当前位置:文档之家› 文献计量学三大定律

文献计量学三大定律

文献计量学三大定律

文献计量学三大定律

布拉德福定律:如果将科技期刊按其刊载某学科专业论文的数量多少,以递减顺序排列,那么可以把期刊分为专门面对这个学科的核心区、相关区和非相关区。各个区的文章数量相等,此时核心区、相关区,非相关区期刊数量成的关系。

洛特卡定律:它描述的是科学工作者人数与其所著论文之间的关系:写两篇论文的作者数量约为写一篇论文的作者数量的1/4;写三篇论文的作者数量约为写一篇论文作者数量的1/9;写N篇论文的作者数量约为写一篇论文作者数量的1n2,……,而写一篇论文作者的数量约占所有作者数量的60%。

齐夫定律(二八原则):如果把单词出现的频率按由大到小的顺序排列,则每个单词出现的频率与它的名次的常数次幂存在简单的反比关系,这种分布就称为Zipf定律。它表明在英语单词中,只有极少数的词被经常使用,而绝大多数词很少被使用。实际上,包括汉语在内的许多国家的语言都有这种特点。这个定律后来在很多领域得到了同样的验证,包括网站的访问者数量、城镇的大小和每个国家公司的数量。所以以其名字命名的定律却早已走出语言学,进入了信息学、计算机科学、经济学、社会学、生物学、地理学、物理学等众多研究领域。例如:80%的财富集中在20%的人手中;80%的用户只使用20%的功能;20%的用户贡献了80%的访问量。

摘 要 介绍了热力学三个定律和非平衡态热力学的发展过程及其

摘要介绍了热力学三个定律和非平衡态热力学的发展过程及其关系,并阐述了热力学定律和热力学量的含义。 关键词热力学不可逆过程热力学熵 化学是论述原子及其组合方式的科学。人们最初考察化学反应时,是把反应物放在一起,经过加热等手段,然后分析得到些什么产物,后来根据原子分子假说,有了“当量”的概念,建立了反应物与产物之间的一定联系。人们根据化学组分随条件的变化,发现了质量作用定律,引伸出化学平衡常数。运用热力学定律,人们开始掌握从热力学函数去计算化学平衡常数的方法,并且可以对化学反应的方向作出判断,诞生了化学热力学。 化学现象是由反应速率表征的,只有在非平衡条件下化学反应过程才会呈现出非零的反应速率。因此,化学现象本身是一种非平衡现象。化学热力学应属于非平衡热力学(也即不可逆过程热力学)的范畴。但是,传统热力学虽然从科学体系来看,的确是严谨而完美的;严格来讲,整部经典热力学并不涉及“时间”和“空间”,它主要限于研究平衡态和可逆过程,其主要原因是长期以来整个非平衡热力学缺乏一个较为令人满意的理论。现实世界发生的变化却不可避免地涉及到时间上的演化和空间上的不均匀性,这种变化都是不可逆的。对非平衡的不可逆过程,经典热力学仅仅提供了一个关于熵(或自由能)的不等式,要对非平衡过程作定量描述,必须寻找适当的等式代替上述不等式。 还有一点应指出,由于传统的化学热力学只涉及平衡问题,因此几乎和化学动力学不发生关系。非平衡化学反应的热力学必定要与非平衡的化学过程相联系,热力学不再能和动力学相分离,动力学因素(如催化剂)有可能在热力学上起作用,如何把化学热力学和化学动力学有机地结合起来是值得研究的一个重要课题。 尽管线性非平衡态热力学理论对热传导、扩散等输运过程有主要应用,但对化学反应的应用却受到很大的限制,这是因为通常条件下的化学反应的流(反应速度)和力(反应亲和势)并不满足线性关系。化学反应的速率一般地说是浓度、温度等变量的非线性函数,化学反应体系是用三维线性方程描述的,本世纪60年代以来对非线性区的研究获得可喜的成果,并已形成了“非线性不可逆过程热力学”。 热力学是一门实验科学,又是牢固地以严格的代数为基础的领域。热力学是由一群方程式和一些不等式构成的,这些方程式和不等式将某些类型的可测物理量相互联系起来。著名的量子化学家美国波士顿学院教授潘毓刚曾说古典热力学有千万个公式,而量子力学只有一个公式--薛定谔方程,任何一个热力学方程都是很有用的,因为某些量比另一些量容易测量,通过测量易测之量,利用热力学方程式,就可以得出那个难测之量。 热力学的基本内容,就是论证几个抽象的热力学量的存在(温度、热力学能、熵)并研究热力学量之间的关系。 热力学中一个平衡系统完全由一组参量(体积、温度、熵)描述,我们总是认为这组参量是完整的。然而,人们评价热力学之所以有力和有独到之处,就在于它本质上的不完整性,这样一个系统在许多细节上还有大量不知道的这一事实,也许正是热力学家们引以自豪的根源。由于不要求系统内部知识的完整性,有了系统参量就可以精确地导出系统的值,充分利用已有的知识,促使成为可用的东西才是更富有成效的工作。 把热力学的基本原理用来研究化学现象以及和化学现象有关的物理现象,就称为化学热力学。 热力学第零定律正确的表述应为“热平衡具有传递性,由此,证明存在一个表征热平衡状念的态函数--温度。温度在热力学中时常出现,温度是一个极其特殊的物理量,两个物体的温度不能相加,若说某一温度为其它两个温度之和是毫无意义的,甚至,某温度的几倍,以某种单位来测量温度等等说法,也都缺乏明确的意义,严格讲,两个温度之间只有相等或不相等这种关系。测量、普通的观测,测量所得的即为该单位的倍数或小数,但

