当前位置:文档之家› ASTM D 1505-03用密度梯度法测定塑料密度的试验方法

ASTM D 1505-03用密度梯度法测定塑料密度的试验方法

ASTM D 1505-03用密度梯度法测定塑料密度的试验方法
ASTM D 1505-03用密度梯度法测定塑料密度的试验方法

Designation:D 1505–03

Standard Test Method for

Density of Plastics by the Density-Gradient Technique 1

This standard is issued under the ?xed designation D 1505;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon (e )indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.

1.Scope*

1.1This test method covers the determination of the density of solid plastics.

1.2This test method is based on observing the level to which a test specimen sinks in a liquid column exhibiting a density gradient,in comparison with standards of known density.

N OTE 1—The comparable ISO document is ISO 1183–2.There has not been any data generated to date comparing the results of the ISO method with this method.

1.3The values stated in SI units are to be regarded as the standard.

1.4This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.

2.Referenced Documents 2.1ASTM Standards:2

D 941Test Method for Density and Relative Density (Spe-ci?c Gravity)of Liquids by Lipkin Bicapillary Pycnometer D 2839Practice for Use of a Melt Index Strand for Deter-mining Density of Polyethylene

D 4703Practice for Compression Molding Thermoplastic Materials into Test Specimens,Plaques,or Sheets

E 691Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method 2.2ISO Standard:

ISO 1183-2Methods for Determining the Density and Rela-tive Density of Noncellular Plastics 3

3.Terminology 3.1De?nition:

3.1.1density of plastics —the weight per unit volume of material at 23°C,expressed as follows:

D 23C ,g/cm 3

(1)

N OTE 2—Density is to be distinguished from speci?c gravity,which is the ratio of the weight of a given volume of the material to that of an equal volume of water at a stated temperature.

4.Signi?cance and Use

4.1The density of a solid is a conveniently measurable property which is frequently useful as a means of following physical changes in a sample,as an indication of uniformity among samples,and a means of identi?cation.

4.2This test method is designed to yield results accurate to better than 0.05%.

N OTE 3—Where accuracy of 0.05%or better is desired,the gradient tube shall be constructed so that vertical distances of 1mm shall represent density differences no greater than 0.0001g/cm.3The sensitivity of the column is then 0.0001g/cm 3·mm.Where less accuracy is needed,the gradient tube shall be constructed to any required sensitivity.

5.Apparatus

5.1Density-Gradient Tube —A suitable graduate with ground-glass stopper.4

5.2Constant-Temperature Bath —A means of controlling the temperature of the liquid in the tube at 2360.1°C.A thermostatted water jacket around the tube is a satisfactory and convenient method of achieving this.

5.3Glass Floats —A number of calibrated glass ?oats cov-ering the density range to be studied and approximately evenly distributed throughout this range.

5.4Pycnometer ,for use in determining the densities of the standard ?oats.

5.5Liquids ,suitable for the preparation of a density gradi-ent (Table 1).

N OTE 4—It is very important that none of the liquids used in the tube

1

This test method is under the jurisdiction of ASTM Committee D20on Plastic and is the direct responsibility of Subcommittee D20.70on Analytical Methods (Section D20.70.01).

Current edition approved November 1,2003.Published January 2004.Originally approved in https://www.doczj.com/doc/aa17107176.html,st previous edition approved in 1998as D 1505-98.2

For referenced ASTM standards,visit the ASTM website,https://www.doczj.com/doc/aa17107176.html,,or contact ASTM Customer Service at service@https://www.doczj.com/doc/aa17107176.html,.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.3

Available from American National Standards Institute (ANSI),25W.43rd St.,4th Floor,New York,NY 10036.

4

Tubes similar to those described in Refs (6)and (12)may also be used.

1

*A Summary of Changes section appears at the end of this standard.

Copyright ?ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959,United States.

exert a solvent or chemical effect upon the test specimens during the time of specimen immersion.

5.6Hydrometers —A set of suitable hydrometers covering the range of densities to be measured.These hydrometers should have 0.001density graduations.

5.7Analytical Balance ,with a sensitivity of 0.001g.

5.8Siphon or Pipet Arrangement ,for ?lling the gradient tube.This piece of equipment should be constructed so that the rate of ?ow of liquid may be regulated to 1065mL/min.

6.Test Specimen

6.1The test specimen shall consist of a piece of the material under test.The piece may be cut to any shape convenient for easy identi?cation,but should have dimensions that permit the most accurate position measurement of the center of volume of the suspended specimen (Note 5).Care should be taken in cutting specimens to avoid change in density resulting from compressive stress.

N OTE 5—The equilibrium positions of ?lm specimens in the thickness range from 0.025to 0.051mm (0.001to 0.002in.)may be affected by interfacial tension.If this affect is suspected,?lms not less than 0.127mm (0.005in.)in thickness should be tested.

6.2The specimen shall be free of foreign matter and voids and shall have no cavities or surface characteristics that will cause entrapment of bubbles.

7.Preparation of Density-Gradient Columns

7.1Preparation of Standard Glass Floats 5—Prepare glass ?oats by any convenient method such that they are fully annealed,approximately spherical,have a maximum diameter less than one fourth the inside diameter of the column,and do not interfere with the test specimens.Prepare a solution (400to 600mL)of the liquids to be used in the gradient tube such that the density of the solution is approximately equal to the desired lowest density.When the ?oats are at room temperature,drop them gently into the solution.Save the ?oats that sink very slowly,and discard those that sink very fast,or save them for another tube.If necessary to obtain a suitable range of ?oats,grind selected ?oats to the desired density by rubbing the head part of the ?oat on a glass plate on which is spread a thin slurry of 400or 500-mesh silicon carbide (Carborundum)or other

appropriate abrasive.Progress may be followed by dropping the ?oat in the test solution at intervals and noting its change in rate of sinking.

7.2Calibration of Standard Glass Floats (see Appendix X1):

7.2.1Place a tall cylinder in the constant-temperature bath maintained at 2360.1°C.Then ?ll the cylinder about two thirds full with a solution of two suitable liquids selected from Table 1,the density of which can be varied over the desired range by the addition of either liquid to the mixture.After the cylinder and solution have attained temperature equilibrium,place the ?oat in the solution,and if it sinks,add the denser liquid by suitable means with good stirring until the ?oat reverses direction of movement.If the ?oat rises,add the less dense liquid by suitable means with good stirring until the ?oat reverses direction of movement.

7.2.2When reversal of movement has been observed,re-duce the amount of the liquid additions to that equivalent to 0.0001-g/cm 3

density.When an addition equivalent to 0.0001-g/cm 3density causes a reversal of movement,or when the ?oat remains completely stationary for at least 15min,the ?oat and liquid are in satisfactory balance.The cylinder must be covered whenever it is being observed for balance,and the liquid surface must be below the surface of the liquid in the constant-temperature bath.After vigorous stirring,the liquid may continue to move for a considerable length of time;make sure that the observed movement of the ?oat is not due to liquid motion by waiting at least 15min after stirring has stopped before observing the ?oat.

7.2.3When balance has been obtained,?ll a freshly cleaned and dried pycnometer with the solution and place it in the 2360.1°C bath for sufficient time to allow temperature equilib-rium of the glass.Determine the density of the solution by normal methods (Test Method D 941)and make “in vacuo”corrections for all weighings.Record this as the density of the ?oat.Repeat the procedure for each ?oat.

7.3Gradient Tube Preparation (see appendix for details):7.3.1Method A —Stepwise addition.

7.3.2Method B —Continuous ?lling (liquid entering gradi-ent tube becomes progressively less dense).

7.3.3Method C —Continuous ?lling (liquid entering gradi-ent tube becomes progressively more dense).

8.Conditioning

8.1Test specimens whose change in density on conditioning may be greater than the accuracy required of the density determination shall be conditioned before testing in accordance with the method listed in the applicable ASTM material speci?cation.

9.Procedure

9.1Wet three representative test specimens with the less dense of the two liquids used in the tube and gently place them in the tube.Allow the tube and specimens to reach equilibrium,which will require 10min or more.Thin ?lms of 1to 2mils in thickness require approximately 11?2h to settle,and rechecking after several hours is advisable (Note 4).

9.2Read the height of each ?oat and each specimen by a line through the individual center of volume and averaging the

5

Glass ?oats may be purchased from American Density Materials,3826Springhill Rd.Staunton,V A 24401,Ph:(540)887-1217.

TABLE 1Liquid Systems for Density-Gradient Tubes

System

Density Range,

g/cm 3Methanol-benzyl alcohol 0.80to 0.92Isopropanol-water

0.79to 1.00Isopropanol-diethylene glycol 0.79to 1.11Ethanol-carbon tetrachloride 0.79to 1.59Toluene-carbon tetrachloride 0.87to 1.59Water-sodium bromide 1.00to 1.41Water-calcium nitrate

1.00to 1.60Carbon tetrachloride-trimethylene dibromide 1.60to 1.99Trimethylene dibromide-ethylene bromide 1.99to

2.18Ethylene bromide-bromoform

2.18to

2.89

three values.When a cathetometer is used,measure the height of the?oats and specimens from an arbitrary level using a line through their center of volume.If equilibrium is not obtained, the specimen may be imbibing the liquid.

9.3Old samples can be removed without destroying the gradient by slowly withdrawing a wire screen basket attached to a long wire(Note6).This can be conveniently done by means of a clock motor.Withdraw the basket from the bottom of the tube and,after cleaning,return it to the bottom of the tube.It is essential that this procedure be performed at a slow enough rate(approximately30min/300-mm length of column) so that the density gradient is not disturbed.

