当前位置:文档之家› 交流火焰检测

交流火焰检测

交流火焰检测
交流火焰检测

燃气热水器交流火焰检测电路

由于变压器输出交流信号,燃气燃烧产生离子体,火焰产生正负极离子体,当交流信号到达火焰检测信号探针处,交流信号可在火焰上形成通路,从而火焰起到一个二极管整流作用,使火焰探针左侧的电容充电,产生一个负电压,经过比较器后变成低电平..........

火焰检测反馈电路

如图所示,焰检测反馈电路由单片机,**管Q5、Q6,就压管T2及IC1等元器件组成。当工作时单片机在给点火控制电路信号的同时也把触发信号加到了Q5的基极,使Q5饱和导通,由Q6及T2组成的电感三点式自激振荡电路得电起振工作,振荡电路工作后在T2的次级绕组上感应出一个约150V的交流脉冲电压,此电压的一端通过电容C6和电阻R15后由连接导线连接到安装在燃烧器旁的火焰探测针上,当燃气被点燃燃烧时,因火焰本身所具有的单向导电特性(二级管特性),通过C6及R15加到火焰探测针上的交流脉冲电压被火焰整流,整流后产生的离子电流给电容C7充电,在C7上形成一个下正上负的充电电压,C7上端的负电压通过R17加到IC1比较器的负端上,使IC1比较器的负端电位低于正端电位,迫使IC1比较器反转,由原来输出的低电平反转为高电平,再将此高电平信号送到单片机的火焰信号检测输入口上。

当燃气灶意外熄火时,通过C6及R15加到火焰探测针上的150V交流脉冲电压呈现开路状态,IC1比较器的负端由于R19的作用而使电

位高于比较器的正端,迫使IC1比较器反转,由原来的高电平反转为低电平状态,输出的低电平信号送到单片机的火焰信号检测输入口上。当火焰探测针发生严重漏电或火焰探测针与机体短路时,T1次级绕组上的150V交流脉冲电压通过R15及C7构成回路,因电容的线性对交流电短路,IC1比较器的负端由于R19的作用而高于正端电位,使比较器反转,输出低电平,此低电平信号输入到单片机的火焰信号检测口上,这样,单片机通过火焰信号检测输入端电平的高低就可判别火焰的有无。本电路由于采用了交流火焰检测方法,提高了火焰检测的可靠性,防止了控制误动作的发生。

《火焰检测技术》word版

火焰检测 火焰有着与众不同的特征,他的颜色、温度、形状以及跳动的形式都可以作为识别的依据。下面,我们将从火焰的静态特征和动态特征两方面入手进行火焰识别。 静态特征(颜色与形状) 首先,火焰有着与众不同的颜色特征。描述其颜色的模型有很多,图7就是其中一种,它可以由RGB空间经过简单比较计算得到。 图7 火焰颜色分布图 由上图,任何RGB图像中只要满足R>=G且G>B的颜色都可以看作是火焰。图8中显示了由该模型对各种火焰的检测结果。虽然这种模型的误报会很多,但可以作为最初始的筛选手段排除掉最不可能是火焰的物体。

图8 火焰图片(上行)及相应颜色检测结果(下行) 火焰的外形也是用来识别的重要特征。一种模型是采用嵌套式轮廓模型。它默认火焰存在一个或几个燃烧点,火焰从这些燃烧点一层层的向外扩散。越到外层的地方其形状的可边度越大,而且是连续的。图9展示了一个燃烧点的火焰模型,它由三层火焰轮廓组成,对于其右侧图10中的火焰经过该模型捕捉得到图11结果。 图9 火焰模型图10 火焰图片图11 符合模型的火焰 动态特征(频率) 火焰是跳跃着的,或者说是移动变化着的。初看起来没有什么规律,其实,经研究发现,火焰的外焰部分的运动存在一定频率。从图12中红色标出的火焰

外焰部分来看,这些像素点在经历着有火焰和无火焰两种状态的切换,这个切换的频率经过计算是10HZ 。这样,我们通过捕捉这个10赫兹的特征可以进一步确认是否有火焰的存在。 图12 火焰外焰部分 图13 外焰运动存在一定频率 除此之外,火焰的运动是有能量变化的。燃烧的物理变化和化学变化造成了火焰能量的不均衡分布。这点可以作为区分火焰与其他颜色相似运动物体的特征。图14中红色衣服上被黑色边框划出的区域能量变化在其右侧显示,可见衣服的能量分布是均匀的(显示为均一灰色,没有亮暗变化)。与之对比,火焰的能量变化就显得非常不均匀,在能量分布图上看得到明显的亮暗变化。 图14 与火焰颜色接近图案的能量分布 图15火焰的能量分布 烟雾检测 烟雾的特征和火焰有着明显的不同,无论是静态的还是动态的。这样使得我们可以将其与火焰识别分开处理。