动力学三个理论

三个基本理论 双膜理论 假设:(1) 在两个流动相(气体/液体、蒸汽/液体、液体/液体)的相界面两侧,都有一个边界薄膜(气膜、液膜等)。物质从一个相进入另一个相的传质过程的阻力集中在界面两侧膜内。(2) 在界面上,物质的交换处于动态平衡。(3) 在每相的区域内, 被传输的组元的物质流密度(J ), 对液体来说与该组元在液体内和界面处的浓度差 (c l -c i )成正比; 对于气体来说,与该组元在气体界面处及气体体内分压差(p i -p g )成正比。(4) 对流体1/流体2组成的体系中,两个薄膜中流体是静止不动的,不受流体内流动状态的影响。各相中的传质被看作是独立进行的,互不影响。 若传质方向是由一个液相进入另一个气相,则各相传质的物质流的密度J 可以表示为: 气相: * ()g g i i J k p p =- k l = l l D δ k g = D RT g g δ 溶质渗透理论 假设:1)流体2可看作由许多微元组成,相间的传质是由流体中的微元完成的;2)每个微元内某组元的浓度为c b ,由于自然流动或湍流,若某微元被带到界面与另一流体(流体1)相接触,如流体1中某组元的浓度大于流体2相平衡的浓度则该组元从流体1向流体2微元中迁移;3)微元在界面停留的时间很短,以t e 表示。经t e 时间后,微元又进入流体2内。此时,微元内的浓度增加到c b +?c ;4)由于微元在界面处的寿命很短,组元渗透到微元中的深度小于微元的厚度,微观上该传质过程看作非稳态的一维半无限体扩散过程。如图4-1-5所示。 数学模型:(半无限体扩散的初始条件和边界条件) t = 0,x ≥0,c = c b 0 < t ≤ t e ,x =0,c =c s ; x =∞,c =c b 对半无限体扩散时,菲克第二定律的解为 c c c c x D t --=-b s b er f 12() )2( erf )(b s s Dt x c c c c --=

动力学基本定律

第2章动力学基本定律 一、选择题 1.牛顿第一定律告诉我们, [ ] (A) 物体受力后才能运动 (B) 物体不受力也能保持本身的运动状态 (C) 物体的运动状态不变, 则一定不受力 (D) 物体的运动方向必定和受力方向一致 2. 下列说法中正确的是 [ ] (A) 运动的物体有惯性, 静止的物体没有惯性 (B) 物体不受外力作用时, 必定静止 (C) 物体作圆周运动时, 合外力不可能是恒量 (D) 牛顿运动定律只适用于低速、微观物体 3. 下列诸说法中, 正确的是 [ ] (A) 物体的运动速度等于零时, 合外力一定等于零 (B) 物体的速度愈大, 则所受合外力也愈大 (C) 物体所受合外力的方向必定与物体运动速度方向一致 (D) 以上三种说法都不对 4. 一个物体受到几个力的作用, 则 [ ] (A) 运动状态一定改变 (B) 运动速率一定改变 (C) 必定产生加速度 (D) 必定对另一些物体产生力的作用 5. A、B两质点m A>m B, 受到相等的冲量作用, 则 [ ] (A) A比B的动量增量少(B) A与B的动能增量相等 (C) A比B的动量增量大(D) A与B的动量增量相等 6. 物体在力F作用下作直线运动, 如果力F的量值逐渐减小, 则该物体的[ ] (A) 速度逐渐减小, 加速度逐渐减小 (B) 速度逐渐减小, 加速度逐渐增大 (C) 速度继续增大, 加速度逐渐减小 (D) 速度继续增大, 加速度逐渐增大 7. 对一运动质点施加以恒力, 质点的运动会发生什 么变化? [ ] (A) 质点沿着力的方向运动(B) 质点仍表现出惯性 (C) 质点的速率变得越来越大(D) 质点的速度将不会发生变化 8. 一物体作匀速率曲线运动, 则 [ ] (A) 其所受合外力一定总为零(B) 其加速度一定总为零 (C) 其法向加速度一定总为零(D) 其切向加速度一定总为零

7-2 动力学之“三大基本模型”

专题7.2、动力学之三大基本模型 题型一、过程分析之板块模型 由滑块和木板组成的相互作用的系统一般称之为“木板—滑块模型”,简称'板块模型'。 此类问题涉及的相关知识点包括:静摩擦力、滑动摩擦力、运动学规律、牛顿运动定律、动能定理、能量转化与守恒等多方面的知识。此类问题涉及的处理手段包括:受力分析、运动分析、临界条件判断、图像法处理、多过程研究等多种方法。因此对大家的综合分析能力要求极高,也是高考的热点之一。 “滑块——木板”模型 【解题方略】 两种类型如下: 木板 条件是物块恰好滑到木板左端时二者速度相等,则位 移关系为 物块 条件是物块恰好滑到木板右端时二者速度相等,则位 移关系为 例1、如图所示,质量为M=8kg的小车放在光滑的水平面上,在小车左端加一水平推力F=8N,当小车向右运动的速度达到v0=1.5m/s时,在小车前端轻轻放上一个大小不计、质量为m=2kg的小物块,物块与小车间的动摩擦因数μ=0.2。已知运动过程中,小物块没有从小车上掉下来,取g=10m/s2。求: (1)经过多长时间两者达到相同的速度; (2)小车至少多长,才能保证小物块不从小车上掉下来; (3)当小车与物块达到共速后在小车合物块之间是否存在摩擦力? (4)从小物块放上小车开始,经过t=1.5s小物块通过的位移大小为多少; (5)二者共速后如果将推力F 增大到28N ,则二者的加速度大小分别为; 【答案】(1)1s.(2)0.75m. (3)有,1.6N .(4)2.1m (5)2m/s2. 8m/s2 【解析】