N OTE6—Whenever it is observed that air bubbles are collecting on samples in the column,a vacuum applied to the column will correct this.

10.Calculation

10.1The densities of the samples may be determined graphically or by calculation from the levels to which the samples settle by either of the following methods:

10.1.1Graphical Calculation—Plot?oat position versus ?oat density on a chart large enough to be read accurately to 61mm and the desired precision of density.Plot the positions of the unknown specimens on the chart and read their corre-sponding densities.

10.1.2Numerical Calculation—Calculate the density by interpolation as follows:

Density at x5a1[~x2y!~b2a!/~z2y!#(2) where:

a and b=densities of the two standard?oats,

y and z=distances of the two standards,a and b,respec-tively,bracketing the unknown measured from

an arbitrary level,and

x=distance of unknown above the same arbitrary level.

11.Report

11.1Report the following information:

11.1.1Density reported as D23C,in grams per cubic centimetre,as the average for three representative test speci-mens,

11.1.2Number of specimens tested if different than three, 11.1.3Sensitivity of density gradient in grams per cubic centimetre per millimetre,

11.1.4Complete identi?cation of the material tested,and 11.1.5Date of the test.12.Precision and Bias6

12.1Specimens Molded in One Laboratory and Tested in Several Laboratories—An interlaboratory test was run in1981 in which randomized density plaques were supplied to22 laboratories.Four polyethylene samples of nominal densities of0.92to0.96g/cm3were molded in one laboratory.The data were analyzed using Practice E691,and the results are given in Table2.

12.2Specimens Molded and Tested in Several Laboratories: 12.2.1Samples Prepared Using Practice D4703in Each Laboratory—Table3is based on a round robin9conducted in 1994in accordance with Practice E691,involving seven materials tested by7to11laboratories.For each material,all of the samples were prepared by each laboratory,molded in accordance with Procedure C of Annex A1of Practice D4703, and tested using this test method.The data are for comparison with the data of the same samples tested by Practice D2839. Each test result is an individual determination.Each laboratory obtained six test results for each material.

12.2.2Samples Prepared Using Practice D2839in Each Laboratory—Table4is based on a round robin9conducted in 1994in accordance with Practice E691,involving seven materials tested by10to15laboratories.For each material,all of the samples were prepared by each laboratory in accordance with Practice D2839.Each test result is an individual deter-mination.Each laboratory obtained six test results for each material.

12.3Concept of r and R—Warning—The following expla-nations of r and R(12.3-12.3.3)are only intended to present a meaningful way of considering the approximate precision of this test method.The data in Table1should not be rigorously applied to acceptance or rejection of material,as those data are speci?c to the round robin and may not be representative of other lots,conditions,materials,or https://www.doczj.com/doc/aa17107176.html,ers of this test method should apply the principles outlined in Practice E691to generate data speci?c to their laboratory and materi-als,or between speci?c laboratories.The principles of12.3-12.3.3would then be valid for each data.

If S r and S R have been calculated from a large enough body of data,and for test results that were averages from testing one specimen:

12.3.1Repeatability Limit,r(Comparing two test results for the same material,obtained by the same operator using the 6Supporting data are available from ASTM Headquarters.Request RR:D20-1123.

TABLE2Precision Data Summary—Polyethylene Density

Material Average Density,g/cm3S r A S R B r C R D

10.91960.000290.001060.000820.0045

20.93190.000120.000800.000340.0023

30.95270.000330.001160.000930.0033

40.96230.000620.001140.001800.0033

A S

r

=within-laboratory standard deviation for the indicated material.It is obtained by pooling the within-laboratory standard deviations of the test results from all of the participating laboratories.

B S

R =between-laboratories reproducibility,expressed as standard deviation,for the indicated material.

C r=within-laboratory repeatability limit=2.8S

r .

D R=between-laboratories reproducibility limit=2.8S

R

.

same equipment on the same day)—The two test results should be judged not equivalent if they differ by more than the r value for that material.

12.3.2Reproducibility Limit,R (Comparing two test results for the same material,obtained by different operators using different equipment in different laboratories)—The two test results should be judged not equivalent if they differ by more than the R value for that material.

12.3.3Any judgment in accordance with 12.2.1or 12.2.2would have an approximate 95%(0.95)probability of being correct.

12.3.4Bias —There are no recognized standards by which to estimate the bias of this test method.

13.Keywords

13.1density;?lm;gradient;plaque;polyole?ns;polyeth-ylene;polypropylene;preparation

APPENDIXES

(Nonmandatory Information)

X1.FLOAT CALIBRATION—ALTERNATIVE TEST METHOD

X1.1This test method of ?oat calibration has been found by one laboratory to save time and give the same accuracy as the standard test method.Its reliability has not been demon-strated by round-robin data.

X1.1.1Prepare a homogeneous solution whose density is fairly close to that of the ?oat in question.

X1.1.2Fill a graduate about 3?4full with the solution,drop in the ?oat,stopper,and place in a thermostatted water bath near 23°C.Fill a tared two-arm pycnometer (Test Method D 941,or equivalent)with the solution.Place the pycnometer in the bath.

X1.1.3Vary the bath temperature until the solution density is very near to that of the ?oat.(If the ?oat was initially on the bottom of the graduate,lower the bath temperature until the ?oat rises;if the ?oat ?oated initially,raise the bath tempera-ture until the ?oat sinks to the bottom.)

X1.1.4Change the bath temperature in the appropriate direction in increments corresponding to solution density increments of about 0.0001g/cm 3until the ?oat reverses direction of movement as a result of the last change.This must be done slowly (at least 15-min intervals between incremental changes on the temperature controller).Read the volume of liquid in the pycnometer.

X1.1.5Change the bath temperature in increments in the opposite direction,as above,until a change in the ?oat position again occurs.Read the volume of liquid in the pycnometer.

N OTE X1.1—The ?oat should rise off the bottom of its own volition.As a precaution against surface tension effects when the ?oat is ?oating,the ?oat should be pushed about halfway down in the liquid column and then observed as to whether it rises or falls.For this purpose,a length of Nichrome wire,with a small loop on the lower end and an inch or so of length extending above the liquid surface,is kept within the graduate throughout the course of the run.To push a ?oating ?oat down,the cylinder is unstoppered and the upper wire end grasped with tweezers for the manipulations.The cylinder is then quickly restoppered.

X1.1.6Remove the pycnometer from the bath,dry the outside,and set aside until the temperature reaches ambient temperature.Weigh and calculate the “in vacuo”mass of solution to https://www.doczj.com/doc/aa17107176.html,ing the average of the two observed solution volumes,calculate the density of the solution to 0.0001g/cm 3.This solution density is also the ?oat density.X1.1.7The pycnometer used should be calibrated for vol-ume from the 23°C calibration,although the reading is taken at a different temperature.The alternative test method is based on a number of unsupported assumptions but generally gives the same results as that described in 7.2within the accuracy

TABLE 3Precision Data—Density,g/cm 3

Material Number of

Laboratories

Density,g/cm 3S r A S R B r C R D

B 70.91390.000290.000880.000810.00245F 80.91770.000180.000790.000510.00221G 80.92200.000280.000710.000780.00197A 110.93560.000360.001050.001000.00294E 110.95280.000460.001180.001290.00331

C 100.96190.001000.001000.001030.00281D

9

0.9633

0.00036

0.00137

0.00101

0.00384

A

S r =within-laboratory standard deviation for the indicated material.It is obtained by pooling the within-laboratory standard deviations of the test results from all of the participating laboratories.B

S R =between-laboratories reproducibility,expressed as standard deviation,for the indicated material.C

r =within-laboratory repeatability limit =2.8S r .D

R =between-laboratories reproducibility limit =2.8S R .

TABLE 4Density,g/cm 3,Samples Prepared in Accordance With

Practice D 2839

Material

Number of

Laboratories

Density,g/cm 3S r A S R B r C R D B 100.91390.000260.000780.000720.00219F 120.91790.000200.000780.000550.00220G 130.92220.000300.000730.000850.00206A 150.93570.000410.000800.001150.00225E 140.95300.000390.000920.001090.00258C 110.96150.000300.000730.000850.00206D

10

0.9626

0.00053

0.00109

0.00148

0.00305

A

S r =within-laboratory standard deviation for the indicated material.It is obtained by pooling the within-laboratory standard deviations of the test results from all of the participating laboratories.B

S R =between-laboratories reproducibility,expressed as standard deviation,for the indicated material.C

r =within-laboratory repeatability limit =2.8S r .D

R =between-laboratories reproducibility limit =2.8S R

.

required.In case of disagreement,the method described in7.2

shall be the referee method.

X2.GRADIENT TUBE PREPARATION

X2.1Method A—Stepwise Addition:

X2.1.1Using the two liquids that will give the desired

density range,and sensitivity(S)in grams per cubic centimetre

per millimetre,prepare four or more solutions such that each

differs from the next heavier by80S g/cm3.The number of

solutions will depend upon the desired density range of the

column and shall be determined as follows:

Numbers of solutions to prepare density2gradient(X2.1)

column~Note X2.1!5~11D22D1!/80S(X2.1)

where:

D2=upper limit of density range desired,

D1=lower limit of density range desired,and

S=sensitivity,in grams per cubic centimetre per milli-

metre.

