊控制的双馈风力发电空载并网技术研究.电气传动,

No.1:47-50,2010

15.夏晓敏,王坤琳,吴必军.小型风电系统MPPT 模糊/PID控制仿真研究.能源工程,No.1:26-31,2010

16.任艳锋,毛开富,包广清.基于神经网络的直驱式风力发电最大风能控制研究.电气自动化,

No.6:42-45,2009

17.杨勇,阮毅,任志斌,等.基于单神经元控制器的2.3kW变速恒频风力发电控制系统研究.微电

机,No.9:60-64,2009

18.李建林,许洪华.风力发电系统低电压运行技术.

北京:机械工业出版社,第1版,2009

19.李建林,许洪华.风力发电中的电力电子变流技术. 北京:机械工业出版社,第1版,2008

风电的发展现状及展望

风电的发展现状及展望 Prepared on 24 November 2020

论文题目:我国风力发电的现状及展望

摘要 风是地球上的一种自然现象,全球的风能约为,其中可利用的风能为2X107MW,比地球上可开发利用的水能总量还要大10倍。其能量大大超过地球上水流的能量,也大于固体燃料和液体燃料能量的总和。在各种能源中,风能是利用起来比较简单的一种,它不同于煤、石油、天然气,需要从地下采掘出来;也不同于水能,必须建造大坝来推动水轮机运转;也不像核能那样,需要昂贵的装置和防护设备。另外,风能是一种清洁能源,不会产生任何污染。与其他新能源相比,风能优势突出:风能安全、清洁。而且相对来说,风能是就地取材,且用之不竭,在这一点上,风电优于其他发电。 关键词:风力资源丰富;风电安全且清洁;风能用之不竭 目录

第1章绪论 引言 气候变暖将对全球的生态系统、各国经济社会的可持续发展带来严重影响在尽量不影响生活水平的情况下,透过全球气候升高这个现象,我们现目前必须的意识到节能减排的重要性,而改变目前现状的最直接有效的方法就是选择清洁型(相对于煤石油等而言,对于植物动物等一系列生态环境污染相对而言较少甚至可以达到零的能源)能源来替代传统的火力发电。如:水能、太阳能、风能和核能等。风力发电是目前最快发现的最快的清洁能源,且风能是可再生能源。对它加以使用相对而言能使得时下大地所遭受的环境问题得到一定程度的改善,风力发电与传统发电进行相比较风力发电不会产生二氧化碳以及其他有害气体,所以对风能加以利用,这样能相对有效的改变目前世界所面临的环境问题,这样大大的避免造成臭氧空洞以及形成酸雨之类的自然危害,也有利于降低全球的气温。所以加大风力发电建设是改善现目前世界环境的一个有效途径。在国际上对于新能源的开发这一方面做了许多调查和研究,通过调查研究发现在这一方面德国是做的最好的,从上个世纪80年代末起至今,在德国的风电机组总功率即使已越过1万兆瓦的大关,并且已完成了近万个风力发电机组的安装,所占比例已达到了全球风力发电总量的1/3,然而数据研究表明德国近年来减少了约1700万吨的的温室气体排放,所以通过德国温室气体的排放量减少说明开发风力发电等新能源是减少全球气温升温和减少温室气体排放的有力途径。德国竭力用实际行动为《京都议定书》的减排目标迈出了一大步。我国在风力方面也有着相当丰富的资源,可被开发利用的风能储量约10亿kW左右。 本论文的研究背景及意义 根据气候变化专门委员会(IPCC)的调查研究并所给出的第三次评估报告提供的预测结果显示,预计到22世纪初大地平均气温或许会增高—℃。以及伴随着国民日常需求的的不断提高,经济的高速发展,国民的用电量也日益增长,伴随着电力结构的不断调整优化,技术装备水平的逐步提高,发电机组的不断增大以及技术装备水平的逐步提高。随着大自然给予我们不可再生能源的衰竭、对于用电量的不断升高、全球气温的升温以及生态环境的破坏,对于开发新能源发电已成为迫在眉睫的事情。而我国疆域广阔并且有着十分丰富的风力