对木块受力分析得:)1...(1ma mg =μ 对小车受力分析得:)2...(2Ma mg F =-μ 解得: ... /5.0.../22 221s m a s m a == 分别对两车进行运动分析:假设经过时间t 两车达到共速,且达到共速时物块恰好到达木板的左端; 对物块: ) 4...(2 1) 3...(2 1111t a x t a v == 对小车: ) 4...(2 1 ) 5...(2202202t a t v x t a v v +=+= 根据题意: ) 6...()5...(2121l x x v v v =-==共 联立1、2、3、4、5、6式得:t=1s , l=0.75,v 共=2m/s (3)当物块与小车共速后对整体受力分析: 2 /8.0)7...()(s m a a m M F =+= 此时小车与物块之间的摩擦力转化为静摩擦力,隔离物块对物块受力分析得:N ma f 6.18.02=?==。 所以当二者共速后在小车物块之间存在静摩擦力大小为:1.6N . (4)二者共速后将以0.8m/s 2的加速度继续前进,所以在1.5s 内物块经历了两段运动(0-1s 与1-1.5s ),对物块进行运动分析得: )8...(/11x x x += 代入参数得:m x 1122 1 21=??= , m x 1.15.08.02 1 5.022/1=??+?= m x 1.2= (5)当外力F 增加到28N 时,需要先判断,物块与小车之间是否发生相对运动是处理该问的关键; 设:当外力F 增大到F0时。小车与物块之间刚好发生相对运动,此时AB 之间的静摩擦力达到最大值;结合叠加体临界问题的求解方法(见专题06)可得:

热力学三定律

热力学: 1.热力学第一定律:自然界中的一切物质都有能量,能量不可能被创造,也不 可能被消灭,但可以从一种形态转变为另一种形态;在能量的转换过程中能量的总量保持不变。 2.热力学第二定律: 克劳修斯说法:热不可能自发地、不付代价的从低温物体传至高温物体。 开尔文说法:不可能制造出从单一热源吸热,使之全部转化为功而不留下其他任何变化的热力发动机。 第二类永动机是不存在的。 3.热力学第三定律: 奈斯特定理:当温度趋于绝对温度时,任何物质系统中所发生的过程,其熵变也趋于零。 不可能通过有限过程将系统冷却至绝对零度。 绝对零度只能无限逼近,而不能最终达到。 4.热力学第零定律: 两个系统分别通过导热壁与第三个物体达热平衡,则这两个物体彼此间也必然达热平衡。 5.卡诺定理: (1)在相同的高温热源和低温热源之间工作的一切可逆卡诺机,其效率都相等,与工作物质无关。 (2)在相同的高温热源和低温热源之间工作的一切不可逆热卡诺机,其效率必小于可逆机的效率。 燃气轮机: 工作原理:: 燃气轮机的工作过程是,压气机(即压缩机)连续地从大气中吸入空气并将其压缩;压缩后的空气进入燃烧室,与喷入的燃料混合后燃烧,成为高温燃气,随即流入燃气涡轮中膨胀作功,推动涡轮叶轮带着压气机叶轮一起旋转;加热后的高温燃气的作功能力显著提高,因而燃气涡轮在带动压气机的同时,尚有余功作为燃气轮机的输出机械功。燃气轮机由静止起动时,需用起动机带着旋转,待加速到能独立运行后,起动机才脱开。 空气与燃料混合燃烧后的高温高压燃气推动涡轮做功带动发电机发电。 机械设计基础: 自由度:构件可能出现的独立运动的数目。对构建自由度的限制叫做约束。 零件—静连接—构件—运动副—机构—动静连接—机器—机械。 英语: 热能与动力工程—Thermal energy and power engineering 机械动力—Mechanical power 机械设计基础—Mechanical design basis 热力学—Thermodynamics 传热学—Heat-transfer 专业—major

第2章_动力学基本定律

第2章 动力学基本定律题目无答案 一、选择题 1.牛顿第一定律告诉我们, [ ] (A) 物体受力后才能运动 (B) 物体不受力也能保持本身的运动状态 (C) 物体的运动状态不变, 则一定不受力 (D) 物体的运动方向必定和受力方向一致 2. 下列说法中正确的是 [ ] (A) 运动的物体有惯性, 静止的物体没有惯性 (B) 物体不受外力作用时, 必定静止 (C) 物体作圆周运动时, 合外力不可能是恒量 (D) 牛顿运动定律只适用于低速、微观物体 3. 下列诸说法中, 正确的是 [ ] (A) 物体的运动速度等于零时, 合外力一定等于零 (B) 物体的速度愈大, 则所受合外力也愈大 (C) 物体所受合外力的方向必定与物体运动速度方向一致 (D) 以上三种说法都不对 4. 一个物体受到几个力的作用, 则 [ ] (A) 运动状态一定改变 (B) 运动速率一定改变 (C) 必定产生加速度 (D) 必定对另一些物体产生力的作用 5. A 、B 两质点m A >m B , 受到相等的冲量作用, 则 [ ] (A) A 比B 的动量增量少 (B) A 与B 的动能增量相等 (C) A 比B 的动量增量大 (D) A 与B 的动量增量相等 6. 物体在力F 作用下作直线运动, 如果力F 的量值逐渐减小, 则该物体的 [ ] (A) 速度逐渐减小, 加速度逐渐减小 (B) 速度逐渐减小, 加速度逐渐增大 (C) 速度继续增大, 加速度逐渐减小 (D) 速度继续增大, 加速度逐渐增大 7. 对一运动质点施加以恒力, 质点的运动会发生什么变化? [ ] (A) 质点沿着力的方向运动 (B) 质点仍表现出惯性 (C) 质点的速率变得越来越大 (D) 质点的速度将不会发生变化 T2-1-6图