N OTE X2.1—Correct the value of(1+D

2?D

1

)/80S to the nearest

whole number.To prepare these solutions,proceed as follows:Using the hydrometers,mix the two liquids in the proportions necessary to obtain the desired solutions.Remove the dissolved air from the solutions by gentle heating or an applied vacuum.Then check the density of the solutions at2360.1°C by means of the hydrometers and,if necessary,add the appropriate air-free liquid until the desired density is obtained.

N OTE X2.2—Where aqueous mixtures are used,0.5%aqueous sodium acetate should be used to prepare the mixture.This reduces the formation of bubbles from dissolution.

N OTE X2.3—In order to obtain a linear gradient in the tube,it is very important that the solutions be homogeneous and at the same temperature when their densities are determined.It is also important that the density difference between the solutions consecutively introduced into the tube be equal.

X2.1.2By means of a siphon or pipet,?ll the gradient tube with an equal volume of each liquid starting with the heaviest, taking appropriate measures to prevent air from being dis-solved in the liquid.After the addition of the heaviest liquid, very carefully and slowly pour an equal volume of the second heaviest liquid down the side of the column by holding the siphon or pipet against the side of the tube at a slight angle. Avoid excess agitation and turbulence.In this manner,the “building”of the tube shall be completed.

N OTE X2.4—Density gradients may also be prepared by reversing the procedure described in X2.1.1and X2.1.2.When this procedure is used, the lightest solution is placed in the tube and the next lightest solution is very carefully and slowly“placed”in the bottom of the tube by means of a pipet or siphon which just touches the bottom of the tube.In this manner the“building”of the tube shall be completed.

X2.1.3If the tube is not already in a constant-temperature bath,transfer the tube,with as little agitation as possible,to the constant-temperature bath maintained at2360.1°C.The bath level should approximately equal that of the solution in the tube,and provision should be made for vibrationless mounting of the tube.

X2.1.4For every254mm of length of tube,dip a minimum of?ve clean calibrated?oats,spanning the effective range of the column,into the less dense solvent used in the preparation of the gradient tube and add them to the tube.By means of a stirrer(for example,a small coiled wire or other appropriate stirring device)mix the different layers of the tube gently by stirring horizontally until the least dense and most dense?oats span the required range of the gradient tube.If,at this time,it is observed that the?oats are“bunched”together and not spread out evenly in the tube,discard the solution and repeat the procedure.Then cap the tube and keep it in the constant-temperature bath for a minimum of24h.

X2.1.5At the end of this time,plot the density of?oats versus the height of?oats to observe whether or not a fairly smooth and nearly linear curve is obtained.Some small irregularities may be seen,but they should be slight.Whenever an irregular curve is obtained,the solution in the tube shall be discarded and a new gradient prepared.

N OTE X2.5—Gradient systems may remain stable for several months. X2.2Method B—Continuous Filling with Liquid Entering Gradient Tube Becoming Progressively Less Dense:

X2.2.1Assemble the apparatus as shown in Fig.X2.1,using beakers of the same diameter.Then select an appropriate amount of two suitable liquids which previously have been carefully deaerated by gentle heating or an applied vacuum. Typical liquid systems for density-gradient tubes are listed in Table1.The volume of the more dense liquid used in the mixer (Beaker B shown in Fig.X2.1)must be equal to at least one half of the total volume desired in the gradient tube.

An FIG.X2.1Apparatus for Gradient Tube

Preparation

estimate of the volume of the less dense liquid required in Beaker A to establish?ow from A to B can be obtained from the following inequality:

V A.d B V B/d A(X2.2) where:

V A=starting liquid volume in Beaker A,

V B=starting liquid volume in Beaker B,

d A=density of th

e starting liquid in Beaker A,and

d B=density of th

e starting liquid in Beaker B.

A small excess(not exceeding5%)over the amount indicated by the preceding equality will induce the required ?ow from A to

B and yield a very nearly linear gradient column.

X2.2.2Place an appropriate volume of the denser liquid into Beaker B of suitable size.Prime the siphon between Beaker B and the gradient tube with liquid from Beaker B and then close the stopcock.The delivery end of this siphon should be equipped with a capillary tip for?ow control.

N OTE X2.6—Techniques acceptable for transfer of liquid into the gradient tube are siphon/gravity,vacuum-?lling,use of a peristatic pump, or any other technique useful to transfer liquids in a controlled manner.It is important to control the?ow in order to maintain a desirable gradient. X2.2.3Place an appropriate volume of the less dense liquid into Beaker A.Prime the siphon between Beakers A and B with the liquid from Beaker A and close the stopcock.Start the highspeed,propeller-type stirrer in Beaker B and adjust the speed of stirring such that the surface of the liquid does not ?uctuate greatly.

X2.2.4Start the delivery of the liquid to the gradient tube by opening the necessary siphon-tube stopcocks simultaneously. Adjust the?ow of liquid into the gradient tube at a very slow rate,permitting the liquid to?ow down the side of the tube.Fill the tube to the desired level.

N OTE X2.7—Preparation of a suitable gradient tube may require1to 11?2h or longer,depending upon the volume required in the gradient tube. X2.3Method C—Continuous Filling with Liquid Entering Gradient Tube Becoming Progressively More Dense:

X2.3.1This method is essentially the same as Method B with the following exceptions:

X2.3.2The lighter of the two liquids is placed in Beaker B. X2.3.3The liquid introduced into the gradient column is introduced at the bottom of the column.The?rst liquid introduced is the lighter end of the gradient and is constantly pushed up in the tube as the liquid being introduced becomes progressively heavier.

X2.3.4The liquid from Beaker A must be introduced into Beaker B by direct?ow from the bottom of Beaker A to the bottom of Beaker B,rather than being siphoned over as it is in Method B.Filling the tube by this method may be done more rapidly than by Methods A or B.The stopcock between Containers A and B should be of equal or larger bore than the outlet stopcock.A schematic drawing of the apparatus for Method C is shown in Fig.X2.2.

REFERENCES (1)Linderstr?m-Lang,K.,“Dilatometric Ultra-Micro-Estimation of Pep-

tidase Activity,”Nature,NATRA,V ol139,1937,p.713.

(2)Linderstr?m-Lang,K.,and Lanz,H.,“Enzymic Histochemistry XXIX

Dilatometric Micro-Determination of Peptidase Activity,”Comptes

rendus des gravaus de laboratorie Carlsberg,Serie Chimique,V ol21,

1938,p.315.

(3)Linderstr?m-Lang,K.,Jacobsen,O.,and Johansen,G.,“Measurement

of the Deuterium Content in Mixtures of H

2O and D

2

O,”ibid.,V ol23,

1938,p.17.

(4)Jacobsen,C.F.,and Linderstr?m-Lang,K.,“Method for Rapid Deter-

mination of Speci?c Gravity,”Acta Physiologica Scandinavica,AP-SCA,V ol1,1940,p.149.

(5)Boyer,R.F.,Spencer,R.S.,and Wiley,R.M.,“Use of Density-

Gradient Tube in the Study of High Polymers,”Journal of Polymer Science,JPSCA,V ol1,1946,p.249.

(6)An?nsen,C.,“Preparation and Measurement of Isotopic Tracers:A

Symposium Prepared for the Isotope Research Group,”Edwards,J.

W.,Publishers,Ann Arbor,MI,1946,p.61.(7)Tessler,S.,Woodberry,N.T.,and Mark,H.,“Application of the

Density-Gradient Tube in Fiber Research,”Journal of Polymer Sci-ence,JPSCA,V ol1,1946,p.437.

(8)Low,B.W.,and Richards,F.M.,“The Use of the Gradient Tube for

the Determination of Crystal Densities,”Journal of the American Chemical Society,JACSA,V ol74,1952,p.1660.

(9)Sperati,C.A.,Franta,W.A.,and Starkweather,H.W.,Jr.,“The

Molecular Structure of Polyethylene V,the Effect of Chain Branching and Molecular Weight on Physical Properties,”Journal of the Ameri-can Chemical Society,JACSA,V ol75,1953,p.6127.

(10)Tung,L.H.,and Taylor,W.C.,“An Improved Method of Preparing

Density Gradient Tubes,”Journal of Polymer Science,JPSCA,V ol 21,1956,p.144.

(11)Mills,J.M.,“A Rapid Method of Construction Linear Density

Gradient Columns,”Journal of Polymer Science,V ol19,1956,p.

585.

(12)Wiley,R.E.,“Setting Up a Density Gradient Laboratory,”Plastics

Technology,PLTEA,V ol8,No.3,1962,p.

31.

FIG.X2.2Apparatus for Gradient Tube

Preparation

SUMMARY OF CHANGES

This section identi?es the location of selected changes to this test method.For the convenience of the user, Committee D20has highlighted those changes that may impact the use of this test method.This section may also include descriptions of the changes or reasons for the changes,or both.

D1505-03:(1)Changed the ISO equivalency statement in Note1.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this https://www.doczj.com/doc/aa17107176.html,ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk

of infringement of such rights,are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every?ve years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards

and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the

responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should

make your views known to the ASTM Committee on Standards,at the address shown below.

This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959, United States.Individual reprints(single or multiple copies)of this standard may be obtained by contacting ASTM at the above

address or at610-832-9585(phone),610-832-9555(fax),or service@https://www.doczj.com/doc/aa17107176.html,(e-mail);or through the ASTM website

(https://www.doczj.com/doc/aa17107176.html,).