风力发电现况以及未来发展趋势

风力发电现况以及未来发展趋势 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴量巨大,全球的风能约为×10^9MW,其中可利用的风能为2×10^7MW,比地球上可开发利用的水能总量还要大10倍。风很早就被人们利用--主要是通过风车来抽水、磨面等,而现在,人们感兴趣的是如何利用风来发电。 一、国外发展状况 目前,中、大型风力发电机组已在世界上40多个国家陆地和近海并网运行,风电增长率比其它电源增长率高的趋势仍然继续。如表1所示,截止2005年12月31日世界装机容量已达58,982MW,年装机容量为11,310MW,增长率为24%;风力发电量占全球电量的1%,部分国家及地区已达20%甚至更多。2005年世界风电累计装机容量最多的十个国家见表2,前十名合计,约占世界总装机容量的%。2005年国际风电市场份额的分布多样化进程呈持续发展趋势:有11个国家的装机容量已高于1,000MW,其中7个欧洲国家(德国、西班牙、意大利、丹麦、英国、荷兰、葡萄牙),3个亚洲国家(印度、中国、日本),还有美国。亚洲正成为发展全球风电的新生力量,其增长率为48%[5]。2002年欧洲风能协会(EWEA)与绿色和平组织(Greenpeace International)发表了一份标题为“风力 12(Wind Force 12)”的报告,勾画了风电在2020年达到世界电量12%的蓝图。报告声明这份文件不是预测,而是从世界风能资源、世界电力需求的增长和电网容量、风电市场发展趋势和潜在的增长率、与核电和大水电等其他电源技术发展历程的比较以及减排CO2等温室气体的要求,论证了风电达到世界电量12%的可能性。 二、国内发展现状 经过前几年的低谷期,国内的风电市场正在迎来新的发展期,特别是在节能减排、环境治理的趋势下,国家出台的一系列政策,使得风电产业站上了风口。 (一)我国风电发展进入新阶段 风电是资源潜力大、技术基本成熟的可再生能源。近年来,全球资源环境约束加剧,气候变化日趋明显,风电越来越受到世界各国的高度重视,并在各国的共同努力下得到了快速发展。据世界风能协会统计,截至2013年年底,世界上开发风能的国家已经达到103个,年发电量达到6400亿千瓦时,占全球总电力需求的4%。我国可开发利用的风能资源十分丰富,在国家政策措施的推动下,经过十年的发展,我国的风电产业从粗放式的数量扩张,向提高质量、降低成本的方向转变,风电产业进入稳定持续增长的新阶段。2003年底,我国风电装机只有50万千瓦,排名世界第十。2013年我国新增风电装机容量1610万千瓦,占当年世界新增容量的45%;累计装机容量突破9000万千瓦,占世界累计装机容量的28%,两项指标均居世界第一?2013年我国新增风电并网容量1449万千瓦;累计并网容量达到7716万千瓦,占全国电源总装机容量的%。今年1至9月,我国风电新增并网容量858万千瓦;到9月底,累计并网容量8497万千瓦,同比增长22%。预计到今年年底我国风电累计并网容量可达到1亿千瓦,从而提前一年完成“十二五”规划目标,风电发电量占全国总发电量的比重也将由2008年的%增长到%,连续两年超过核电,成为国内继火电、水电后的第三大主力电源。 (二)财政优惠 根据财政部文件,为鼓励利用风力发电,促进相关产业健康发展,自2015年7月1日起,对纳税人销售自产的利用风力生产的电力产品,实行增值税即征即退50%的政策。中国可再生能源学会秘书长秦海岩对中国证券报记者表示,这项政策实际并非新政,2001年相关主管部门在对资源综合利用目录的增值税征收政策进行规范时,就提到了风电也是“减半征收”。但“减半征收”在操作层面比较复杂,因此,相关主管部门在2008年的文件中提出即征即退50%。现在只是为了重新梳理政策,把之前的资源综合利用的目录作废,并对风电提出来单独进行了规范说明。 分析人士表示,这实际上是之前风电增值税优惠政策的延续。今年以来,从国家发改委、国家能源局到国家电网公司,再到新能源装机大省的地方政府都在围绕风电发展给予多方面的支持。今年4月28日,国家能源局公布“十二五”第五批风电项目核准计划,项目共计3400万千瓦,超出业界预期;5月下旬,国家能源局发布了《关于进一步完善风电年度开发方案管理工作的通知》,对于弃风限电比例超过20%的地区、年度开发方案完成率低于80%的地区,不安排新项目。 (三)风电企业业绩逐步向好 近期,A股风力发电板块展示出了高景气度。截至7月1日,A股风力发电概念板块23家公司(以设备制造商为主)中,有9家已预告或发布中报业绩情况,除1家净利润变动幅度为负,其余8家净利润增幅在24%至350%之间。其中,

我国风电产业发展现状及存在的问题

我国风电产业发展现状及存在的问题 能源是国民经济发展的重要基础,是人类生产和生活必需的基本物质保障。我国是一个能源生产大国,也是一个能源消费大国。随着国民经济的快速发展和人民生活水平的不断提高,对能源的需求也越来越高。 长期以来,我国电力供应主要依赖火电。“十五”期间,我国提出了调整能源结构战略,积极推进核电、风电等清洁能源供应,改变过渡依赖煤炭能源的局面。 金融危机下,新能源产业正孕育着新的经济增长点,世界各国都希望通过发展新能源产业,引领本国走出经济低谷。近年来,我国政府对新能源开发的扶持、鼓励措施不断强化,风能作为最具商业潜力的新能源之一,备受各地政府和电力巨头追捧。 自2005年我国通过《可再生能源法》后,我国风电产业迎来了加速发展期。《可再生能源发展“十一五”规划》提出:在“十一五”时期,全国新增风电装机容量约900万千瓦,到2010年,风电总装机容量达到1000万千瓦。同时,形成国内风电装备制造能力,整机生产能力达到年产500万千瓦,零部件配套生产能力达到年产800万千瓦,为2010年以后风电快速发展奠定装备基础。 2008年,我国新增风电装机容量达到624.6万千瓦,位列全球第二;风电总装机容量达到1215.3万千瓦,成为全球第四大风电市场。预计,2009年我国风电新增装机容量还会翻番,届时在全球新增风电装机总量中的比重,将增至33%以上。按照目前的发展速度,中国将一路赶超西班牙和德国,2010年风电装机容量有望达到3000万千瓦,跃居世界第二位。 目前,我国正在紧锣密鼓地制订新能源振兴规划。预计到2020年,可再生能源总投资将达到3万亿元,其中用于风电的投资约为9000亿元。根据目前的发展速度,到2020年,我国风电装机容量将达到1亿千瓦。届时,风电将成为火电、水电以外的中国第三大电力来源,而中国也将成为全球风能开发第一大国。 设备制造行业现状 根据最新风能资源评价,全国陆地可利用风能资源3亿千瓦,加上近岸海域可利用风能资源,共计约10亿千瓦,发展潜力巨大。 为了合理有序的开发现有风能资源,首先需要进行的就是加强产业服务体系建设,扶持建立风能资源评价,风电场设计选址,产品标准,技术规范,设备检测与认证的专门机构。培育一批风电技术服务机构,建成较健全的风电产业服务体系。建设2~3座公共风电测试试验基地,为风电机组产品认证和国内自主研制风电设备提供试验检测条件。目前,工信部与国家能源局等相关管理部门目前正研究制定规范风电投资市场,完善风电设备产品标准及质量认证体系的相关政策,保证风电产品质量,促进成本降低。 风电产业的发展和进步不应盲目追求风电机组的装机容量,而应从我国各地区风场风资源的优劣、当地电力需求及电网输配电能力状况、风机性能及发展通盘规划,有序调控、全面协调、均衡平稳地发展。 首先,把风电科研纳入国家科技发展规划,安排专项资金予以扶持。支持国内科研机构提高创新能力,引进国外先进技术设备,加快消化吸收,尽快形成自主创新能力。目前,国产化比例规定较难落实,国产化质量提高和认同有个过程,风机制造企业仍需在自主创新上下功夫。 其次,建立一个统一的行业标准。由于目前没有对风电机组和风电场的入网标准和检测标准严格监管,绝大部分风电机组的功率曲线、电能质量、有功和无功调节性能、低电压穿越能力没有经过检测和认证,而且多不具备上述性能和能力,并网运行的风电机组对电网的安全稳定运行造成了很大的影响。