火焰检测原理

火焰检测原理 燃烧火焰具有各种特性,如发热程度、电离状态、火焰不同部位的辐射、光谱及火焰的脉动或闪烁现象、差压、音响等,均可用来检测火焰的“有”或“无”。以煤、油作为 燃料的锅炉在燃烧过程中会辐射红外线(IR)、可见光和紫外线(UV)。 所有的燃料燃烧都辐射一定量的紫外线和大量的红外线,且光谱范围涉及红外线、可见光及紫外线。因此,整个光谱范围都可以用来检测火焰的“有”或“无”。由于不同种类的燃料,其燃烧火焰辐射的光线强度不同,相应采用的火焰检测元件也会不一样。一般说来,煤粉火焰中除了含有不发光的CO2和水蒸气等三原子气体外,还有部分灼热发光的焦炭粒子和炭粒,它们辐射较强的红外线、可见光和一些紫外线,而紫外线往往容易被燃烧产物和灰粒吸收而很快被减弱,因此煤粉燃烧火焰宜采用可见光或红外线火焰检测器。而在用于暖炉和点火用的油火焰中,除了有一部分CO2和水蒸气外,还有大量的发光碳黑粒子,它也能辐射较强的可见光、红外线和紫外线,因此可采用对这三种火焰较敏感的检测元件进行测量。而可燃气体作为主燃料燃烧时,在火焰初始燃烧区辐射较强的紫外线,此时可采用紫外线火焰检测器进行检测。除辐射稳态电磁波外,所有的火焰均呈脉动变化。因此,单燃烧器工业锅炉的火焰监视可以利用火焰脉动变化特性,采用带低通滤波器(10—20Hz)的红外固体检测器(通常采用硫化铅)。但电站锅炉多燃烧器炉膛火焰的闪烁规律与单燃烧器工业锅炉不大一样,特别是在燃烧器的喉口部分,闪烁频率的范围要宽得多。硫化铅(PbS)感测器,这是一种硫化铅光敏电阻,其特点是对红外线辐射特别敏感。燃料在燃烧时,由化学反应产生闪烁的红外线辐射,使硫化铅光敏电阻感应,转变成电信号,再经放大器处理后,输出4-20mA 或0-10V的模拟量。在光谱中,红外线的波长为Page 3 of 43 600nm以上,而这种硫化铅感测器的光谱灵敏度为600nm-3000nm,对绝大部分红外线辐射都可以有效采集,同

火焰检测装置

谈谈火焰检测装置的应用 1.引言 炉膛安全监控系统(FSSS)是防止因易燃物积聚和误操作而造成锅炉事故,保证锅炉安全运行的重要措施,火焰检测装置是FSSS的关键设备,FSSS 能否投运成功,在很大程度上取决于火焰检测装置动作的正确与可靠。火焰检测装置一般由探头、信号电缆、运算放大处理器组成。目前,国内火电厂火焰检测装置的应用有常规火焰检测装置和图像火焰检测装置。 2.常规火焰检测装置 常规火焰检测装置大多是基于对光能强度的检测,主要是可见光、红外线、紫外线,其基本原理是根据火焰的强度和脉动频率来判断炉膛火焰的存在与否,这类装置存在着“偷看”和火焰特征区瞄准的问题,对探头的安装要求比较严格,不同煤种、不同负荷、不同风粉比对燃料的着火点造成影响。 2.1可见光火焰检测装置 该装置利用炉膛燃料(煤粉、油、天然气)燃烧时辐射出具有一定强度和脉动性的可见光(400---700nm波长)来判断火焰是否存在。不同的火焰检测装置,探头输出信号形式不同:一种是直接输出不经处理的毫伏级信号;另一种是输出4---20mA标准信号,在探头可调整火焰增益放大系数,4---20mA 标准信号传输方式能提高带负载和传输过程中抗干扰的能力。火焰检测装置提供4---20mA模拟量和开关量信号输出,用以火焰显示和控制保护。 可见光火焰检测装置八十年代初期开始应用于电站锅炉,国内火电厂目前普遍采用。 2.2红外火焰检测装置 该装置利用炉膛燃料燃烧时辐射出的近红外线(700---3200nm波长)对燃烧器火焰进行检测,适用于燃油、燃气燃烧的火焰检测,而在燃煤锅炉燃烧器火焰检测的应用则较少。 红外火焰检测装置七十年代未期开始应用于电站锅炉。。