密度梯度离心法分离PBMC操作流程

密度梯度离心法分离PBMC 1.在15mL离心管中加入5mL淋巴细胞分离液Ficoll。 2.取5mL抗凝静脉血与5mL无菌PBS按照1:1充分混匀,用移液管沿管壁缓慢叠加于分层液面上,动作一定要轻,注意保持清楚的界面。外周血,PBS,淋巴细胞分离液最终体积比为1:1:1。 3. 水平离心400g×30分钟。(注意:为保证分离效果,需将离心机升降速率调至最低,即升速为1,降速为0,这样调整后,升降速会比较慢,总体离心时间约为1小时。) 4.离心后可看见管内分为三层,上层为血浆和PBS,下层主要为红细胞和粒细胞,中层为淋巴细胞分离液。在上、中层界面处有一以单个核细胞为主的白色云雾层狭窄带(如下图),单个核细胞包括淋巴细胞和单核细胞。此外,还含有血小板。 血浆和PBS 单个核细胞 淋巴细胞分离液 红细胞和粒细胞 5.去除部分上层液体(用移液管吸取,不可倾倒),余下约1mL,用移液器插到云雾层,吸取单个核细胞。置入另一15mL离心管中,加入5倍以上体积的PBS,离心300g×10分钟,洗涤细胞两次。 6.末次离心后,弃上清,加入红细胞裂解液,室温孵育2分钟,裂解红细胞,可根据情况适量增减时间。 7. 加入10mL PBS,离心300g×10分钟,洗涤细胞两次。

8. 末次离心后,弃上清,加入含有10%FBS的RPMI1640,重悬细胞,计数,计算细胞活力。 用本法分离PBMC,每1mL全血可分离得到1~2×106PBMC,不同人个体之间存在一定差异。活细胞百分率在95%以上。 注意: 1.所有操作都应在无菌条件下进行。 2.在分离前Ficoll和PBS等试剂均需在37℃恒温水浴中预热半小时以上。 3.吸取单个核细胞时不可避免会吸到Ficoll,而Ficoll密度比细胞要大,因此步 骤5中需加入足量PBS稀释,若PBS体积太小可能会导致细胞无法离心收集。

高密度聚乙烯介绍

HDPE管的性能评述: ● 抗热(寒)性:温度介于-80℃至100℃之间,HDPE管可安全使用。 ● 抗外力:在工作温度条件下,HDPE管的抗压性能极佳。 ● 抗磨损性:HDPE管具有很高的抗磨损性,它的厚管壁可提供额外的保护。 ● 抗化学性:HDPE分子结构(链烷结构)稳定,管道抗化学性很强。 ● 牢固性:HDPE管无论采用电熔焊接或热熔焊接的连接方式,其焊缝的强度均高于管材自身的强度。 ● 冷凝作用:HDPE管是弱的热导体,短时间的冷却过程,管道不会产生结露现象。 ● 在火中的表现:在高温情况下,HDPE管不易燃烧,管道在火中燃烧不会放出有毒气体。 ● 太阳辐射:通过添加碳黑,HDPE管能抵抗由太阳紫外线引起的管材老化脆化现象。另,根据我公司的多年施工经验,可采取刷漆、管道外壁包裹薄板等措施解决HDPE管与建筑效果匹配的问题。 ● 噪音:HDPE管是软性材料,E弹性模量很小,管道能限制以空气或固体为载体的声音传播。 ● 热膨胀系数:HDPE管的热胀冷缩比其它管材明显,在安装设计中必须考虑可能的热胀冷缩问题。尽管其膨胀系数较大,但由于弹性系数远低于其它材料,因此膨胀应力还是较低的。 聚丙烯PP部分牌号介绍 品名型号产地熔指g/10min 特性及用途 拉丝级T30S 大连西太2.5-3.5 膜丝,纺织膜丝线,地毯背衬. 拉丝级T30S 天津联合3 纺织薄膜纱,地毯贴背. 拉丝级T30S 华北一炼3.2 用于包装绳和包装袋,地毯背衬,人造成草坪和各种用途的挤塑料网。 拉丝级T30S 大连有机3 膜丝,纺织膜丝线,地毯背衬. 拉丝级T30S 齐鲁石化3 生产膜裂纤维(农用绳索,细绳,纺纱)单丝,拉伸膜,管膜,流涎膜。 拉丝级T30S 抚顺乙烯2.5-3.5 编织袋,绳,地毯背衬,吹膜,集装袋. 拉丝级T30S 中原乙烯2.5-3.5 迁合于制作编织袋,打包带,绳索、地毯,被衬,家庭小用品,玩具,注射器。 拉丝级PP022 大连有机3 膜丝,纺织膜丝线,地毯背衬. 拉丝级PP022 前郭炼油2.2-3.8 膜丝,纺织膜丝线,地毯背衬. 拉丝级5004 辽阳烯烃2.6-4.4 适用于切制薄膜(扁丝),单丝,和复丝。 拉丝级2401 燕化2.5 编织袋和编织膜 拉丝级S1003 燕化3.2 窄带,扁丝。 拉丝级163 南韩大林3.5 加工性,机械物性优秀,自动包装袋,绳子. 纤维级Z30S 独山子22-28 均聚物,长丝,丙纶,丙纶短纤维. 纤维级Z30S 任丘25 适于中速到高速纺生产的细旦膨化丝,连续丝和长丝。 纤维级Z30S 西太22-27 低速纺短纤维,BCF-CF复丝。 纤维级Z30S 抚顺乙烯20 均聚物,长丝,丙纶,丙纶短纤维. 纤维级185 南韩大林38 高纺丝、窄分子量分布、无味。(适合于BCF,CF及低Denier 短纤维的高速加工)

密度离心法(精)

密度离心法是样品在一定惰性梯度介质中进行离心沉淀或沉降平衡,在一定离心力下把颗粒分配到梯度中某些特定位置上,形成不同区带的分离方法。该法的优点是:①分离效果好,可一次获得较纯颗粒;②适应范围广,既能分离具有沉淀系数差的颗粒,又能分离有一定浮力密度的颗粒;③颗粒不会积压变形,能保持颗粒活性,并防止已形成的区带由于对流而引起混合。缺点: ① 离心时间较长;②需要制备梯 度;③操作严格,不宜掌握。 等密度离心法 1.原理 等密度离心法是在离心前预先配制介质的密度梯度,此种密度梯度液包含了被分离样品中所有粒子的密度,待分离的样品铺在梯度液或和梯度液先混合,离心开始后,当梯度液由于离心力的作用逐渐形成底浓而管顶稀的密度梯度,与此同时原来分布均匀粒子也发生重新分布。当管底介质的密度大于粒子的密度,粒子上浮;在弯顶处粒子密度大于介质密度时,则粒子沉降,最后粒子进入到一个它本身的密度位置即粒子密度等于介质密变,此时dr/dt 为零粒子不再移动,粒子形成纯组分的区带,与样品粒子的密度有关,而与粒子的大小和其他参数无关,因此只要转速、温度不变,则延长离心时间也不能改变这些粒子的成带位置。2.注意点: ①离心时间要长 ②可用角式转头或水平式转头 ③粒子密度相近或相等时不宜用 ④密度梯度溶液中要包含所有粒子密度 ⑤不能用刹车 四、梯度溶液的制备 (一)梯度材料的选择原则: 1.与被分离的生物材料不发生反应,且易与所分离的生物材料分开。 2.可达到要求的密度范围,且在所要求的密度范围内,粘度低,渗透压低,离子强度和pH 变化较小。 3.不会对离心设备发生腐蚀作用。 4.容易纯化,价格便宜或容易回收。 5.浓度便于测定,如具有折光率。 6.对于分析超迷离心工作来说,它的物理性质,热力学性质应该是己知的。 (二)梯度材料的应用范围下面简单介绍几种常用的密度梯度材料的性质及其应用范围。1.蔗糖:水溶性大,性质稳定,渗透压较高,其最高密度可达1.33g/ml,且由于价格低,容易制备,是现在实验室里常用于细胞器、病毒、RNA分离的梯度材料,但由于有较大的渗透压,不宜用于细胞的分离。 2.聚蔗糖:商品名Ficoll,常采用Ficoll—400也就是相对分子重量为400000,Ficoll渗透压低,但它的粘度却特别高,为此常与泛影葡胺混合使用以降低粘度。主要用于分离各种细胞包括血细胞、成纤维细胞、肿瘤细胞、鼠肝细胞等。

(CsCl 密度梯度离心法)