(完整版)我国风力发电的发展现状

我国风力发电的发展现状 我国是世界上风力资源占有率最高的国家,也是世界上最早利用风能的国家之一,据资料统计,我国10m 高度层风能资源总量为3226 GW ,其中陆上可开采风能总量为253 GW ,加上海上风力资源,我国可利用风力资源近1000 GW 。如果风力资源开发率达到60% ,仅风能发电一项就可支撑我国目前的全部电力需求。 我国利用风力发电起步较晚,和世界上风能发电发达国家如德国、美国、西班牙等国相比还有很大差距,风力发电是20 世纪80 年代才迅速发展起来的,发展初期研制的风机主要为1 kW 、10 kW 、55 kW 、220 kW 等多种小型风电机组,后期开始研制开发可充电型风电机组,并在海岛和风场广泛推广应用,目前有的风机已远销海外。至今,我国已经在河北张家口、内蒙古、山东荣城、辽宁营口、黑龙江富锦、新疆达坂城、广东南澳和海南等地建成了多个大型风力发电场,并且计划在江苏南通、灌云及盐城等地兴建GW 级风电场。截止2007 年底,我国风机装机容量已达到6.05 GW ,年发电量占全国发电量的0.8% 左右,比2000 年风电发电量增加了近10 倍,我国的风力发电量已跃居世界第5 位。 1.1 小型风电机组的发展 目前,我国小型风力发电机组技术已相当成熟,建设速度也较快,特别是5 kW 以下风力发电机组的制造技术成熟,已大量使用,并达到批量生产的要求。100 、 200 、300 、500 W 及1 kW 、2 kW 、5 kW 的小型风力发电机,年生产能力可达到5 万台以上。 1.2 大型风电机组的发展

我国大型风电机组的开发研制工作也正在加快。我国大型风电机组基本上依赖进口,通过多年来的开发研制,如今,大型风电机组的主要部件已基本实现国产化,其成本比进口机组低20% ~30% ,国产化是我国大型风电机组发展的必然趋势。我国的大型风电机组从建设之初的山东荣成第一个风力发电场开始,到后来的广东南澳4 台250kW 机组、辽宁营口安装660 kW 风电机组、黑龙江富锦单机960 kW 机组,再到即将在山西、山东、江苏等地安装的大型机组,我国已建成一大批大型风力发电场,使我国风力发电迈上了一个新台阶。 我国风能资源虽然蕴藏丰富,但由于经济实力和技术力量还远不及发达国家,故我国的风力发电普及率还很低。在我国,还有一些无电村,其中部分地区风能资源丰富,应开发利用风力发电。 2 国外风力发电的发展状况 风能的开发利用在国外发达国家已相当普及,尤其在德国、荷兰、西班牙、丹麦等西欧国家,风力发电在电网中占相当比重。20 世纪70 年代发生了世界性的能源危机,欧美国家政府加大补贴投入,鼓励开展风力发电事业。1973 年联邦德国风能资源投入30 万美元,到1980 年投资就增至6800 万美元;美国20 世纪80 年代初期安装了1700 多台风电机组,总装机容量达到3 MW ;1979 年丹麦能源部决定给风轮机设备厂投入补贴,政府拨款建立小型风轮机试验中心,承担发风轮机许可证任务。到20 世纪80 年代末,全球共有大型风轮机近2 万台,总装机容量2 GW 。国际市场风力发电成本不断降低,有些条件较好的风力发电场,机组发电成本仅为8 美分/kWh ,风场运行维修费为1.5 美分/kWh 。从当前世界风力发电情况来看,无论从风机容量投资、年发电量、运行费用及运行稳定性等指标衡量,200 ~500 kW 的中型风电机组都具有较大竞争

2020年中国风力发电行业现状及未来发展趋势分析

2017年中国风力发电行业现状及未来发展趋势分析 风能是一种淸洁而稳定的新能源,在环境污染和温室气体排放日益严重的今天,作为 全球公认可以有效减缓气候变化、提高能源安全、促进低碳经济增长的方案,得到各国政府、 机构和企业等的高度关注。此外,由于风电技术相对成熟,且具有更高的成本效益和资源有 效性,因此,风电也成为近年来世界上增长最快的能源之一。 1、全球发展概况 2016年的风电市场由中国、美国、徳国和印度引领,法国、上耳其和荷兰等国的表现 超过预 期,尽管在年新增装机上,2016年未能超过创纪录的2015年,但仍然达到了一 个相当令人满意的水平。根据全球风能理事会发布的《全球风电发展年报》显示,2016年 全球风电新增装机容量 54.600MW,同比下降14.2%,英中,中国风电新增装机容量达 23328MW (临时数据),占2016年全球 风电新增装机容量的42.7%o 到2016年年底, 全球风电累计装机容量达到486J49MW,累计同比增长 12.5%。其中,截至2016年底, 中国总量达到16&690MW (临时数据),占全球风电累计装机总量的34.7%。 2001-2016年全球风电装机置计容量 450.000 400.000 350.000 300.000 土 250.000 W 200.000 150,000 1W.OOO 50.000 数据来源:公开资料整理 ■ ■ ■ ■ ■ 11 nUr l ■蛊计装机容蚤