火焰光度检测器FPD

火焰光度检测器F P D 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

火焰光度检测器-FPD(SFPD 、DFPD 、PFPD) 一.概述 1. FPD是 1966年问世的,它是一种高灵敏度、高选择性的检测器,对含磷、硫的有机化合物和体硫化物特别敏感。 2.主要用来检测 ⑴ 油精馏中硫醇、COS、 H2S、 CS2、 SO2; 0 水质污染中的硫醇; ⑵ 空气中H2S、SO2、CS2; 0 农药残毒; 0 天然气中含硫化物气体。 3. FPD检测硫化物是目前最好的方法,为了提高 FPD灵敏度和操作特性,在单火焰气体的流路式上作了多种尝试,随后设计出了双火焰光度检测器(DFPD),但没有从根本上解决测硫灵敏 和操作特性欠佳的缺点,最近几年在市场上又推出了脉冲火焰光度检测器(DFPD),无论在测 测磷的灵敏度和选择性都有了成百倍的提高。也可以说,在测磷方面已没有必要再推荐氮磷检 测器了,测硫也基本上满足了当前各领域分析的要求。 二.FPD简明工作原理 FPD实质上是一个简单的发射光谱仪,主要由四部分组成: 1.光发射源是一个富氢火焰(H2 :O2> 3 :1),温度可达2000 ~ 3250 ℃ ; 2.波长选择器,常用波长选择器有干涉式或介质型滤光片; 3.接收装置包括光电倍增管(PMT)和放大器,作用是把光的信号转变成电的信号,并适当放大4.记录仪和其它的数据处理。 FPD简明工作原理为:当含磷、硫的化合物,在富氢火焰中燃烧时,在适当的条件下,将发射一系列的特征光谱。其中,硫化物发射光谱波长范围约在 300 ~ 450nm之间,最大波长约在 39左右;磷化合物发射光谱波长范围约在 480 ~ 575nm之间,最大波长约在 526 nm左右。 含磷化合物,一般认为首先氧化燃烧生成磷的氧化物,然后被富氢焰中的氢还原成 HPO,这个被火焰高温激发的磷裂片将发射一定频率范围波长的光,其光强度正比于 HPO的浓度,所以 FP 测磷化合物响应为线性。 含硫的化合物在富氢火焰中燃烧,在适当温度下生成激发态的S2*分子,当回到基态时,也发射某一波段的特征光。它和含磷的化合物工作机理的不同是:必须由两个硫原子,并且在适当的温度条件下,方能生成具有发射特征光的激发态S2*分子,所以发射光强度正比于S2*分子,而S2*分子与SO2的浓度的平方成正比,故FPD测硫时,响应为非线性,但在实际上,硫发射光谱强度(IS2)与含硫化物的质量、流速之间的关系为IS2=I[SO2],式中:n不一定恰好等于2,它和操作条件以及化合物的种类有很大的关系,特别是在单火焰定量操作时,若以n = 2计算将会造成很大的定量误差三. 双火焰光度检测器(DFPD) 双火焰光度检测器(DFPD),克服了单火焰的响应依赖于火焰条件与样品种类的缺点,使响应和样品中的硫(磷)的质量有关,并在检测硫时基本遵循平方关系。DFPD工作原理是使用了两个空气-氢气火焰,将样品分解区域与特征光发射测量区域分开,即从柱流出的样品组分首先与空气混然后与过量的氢气混合,在第一个火焰喷嘴上燃烧。第一个火焰将烃类溶剂和复杂的组分分解成比较简单的产物,这些产物和尚未反应的氢气再与补充的空气相混合,这时的氢气含量仍稍过量,既 1

火焰检测器系统

第1章概述 1.1 用途 火焰检测设备是火力发电厂锅炉炉膛安全监控系统(FSSS)中的关键设备,它的作用贯穿于从锅炉启动至满负荷运行的全过程,用于判定全炉膛内或单元燃烧器火焰的建立/熄灭或有火与无火,当发生全炉膛灭火或单元燃烧器熄火时,火焰检测设备触点准确动作发出报警,依靠FSSS系统连锁功能,停止相应给粉机、磨煤机、燃油总阀或一次风机等的运行,防止炉膛内积聚燃料,异常情况被点燃引起锅炉爆炸恶性事故的发生,因此设备性能即设备运行的可靠性与检测的准确性直接关系到机组的运行安全与稳定性,ZHJZ-IV型火焰检测器适用于按各种方式分类的锅炉,包括按燃料类型分为燃油、燃煤、燃气锅炉,按机组容量分类的各种大中小型锅炉,按炉型分类的四角切圆燃烧、对冲燃烧、循环流化床等各种锅炉。 1.2 火焰检测原理 油、煤或气体燃料的燃烧其实质是燃料化学能以电磁波的形式释放,燃烧器火焰一般都能发射几乎连续的发光光谱,其发射源是燃烧过程中生成的高温炭素微粒子、微粉炭粒子群和气体等,不同的燃料燃烧过程中的中间产物不完全相同或中间产物的所占比例各不相同,不同的燃烧中间产物所发射的光谱不完全一样,这是选择不同类型火焰检测器依据,C2发射可见光(发射波长为473.7纳米左右)、CH化合物发射紫外到蓝光区波段的光谱、炭素粒子群发射红光区光谱、CO2、H2O和SO2等三原子气体发射红外光,不同燃料的光谱分布特性是油火焰含有大量的红外线、部分可见光、和少量紫外线,煤粉火焰含有少量紫外线、丰富的可见光和少量红外线。气体火焰有丰富的紫外线、红外线和较少的可见光,而且对于单只燃烧器火焰,其辐射光谱沿火焰轴线分布是有规律的,例如煤粉锅炉中煤粉燃烧器沿轴线从里至外分为4个区域即预热区、初始燃烧区、安全燃烧区和燃尽区,在初始燃烧区不但可见光较丰富而且能量辐射率变化聚烈,因此火焰检测探头准确对准燃烧器的初始燃烧区是最佳选择。 ZHJZ-IV型火焰检测器的火焰检测设备是一种间接辐射型可见光式火焰检测设