中量提取质粒DNA(CsCl密度梯度离心法) 李渊越1.将菌液倒入装有50mL TB的锥形瓶中,或从培养好的平板上挑取单克隆,锥形瓶置于37℃摇床 350rpm 培养16-20h,至OD600到10-12。(OD600到40为用TBS培养基在我们的培养条件下所能达到的最高浓度,在此浓度时,菌处于对数生长期) 2.将培养好的菌液到入国产50mL离心管中,每管不超过45mL。(有实验表明,若往离心管中装入超过45mL的 液体,离心后,液体的终体积仍为45mL。因此,一次不应离超过45mL的液体,否则将污染离心机。) 3.室温离心5,000rpm,5min。弃上清,控干。 4.加P1-RNase至终体积到7mL,震荡重悬至菌均匀分散。(按该法最多只能裂解45mL 13OD的细菌,如需裂解更 多细菌,请按比例增加。否则将导致细菌裂解不完全,反而提到更少的菌。) 5.加14mL P2,盖上盖子,上下颠倒混匀2min。(该步一定要混匀,以达到将细菌完全裂解的目的。加入P2后可见溶 液澄清粘稠,该步反应时间不应过久) 6.加7mL P3。(P2和P3之间反应时间不要超过5min。混匀后可见絮状沉淀。该步若置于冰上,沉淀效果更好。但位于室温的反应 以足以达到实验需要。)用H2O配平至对称管重量差<0.1g。 7.室温(4度更好,但没有必要。)离心,10,000 rpm, 5min。 8.将上清用滤纸过滤至另一国产的50mL管中。加0.6倍体积的异丙醇,颠倒混匀后室温(不可置于 4度。若置于4度,将会使部分盐析出)静置10min。(分子克隆p35) 9.室温离心10,000rpm 15min。 10.弃上清,在加1.8mL H2O溶解完全后,平均分至两个1.5mL管中,再分别往每管中加入二分之 一体积的PEG8000,4C沉淀2小时。 11.3,000 rcf离心3min,弃上清。(可以不要非常完全控干) 12.加1.55mL CsCl溶液溶解至沉淀完全溶解。10,000 rcf 3min离心,弃去不溶物质。 13.往2mL超速离心管中加入50ul 2mg/mL EB。加之前用卷纸把枪头外壁的EB擦干。(将外壁的EB擦干 是为了防止EB残留在离心管的管口。) 14.将DNA移至2mL超速离心管中,并用H2O将体积补至2mL。(此时,溶液的密度为3.10g/2mL,共含1.55g CsCl。) 15.配平至对称管重量差<0.02g,封口。(该步配平时,可按1ulH O重0.001g来补加H2O进行配平以缩短时间。)在封口 2 后,上下颠倒混匀。 16.打开超速离心机,按Memu -> Programme -> Plasmid-CsCl -> OK。(该步为149,000rpm 2h 升速max 降速 6。) 17.按Vacuum 至真空度<400后按 Start。(不等真空度至<400其实也可启动,但这可能将造成离心机反复升降速,故制 定此规则。)等升至最大转速后才能离开。(该步为离心机安全操作必须,请务必做到。) 18.2h后,取出转头,离心管。若转头内有液体需将其洗净,擦干。(因为此时泄漏的液体含有EB,因此需要 将其洗净,擦干。) 19.先用8号针头在离心管上部插个洞,再用1mL注射器抽出所需的红色DNA条带至1.5mL离心管 中。 20.加入1mL水饱和正丁醇,上下颠倒混匀(勿用振荡器)约20下。(或更多,使上部液体尽可能变红。)将 1.5mL管置于离心机中,按Short键 5秒,松手。弃去上层液体。(离心的目的是为了加速液面分层,因此 也可省去。) 21.重复20步2-3遍,至下层看不到红色后再萃取一遍。(再萃取一遍的目的是为了确保EB完全去除。) 22.往溶液中补加等体积的H2O,平均分成若干管,使每管终体积为400ul。往每管中分别加入1mL(2.5 倍体积)无水乙醇,颠倒混匀。13,500 rpm 5min 4C。弃上清。(该步的目的是为了除去溶液中残留的CsCl。)23.加1mL预冷的70%乙醇洗一遍。13,500 rpm 5min 4C。弃上清。(该步的目的是为了除去21步中管壁上残留 的部分含CsCl的液体。) 24.加400ul H2O或TE溶解。(对于高拷贝质粒,45mL菌液将获得500-1,500ug左右质粒。)

常用塑料密度一览表

材料密度(克/立方厘米)PP0.89~0.93 PP-T100.95~0.99 PP-T20 1.03~1.07 PP-T30 1.10~1.14 PP-T40 1.19~1.25 PP-GF20 1.10~1.14 PP-GF30 1.12~1.18 PP-GF40 1.19~1.25 PP-LGF20 1.02~1.06 PP-LGF30 1.10~1.14 PP-LGF40 1.19~1.25 PP-EPDM0.86~1.92 PP-EPDM-T100.94~1.00 PP-EPDM-T15 1.00~1.04 PP-EPDM-T20 1.03~1.07 PP-EPDM-T25 1.07~1.11 PP-EPDM-T30 1.10~1.16 GMT-20 1.02~1.08 GMT-30 1.07~1.17 GMT-40 1.17~1.27 LDPE0.91~0.94 HDPE0.93~0.97 POM 1.40~1.44 PPO 1.03~1.07 PPO+PA 1.06~1.10 PBT 1.30~1.35 PBT+GF10 1.40~1.45 PBT+GF20 1.45~1.50 PBT+GF30 1.50~1.55 PBT/PET-T20 1.47~1.53 PET-GF20 1.47~1.53 PET-GF30 1.54~1.62 PET-GF40 1.63~1.73 PA6 1.12~1.15 PA6-GF15 1.20~1.26 PA6-GF20 1.22~1.28 PA6-GF30 1.33~1.40 PA6-GF35 1.38~1.44 PA6-GF40 1.40~1.46 PA6-GF50 1.54~1.60 PA6-(GF10+M20) 1.33~1.41 PA66-GF15 1.20~1.26 PA66-GF20 1.24~1.30

三柱密度梯度仪使用演示文稿

先进的自动密度梯度柱产品用户手册

内容 CONTENTS 使用手册 User Manual (3) 仪器的描述 Description of the Apparatus (3) 移动与安装 Lifting & Installation (4) 1.接通电源 Power Up (6) 2.热敏打印机 Thermal Printer (7) 3.温度设定 Setting the Temperature (7) 4.冷却盘管 Cooling Coil (7) 填充设备 Filling Equipment (8) 填充密度梯度柱 Filling the Gradient Column (9) 1.混合液体 Mixing Liquids (9) 2.填充密度梯度柱 Filling the Column (10) 梯度柱清扫(打捞)仪器 Column Clearing Device (11) 梯度柱自动测量系统的使用 Using the Columns Automatic Measuring System (8) 1.梯度柱的校准 Column Calibration (8) 2.样品的密度读数 Sample Density Readings (9) 3.检验梯度柱的校准 Check a Calibrated Column (9) 4.由于空气的错误Errors due to Air (10) 密度浮子的使用和维护 Use and Care of Density Floats (10) 校正因数 Correction Factor (10) 密度梯度柱的维护 Care of the Density Column (11) 溶液和密度 Solutions and Densities (12) 水溶液的密度表 Densities of Aqueous Organic Solutions Table (13) 接线图Diagrams (14) 1.配线图(240伏) Wiring Diagram 240 Volts (14) 2.配线图(110伏) Wiring Diagram 110 Volts (15) 3.梯度柱填充系统 Filling System (16) Ray-Ran 的产品 Products (17)

实验 密度梯度管法测定聚合物的密度和结晶度

实验 密度梯度管法测定聚合物的密度和结晶度 密度梯度法是测定聚合物密度的方法之一。聚合物的密度是聚合物的重要参数。聚合物结晶过程中密度变化的测定,可研究结晶度和结晶速率;拉伸、退火可以改变取向度和结晶度,也可通过密度来进行研究;对许多结晶性聚合物其结晶度的大小对聚合物的性能、加工条件选择及应用都有很大影响。聚合物的结晶度的测定方法虽有X 射线衍射法、红外吸收光谱法、核磁共振法、差热分析、反相色谱等等,但都要使用复杂的仪器设备。而用密度梯度管法从测得的密度换算到结晶度,既简单易行又较为准确。而且它能同时测定一定范围内多个不同密度的样品,尤其对很小的样品或是密度改变极小的一组样品,需要高灵敏的测定方法来观察其密度改变,此法既方便又灵敏。 一、实验目的: 1.掌握用密度梯度法测定聚合物密度、结晶度的基本原理和方法。 2.利用文献上某些结晶性聚合物PE 和PP 晶区和非晶区的密度数据,计算结晶度。 二、基本原理: 由于高分子结构的不均一性,大分子内摩擦的阻碍等原因,聚合物的结晶总是不完善的,而是晶相与非晶相共存的两相结构,结晶度f w 即表征聚合物样品中晶区部分重量占全部重量的百分数: 在结晶聚合物中(如PP 、PE 等),晶相结构排列规则,堆砌紧密,因而密度大;而非晶结构排列无序,堆砌松散,密度小。所以,晶区与非晶区以不同比例两相共存的聚合物,结晶度的差别反映了密度的差别。测定聚合物样品的密度,便可求出聚合物的结晶度。 密度梯度法测定结晶度的原理就是在此基础上,利用聚合物比容的线性加和关 系,即聚合物的比容是晶区部分比容与无定形部分比容之和。聚合物的比容V 和结晶度w f 有如下关系: ()1c w a w V V f V f =+- --------------------------------- (2) 式中c V 为样品中结晶区比容,可以从X 光衍射分析所得的晶胞参数计算求得; a V 为样品中无定形区的比容,可以用膨胀计测定不同温度时该聚合物熔体的比