按照2016年底的风电累计装机容量计算,全球前五大风电市场依次为中国、美国、徳国、印度和西班牙,在2001年至2016年间,上述5个国家风电累计装机容量年均复合增长率如下表所示: 数据来源:公开资料整理 2、我国风电行业概况 目前,我国已经成为全球风力发电规模最大、增长最快的市场。根据全球风能理事会(Global Wind Energy Council)统讣数据,全球风电累计装机容量从截至2001年12月31 日的23.9OOMW增至截至2016年12月31日的486.749MW,年复合增长率为22.25%, 而同期我国风电累计装机容量的年复合增长率为49.53%,增长率位居全球第一:2016年,我国新增风电装机容量23328MW (临时数据),占当年全球新增装机容量的42.7%,位居全球第一。 (1)我国风能资源概况 我国幅员辽阔、海岸线长,陆地而积约为960万平方千米,海岸线(包括岛屿)达32,000 千米,拥有丰富的风能资源,并具有巨大的风能发展潜力。根据中国气象局2014年公布的最新评估结果,我国陆地70米高度风功率密度达到150瓦/平方米以上的风能资源技术可开发量为72亿千瓦,风功率密度达到200瓦/平方米以上的风能资源技术可开发量为50 亿千瓦;80米高度风功率密度达到150瓦/平方米以上的风能资源技术可开发量为102亿千瓦,达到200瓦/平方米以上的风能资源技术可开发量为75亿千瓦。 ①风能资源的地域分布 我国的风能资源分布广泛,苴中较为丰富的地区主要集中在东南沿海及附近岛屿以及北部(东北、华北、西北)地区,内陆也有个别风能丰富点。此外,近海风能资源也非常丰富。 A. 沿海及其岛屿地区风能丰富带:沿海及其岛屿地区包括山东、江苏、上海、浙江、福建、广东、广西和海南等省(市)沿海近10千米宽的地带,年风功率密度在200瓦/ 平方米以上,风功率密度线平行

中国风力发电的发展现状及未来前景要点

中国风电发展现状及前景 前言 随着能源与环境问题的日益突出,世界各国正在把更多目光投向可再生能源,其中风能因其自身优势,作为可再生能源的重要类别,在地球上是最古老、最重要的能源之一,具有巨大蕴藏量、可再生、分布广、无污染的特性,成为全球普遍欢迎的清洁能源,风力发电成为目前最具规模化开发条件和商业化发展前景的可再生能源发电方式。 风,来无影、去无踪,是无污染、可再生能源。一台单机容量为1兆瓦的风电装机与同容量火电装机相比,每年可减排2000吨二氧化碳、10吨二氧化硫、6吨二氧化氮。随着《可再生能源法》的颁布,中国已把风能利用放在重要位置。 一、国内外风电市场现状 1.国外风机发展现状 随着世界各国对环境问题认识的不断深入,可再生能源综合利用的技术也在不断发展。在各国政府制订的相应政策支持和推动下,风力发电产业也在高速发展。截至2011年底,世界风电装机量达到237669MW,新增装机量43279MW,增长率22.3%,增速与2010年持平,低于2009年32%的增速。由表一,可以看出中国风电装机量62364MW,远远超过世界其他各国装机量,而德国依然是欧洲装机量最多的国家。从图表三中,很明显的看出,从2001年到2004年,风电装机增速是在下降的,2004年到2009年风电有处于一个快速发展期,直到近两年风电装机的增速又降为22%左右,可见风电的发展正处在一个由快速扩张到技术提

升的阶段。 图表 1 世界风电装机总量图 图表 2 世界近10年新增装机量示意图

图表 3 世界风电每年装机量增速

图表 4 总装机量各国所占份额

图表 5 2011年新增装机量各国所占份额 2.国内风电发展现状 中国的风电产业更是突飞猛进:2009年当年的装机容量已超过欧洲各国,名列世界第二。2010年将新增1892.7万kW,超越美国,成为世界第一。2011年装机总量到达惊人的62364MW。在图6中可以看出,中国风电正经历一个跨越式发展,这对世界风电的发展起到了至关重要的作用。然而,图8 中,我们能够清楚的看出自2007年以后,虽然新增装机量很大,但增速却明显下降,而其他国家,比如美国、德国,这些年维持着一个稳定的增速。由此,我们应该意识到,我国风电,尤其是陆上风电,正在进入一个转型期,从发展期进入成熟期,从量的追求进入到对质的提升。 图表 6 中国每年风电装机量示意图

中国风电发展现状与潜力分析

风能资源作为一种可再生能源取之不尽,中国更是风能大国,据统计中国风能的技术开发量可达3亿千瓦-6亿千瓦,而且中国风能资源分布集中,有利于大规模的开发和利用。 据考察中国的风能资源主要集中在两个带状地区,一条是“三北(东北、华北、西北)地区丰富带即西北、华北和东北的草原和戈壁地带;另一条是“沿海及其岛屿地丰富带,即东部和东南沿海及岛屿地带。 这些地区一般都缺少煤炭等常规能源并且在时间上冬春季风大、降雨量少,夏季风小、降雨量大,而风电正好能够弥补火电的缺陷并与水电的枯水期和丰水期有较好的互补性。 一、风电发展现状据统计,从2017年开始,中国的风电总装机连续5年实现翻番,截至2017年底,中国以约4182.7万千瓦的累积风电装机容量首次超越美国位居世界第一,较瓦,到2020年可达1.5亿千瓦。 (二)风电投资企业风电投资企业包括开发商与风电装机制造企业。 从风电开发商的分布来看,更向能源投资企业集中,2017年能源投资企业风电装机在已经建成的风电装机中的比例已高达90%,其中中央能源投资企业的比例超过了80%,五大电力集团超过了50%。 其他国有投资商、外资和民企比例的总和还不到10%,地方国有非能源企业、外企和民企大都退出,仅剩下中国风电、天润等少数企业在“苦苦挣扎,当年新增和累计在全国中的份额也很小。