从四大定律角度对热力学学习的认识

从四大定律角度对热力学学习的认识 2013级物理萃英班洪熹宇 摘要: 热力学是一门研究热运动的宏观理论,它与统计物理学的研究目的,都在于研究运动的规律,同时研究与热运动有关的物性,以及宏观物质系统的演化过程。但是它与统计物理学的研究方法上有着很大的不同,统计物理学侧重于从微观角度分析和解决问题,而热学的基础则是建立在宏观的基础上。它是一种唯象的宏观理论,具有较高的普适性和一般性。本文由学生在热力学学习过程中,将自己的体会与知识相结合,从四大定律着手给出学生对于热力学研究意义的思考和认识。 关键词:热力学三大定律,热平衡定律,能量守恒,自由能,熵,绝对零度 正文: 一、热力学四大定律的发现与形式 宏观角度看待问题的是经典的,因此热力学总是能给出一个条件给定系统的最终平衡状态的各个参数。人们在对热力学研究的基础上,总结出了热力学的三大定律,加上热平衡定律,便构成了热力学最主要的四个结论。 首先,能量守恒与转换定律是自然界最普遍、最基本的规律之一。它指出,自然界中的一切物质都具有能量,能量有各种不同的形式,这种不同形式的能量都可以转移(从一个物体传递到另一个物体),也可以相互转换(从一种能量形式转变为另一种能量形式),但在转移和转换过程中,它们的总量保持不变。这一规律成为能量守恒与转换定律。能量守恒与转换定律应用在热力学中,或者说应用在伴有热效应的各种过程中,便是热力学第一定律。历史上,焦耳在绝热过程中所做的两个实验,首先认识到外界对于系统所做的功,仅仅与系统的初态和末态是相关联的。在此人们定义了一个内能的概念,它的意义是,系统在末态和初态的内能之差,等于在过程中外界对系统所做的功与系统从外界吸收的热量之和,这便是热力学第一定律的数学表达形式。此外,在工程热力学上,热力学第一定律也可表述成“热是能的一种,机械能变热能或热能变机械能时,它们之间的比值是一定的”,或者“热可以变功,功可以变热。一定量的热消失时必定产生相应量的功;消耗一定量的功时必定出现与之相应量的热”。 其次,人们在各类实验基础上又发现了热力学第二定律。卡诺在研究中发现,各种热机运动最终都服从于卡诺关于可逆热机的两个定理。然而卡诺在热机工作过程的认知上并不正确,由此克劳修斯和开尔文分别提出了热力学第二定律的两种表述:开尔文提出了“利用无生命物质的作用,把物质任何部分冷到比它周围最冷的客体以下,以产生机械效应,这是不可能的”。现在表述为“不可能从单一热源吸取热量,使之完全变为有用的功,而不产生其它影响”,克劳修斯提出了“不可能把热量,从低温物体传到高温物体,而不引起其他变化。”,二者分别从不同角度说明了热力学第二定律的实质,即任何与热现象有关的实际过程都有着其自发进行的方向,是不可逆的。这两种表述也可以相互进行逻辑上的论证,由此也发现了不同种类的不可逆过程本质上其实是可以互相进行推断的。特别的,在孤立系统下,由热力学第二定律可以推出重要的熵增加原理,为今后判断孤立系统的稳定平衡条件提供了依据。 随着科学研究的深入和对于低温条件获取的需要,人们在思考,究竟可不可以通过有限的过程实现绝对零度?20世纪初,人们通过对低温下热力学现象的研究,确定了物质熵值的零点,逐步建立起了热力学第三定律,进而提出了规定熵的概念,为解决一系列的热力学问题提供了极大的方便。热力学第三定律可以准确、简洁的表述为:0K时,任何完美晶体的熵值为0。也可以表达为,绝对零度不能达到。

热力学三大定律

热力学三大定律 热力学第一定律 热力学第一定律是能量守恒定律。热力学第二定律有几种表述方式:克劳修斯表述热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物;开尔文-普朗克表述不可能从单一热源吸取热量,并将这热量变为功,而不产生其他影响。热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零。或者绝对零度(T=0K)不可达到。 热力学第一定律也就是能量守恒定律。 内容 一个热力学系统的内能增量等于外界向它传递的热量与外界对它做功的和。(如果一个系统与环境孤立,那么它的内能将不会发生变化。) 表达式:△U=W+Q 符号规律 :热力学第一定律的数学表达式也适用于物体对外做功,向外界散热和内能减少的情况,因此在使用:△U=W+Q时,通常有如下规定: ①外界对系统做功,W>0,即W为正值。 ②系统对外界做功,也就是外界对系统做负功,W<0,即W为负值 ③系统从外界吸收热量,Q>0,即Q为正值 ④系统从外界放出热量,Q<0,即Q为负值 ⑤系统内能增加,△U>0,即△U为正值 ⑥系统内能减少,△U<0,即△U为负值 从三方面理解 1.如果单纯通过做功来改变物体的内能,内能的变化可以用做功的多少来度量,这时物体内能的增加(或减少)量△U就等于外界对物体(或物体对外界)所做功的数值,即△U=W 2.如果单纯通过热传递来改变物体的内能,内能的变化可以用传递热量的多少来度量,这时物体内能的增加(或减少)量△U就等于外界吸收(或对外界放出)热量Q的数值,即△U=Q 3.在做功和热传递同时存在的过程中,物体内能的变化,则要由做功和所传递的热量共同决定。在这种情况下,物体内能的增量△U就等于从外界吸收的热量Q和对外界做功W之和。即△U=W+Q 能量守恒定律 能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体。 能量的多样性 物体运动具有机械能、分子运动具有内能、电荷具有电能、原子核内部的运动具有原子能等等,可见,在自然界中不同的能量形式与不同的运动形式相对应。 不同形式的能量的转化 “摩擦生热”是通过克服摩擦力做功将机械能转化为内能;水壶中的水沸腾时水蒸气对壶盖做功将壶盖顶起,表明内能转化为机械能;电流通过电热丝做功可将电能转化为内能。。。这些实例说明了不同形式的能量之间可以相互转化,且这一转化过程是通过做功来完成的。 能量守恒的意义