高密度聚乙烯(HDPE)的注塑特性

高密度聚乙烯(HDPE)的注塑特性 典型应用范围: 电冰箱容器、存储容器、家用厨具、密封盖等。 注塑模工艺条件: 干燥:如果存储恰当则无须干燥。 熔化温度:220~260C。对于分子较大的材料,建议熔化温度范围在200~250C之间。模具温度:50~95C。6mm以下壁厚的塑件应使用较高的模具温度,6mm以上壁厚的塑件使用较低的模具温度。塑件冷却温度应当均匀以减小收缩率的差异。对于最优的加工周期时间,冷却腔道直径应不小于8mm,并且距模具表面的距离应在1.3d之内(这里“d”是冷却腔道的直径)。 注射压力:700~1050bar。注射速度:建议使用高速注射。 流道和浇口: 流道直径在4到7.5mm之间,流道长度应尽可能短。可以使用各种类型的浇口,浇口长度不要超过0.75mm。特别适用于使用热流道模具。 化学和物理特性: PE-HD的高结晶度导致了它的高密度,抗张力强度,高温扭曲温度,粘性以及化学稳定性。 PE-HD比PE-LD有更强的抗渗透性。PE-HD的抗冲击强度较低。PH-HD的特性主要由密度和分子量分布所控制。适用于注塑模的PE-HD分子量分布很窄。对于密度为0.91~ 0.925g/cm3,我们称之为第一类型PE-HD;对于密度为0.926~ 0.94g/cm3,称之为第二类型PE-HD;对于密度为0.94~ 0.965g/cm3,称之为第三类型PE-HD。该材料的流动特性很好,MFR为0.1到28之间。分子量越高,PH-LD的流动特性越差,但是有更好的抗冲击强度。 PE-LD是半结晶材料,成型后收缩率较高,在1.5%到4%之间。 PE-HD很容易发生环境应力开裂现象。可以通过使用很低流动特性的材料以减小内部应力,从而减轻开裂现象。PE-HD当温度高于60C时很容易在烃类溶剂中溶解,但其抗溶解性比PE-LD还要好一些。

高密度聚乙烯

高密度聚乙烯化学品安全技 术说明书 第一部分:化学品名称化学品中文名称:高密度聚乙烯 化学品英文名称:polyethylene 技术说明书编码:1305CAS No.: 9002-88-4 分子式: [C 2H 4]n 分子量:第二部分:成分/组成信息 有害物成分含量CAS No.第三部分:危险性概述 健康危害:其热解产物对呼吸道有刺激作用。本身基本无毒。 燃爆危险:本品可燃。第四部分:急救措施皮肤接触:脱去污染的衣着,用流动清水冲洗。眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。吸入:脱离现场至空气新鲜处。就医。食入:饮足量温水,催吐。就医。第五部分:消防措施危险特性:受热分解放出易燃气体能与空气形成爆炸性混合物。粉体与空气可形成爆炸性混合物, 当达到一定浓度时, 遇火星会发生爆炸。有害燃烧产物:一氧化碳、二氧化碳。灭火方法:尽可能将容器从火场移至空旷处。灭火剂:雾状水、泡沫、干粉、二氧化碳、砂土。第六部分:泄漏应急处理应急处理:隔离泄漏污染区,限制出入。切断火源。建议应急处理人员戴防尘面具(全面罩),穿一般作业工作服。避免扬尘,小心扫起,置于袋中转移至安全场所。若大量泄漏,用塑料布、帆布覆盖。收集回收或运至废物处理场所处置。第七部分:操作处置与储存操作注意事项:密闭操作。密闭操作,提供良好的自然通风条件。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防尘口罩,戴化学安全防护眼镜。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。避免产生粉尘。避免与氧化剂接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能 有害物成分 含量 CAS No.: 高密度聚乙烯 9002-88-4

常用塑料密度表

常用塑料密度表 密度/(g/cm3)材料密度/(g/cm3)材料 0.8 硅橡腔(可用二氧化硅填充 到1.25) 1.19~1.35 增塑聚氯乙烯(大约含有 40%增塑剂) 0.83 聚甲基戊烯1.20~1.22 聚碳酸酯(双酚A型)0.85~0.91 聚丙烯1.20~1.26 交联聚氨酯 0.89~0.93 高压(低密度)聚乙烯1.26~1.28 苯酚甲醛树脂(未填充)0.91~0.92 1-聚丁烯1.26~1.31 聚乙烯醇 0.9~0.93 聚异丁烯1.25~1.35 乙酸纤维素 0.92~1.00 天然橡胶1.30~1.41 苯酚甲醛树脂(填充有机材料:纸,织物) 0.92~0.98 低压(高密度)聚乙烯1.30~1.40 聚氟乙烯 1.01~1.04 尼龙12 1.34~1.40 赛璐珞 1.03~1.05 尼龙11 1.38~1.41 聚对苯二甲酸乙二醇酯 1.04~1.06 丙烯腈-丁二烯-苯乙烯共聚 物(ABS) 1.38~1.50 硬质PVC 1.04~1.08 聚苯乙烯1.41~1.43 聚氧化甲烯(聚甲醛) 1.05~1.07 聚苯醚1.47~1.52 脲-三聚氰胺树脂(加有有机填料) 1.06~1.10 苯乙烯-丙烯腈共聚物1.47~1.55 氯化聚氯乙烯 1.07~1.09 尼龙610 1.50~2.00 酚醛塑料和氨基塑料(加有无机填料) 1.12~1.15 尼龙6 1.70~1.80 聚偏二氟乙烯 1.13~1.16 尼龙66 1.80~2.30 聚酯和环氧树脂(加有玻璃纤维) 1.10~1.40 环氧树脂,不饱和聚酯树脂1.86~1.88 聚偏二氯乙烯1.14~1.17 聚丙烯腈2.10~2.20 聚三氟-氯乙烯1.15~1.25 乙酰丁酸纤维素2.10~2.30 聚四氟乙烯1.161.20 聚甲基丙烯酸甲酯 1.17~1.20 聚乙酸乙烯酯 1.18~1.24 丙酸纤维素

Ficoll密度梯度离心

外周皿中提取人淋巴细胞(PBMC)的方珐主要有:Ficoll密度梯度离心珐,percoll分层液珐 我主要使用的是Ficoll密度梯度离心珐,给你介绍下 Ficoll密度梯度离心珐: (一)原理: 常用来分离人外周皿单个核细胞(PBMC)的分层液比重是 1.077±0.001 的聚蔗糖(Ficoll)-泛 影葡胺(Urografin)(F/H)分层液。Ficoll是蔗糖的多聚体,呈中性,犌W水性高,平均分 子量为400,000,当密度为1.2g/ml仍未超出正常生理性渗透压,也不穿过生物膜。红细胞、粒细胞比重大,离心后沉于管底;淋巴细胞和单核细胞的比重小于或等于分层液比重,离心后 漂浮于分层液的液面上,也可有少部分细胞悬浮在分层液中。xī取分层液液面的细胞,就可从 外周皿中分离到单个核细胞。 (二)方珐: 1.在短中管中加入适量淋巴细胞分离液。 2. 取肝素抗凝静脉皿与等量Hank‘s液或RPMI1640充分混匀,用滴管沿管壁缓慢叠加于分层 液面上,注意保持清楚的界面。水平离心2000rpm×20分钟。 3. 离心后管内分为三层,上层为皿浆和Hank‘s液,下层主要为红细胞和粒细胞。中层为淋巴 细胞分离液,在上、中层界面处有一以单个核细胞为主的白色云雾层狭窄带,单个核细胞包括 淋巴细胞和单核细胞。此外,还hán有皿小板。 4. 用máo细皿管擦到云雾层,xī取单个核细胞。置入另一短中管中,加入5倍以上体积的Hank‘s液或RPMI1640,1500rpm×10分钟,洗涤细胞两次。 5. 末次离心后,弃上清,加入含有10%小牛皿清的RPMI1640,重悬细胞。取一滴细胞悬液与一滴0.2%台盼兰染液混合,于皿球计数板上,计数四个大方格内的细胞总数。 单个核细胞浓度(细胞数/1毫升细胞悬液)= 4个大方格内细胞总数 —————————— × 104×2(稀释倍数) 4 6. 细胞活力检测:死的细胞可被染成兰色,活细胞不着色。计数200个淋巴细胞。计算出活 细胞百分率。 活细胞数 活细胞百分率=—————— ×100%

常用塑胶密度表

塑料的密度鉴别塑料的品种不同,其密度也不同,可利用测定密度的方法来鉴别塑料,但此时应将发泡制品分别出来,因为发泡沫塑料的密度不是材料的真正的密度。在实际工业上,也有利用塑料的密度不同来分选塑料的。常用塑料的密度见下表:密度-(g-cm3)材料密度-(g-cm3)材料 0.80 硅橡腔(可用二氧化硅填充到1。25)1.19~1.35 增塑聚氯乙烯(大约含有40%增塑剂)0.83 聚甲基戊烯1.20~1.22 聚碳酸酯(双酚A型) 0.85~0.91 聚丙烯1.20~1.26 交联聚氨酯 0.89~0.93 高压(低密度)聚乙烯1.26~1.28 苯酚甲醛树脂(未填充) 0.91~0.92 1-聚丁烯1.26~1.31 聚乙烯醇 0.9~0.93 聚异丁烯1.25~1.35 乙酸纤维素 0.92~1.00 天然橡胶1.30~1.41 苯酚甲醛树脂(填充有机材料:纸,织物) 0.92~0.98 低压(高密度)聚乙烯1.30~1.40 聚氟乙烯 1.01~1.04 尼龙12 1.34~1.40 赛璐珞 1.03~1.05 尼龙11 1.38~1.41 聚对苯二甲酸乙二醇酯 1.04~1.06 丙烯腈-丁二烯-苯乙烯共聚物(ABS)1.38~1.50 硬质PVC 1.04~1.08 聚苯乙烯1.41~1.43 聚氧化甲烯(聚甲醛) 1.05~1.07 聚苯醚1.47~1.52 脲-三聚氰胺树脂(加有有机填料) 1.06~1.10 苯乙烯-丙烯腈共聚物1.47~1.55 氯化聚氯乙烯 1.07~1.09 尼龙610 1.50~2.00 酚醛塑料和氨基塑料(加有无机填料) 1.12~1.15 尼龙6 1.70~1.80 聚偏二氟乙烯 1.13~1.16 尼龙66 1.80~2.30 聚酯和环氧树脂(加有玻璃纤维) 1.10~1.40 环氧树脂,不饱和聚酯树脂1.86~1.88 聚偏二氯乙烯 1.14~1.17 聚丙烯腈2.10~2.20 聚三氟-氯乙烯 1.15~1.25 乙酰丁酸纤维素2.10~2.30 聚四氟乙烯 1.161.20 聚甲基丙烯酸甲酯 1.17~1.20 聚乙酸乙烯酯 1.18~1.24 丙酸纤维素 常用于塑料的密度鉴别的溶液溶液的种类密度(25oc)/(g- cm3) 配制方法塑料(制品)种类 浮于溶液沉入溶液 水 1 聚乙烯,聚丙烯聚氯乙烯,聚苯乙烯 饱和食盐溶液1.19 74ml水和26g食盐聚苯乙烯,ABS 聚氯乙烯 58-4%的酒精溶液0.91 100ml水和140ml95%的酒精聚丙烯聚乙烯 55-4的酒精溶液0.925 100ml水和124ml95%的酒精高压聚乙烯低压聚乙烯 氯化钙水溶液1.27 100g的氯化钙(工业用)和150ml水聚苯乙烯,有机玻璃,ABS 聚乙烯聚氯乙烯,酚醛塑料