火焰探测器

火焰探测器:物质燃烧时,在产生烟雾和放出热量的同时,也产生可见或不可见的光辐射。火焰探测器又称感光式火灾探测器,它是用于响应火灾的光特性。即扩散火焰燃烧的光照强度和火焰的闪烁频率的一种火灾探测器。根据火焰的光特性,目前使用的火焰探测器有两种:一种是对波长较短的光辐射敏感的紫外探测器,另一种是对波长较长的光辐射敏感的红外探测器。 紫外火焰探测器是敏感高强度火焰发射紫外光谱的一种探测器,它使用一种固态物质作为敏感元件,如碳化硅或硝酸铝,也可使用一种充气管作为敏感元件。 红外光探测器基本上包括一个过滤装置和透镜系统,用来筛除不需要的波长,而将收进来的光能聚集在对红外光敏感的光电管或光敏电阻上。 火焰探测器宜安装在有瞬间产生爆炸的场所。如石油、炸药等化工制造的生产存放场所等。 火焰探测的基本原理 火焰的辐射是具有离散光谱的气体辐射和伴有连续光谱的固体辐射,其波长在0.1-10μm或 更宽的范围,为了避免其他信号的干扰,常利用波长<300nm的紫外线,或者火焰中特有的波长在4.4μm附近的CO2辐射光谱作为探测信号。紫外线传感器只对185~260nm狭窄范围内的紫外线进行响应,而对其它频谱范围的光线不敏感,利用它可以对火焰中的紫外线进行检测。到达大气层下地面的太阳光和非透紫材料作为玻壳的电光源发出的光波长均大于300nm,故火焰探测的220m-280nm中紫外波段属太阳光谱盲区(日盲区)。紫外火焰探测技术,使系统避开了最强大的自然光源一太阳造成的复杂背景,使得在系统中信息处理的负担大为减轻。所以可靠性较高,加之它是光子检测手段,因而信噪比高,具有极微弱信号检测能力,除此之外,它还具有反应时间极快的特点。与红外探测器相比,紫外探测器更为可靠,且具有高灵敏度、高输出、高响应速度和应用线路简单等特点。因而充气紫外光电管正日益广泛地应用于燃烧监控、火灾自报警、放电检测、紫外线检测、及紫外线光电控制装置中。 但对于传统的紫外光电管器件,由于结构设计和制备工艺的限制,其噪声和灵敏度是一个互相矛盾的参数。一般而言,需将灵敏度控制在一个合适的水平,过高的灵敏度对器件的低噪

氢火焰离子化检测器详细介绍包括原理等超详细!!!

氢火焰离子化检测器详细介绍(包括原理等超详细!!!)

————————————————————————————————作者: ————————————————————————————————日期: ?

1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A)经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。 其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10-14~10-13A),线性范围宽(106~107),死体积小(≤1μL),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的气相色谱检测器。 其主要缺点是需要三种气源及其流速控制系统,尤其是对防爆有严格的要求。 氢火焰离子化检测器的结构 氢火焰离子化检测器(FID)由电离室和放大电路组成,分别如图2-9(a),(b)所示。 FID的电离室由金属圆筒作外罩,底座中心有喷嘴;喷嘴附近有环状金属圈(极化极,又称发射极),上端有一个金属圆简(收集极)。两者间加90~300V的直流电压,形成电离电场加速电离的离子。收集极捕集的离子硫经放大器的高组产生信号、放大后物送至数据采集系统;燃烧气、辅助气和色谱柱由底座引入;燃烧气及水蒸气由外罩上方小孔逸出。 氮火焰离子化检测器晌应机理