热力学三大定律

热力学第一定律 热力学第一定律:也叫能量不灭原理,就是能量守恒定律。 简单的解释如下: ΔU = Q+ W 或ΔU=Q-W(目前通用这两种说法,以前一种用的多) 定义:能量既不会凭空产生,也不会凭空消灭,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。 基本内容:热可以转变为功,功也可以转变为热;消耗一定的功必产生一定的热,一定的热消失时,也必产生一定的功。 普遍的能量转化和守恒定律在一切涉及热现象的宏观过程中的具体表现。热力学的基本定律之一。 热力学第一定律是对能量守恒和转换定律的一种表述方式。热力学第一定律指出,热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变。 表征热力学系统能量的是内能。通过作功和传热,系统与外界交换能量,使内能有所变化。根据普遍的能量守恒定律,系统由初态Ⅰ经过任意过程到达终态Ⅱ后,内能的增量ΔU应等于在此过程中外界对系统传递的热量Q 和系统对外界作功A之差,即UⅡ-UⅠ=ΔU=Q-W或Q=ΔU+W这就是热力学第一定律的表达式。如果除作功、传热外,还有因物质从外界进入系统而带入的能量Z,则应为ΔU=Q-W+Z。当然,上述ΔU、W、Q、Z均可正可负(使系统能量增加为正、减少为负)。对于无限小过程,热力学第一定律的微分表达式为 δQ=dU+δW因U是态函数,dU是全微分[1];Q、W是过程量,δQ和δW只表示微小量并非全微分,用符号δ以示区别。又因ΔU或dU只涉及初、终态,只要求系统初、终态是平衡态,与中间状态是否平衡态无关。 热力学第一定律的另一种表述是:第一类永动机是不可能造成的。这是许多人幻想制造的能不断地作功而无需任何燃料和动力的机器,是能够无中生有、源源不断提供能量的机器。显然,第一类永动机违背能量守恒定律。 热力学第二定律 (1)概述/定义 ①热不可能自发地、不付代价地从低温物体传到高温物体(不可能使热量由低温物体传递到高温物体,而不引起其他变化,这是按照热传导的方向来表述的)。 ②不可能从单一热源取热,把它全部变为功而不产生其他任何影响(这是从能量消耗的角度说的,它说明第二类永动机是不可能实现的)。 (2)说明

第2章动力学基本定律

第2章动力学基本定律题目无答案 一、选择题 1.牛顿第一定律告诉我们, [ ] (A) 物体受力后才能运动 (B) 物体不受力也能保持本身的运动状态 (C) 物体的运动状态不变, 则一定不受力 (D) 物体的运动方向必定和受力方向一致 2. 下列说法中正确的是 [ ] (A) 运动的物体有惯性, 静止的物体没有惯性 (B) 物体不受外力作用时, 必定静止 (C) 物体作圆周运动时, 合外力不可能是恒量 (D) 牛顿运动定律只适用于低速、微观物体 3. 下列诸说法中, 正确的是 [ ] (A) 物体的运动速度等于零时, 合外力一定等于零 (B) 物体的速度愈大, 则所受合外力也愈大 (C) 物体所受合外力的方向必定与物体运动速度方向一致 (D) 以上三种说法都不对 4. 一个物体受到几个力的作用, 则 [ ] (A) 运动状态一定改变 (B) 运动速率一定改变 (C) 必定产生加速度

(D) 必定对另一些物体产生力的作用 5. A 、B 两质点m A >m B , 受到相等的冲量作用, 则 [ ] (A) A 比B 的动量增量少 (B) A 与B 的动能增量相等 (C) A 比B 的动量增量大 (D) A 与B 的动量增量相等 6. 物体在力F 作用下作直线运动, 如果力F 的量值逐渐减小, 则该物体的 [ ] (A) 速度逐渐减小, 加速度逐渐减小 (B) 速度逐渐减小, 加速度逐渐增大 (C) 速度继续增大, 加速度逐渐减小 (D) 速度继续增大, 加速度逐渐增大 7. 对一运动质点施加以恒力, 质点的运动会发生什么变化? [ ] (A) 质点沿着力的方向运动 (B) 质点仍表现出惯性 (C) 质点的速率变得越来越大 (D) 质点的速度将不会发生变化 8. 一物体作匀速率曲线运动, 则 [ ] (A) 其所受合外力一定总为零 (B) 其加速度一定总为零 (C) 其法向加速度一定总为零 (D) 其切向加速度一定总为零 9. 牛顿第二定律的动量表示式为t m F d )d(v =, 即有t m t m F d d d d v v +=.物体作怎样 的运动才能使上式中右边的两项都不等于零, 而且方向不在一直线上? [ ] (A) 定质量的加速直线运动 (B) 定质量的加速曲线运动 (C) 变质量的直线运动 (D) 变质量的曲线运动 10. 质量相同的物块A 、B 用轻质弹簧连结后, 再用细绳悬吊着, 当系统平衡后, 突然将细绳剪断, 则剪断后瞬间 [ ] (A) A 、B 的加速度大小均为g (B) A 、B 的加速度均为零 (C) A 的加速度为零, B 的加速度大小为2g (D) A 的加速度大小为2g , B 的加速度为零 11. 用细绳系一小球使之在竖直平面内作圆周运动, 小球在任意位置 [ ] (A) 都有切向加速度 F T2-1-6图 T2-1-10图

(完整版)高中物理所有定律定理定则大全

高中物理所有定律、定理、定则 一、牛顿三大定律 1、牛顿第一定律: 一切物体(在不受任何外力作用时)总保持静止状态或匀速直线运动状态,直到有外力迫使它改变这种状态为止。 (任何物体都保持静止或沿一条直线做匀速运动的状态,除非作用在它上面的力迫使它改变这种状态。) 2、牛顿第二定律: 物体的加速度跟受到的外力成正比,跟物体的质量成反比:加速度的方向总跟外力方向一致。 运动的变化与所加的动力成正比,并且发生在这力所沿的直线的方向上。 3、牛顿第三定律: 物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上。作用在两个物体上,同时产生、同事变化、同时消失、性质总相同。 对于每一个作用,总有一个相等的反作用与之相反;或者说,两个物体之间对各自对方的相互作用总是相等的,而且指向相反的方向 二、开普勒三大定律 1、开普勒第一定律,(轨道定律) 每一个行星都沿各自的椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。