全自动密度梯度制备仪

产品简介 Biocomp全自动密度梯度制备仪,采用我们的具有独家专利 的倾斜管旋转处理技术,40秒内,你可以制造出6组相同的线性 密度。处理过程包含了,将两种不同比例的溶液(例如5%和30% 的蔗糖溶液)在离心管里直接分层出来,通过一种特殊的带磁极 的管夹将它放置妥当,固定在仪器上面的钢板上。两次按键后, 制备仪接管并以一定的角度倾斜试管,按照设定的好的时间旋转, 最后再将它放置到初始的垂直位置。 应用领域 Biocomp全自动密度梯度制备仪主要用于快速制备线性密度梯度溶液,大大提高样品的后续密度梯度离 心分离效果。 梯度液标尺_离心管架_离心管帽 离心管帽(短帽-速度区带离心 长帽 -等密度梯度离心) 离心管

产品特点 快速高效,最快1min内完成6个离心管样品的均一线性梯度制备。 内置程序,自动设定梯度制备转速、时间、角度,可连接电脑实现上传下载梯度制备程序。 手动编程,根据实验条件编辑各种梯度制备程序,可储存备用。 记忆功能,自动记忆最近使用的10种梯度程序,直接进入,避免参数的重复设置。 适用广泛,可用于各类溶液的梯度制备,包括SOUCROSE、GLYCEROL、OPTIPREP、NYCODENZ、FICOLL、PERCOLL、METRIZAMIDE、RENOGRAFIN、NaCl、CsCl、KCl等梯度介质。 分离工艺示图 MYCRO保留对产品规格或其他产品信息(包括但不限于产品重量、 外观、尺寸或其他物理因素)不经通知给予更改的权利。 出版物中可能包含有技术方面不够准确的地方或印刷错误。MYCRO 仅按现状提供本出版物,不附有任何形式的(无论是明示的还是默示 的)保证,包括包括(但不限于)对非侵权性、适销性和适用于某特定 用途的默示保证。 MYCRO,MYCRO标志,是MYCRO在中国或香港地区的商标或 注册商标。 其它公司、产品和服务名称为其各自拥有者的商标或服务标记。

病毒纯化密度梯度离心法

病毒纯化,即应用各种物理、化学方法,以不使病毒受损伤和失活为前提,去除宿主细胞组分等非病毒杂质,提取出高纯度浓缩的病毒样品。病毒提纯是病毒学研究的重要前提,病毒微细形态结构的研究、病毒抗原蛋白的分离提纯、病毒化学成分及其遗传物质-DNA或RNA的详细研究都需要高纯度的病毒样品。病毒纯度只是一个相对的概念,很难有绝对的标准,通常以下几点可以作为判定依据。 物理均一性:测定病毒样品的物理均一性,是证明其纯度的常用方法,包括电镜检查、病毒粒子沉降系数和扩散常数及其在凝胶电泳、等电聚焦中的迁移率等。 病毒滴度与蛋白含量的比例:测定病毒材料的感染力或其血清学反应、滴度与其蛋白含量的比例,也是一种通常采用的纯度测定方法。病毒滴度对蛋白含量的比例越高,说明病毒的纯度越高。 免疫学反应:免疫反应单一而无非特意反应,则说明病毒材料比较纯净。 结晶形成:病毒粒子在十分纯净的情况下,经常可以形成结晶,但少数混有杂质的病毒样品亦可形成结晶,所以这也只是一个相对标准。 病毒纯化方法: 1 超速离心法,其中的平衡梯度密度离心是常用的方法,在该溶液里加入少量大分子溶液,则溶液内比溶剂密度大的部分就产生大分子沉降,比溶剂密度小的部分就会上浮,最后在重力和浮力平衡的位置,集聚形成大分子带状物。因为病毒颗粒跟其他生物分子大小不一样,所以病毒在梯度离心过程中形成独特的条带,从而达到分离纯化的效果。但此法对仪器的要求很高,转速至少30000rpm/min,在这个转速下要求离心时间7-8小时。 2 现在开发出各种亲和树脂,能有效地吸附病毒粒子,从而达到病毒纯化的目的。Biomiga公司所开发的病毒纯化系列试剂盒,采用新型材料,能有效吸附腺病毒、腺相关病毒、慢病毒等,加入适当浓度的离子溶液将病毒粒子解离回收,最后对病毒进行脱盐处理,所得病毒纯度高,整个操作简便,极大地缩短了纯化时间,针对需要纯化大量病毒的客户提供大量提取试剂盒,满足客户不同需要。

MSDS-HDPE高密度聚乙烯

高密度聚乙烯化学品安全技术说明书(MSDS) 第一部分:化学品名称化学品中文名称:高密度聚乙烯 (HDPE) 化学品英文名称: polyethylene 技术说明书编码:1305 CAS No.:9002-88-4 分子式:[C2H4]n 分子量: 第二部分:成分/组成信息有害物成分含量 CAS No. 高密度聚乙烯 9002-88-4 第三部分:危险性概述 危险性类别: 侵入途径:皮肤、眼睛接触,吸入,吞食。 健康危害:其热解产物对呼吸道有刺激作用。本身基本无毒。 环境危害:在土壤里不分解。 燃爆危险:本品可燃。 第四部分:急救措施 皮肤接触:脱去污染的衣着,用流动清水冲洗。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:脱离现场至空气新鲜处。就医。 食入:饮足量温水,催吐。就医。 第五部分:消防措施 危险特性:受热分解放出易燃气体能与空气形成爆炸性混合物。粉体与空气可形成爆炸性混合物, 当达到一定浓度时, 遇火星会发生爆炸。 有害燃烧产物:一氧化碳、二氧化碳。 灭火方法:尽可能将容器从火场移至空旷处。灭火剂:雾状水、泡沫、干粉、二氧化碳、砂土。 第六部分:泄漏应急处理 应急处理:隔离泄漏污染区,限制出入。切断火源。建议应急处理人员戴防尘面具(全面罩),穿一般作业工作服。 避免扬尘,小心扫起,置于袋中转移至安全场所。若大量泄漏,用塑料布、帆布覆盖。收集回收或运至 废物处理场所处置。 第七部分:操作处置与储存 操作注意事项:密闭操作。密闭操作,提供良好的自然通风条件。操作人员必须经过专门培训,严格遵守操作规程。 建议操作人员佩戴自吸过滤式防尘口罩,戴化学安全防护眼镜。远离火种、热源,工作场所严禁吸烟。 使用防爆型的通风系统和设备。避免产生粉尘。避免与氧化剂接触。搬运时要轻装轻卸,防止包装及 容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。应与氧化剂分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备有合适的材料收容泄漏物。 第八部分:接触控制/个体防护 职业接触限值 中国MAC(mg/m3):10(建议值) 前苏联MAC(mg/m3):10 TLVTN:未制定标准TLVWN:未制定标准

差速离心法和密度梯度离心法的区别

差速离心法和密度梯度离心法的区别 教学问题:高中生物必修1中研究细胞器的分离方法是差速离心法,必修2中研究DNA复制方式——半保留复制的方法是密度梯度离心法,两者之间有什么区别? 一、差速离心法 差速离心法是交替使用低速和高速离心,用不同强度的离心力使具有不同质量的物质分级分离的方法。此法适用于混合样品中各沉降系数差别较大组分的分离。 1.工作原理 通常两个组分的沉降系数差在10倍以上时可以用此法分离。例如某样品中有大、中、小三个组分,用差速离心法分离时,

把样品放在离心管内,先按大组分的沉降系数选择离心转速和离心时间,当离心结束时正好使大组分全部沉降到离心管底部,这时中小组分中的一部分也会沉降到底部。若原始样品液中三个组分的含量相等,则在原始样品液中大组分占总组分量的三分之一。通过一次离心后分离出的大组分沉淀占总组分量约90%。如要进一步提纯可以把此沉淀物再溶解,再按大组分的沉降条件离心,得到大组分的第二次离心沉淀。通过多次对沉淀和上清液差速离心,可以把三个沉降系数有差别的组份分离提纯,所以这个方法又称为分步离心法。 2.差速离心法的优缺点 差速离心法的优点是样品的处理量较大,