从风电装机制造企业来看,主要是国内风电整机企业为主,2017年累计和新增的市场份额中,前3名、前5名和前10名的企业的市场占有率,分别达到了55.5%和发电;由沈阳工业大学研制的3mw风电机组也已经成功下线。 此外,中国华锐、金风、东汽、海装、湘电等企业已开始研制单机容量为5mw的风电机组。 中国开始全面迈进多mw级风电机组研制的领域。 2017年,国际上公认中国很难建成自主化的海上风电项目,然而,华锐风电科技集团中标的上海东海大桥项目,用完全中国自主的技术和产品,用两年的时间实现了装机,并于2017年成功投产运营,令世界风电行业震惊。 (四)风电场并网运行管理目前,风电并网主要存在两大问题:风电异地发电机组技术对电网安全稳定产生影响、风的波动性使风电场的输出功率的波动性难以对风电场制定和实施准确的发电计划。 它们使得风电发展受到严重影响。 对于这种电力上网“不给力的现况,国家和电网企业都在积极努力地解决好风电基地电力外送问题,除东北的风电基地全部由东北电网消纳和江苏沿海等近海和海上风电基地主要是就地消纳之外,其余各大风电基地就近消费一部分电力和电量之外的电力外送的基本考虑是:河北风电基地和蒙西风电基地近期主要送入华北电网;2020年前后需要山东电网接纳部分电力和电量;蒙东风电基地近期送入东北电网和华北电网;甘肃酒泉风电基地和新疆哈密风电基地近期送入

风力发电技术现状及发展趋势 许志伟

风力发电技术现状及发展趋势许志伟 发表时间:2017-11-28T15:54:29.220Z 来源:《电力设备》2017年第23期作者:许志伟 [导读] 摘要:在全球能源过度消耗的生态环境下,对新能源的研究和利用已成为世界热门的话题,风力发电是新能源发电技术中最具规模开发和商业化发展前景的发电方式,目前各国都在加大对风力发电及其相关的技术研究。 (大唐安阳发电厂河南安阳 455000) 摘要:在全球能源过度消耗的生态环境下,对新能源的研究和利用已成为世界热门的话题,风力发电是新能源发电技术中最具规模开发和商业化发展前景的发电方式,目前各国都在加大对风力发电及其相关的技术研究。全球风电行业年度市场增长率达 40%,已有一百多个国家涉足到风电行业,该行业已经成为世界能源市场的重要组成部分。我国近几年风电产业发展势头强劲,风电新增装机的容量稳居全球前茅,因此,对风力发电的技术现状和发展趋势进行研究具有重要意义。 关键词:风力发电;技术;探讨 1常用的风力发电系统 目前风力发电系统常用的风力发电机主要有恒速恒频率异步发电机、变速恒频双馈异步发电机和直驱永磁同步发电机三种。由于变速恒频系统可以适应较宽的风速范围,已经成为风力发电的主流机型,而直驱永磁同步发电机和全功率变流器组合在未来有着广阔的发展前景。 1.1 恒速恒频发电机系统 恒速恒频发电机系统主要由风力机、变速箱、异步发电机以及并联电容器构成。风轮机应用定浆失速控制可以确保发电机输出的电能电压和频率保持恒定。由于异步发电机在输出有功功率的同时会有无功产生,因此,可以通过并联电容器提高电网的功率因数。由于风能波动性和不稳定性的特点,恒速恒频发电机系统的风能利用率较低,能量输出波动性也比较大。 1.2 变速恒频双馈异步发电机系统 双馈异步发电机是如今风力发电的主流设备,占装机总量的绝大部分。变浆距角技术的应用,提高了风能的利用率,而且在机组紧急停止时,通过调整可以减少风能的收集,降低了机组的机械冲击,机组的使用寿命加长了。定子侧和电网连接,转子通过双PWM变换器控制励磁,确保定子电能频率的稳定。 1.3 变速恒频直驱永磁同步发电机系统 风力发电机和永磁同步发电机直接连接,避免了减速箱对系统运行的影响。同步发电机发出的电能通过交直交变频技术形成稳定的交流电进入电网。励磁采用永磁体节省了励磁的维护投入,但发电机的体积和制造成本以及难度加大了。 2风力发电中的重点技术问题 风力发电作为重要的新兴能源,受重视程度越来越高,如何提高风能的使用效率,改善风力发电的电能质量是风力发电工作研究的重点。 2.1 风力发电功率的预测 风能的不稳定性和随机性,经常造成大容量电场并网严重影响电力系统的可靠性,制约着大容量风电场的并网运行。因此对风电能量进行科学准确的预测,有助于风电场的合理选址以及电网能量的合理调度。目前常用的风能预测方法有:基于数值天气预报的风能预测,即利用气象信息对中长期风能进行预测;时间序列预测法,即利用历史风能数据对短期风能分布进行预测、人工神经网络预测,该方法的自适应性比较强,适用于非线性的模型预测。为提高预测的准确性,将多种方法结合使用是风能预测的发展方向。 2.2 风电场电力电子设备的研究 先进的电力电子技术是现代风力发电的重要技术依托,为风力发电提供重要的技术支撑。风力发电设备中存在大量电力电子设备,如双馈异步发电系统中的PWM变流器、直流永磁同步发电系统重点交直交变频设备、基于电压源的高压直流输电并网技术以及低压穿越所需的电子装置等。因此,加强电力电子设备的研究,对风力发电的发展具有重要意义。 2.3 低压穿越技术 低压穿越技术在电网发生故障时,利用电力电子技术确保风电场在一定时间范围内向电网提供一定的无功,从而保证电网不脱网运行。当电网电压降低时,风电机组通常由于自我保护而脱离电网,在风电所占电网的比例较小时,风电的脱离不会对系统造成太大影响,一旦风电机组的容量较大,电网故障时风电的解列在故障的基础上增加了电网的扰动,严重影响电网的可靠运行,甚至造成整个系统的解列。因此,我国对低电压运行标准进行了规定,即当并网电压跌至20%额定电压时,风电机组应能不脱网运行625 ms,目前由于电网的故障复杂多变,还没有十分完善的方案能够完全满足低电压穿越的要求,这已经成为风电研究的热点问题。 2.4 风电场的无功补偿 电压稳定是风电并网中的重要问题,无功补偿是风电电压稳定的重要影响因素。尤其在异步风力发电机系统中,异步发电机和变压器设备产生大量的无功功率,一旦这些无功无法得到及时补偿则会对电网的可靠运行造成影响,系统无功过高会使系统电流增加,增大系统损耗的同时,也会影响设备的安全运行;电流和视在功率的增加造成电力设备容量的增加,电力设备的体积也相应增大,电网的经济运行性降低,另外电网的功率因数过低会造成电网电压的降低。风电场无功补偿的方式多种多样,目前最为常用且使用效果较好的方式是基于电力电子技术的动态无功补偿设备。 3风力发电技术的发展趋势 我国风电行业已经步入了快速发展的时期,风力发电技术逐渐更具规模化和有效化,现已采用新的叶片技术、新型发力风电机、新型电力电子技术等智能优化风力发电系统,提高了可靠性和恶劣环境下的安全性。(1)对于巨型机而言,采用延长叶片会使运输和安装成本增加,因此分段式叶片技术应运而生,很好的解决了运输和安装问题,同时采用强化碳纤维增强叶片刚度,玻璃钢和热塑等混合纱丝制造叶片,缩短了叶片的生产时间。(2)采用无刷交流双馈异步电机、开关磁阻发电机和高压发电机也降低了成本,提高了可靠性,便于设备维修及养护,新型风力发电机的研制仍然是当前的重要任务。(3)新型大功率变化器的研究和应用势在必行,多电平变化器相对两电平变换器显著的降低了功率器件的开关损耗,大幅度的提高了转换效率,同时,新型储能技术也日益受到了人们的关注,起到了维持电网频率