2、开普勒第二定律(面积定律:) 在相等时间内,太阳和运动中的行星的连线所扫过的面积都是相等的。 3、开普勒第三定律(周期定律) 绕以太阳为焦点的椭圆轨道运行的所有行星,其椭圆轨道半长轴的立方与周期的平方之比是一个常量。 三、热力学三大定律 1、热力学第一定律: 一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。(如果一个系统与环境孤立,那么它的内能将不会发生变化。) 热力学第一定律的数学表达式也适用于物体对外做功,向外界散热和内能减少的情况,因此在使用:△U=-W+Q时,通常有如下规定: ①外界对系统做功,W>0,即W为正值。 ②系统对外界做功,W<0,即W为负值。 ③系统从外界吸收热量,Q>0,即Q为正值 ④系统从外界放出热量,Q<0,即Q为负值 ⑤系统内能增加,△U>0,即△U为正值 ⑥系统内能减少,△U<0,即△U为负值 第一类永动机是不消耗任何能量却能源源不断地对外做功的机器。其不可能存在,因为违背的能量守恒定律

对热力学第三定律的理解

对热力学第三定律的理解 摘要:热物理学是整个物理学四大理论之一,热力学是热学理论的一个重要组成部分,也就是热现象的宏观理论。热力学主要是从宏观角度出发按能量转化的观点来研究物质的热性质,热现象和热现象所服从的规律。热力学中有四大定律,其中热力学第三定律更是重要。本文主要介绍对热力学第三定律的认识和对其应用价值的理解。 关键词:热力学第三定律;绝对零度;应用价值 1.引言 热力学第三定律的建立已近一百年,是热力学统计物理学的基本理论基础之一.l906年德国物理化学家能斯特从化学平衡常数的确定出发,建立了热力学第三定律.接着,许多其他科学家在此基础上进一步对该定律作了大量的研究,并提出了他们相应的说法.本文简要地介绍该定律的创立与发展过程,并说明它的重要意义以及在科学上的应用。 2.正文 2.1热力学第三定律的发现 我们可以想象如果不停降温,那么,蒸汽就会凝结成水,然后冻成冰。那么,是否存在降低温度的极限呢?为此早在开尔文提出热力学温标时,就提出温度是存在下限的。也就是说,存在一个绝对的唯一的温度值,并且在达到这一临界值后温度就无法继续下降了。其实,早在1702年,法国物理学家阿蒙顿也曾提到过“绝对零度”的概念。他根据空气受热时体积和压强都随温度的增加而增加这一现象出发,计算出在某个温度下,空气的压力将等于零。这个温度用后来提出的摄氏温标表示,约为-239℃,后来,兰伯特更精确地重复了阿蒙顿实验,计算出这个温度为-270.3℃。他说,在这个“绝对的冷”的情况下,空气将紧密地挤在一起。然而他们的这个看法没有得到人们的重视。直到盖吕萨克定律提出之后,

存在绝对零度的思想才得到物理学家的普遍承认。现在我们知道,绝对零度更准确的值是-273.15℃。由于绝对零度不能达到原理的表述简洁且物理意义明确,所以被现代人们公认为热力学第三定律的标准表述,热力学第三定律作为热力学基本定律,从此,热力学的基础基本得以完备。 在统计物理学上,热力学第三定律反映了微观运动的量子化。在实际意义上,第三定律并不像第一、二定律那样明白地告诫人们放弃制造第一种永动机和第二种永动机的意图。而是鼓励人们想方设法尽可能接近绝对零度。目前使用绝热去磁的方法已达到K 10105-?,但永远达不到0K 。 2.2热力学第三定律的两种描述 热力学第二定律只定义了过程的熵变,而没有定义熵本身. 因而熵的确定,有赖于热力学第三定律的建立,1902年美国科学家雷查德(T.W.Richard)在研究低温电池反应时发现电池反应的?G 和?H 随着温度的降低而逐渐趋于相等,而且两者对温度的斜率随温度同趋于一个定值:零 ? 由热力学函数的定义式, ?G 和?H 当温度趋于绝对零度时,两者必会趋于相等: ? ?G= ?H -T ?S ? limT →0?G= ?H -limT →0T ?S ? = ?H (T →0K) ? 虽然两者的数值趋于相同,但趋于相同的方式可以有所不同. ? 雷查德的实验证明对于所有的低温电池反应, ?G 均只会以一种方式趋近于?H. 上图中给出三种不同的趋近方式, 实验的结果支持最后一种方式, 即曲线的斜率均趋于零. 0000)/(lim )/(lim ====??=??P K T P T T H P G 0)(lim )/(lim 00=?-=??==S T G T P T 上式的物理含义是: 温度趋于绝对零度时, 反应的熵变趋于零, 即反应物的熵等于产物的熵. 推广到所有的化学反应, 即是:一切化学反应的熵变当温度趋于绝对零

动力学基本定律和守恒定律

第2章 动力学基本定律 一、选择题 1.牛顿第一定律告诉我们, [ ] (A) 物体受力后才能运动 (B) 物体不受力也能保持本身的运动状态 (C) 物体的运动状态不变, 则一定不受力 (D) 物体的运动方向必定和受力方向一致 2. 下列说法中正确的是 [ ] (A) 运动的物体有惯性, 静止的物体没有惯性 (B) 物体不受外力作用时, 必定静止 (C) 物体作圆周运动时, 合外力不可能是恒量 (D) 牛顿运动定律只适用于低速、微观物体 3. 下列诸说法中, 正确的是 [ ] (A) 物体的运动速度等于零时, 合外力一定等于零 (B) 物体的速度愈大, 则所受合外力也愈大 (C) 物体所受合外力的方向必定与物体运动速度方向一致 (D) 以上三种说法都不对 4. 一个物体受到几个力的作用, 则 [ ] (A) 运动状态一定改变 (B) 运动速率一定改变 (C) 必定产生加速度 (D) 必定对另一些物体产生力的作用 5. A 、B 两质点m A >m B , 受到相等的冲量作用, 则 [ ] (A) A 比B 的动量增量少 (B) A 与B 的动能增量相等 (C) A 比B 的动量增量大 (D) A 与B 的动量增量相等 6. 物体在力F 作用下作直线运动, 如果力F 的量值逐渐减小, 则该物体的 [ ] (A) 速度逐渐减小, 加速度逐渐减小 (B) 速度逐渐减小, 加速度逐渐增大 (C) 速度继续增大, 加速度逐渐减小 (D) 速度继续增大, 加速度逐渐增大 7. 对一运动质点施加以恒力, 质点的运动会发生什么变化? [ ] (A) 质点沿着力的方向运动 (B) 质点仍表现出惯性 (C) 质点的速率变得越来越大 (D) 质点的速度将不会发生变化 T2-1-6图