可用于大量样品的初分离。其缺点是分离复杂样品和要求分离纯度较高时,离心次数多,操作繁杂。由于沉淀的多次清洗、溶解、再沉淀,容易引起中间损失,所以离心分辨力差。实际分离时由于离心时的对流、扩散和收取沉淀时的污染,对于一些沉降系数相差不大的组分无法进行完全的分离提纯。产品的纯度和回收率都达不到上述理论值。因此差速离心法主要用于大量样品的初步分离提纯。 二、密度梯度离心法 密度梯度离心法又称为区带离心法,可以同时使样品中几个或全部组分分离,具有良好的分辨率。离心时先将样品溶液置于一个由梯度材料形成的密度梯度液体柱中,离心后被分离组分以区带层分布于梯

高密度聚乙烯的研究及应用

茂名职业技术学院 文献检索论文题目高密度聚乙烯的研究及应用 系(部)化学工程系 专业应用化工技术 班级 D10应化(5)班 姓名招鑫章 指导教师赖谷仙 日期 2011.12.8

摘要 综述了近年来我国高密度聚乙烯(HDPE)的最新研究现状,并介绍了高密度聚乙烯的特点及其应用,最后指出了我国高密度聚乙烯的发展方向。 关键词:高密度聚乙烯;特点;应用 目录 高密度聚乙烯的研究及应用 前言 高密度的聚乙烯(HDPE),是一种结晶度高、非极性的热塑性树脂,原态的HDPE外表呈乳白色,在微薄截面呈一定程度的半透明状,具有优良的耐大多数生活和工业用化学品的特性,该聚合物不吸湿并具有好的防水蒸汽性。可用于包装用途。HDPE具有很好的电性能,特别是绝缘介电强度高,使其很适用于电线电缆。HDPE是重要的五大通用塑料之~,具有无毒价廉、质轻、优异的耐湿性、良好的化学稳定性和易成型加工等特点,被广泛应用于食品、汽车、化工等领域。 1.HDPE特点 HDPE可用淤浆法、溶液法和气相法生产,H D P E分子中支链少。结晶度高( 8 5 %~9 O 茗 ),密度高( 0 . 9 4 1 — 0 . 9 6 5 g / c m ),具有较高的使用温度、硬度、力学强度和耐化学药品性好。适用于中空吹塑、注塑和挤出各种制品,如各种容器、网、打包带,并可用作电缆覆层、管材、异型材、片材等。是不透明的白色粉末,造粒后为乳白色颗粒,分子为线型结构,很少支化现象,是较典型的结晶高物,机械性能均优于低密度聚乙烯。2.HDPE研究进展 HDPE作为最常用的通用塑料之一,由于有极强的应用背景,越来越受到工业界和学术界的广泛重视¨一t o ]。近年来,国内科研人员HDPE的改性及应用方面进行了大量的研究,并取得了一定的成效。许惠芳…等考察了国内三家石化公司生产HDPE薄膜料9455F,6098,7000F的流变行为。结果表明三HDPE薄膜料的熔体均属于非牛顿流体,其流动指数( n )随温度升高而增大,熔体的非牛顿性随温度升高而降低,即熔体偏离牛顿流体的程度变小;薄膜料6098对温度敏感性较大,在成型加工时对其进行温度调整可获得良好的效果;9455F对剪切的敏感性较大,在成型加工时对其进行剪切速率或剪切应力的调整可获得良好的效果。陈欣n 等制备了多壁碳纳米管、石墨和碳黑填HDPE复合体,研究了复合体的导电和流变学性质,利用隧道逾渗模型对关键指数分别为4.4、6.4和2.9 的三种复合体的“非普适性”导电行为进行了解释,与此同时,考察了颗粒类型和含量,以及剪切速率对复合体流变学性质的影响。结果表明复合体系的储能模量在低频区出现“第二平台”,而复合黏度则表现出强烈的剪切变稀行为,标志着颗粒在聚合物内部发生聚集形成了网络结构,与石墨和碳黑填充复合体相比,具有更高纵横比的多壁碳纳米管填充复合体具有更高的储能模量和复合黏度,基于Guth—Sma1]wood理论结合有效介近似G ’r分析结果表明,填充HDPE复合体系的流变学逾渗阈值和导电逾渗阈值吻合良好。蒋炳炎…等用M0]df]0WMPI5.O软件F]ow3D模块仿真及同步热分析仪分析的方法,研究了熔体温度及注射速率对薄壁件注射成型时结晶特性的影响。结果表明熔体温度175 、195 、215cc时,在厚度为O.8 m m的高密度聚乙烯薄壁件的注射成型过程中,在流动方向上,浇口附近的剪切速率和熔融热焓远大于其他各处,且二者均随着

HDPE高密度聚乙烯和LDPE 低密度聚乙烯的区别

HDPE高密度聚乙烯和LDPE 低密度聚乙烯的区别 注塑模工艺条件:干燥:如果存储恰当则无须干燥。熔化温度:220~260C。对于分子较大的材料,建议熔化温度范围在200~250C之间。模具温度:50~95C。6mm以下壁厚的塑件应使用较高的模具温度,6mm以上壁厚的塑件使用较低的模具温度。塑件冷却温度应当均匀以减小收缩率的差异。对于最优的加工周期时间,冷却腔道直径应不小于8mm,并且距模具表面的距离应在1.3d之内(这里“d”是冷却腔道的直径)。注射压力:700~1050bar。注射速度:建议使用高速注射。流道和浇口:流道直径在4到7.5mm之间,流道长度应尽可能短。可以使用各种类型的浇口,浇口长度不要超过0.75mm。特别适用于使用热流道模具。 化学和物理特性: PE-HD的高结晶度导致了它的高密度,抗张力强度,高温扭曲温度,粘性以及化学稳定性。 PE-HD比PE-LD有更强的抗渗透性。 PE-HD的抗冲击强度较低。 PH-HD的特性主要由密度和分子量分布所控制。适用于注塑模的PE-HD分子量分布很窄。 对于密度为0.91~ 0.925g/cm3,我们称之为第一类型PE-HD; 对于密度为0.926~ 0.94g/cm3,称之为第二类型PE-HD; 对于密度为0.94~ 0.965g/cm3,称之为第三类型PE-HD。该材料的流动特性很好,MFR为0.1到28之间。分子量越高,PH-LD的流动特性越差,但是有更好的抗冲击强度。 PE-LD是半结晶材料,成型后收缩率较高,在1.5%到4%之间。 PE-HD很容易发生环境应力开裂现象。可以通过使用很低流动特性的材料以减小内部应力,从而减轻开裂现象。PE-HD当温度高于60C时很容易在烃类溶剂中溶解,但其抗溶解性比PE-LD还要好一些。 LDPE低密度聚乙烯 注塑模工艺条件:干燥:一般不需要熔化温度:180~280C模具温度:20~40C 为了实现冷却均匀以及较为经济的去热,建议冷却腔道直径至少为8mm,并且从冷却腔道到模具表面的距离不要超过冷却腔道直径的1.5倍。注射压力:最大可到1500bar。保压压力:最大可到750bar。注射速度:建议使用快速注射速度。流道和浇口:可以使用各种类型的流道和浇口PE特别适合于使用热流道模具。

几种常用塑料的密度

几种常用塑料的密度 密度/(g/cm3) 材料 密度/(g/cm3) 材料 0.8 硅橡腔 1.19~1.35增塑聚氯乙烯(大约含有40%增塑剂) 0.83聚甲基戊烯 1.20~1.22聚碳酸酯(双酚A型) 0.85~0.91聚丙烯 1.20~1.26 交联聚氨酯 0.89~0.93高压(低密度)聚乙烯 1.26~1.28苯酚甲醛树脂(未填充) 0.91~0.92 1-聚丁烯 1.26~1.31聚乙烯醇 0.9~0.93聚异丁烯 1.25~1.35乙酸纤维素 0.92~1.00天然橡胶1.30~1.41苯酚甲醛树脂(填充有机材料:纸,织物) 0.92~0.98低压(高密度)聚乙烯 1.30~1.40聚氟乙烯 1.01~1.04尼龙12 1.34~1.40赛璐珞 1.03~1.05尼龙11 1.38~1.41聚对苯二甲酸乙二醇酯 1.04~1.06(ABS) 1.38~1.50硬质PVC 1.04~1.08聚苯乙烯 1.41~1.43聚氧化甲烯(聚甲醛) 1.05~1.07聚苯醚 1.47~1.52 脲-三聚氰胺树脂(加有有机填料) 1.06~1.10苯乙烯-丙烯腈共聚物 1.47~1.55氯化聚氯乙烯 1.07~1.09尼龙610 1.50~ 2.00酚醛塑料和氨基塑料(加有无机填料) 1.12~1.15尼龙6 1.70~1.80聚偏二氟乙烯 1.13~1.16 尼龙66 1.80~ 2.30聚酯和环氧树脂(加有玻璃纤维) 1.10~1.40环氧树脂,不饱和聚酯树脂 1.86~1.88聚偏二氯乙烯 1.14~1.17聚丙烯腈 2.10~2.20 聚三氟-氯乙烯 1.15~1.25 乙酰丁酸纤维素 2.10~2.30聚四氟乙烯 1.161.20聚甲基丙烯酸甲酯 1.17~1.20 聚乙酸乙烯酯

相关主题
文本预览
相关文档 最新文档