解析各种检测器的原理、用途和作用

解析各种检测器的原 用途和理、作用

气相色谱仪-检测系统 1.热导检测器热导检测器 (Thermal coductivity detector ,简称TCD ),是应用比较多的检测器,不论对有机物还是无机气体都有响应。热导检测器由热导池池体和热敏元件组成。热敏元件是两根电阻值完全相同的金属丝(钨丝或白金丝),作为两个臂接入惠斯顿电桥中,由恒定的电流加热。如果 热导池只有载气通过,载气从两个热敏元件带走的热量相同,两个热敏元件的温度变化是相同的,其电阻值变化也相同,电桥处于平衡状态。如果样品混在载气中通过测量池,由于样号气和载气协热导系数不同,两边带走的热量不相等,热敏元件的温度和阻值也就不同,从而使得电桥失去平衡,记录器上就有信号产生。这种检测器是一种通用型检测器。被测物质与载气的热导系数相差愈大,灵敏度也就愈高。此外,载气流量和热丝温度对灵敏度也有较大的影响。热丝工作电流增加一倍可使灵敏度提高3—7倍,但是热丝电流过高会造成基线不稳和缩短热丝的寿命。热导检测器结构简单、稳定性好,对有机物和无机气体都能进行分析,其缺点是灵敏度低。 2.气相色谱仪氢火焰离子化检测器 氢火焰离子化检测器(Flame lonization Detector ,FID)简称氢焰检测器。它的主要部件是一个用不锈钢制成的离子室。离子室由收集极、极化极(发射极)、气体入口 及火焰喷嘴组成。在离子室下部,氢气与载气混合后通过喷嘴,再与空气 混合点火燃烧,形成氢火焰。无样品时两极间离子很少,当有机物进入火焰时,发生离子化反应,生成许多离子。在火焰上方收集极和极化极所形成的静电场作用下,离子流向收集极形成离子流。离子流经放大、记录即得色谱峰。有机物在氢火焰中离子化反应的过程如下:当氢和空气燃烧时,进入火焰的有机物发生高温裂解和氧化反应生成自由基,自由基又与氧作用产生离子。在外加电压作用下,这些离子形成离子流,经放大后被记录下来。所产生的离子数与单位时间内进入火焰的碳原子质量有关,因此,氢焰检测器是一种质量型检测器。这种检测器对绝大多数有机物都有响应,其灵敏度比热导检测器要高几个数量 级,易进行痕量有机物分析。其缺点是不能检测惰性气体、空气、水、CO , CO2、

交流火焰检测

燃气热水器交流火焰检测电路 由于变压器输出交流信号,燃气燃烧产生离子体,火焰产生正负极离子体,当交流信号到达火焰检测信号探针处,交流信号可在火焰上形成通路,从而火焰起到一个二极管整流作用,使火焰探针左侧的电容充电,产生一个负电压,经过比较器后变成低电平.......... 火焰检测反馈电路 如图所示,焰检测反馈电路由单片机,**管Q5、Q6,就压管T2及IC1等元器件组成。当工作时单片机在给点火控制电路信号的同时也把触发信号加到了Q5的基极,使Q5饱和导通,由Q6及T2组成的电感三点式自激振荡电路得电起振工作,振荡电路工作后在T2的次级绕组上感应出一个约150V的交流脉冲电压,此电压的一端通过电容C6和电阻R15后由连接导线连接到安装在燃烧器旁的火焰探测针上,当燃气被点燃燃烧时,因火焰本身所具有的单向导电特性(二级管特性),通过C6及R15加到火焰探测针上的交流脉冲电压被火焰整流,整流后产生的离子电流给电容C7充电,在C7上形成一个下正上负的充电电压,C7上端的负电压通过R17加到IC1比较器的负端上,使IC1比较器的负端电位低于正端电位,迫使IC1比较器反转,由原来输出的低电平反转为高电平,再将此高电平信号送到单片机的火焰信号检测输入口上。 当燃气灶意外熄火时,通过C6及R15加到火焰探测针上的150V交流脉冲电压呈现开路状态,IC1比较器的负端由于R19的作用而使电

位高于比较器的正端,迫使IC1比较器反转,由原来的高电平反转为低电平状态,输出的低电平信号送到单片机的火焰信号检测输入口上。当火焰探测针发生严重漏电或火焰探测针与机体短路时,T1次级绕组上的150V交流脉冲电压通过R15及C7构成回路,因电容的线性对交流电短路,IC1比较器的负端由于R19的作用而高于正端电位,使比较器反转,输出低电平,此低电平信号输入到单片机的火焰信号检测口上,这样,单片机通过火焰信号检测输入端电平的高低就可判别火焰的有无。本电路由于采用了交流火焰检测方法,提高了火焰检测的可靠性,防止了控制误动作的发生。

氢火焰离子化检测器详细的介绍(包括原理等超详细)