传热学知识点复习

传热学 1.热力学三大定律+第零定律 ① 热力学第一定律: 一个热力学系统的内能增量等于外界向他传递的热量与外界对他做功的和。 ② 热力学第二定律: 克劳修斯表述:热量可以自发地从较热的物体传递到较冷的物体,但是反之不行。 开尔文表述:不可能从单一热源吸收热量,并将这热量变为功,而不产生其他影响。 只要温差存在的地方,就有热能从自发地从高温物体向低温物体传递。 ③ 热力学第三定律: 绝对零度不可能达到。 ④ 热力学第零定律: 如果两个热力学系统都第三个热力学系统处于热平衡状态,那么这两个系统也必定处于热平衡。 2.各个科技技术领域中遇到的的传热学问题可以大致归纳为三种类型的问题 ①强化传热 ②削弱传热 ③温度控制 3.热能传递的三种方式 ①热传导—物体各部分之间不发生相对位移,依靠分子、原子及自由电子等微观粒子的热运动而产生热能传递。 ②热对流—由于流体的宏观运动二引起的流体各部分之间发生相对位移、冷热流体相互混掺所导致的热量传递。 ③热辐射—物体通过电磁波来传递能量的方式。(由于热的原因发出的辐射为热辐射) 4.傅里叶定律(导热基本定律) 热流密度q=-λdx dt (一维) 负号表示热量传递方向与温度升高方向相反 q —单位时间内通过某一给定面积的热量(矢量)。 λ金属>λ液体>λ气体 λ—导热系数表示材料的导热性能优劣的参数,即是一种热物性参数。W/(m ·k ) 5.自然对流与强制对流 自然对流—由于流体冷热各部分的密度不同而引起的。 强制对流—流体的流动是由于水泵、风机或者其他压差作用所造成的。 Q=Ah tf tw - 表面传热系数h —不仅取决于流体物性(λρCp )以及换热表面的形状、大小与布置海域流速密切相关。

动力学三大定律的综合应用汇总

动力学三大定律的综合应用 教学目的:1.明确三大定律的区别及解题过程中的应用原则 2.掌握三大定律解题的思路和方法 教学重点、难点:用两个守恒定律去解决问题时,必须注意研究的问题是否满足守恒的条件. 考点梳理: 一、解决动力学问题的三个基本观点 1.力的观点 牛顿运动定律结合运动学公式,是解决力学问题的基本思路和方法,此种方法往往求得的是瞬时关系.利用此种方法解题必须考虑运动状态改变的细节.中学只能用于匀变速运动(包括直线和曲线运动),对于一般的变加速运动不作要求. 2.动量的观点 动量观点主要考虑动量守恒定律. 3.能量的观点 能量观点主要包括动能定理和能量守恒定律.动量的观点和能量的观点研究的是物体或系统经历的过程中状态的改变,它不要求对过程细节深入研究,关心的是运动状态的变化,只要求知道过

程的始末状态动量、动能和力在过程中功,即可对问题求解.二、力学规律的选用原则 1.选用原则:求解物理在某一时刻的受力及加速度时,可用牛顿第二定律解决,有时也可结合运动学公式列出含有加速度的关系式. 2.动能定理的选用原则:研究某一物体受到力的持续作用而发生运动状态改变时,涉及位移和速度,不涉及时间时优先考虑动能定理。 3.动量守恒定律和机械能守恒定律原则:若研究的对象为相互作用的物体组成的系统,一般用这两个守恒定律去解决问题,但须注意研究的问题是否满足守恒的条件. 4.选用能量守恒定律的原则:在涉及相对位移问题时优先考虑能量守恒定律,即用系统克服摩擦力所做的总功等于系统机械能的减少量,也即转变为系统内能的量. 5.选用动量守恒定律的原则:在涉及碰撞、爆炸、打击、绳绷紧等物理过程时,必须注意到一般这些过程中均隐含有系统机械能与其他形式能量之间的转化.这种问题由于作用时间都极短,故动量守恒定律一般能派上大用场. 三、综合应用力学三大观点解题的步骤 1.认真审题,明确题目所述的物理情景,确定研究对象.2.分析所选研究对象的受力情况及运动状态和运动状态的变化过程,画出草图.对于过程比较复杂的问题,要正确、合理地把

动力学三大定理

动量定理习题 1、在图示等截面水管中,已知:截面积为A ,稳定流的速度为v ,水的单位体积重γ,60°=θ。试求支座B 水平链杆的附加动约束力x B F 。 2、在图示系统中,均质滑轮重W ,绳的质量不计且不可伸长,重物A 重1P ,B 重2P 。设A 下降的加速度为A a ,试求轴承O 处的支座反力。 3、匀质曲柄OA 质量为1m ,长为r ,以匀角速度ω转动,带动质量为3m 的滑槽作铅垂运动,滑块A 的质量为2m ,E 为滑槽质心,b DE =;0=t 时,0=θ。试求30°=θ时: (1)系统质心坐标; (2)系统的动量; (3)O 处铅直方向的约束力。