最新风力发电现状与发展

风力发电的现状和前景 1 2 许文石沂东刘博高海松冯东洋 3 (华北电力大学,河北,保定 071000) 4 摘要本文主要针对我国还有世界的风力发电的发展历程进行了阐述, 文章 5 首先介绍了全球风力发电的现状,分析了风力资源的能量总量和分布情况, 讨 6 论了各国目前的装机容量, 并具体讨论了利用风能发电所涉及实际技术的产生 与运用, 介绍了国内外使用风能的现状和发展趋势, 并对风电系统中所采用发7 8 电机的性能、风力发电系统的类型、风电系统中所采用发电机的性能与特点以 9 及未来风力发电技术的发展趋势进行了详细深入的探讨,为更好地了解国内外 风力发电的现状与前景提供了参考。 10 11 关键词风能; 我国风能资源; 风能的开发和利用; 风电转换; 风力发 12 电。 13 Advances and Perspectives in the Application of Wind Energy 14 Xu Wen Shi Yidong Liu Bo Gao Haisong Feng Dongyang 15 North China Electric Power University Abctract This paper explores the feasibility of extensive use of wind 16 17 energy proposed by our country’s environmental protection organizations. 18 Through introduction of the mechanism of wind energy and the total amount 19 and distribution of wind energy resources in our country, and alternative 20 direct application of wind energy is discussed. In the paper, the wind 21 power generation and its relative technology are reviewed including 22 performance and feature of generators applied in wind power generation 23 system, and development tendency of future wind power generation 24 technology, which providing references for well learning about the

我国风力发电现状及发展趋势

我国风力发电现状及发展趋势 摘要:随着环境和能源问题的日益严峻,可再生能源的开发,尤其是风力发电技术已被国家政 府所重视。本文概述了风力发电的基本现状,分析了风电在国内外的发展状况、主要面临的问 题及其解决途径和发展前景。 关键词:风力发电;现状;发展趋势 1.风力发电概述 众所周知, 可再生能源有水能、风能、太阳能、生物质能、潮汐能、地热能六大形式。其中, 风能源于太阳辐射使地球表面受热不均、导致大气层中压力分布不均而使空气沿水平方向运动所获得的动能。据估计, 地球上可开发利用的风能约为2*107 MW, 是水能的10倍, 只要利用1%的风能即可满足全球能源的需求[1]。据中国气象科学研究院估算,在中国,10m 高度可开发的风能为10亿kW 以上(陆地2.5亿kW ,海上7.5亿kW )[2]。 在石油、天然气等不可再生能源日益短缺及大量化石能源燃烧导致大气污染、酸雨和温室效应加剧的现实面前, 风力发电作为当今世界清洁可再生能源开发利用中技术最成熟、发展最迅速、商业化前景最广阔的发电方式之一已受到广泛重视[3]。 2.风力发电原理风力发电机的分类 2.1.风力发电原理 力发电是将风能转换为机械能进而将机械能转换为电能的过程。风吹动风力机叶片旋转, 转速通常较低, 需要齿轮箱增速, 将高速转轴连接到发电机转子并带动发电机发电, 发电机输出端接一个升压变压器后连接到电网中。典型的风力发电系统包括风力机(叶片、轮毅等部分)及其控制器、转轴、换流器、发电机及其控制器等。风速、作为风力机及其控制器的输入信号, 风力机控制器将风速与参考值进行比较, 向风力机输出桨距角信号, 调整输出机械转矩T 和机械功率 。转轴输出的机械功率输入到发电机中, 发电机的输出功率经过换流器输送到变压器中, 最终输送至电网。 风能的表达式为: 32 1νρts E = (式1-1) 式中:s —单位时间内气流流过截面积(m 2) ρ—空气密度(kg/m 3) v —风速(m/s)