1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID ),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A)经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。 其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10-14~10-13A),线性围宽(106~107),死体积小(≤1μL),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的气相色谱检测器。 其主要缺点是需要三种气源及其流速控制系统,尤其是对防爆有严格的要求。 氢火焰离子化检测器的结构 氢火焰离子化检测器(FID)由电离室和放大电路组成,分别如图2-9(a),(b)所示。 FID的电离室由金属圆筒作外罩,底座中心有喷嘴;喷嘴附近有环状金属圈(极化极,又称发射极),上端有一个金属圆简(收集极)。两者间加90~300V的直流电压,形成电离电场加速电离的离子。收集极捕集的离子硫经放大器的高组产生信号、放大后物送至数据采集系统;燃烧气、辅助气和色谱柱由底座引入;燃烧气及水蒸气由外罩上方小孔逸出。

图像火焰检测及燃烧分析系统的应用分析

图像火焰检测及燃烧分析系统的应用分析 摘要:针对电站锅炉常规火检系统存在的“偷看”、“漏看”问题,从锅炉燃烧特性和图像火检工作原理进行了分析,探讨了图像火检的实用性和应用情况。 关键词:图像火检;火焰检测;探头 目前,我国电站锅炉采用的火焰检测器是以可见光、红外光为主的光敏元件检测器,这两种光敏原件检测器都是借助火焰着火区辐射能量的交流分量、火焰的脉动幅值和脉动频率,进行火焰着火与熄火的检测。然而在锅炉运行过程中,由于锅炉负荷及配风的变化,煤火检过程中,“偷看”、“漏看”的问题一直比较严重,而且长期存在,导致对燃烧器的检测准确性大大降低,以至于灭火保护也不得不解除,影响机组运行安全。 图像火焰检测及燃烧分析系统,其原理是利用火焰图像,来对火焰燃烧情况进行全程监控,能够直观地判断火焰的存在状态,煤种和负荷变化对其影响极小。这是一种新型的火焰检测装置。本文主要分析了图像火检的工作原理,以及燃烧器在燃烧方面的特性,以此论证在锅炉火焰检测中,图像火检所独有的优势。 1 图像火检系统概述

图像火焰检测及燃烧分析系统的核心,是基于煤粉在燃烧过程中的火焰图像分析,主要是对火焰图像视频信号进行处理,整个处理过程包括火焰图像视频信号的采集、传输、放大、录制、显示、分析等几部分。图像火焰检测及燃烧分析系统的组成主要有如下几部分: ●火焰图像传感器 ●视频信号分配器 ●火焰图像检测器(下位机) ●火焰图像监视管理系统 ●火焰图像录放系统 ●通讯系统 火检探头采用视频信号传输,不配备光纤。 2 图像火检工作原理 图像火焰检测及燃烧分析系统,其原理是借助广角长焦距工作镜头对整个燃烧器状况进行判断,并利用彩色CCD 摄像机对燃烧器喷口的火焰图像进行直观拍摄。由于燃烧火焰图像中含有大量的信息,再采用传像技术、计算机数字图像处理技术、模式识别技术等对图像进行分析,以便对单个燃烧器火焰的ON/OFF信号进行准确判断。 3 火焰检测不稳定性分析 电站锅炉运行过程中常规煤火检一直存在“偷看”、“漏看”和稳定性差的问题,为了解决这个问题,就需要对电站

火焰监测原理

离子火焰监测器是利用火焰的单向导电原理而研制的一种火焰检测装置,该装置由传感器和监测器两部分组成。传感器为一支具有良好导电作用的电极,即火焰检测电极。当火焰检测电极接触到火焰时,即产生一流经燃烧器接地回路的微弱的火焰离子电流,该信号经控监测放大处理后,给出火焰指示,并通过继电器输出触点的转换来对外部设备进行控制。 由于各种气体、液体燃料在燃烧时,不断地挥发出污染物质,使电极氧化或结焦,影响火焰信号的接收.因此必须定期检查和擦拭电极头,以保证电极能可靠传导火焰电流信号。 如果电极已烧损变形,不可勉强使用,而应及时更换新的电极,在设备运行中若发现火焰信号不稳定或产生误动作,应仔细检查电极的接线是否正确牢靠,电极与燃烧器是否有短路现象,如有上述故障应及时排除。 基本就两块: 1.电子检测电极问题,接触不好,或是烧短了,注意材质特殊,不能任意更换。 2.检测放大器的问题。 电离式火检一般出现无法检测到火焰的问题,都是由于火焰脱火造成的,脱火就是火焰形状的改变,无法与烧咀及其他设备构成回路,需要调整燃气和风量的配比。