动量矩定量 1、固结在一起的两均质轮,半径分别为21,r r ,且21r r <,重分别为1P 、2P 。重物M 重G ,斜面倾角为θ,不计绳重和各处的摩擦。试求在铅垂力F 作用下滑轮的角加速度。 2、均质圆轮重G ,半径为R ,物块A 重P 悬挂在绕过圆轮的绳上。若圆轮轴O 处摩擦不计,试求下述两种情况下轴O 处的约束反力:(1)A 下落过程;(2)在下落中将绳突然剪断。 3、图示重力为P 的均质薄板与刚杆1BB 、1CC 相连,杆长均为l ,杆重不计,且与水平夹角为?,板长宽为l l =1和l l =2。当1AA 杆突然切断瞬时,试求: (1) 此时平板重心的加速度; (2) 刚杆1BB 、1CC 的内力。

4、均质水平细杆AB 长为l ,一端铰接于A ,一端系于细绳BC ,而处于水平位置。设细绳突然被割 断。试求(1)此瞬时细杆的角加速度1a ; (2)细杆运动到铅直位置时的角加速度2a 及角速度2ω。 动能定理 1、机构如图,曲柄OC 重为P ,连杆AB 重为2P ,二构件均视为均质细杆,且AC=BC=OC=l ,滑块A 与B 均重W 。若OC 以匀角速度ω转动,试求系统在图示瞬时的动能。 2、在制动闸装置中,已知半径r =10cm 的均质圆轮D 的质量m =20kg ,转速n =1000rpm 。细杆长l =50cm , 质量不计,距离b =10cm 。设在手柄B 端作用一铅直力大小P =3N , 使开始制动后圆轮转过100转而停止。轴承摩擦不计,求闸瓦与轮之间的滑动摩擦系数f 。闸瓦质量和大小忽略不计。

第二章动力学基本定律

第二章 动力学基本定律 §2.1 动量 牛顿运动定律 一、牛顿运动定律概述 1、 牛顿第一定律 (1) 定律内容 任何物体都保持静止或匀速直线运动状态,除非作用在它上面的力迫使它改变这种状态。 (2) 定律意义 a ) 引入了惯性的概论 惯性——是物体保持其原有运动状态的一种属性。 b ) 定性确定了力的概念 力——是使物体的运动状态发生改变的原因。 2、 动量、牛顿第二定律 (1) 定律内容 运动的变化与所加的动力成正比,且发生在该力所沿的直线上。 (2) 定律意义 a ) 定量确定了力的概念。 b ) 引入了质量的概念。 质量——是物体惯性大小的量度。 (3) 定律的数学形式 动量:v m P = dt v m d dt P d F ) ( == 若物体的质量与运动速度无关,则: a m dt v d m F == a ) 在直角坐标系下: y y y x x x m a dt dv m F m a dt dv m F ==== b ) 在自然坐标系下:

n n m a v m F m a dt dv m F ====ρ ττ2 3、 牛顿第三定律 当物体A 以力1F 作用在物体B 上时,物体B 必以 力2F 作用在物体A 上,且1F 与2F 大小相等、方向相反,在同一直线上。 二、力学中常见的力 1、 万有引力 22112 2 1/1067.6kg m N G r m m G F ??==- 若忽略地球的自转,则地球表面附近的物体所受的万有引力叫重力。 2 R m M G m g g m P == 2、 弹力 (1) 正压力(支持力) (2) 拉力 (3) 弹簧的弹力 胡克定律 kx f -=,k 叫弹簧的倔强系数。 3、 摩擦力 (1) 滑动摩擦力 k k k N f μμ,=——滑动摩擦系数。 (2) 静摩擦力 s s s N f μμ,max =——静摩擦系数。 静摩擦力只能根据物体的平衡条件求出。 三、自然界中的四种相互作用 1、 引力相互作用(万有引力)——是物体具有质量而产生的。 2、 电磁相互作(电磁力)——静止或运动电荷间的相互作用。 3、 强相互作用(强力)——亚原子间的相互作用。 4、 弱相互作用(弱力)——基本粒子间的相互作用。 四、SI 单位和量纲 1、 国际单位制(SI 单位制)

动力学基本定律及应用

圖7- 2 圖7- 3 圖7-4 第7章 動力學基本定律及應用 二 隨 堂 練 習 7-1 牛頓運動定律 ( B )1. 如圖7-2所示,有一物件重50kg 置於700kg 重之升降機內,若繩之張力為8850N ,試求升降 機上升之加速度為 (A) 32 (B)2 (C)52 (D)3 m/s 2。 解:由∑F =ma 得 8850-(50+700)×9.8=(50+700)a ∴a =2(m/s 2) ( C )2. 如圖7-3所示,光滑桌面上A 、B 兩物體間有摩擦力,今以F 之水平 力使A 、B 兩者一起以1m/s 2的加速 度向右前進,試求A 、B 間之摩擦力 有多大? (A)15 (B)10 (C)5 (D)1 牛頓。 解:取A 、B 為自由體 F =ma =(5+10)×1=15(N ) 取B 為自由體 ∑F =ma 15-f =10×1 ∴f =5(牛頓) ( C )3. 如圖7-4所示之物體重50kg ,與平面

圖7- 15 間之動摩擦係數為0.3,則其向右運動之加速度為若干?(設g =10m/s 2) (A)8 (B)7.3 (C)5 (D)1.7 m/s 2。 解:∑F y =0 N =50kg 又f k =μk ×N =0.3×50=15kg =150N 由∑F =ma 400-150=50×a ∴a =5m/s 2 7-2 滑輪 ( C )4. 如圖7-15所示,A 、B 及C 各重10kg 、 20kg 及30kg ,聯結B 及C 之繩是通過一 無重量光滑之滑輪,若A 及B 與平面之 動摩擦係數為0.3,則A 與B 之加速度為 (設g =10m/s 2) (A)6.5 (B)7.5 (C)3.5 (D)5.5 m/s 2。 解:由∑F =ma 30×10-0.3(10+20)×10 =(10+20+30)×a ∴a =3.5(m/s 2)

相关主题
文本预览
相关文档 最新文档