我国风力发电的发展现状和未来前景

专业资料 中国风电发展现状及前景 前言 随着能源与环境问题的日益突出,世界各国正在把更多目光投向可再生能源,其中风能因其自身优势,作为可再生能源的重要类别,在地球上是最古老、最重要的能源之一,具有巨大蕴藏量、可再生、分布广、无污染的特性,成为全球普遍欢迎的清洁能源,风力发电成为目前最具规模化开发条件和商业化发展前景的可再生能源发电方式。 风,来无影、去无踪,是无污染、可再生能源。一台单机容量为1兆瓦的风电装机与同容量火电装机相比,每年可减排2000吨二氧化碳、10吨二氧化硫、6吨二氧化氮。随着《可再生能源法》的颁布,中国已把风能利用放在重要位置。 一、国内外风电市场现状

1.国外风机发展现状 随着世界各国对环境问题认识的不断深入,可再生能源综合利用的技术也在不断发展。在各国政府制订的相应政策支持和推动下,风力发电产业也在高速发展。截至2011年底,世界风电装机量达到237669MW,新增装机量43279MW,增长率22.3%,增速与2010年持平,低于2009年32%的增速。由表一,可以看出中国风电装机量62364MW,远远超过世界其他各国装机量,而德国依然是欧洲装机量最多的国家。从图表三中,很明显的看出,从2001年到2004年,风电装机增速是在下降的,2004年到2009年风电有处于一个快速发展期,直到近两年风电装机的增速又降为22%左右,可见风电的发展正处在一个由快速扩张到技术提升的阶段。 图表 1 世界风电装机总量图

图表 2 世界近10年新增装机量示意图 图表 3 世界风电每年装机量增速

德国 英国 加拿大 西班牙 意大利 法国 瑞典 图表 4 总装机量各国所占份额 其他 前十名总计 图表 5 2011年新增装机量各国所占份额 2.国内风电发展现状 中国的风电产业更是突飞猛进:2009年当年的装机容量已超过欧洲各国,名列世界第二。2010年将新增1892.7万kW,超越美国,成为世界第一。2011年装机总量到达惊人的62364MW。在图6中可以看出,中国风电正经历一个跨越式发展,这对世界风电的发展起到了至关重要的作用。然而,图8 中,我们能

风电技术现状及发展趋势

风电技术现状及发展趋势 Current Situation and Developing Trend of Wind Power Technique The paper mainly discusses the current situation and developing trend of wind power technique. Abstract: Key words: anemo-electric generator ; current situation ; developing trend 0 引言 风电古老而现代,但之所以到近代才得以发展,是因为在这方面存在许多实际困难。主要表现在:(1)风本身随机性大且不稳定,对其资源的准确测量与评估存在误差;(2)风速大小、风力强弱、风的方向都随时间在变化,设计制造在不同风况下都能保持稳定运行的风电系统,并使其风电输出功率效率高且理想平滑十分困难;(3)风为间歇式能源,有功功率与无功功率都将随风速的变化而变化,在与电网连接时,需要考虑输出功率的波动对地区电网的影响。此外,在降低制造成本和运行维护费用的前提下如何提高系统运行的安全性与可靠性、如何延长的寿命以及改善系统储能措施使其容量更大、体积更小、效率更高且寿命更长等问题上尚有待于得到更完善的解决。 1 风力发电技术发展现状 现代风力发电系统由风能资源、组、控制装置及检测显示装置等组成。组是风电系统的关键设备,通常包括风轮机、发电机、变速器及相应控制装置,用来实现能量的转换。完整的并网风力发电系统结构示意图见图1。

率曲线比较 长期以来风力发电系统主要采用恒速恒频发电方式( Constant Speed Constant Frequency 简称CSCF)和变速恒频发电方式(Variable Speed Constant Frequency 简称VSCF)两种。 恒速恒频发电方式,概念模型通常为“恒速风力机 +感应发电机”,常采用定桨距失速或主动失速调节实现功率控制。在正常运行时,风力机保持恒速运行,转速由发电机的极数和齿轮箱决定。由于风速经常变化,功率系数C p不可能保持在最佳值,不能最大限度地捕获风能,效率低。 变速恒频发电方式, 概念模型通常为“变速风力机+变速发电机(双馈异步发电机或低速永磁同步发电机)”,采用变桨距结构,启动时通过调节桨距控制发电机转速;并网后,在额定风速以下,调节发电机反转矩使转速跟随风速变化以保持最佳叶尖速比从而获得最大风能;在额定转速以上,采用变速与桨叶节距的双重调节限制风力机获取的能量以保证发电机功率输出的稳定性。 前者结构简单、运行可靠,但其发电效率较低,而且由于机械承受应力较大,相应的装置成本较高。后者可以实现不同风速下高效发电从而使得系统的机械应力和装置成本都大大降低。两者运行功率曲线比较如图 3所示。可以看出,采用变速恒频发电方式, 能在风速变化的情况下实时调节风力机转速,使之始终在最佳转速上运行,捕获最大风能[2]。 2 风力发电技术发展趋势