除此之外,还有可见光火检,紫外线火检等很多种 利用辐射光能原理的火焰检测器是目前使用最广泛,也是较行之有效的方法。辐射光能强度检测的原理是用探头接收火焰发出的辐射,按照其强度的大小判断火焰的存在与否。由于检测波段的不同,可以分为紫外线、可见光、红外线及全辐射火焰检测。 紫外、红外探头分别探测不同部分的光谱,只有当2个探头同时探测到相应的光谱时,紫外、红外探头才会有输出,这样就避免了单独使用紫外或红外探头由某些原因(如闪电、电弧焊等)所引起的误报警。该火焰探头有两个继电器输出,其故障继电器的常闭点与终端电阻串接,并连在火焰继电器的常开点上。当探头有故障发生时,故障继电器动作,产生一故障(开路)信号。当探测到火焰时,火焰继电器动作,输出一报警信号。该紫外/红外采用了自动oi测试功能,大约一分钟检测一次,检查探头镜头的清洁度,传感器的灵敏度和内部电子电路的功能。如果连续三次均探测到故障,探头将输出一故障信号。 ULTRA-VOILET DETECTOR 火焰探测信号来自紫外线探测器和烟雾探测器。火焰探测器有三个独立的探测管,用于探测波长为180—260埃的紫外线辐射。当火焰的辐射作用到探测管之一的阴极时,电子束放射出来。电子束作用到充满探测管的电离气体,从而发射出更多的电子,产生出雪崩条件。更多的电子释放出来,在阴极和阳极之间产生一个瞬时电子流。这个

火焰特性研究及其检测技术

天津大学 硕士学位论文 火焰特性研究及其检测技术 姓名:杨柳 申请学位级别:硕士 专业:检测技术与自动化装置指导教师:王化祥;黄晓玲 20031201

中文摘要 工业锅炉炉膛中存在两种火焰,一为炉体火焰,一为若干个喷火嘴喷出的火焰,工厂常常需要知道在炉体背景火焰下,喷嘴是否在喷火,以确定各个喷嘴的运行状态。工业上把火焰检测器将炉体火焰误判为喷嘴火焰的情况称为“偷看”;把不能透过炉体火焰看到喷嘴火焰的情况称为“漏看”。检测器“偷看”和“漏看”的频繁发生,会对锅炉的正常运行造成严重的影响。“偷看”和“漏看”的实质是无法对重叠的火焰进行准确的判断,因此如何对重叠的火焰进行准确的判断成为解决此问题的关键。 本文详细介绍了火焰检测技术的原理、发展动态,总结了光电技术在火焰检测方面的应用。通过对几种光电检测电路的比较和分析,在试验测试的基础上, 构建了一个性能较好的信号提取电路。波,并以TMS320]。F2407ADSP为核心,采用电压编程精确滤波器对信号进行滤设计出一个进行光电转换、信号调理、 数捌采集的硬件平台。软件设计方面,采用汇编语言实现了系统控制、频谱分析和与上位机的通讯.同时在上位机中用vc++编程,实时显示了频谱数据的柱状图。在基于闪烁频率法检测火焰的原理上,提出了一种以快速傅立叶变换(FFT)分析火焰闪烁频谱,建立火焰重叠判据,从而判断火焰重叠与否的方法。为解决“偷看”“漏看”提供了一种新方案。 此外,本文还对系统的深入设计和优化提出了建议。 关键词:火焰检测火焰闪烁频谱快速傅立叶变换火焰重叠判据

ABSTRACT Therearetwokindofflameinindustryintemallyfiredboiler.Oneisboiler-bodyflametheotherisflamefromburnernozzles.Inordertojudgetheoperationstatusofboiler,Workersneedtoknowwhethertheburnernozzleisburningornotunderthe backgroundflameofboiler-body.Inindustrywedefine“peek”asphenomenonthat flame.Wedefine‘‘leak'’asthedetectortaketheboiler-bodyflameasbttrner-nozzle’S phenomenonthatthedetectorcannotprobetheburner—nozzle’Sflamethoughboiler—bodyflame.Thesetwophenomenawilldamageboileriftheyhappentoofrequemly.Theessentialofthephenomenaisthedetectorcannotjudgethe flame.Sohowtojudgetheoverlappingstatusofflameistheoverlappingstatusof focusoftheproblem. ThisthesisjntroducesthefoundationanddevelopmentofflamedetectiontecMologyandsummarizestheapplicationofphotoelectrictechnologyinflamedetection.Throughcomparingandanalyzingofphotoelectricdetectingcircuit,anefficientsignaldetectingcircuitisestablishedbasedonthedataobtainedfromexperimentation.AprecisionvoltageprogrammablefilterisusedtodealwitllthesignedUsingTMS320LF2407ADSPascontroller,ahardwaresystemfor{photoelectrictransforming,signaldealingandsamplingisdesigned.Asforsoftwaredesign,itrealizesthefunctionofsystemcontrolling,frequencyanalyzingandcommunicationwithPCusingassemblylanguage.AtthesametimegraphofrealtimedataisdisplayedonPCusingVC++asprogrammingt001.Basedonthedetectionmethodofflameflickingfrequency,anewmethodforjudgetheoverlapstatusoftwo flamesis proposed.ThemethoduseFFT(FastFouriertransform)toanalyze flameflickingfrequencyandbuildtheflameoverlappingfrequencyspectrumof criterionthencomparethefielddatawiththecriteriontoknowwhetherthetwo flames overlapornot.Thismethodisanewsolutionfor‘'peek'’and‘‘leak”phenomena. Furthermoreadvicefor deepresearchandoptimizingdesignisalsopresented.

火焰探测的基本原理

火焰探测的基本原理 火焰的辐射是具有离散光谱的气体辐射和伴有连续光谱的固体辐射,其波长在0.1-10μm或更宽的范围,为了避免其他信号的干扰,常利用波长<300nm的紫外线,或者火焰中特有的波长在4.4μm附近的CO2辐射光谱作为探测信号。紫外线传感器只对185~260nm狭窄范围内的紫外线进行响应,而对其它频谱范围的光线不敏感,利用它可以对火焰中的紫外线进行检测。到达大气层下地面的太阳光和非透紫材料作为玻壳的电光源发出的光波长均大于300nm,故火焰探测的220m-280nm中紫外波段属太阳光谱盲区(日盲区)。紫外火焰探测技术,使系统避开了最强大的自然光源一太阳造成的复杂背景,使得在系统中信息处理的负担大为减轻。所以可靠性较高,加之它是光子检测手段,因而信噪比高,具有极微弱信号检测能力,除此之外,它还具有反应时间极快的特点。与红外探测器相比,紫外探测器更为可靠,且具有高灵敏度、高输出、高响应速度和应用线路简单等特点。因而充气紫外光电管正日益广泛地应用于燃烧监控、火灾自报警、放电检测、紫外线检测、及紫外线光电控制装置中。 但对于传统的紫外光电管器件,由于结构设计和制备工艺的限制,其噪声和灵敏度是一个互相矛盾的参数。一般而言,需将灵敏度控制在一个合适的水平,过高的灵敏度对器件的低噪声指标是十分困难的,因为灵敏度和噪声信号都是由光敏管发出,传统的检测器会将两种信号同时放大。所以其灵敏度比较差,检测距离小,不能抗雷电的干扰,存在一定的误报率。因而需要基于现有或新发展的探测原理方法,与其它学科技术交叉,通过改进信号采集和处理等方法来改善系统性能。火焰探测报警器技术的现状 国标中对于点型紫外火焰探测器的响应规定30s均可接受,但由于科技的进步,市场上的火焰探测报警产品的响应时间性均能满足这个时间范围,但对于实际应用和安防要求而言这是必须的,而且对指标和性能要求越来越高。国内的大部分报警系统响应时间在S级,国外顶级公司日本滨松、美国MSA等其响应速度最快可达到ms级,可查阅的国外顶级的火焰检测器探测距离为500米,不能用在更远距离火焰探测中。市场上的火焰检测器主要有感烟传感器、红外传感器和紫外光敏管,即使是采用多信息融合技术的火焰探测系统,其检测的信息来源也主要是这三个方面。传统的火焰探测传感器存在以下不足: a. 烟雾传感器,这是一种火焰间接检测器,当火焰产生后烟雾也随着产生。当烟雾达到一定的浓度时发出报警信号。用这种方式检测火焰有很大的弊病,有很多物质燃烧时不产生烟雾(如天然气、乙醇、甲醇等),并且检测距离较短,传感器必须在烟雾最浓的位置,可见当火焰发生到烟雾浓密,然后报警,在有的场合可能为时太晚。 b. 热释放红外火焰检测器,直接检测火焰中波长为4.35±0.15μm的红外光谱,检测目标比较明确,它由热释放探头和放大器组成,不足之处是:这种类型的传感器具有压电性,对声音电磁波以及震动都十分敏感,所以使用的地方受到一定的限制,它的检测距离小于80m。 c. 常规的紫外火焰检测器,直接检测火焰中180-260nm的紫外光谱,检测的目标也十分明确,响应速度也比较快。它由紫外光敏探头和放大器组成,不足之处是:灵敏度差,检测距离小于15m,不能抗雷电的干扰,存在一定的误报率,因此只能用在距离较短的封闭环境,如加热炉、工业锅炉等地方。 针对不同类型火焰探测器的特点限制,怎么融入火灾探测报警需要的实时性 和准确性,火焰探测的高速响应、远距离探测(针对不同场所而言)、准确无误

相关主题
文本预览
相关文档 最新文档