中国风电发展现状与潜力分析

中国风电发展现状与潜力分析 风能资源作为一种可再生能源取之不尽,中国更是风能大国,据统计中国风能的技术开发量可达3亿千瓦-6亿千瓦,而且中国风能资源分布集中,有利于大规模的开发和利用。 据考察中国的风能资源主要集中在两个带状地区,一条是“三北(东北、华北、西北)地 区丰富带”即西北、华北和东北的草原和戈壁地带;另一条是“沿海及其岛屿地丰富带”,即东部和东南沿海及岛屿地带。这些地区一般都缺少煤炭等常规能源并且在时间上冬春季风大、降雨量少,夏季风小、降雨量大,而风电正好能够弥补火电的缺陷并与水电的枯水期 和丰水期有较好的互补性。 一、风电发展现状 据统计,从2017年开始,中国的风电总装机连续5年实现翻番,截至2017年底,中国 以约4182.7万千瓦的累积风电装机容量首次超越美国位居世界第一,较 瓦,到2020年可达1.5亿千瓦。 (二)风电投资企业 风电投资企业包括开发商与风电装机制造企业。从风电开发商的分布来看,更向能源投资企业集中,2017年能源投资企业风电装机在已经建成的风电装机中的比例已高达90%, 其中中央能源投资企业的比例超过了80%,五大电力集团超过了50%。其他国有投资商、外资和民企比例的总和还不到10%,地方国有非能源企业、外企和民企大都退出,仅剩下中国风电、天润等少数企业在“苦苦挣扎”,当年新增和累计在全国中的份额也很小。从风 电装机制造企业来看,主要是国内风电整机企业为主,2017年累计和新增的市场份额中,前3名、前5名和前10名的企业的市场占有率,分别达到了55.5%和 发电;由沈阳工业大学研制的3mw风电机组也已经成功下线。此外,中国华锐、金风、 东汽、海装、湘电等企业已开始研制单机容量为5mw的风电机组。中国开始全面迈进多mw级风电机组研制的领域。2017年,国际上公认中国很难建成自主化的海上风电项目,然而,华锐风电科技集团中标的上海东海大桥项目,用完全中国自主的技术和产品,用两 年的时间实现了装机,并于2017年成功投产运营,令世界风电行业震惊。 (四)风电场并网运行管理 目前,风电并网主要存在两大问题:风电异地发电机组技术对电网安全稳定产生影响、风 的波动性使风电场的输出功率的波动性难以对风电场制定和实施准确的发电计划。它们使 得风电发展受到严重影响。对于这种电力上网“不给力”的现况,国家和电网企业都在积极 努力地解决好风电基地电力外送问题,除东北的风电基地全部由东北电网消纳和江苏沿海 等近海和海上风电基地主要是就地消纳之外,其余各大风电基地就近消费一部分电力和电 量之外的电力外送的基本考虑是:河北风电基地和蒙西风电基地近期主要送入华北电网;

国内外风力发电技术现状与发展

国内外风力发电技术现状与发展 风能是一种可再生的清洁能源。近30年来,国际上在风能的利用方面,无论是理论研究还是应用研究都取得了重大进步。风力发电技术日臻完善,并网型风力发电机单机额定功率最大已经到5MW,叶轮直径达到126m。截止2005年世界装机容量已达58,982MW,风力发电量占全球电量的1%。中国成为亚洲风电产业发展的主要推动者之一,其总装机容量居世界第8位,2005年新增装机容量居世界第6位。今后,国内外风力发电技术和产业的发展速度将明显加快。 1 引言 风是最常见的自然现象之一,是太阳对地球表面不均衡加热而引起的“空气流动”,流动空气具有的动能称之为风能。因此,风能是一种广义的太阳能。据世界气象组织(WMO)和中国气象局气象科学研究院分析,地球上可利用的风能资源为200亿kW,是地球上可利用水能的20倍。中国陆地10m高度层可利用的风能为2.53亿kW,海上可利用的风能是陆地上的3倍,50m高度层可利用的风能是10m高度层的2倍,风能资源非常丰富。 风能是一种技术比较成熟、很有开发利用前景的可再生能源之一[1]。风能的利用方式不仅有风力发电、风力提水,而且还有风力致热、风帆助航等。因此,开发利用风能对世界各国科技工作者具有极强的魅力,从而唤起了世界众多的科学家致力于风能利用方面的研究。在本文中,将对国内外风力发电技术的现状和发展趋势进行论述。 2 风力发电基本知识 2.1 风能的计算公式 空气运动具有动能。风能是指风所具有的动能。如果风力发电机叶轮的断面积为A,则当风速为V 的风流经叶轮时,单位时间风传递给叶轮的风能为 (1) 其中:单位时间质量流量m=ρAV (2) 在实际中,(3) 式中: P W—每秒空气流过风力发电机叶轮断面面积的风能,即风能功率,W; C p—叶轮的风能利用系数; ηm—齿轮箱和传动系统的机械效率,一般为0.80—0.95,直驱式风力发电机为1.0; ηe—发电机效率,一般为0.70—0.98; ρ—空气密度,kg/m3; A—风力发电机叶轮旋转一周所扫过的面积,m2; V—风速,m/s。 2.2 贝茨(Betz)理论 第一个关于风轮的完整理论是由德国哥廷根研究所的A·贝茨于1926年建立的。 贝茨假定风轮是理想的,也就是说没有轮毂,而叶片数是无穷多,并且对通过风轮的气流没有阻力。因此这是一个纯粹的能量转换器。此外还进一步假设气流在整个风轮扫掠面上的气流是均匀的,气流速

相关主题
文本预览
相关文档 最新文档