当前位置:文档之家› 基于MATLAB电话机中的双音多频DTMF信号的产生与检测PDF

基于MATLAB电话机中的双音多频DTMF信号的产生与检测PDF

基于MATLAB电话机中的双音多频DTMF信号的产生与检测PDF
基于MATLAB电话机中的双音多频DTMF信号的产生与检测PDF

双音多频检测模块的设计说明

第1章绪论 双音多频DTMF(Dual Tone Multi-Frequency)信令,就是用两个频率——行频和列频来表示机键盘上的一个数字。双音多频信号是音频中的拨号信号,由美国AT&T贝尔公司实验室研制,并用于网络中。这种信号制式具有很高的拨号速度,且容易自动监测识别,很快就代替了原有的用脉冲计数方式的拨号制式。逐渐在全世界围使用在按键式机上,这种双音多频信号制式不仅用在网络中,还可以用于传输十进制数据的其它通信系统中,用于电子和银行系统中。这些系统中用户可以用发送DTMF信号选择语音菜单进行操作。作为实现快速可靠传输的一种技术,它具有很强的抗干扰能力和较高的传输速度,因此,可广泛用于通信系统中。但绝大部分是用作的音频拨号。另外,它也可以在数据通信系统中广泛地用来实现各种数据流和语音等信息的远程传输。近年来DTMF也应用在交互式控制中,诸如语言菜单、语言、银行和ATM 终端等。通过软件产生与检测DTMF 信令,是一项较有价值的工程应用。这是一种技术,就是机上的一个按键按下去时,机向交换机同时发送两个频率的信号,告诉交换机按的是哪个按键,以前采用脉冲方式,速度慢,一共有8个频率的音频信号,分为2组,每组4个,两两组合共可以代表16个按键,分别代表0-9 、#、*等按键。

第2章双音多频(DTMF)信号的设计 2.1设计目的及意义 双音多频信号(DTMF)是系统中机与交换机之间的一种用户信令,通常用于发送被叫。双音多频信号是贝尔实验室发明的,其目的是为了自动完成长途呼叫。 拨号有两种,脉冲和音频,所谓音频也称双音多频(DTMF)信号的拨号方式,双音多频既是拨号时每按一个键,有两个音频频率叠加成一个双音频信号,十二个按键由七个音频频率区分。在使用双音多频信号之前,系统中使用一连串的断续脉冲来传送被叫,称为脉冲拨号。脉冲拨号需要电信局中的操作员手工完成长途接续。双音多频的拨号键盘是4×4的矩阵,每一行代表一个低频,每一列代表一个高频。每按一个键就发送一个高频和低频的正弦信号组合,比如'1'相当于697和1209赫兹(Hz)。交换机可以解码这些频率组合并确定所对应的按键。本次课设的目的就是通过学习和掌握现代交换原理的基础上,设计一个双音多频检测模块并对电路进行仿真,综合应用所学知识,进行一次比较全面的训练,为今后的学习和工作积累经验。 此外,该题目还涵盖了《通信原理》、《电路分析》、《交换原理》等主要课程的知识点,学生通过该题目的设计过程,可以初步掌握DTMF编/解码技术原理和相关电路设计、开发原理,得到系统的训练,提高解决实际问题的能力。 2.2双音多频(DTMF)信号的组成 双音多频信号作为实现快速可靠传输的一种技术,它具有很强的抗干扰能力和较高的传输速度,因此,广泛应用于通信系统中。近年来,双音多频信号也应用在交互式控制中,如在语言控制、语言、银行和ATM 终端等的应用。 音频拨号当人们按下某一个按键时,会产生一组特定的双音信号,称为双音多频信号,交换机会对该信号进行处理,根据两个单音频率来识别所按下的。将拨号盘上的数字0~9 和两个标有“*”和“#”的特殊按钮进行频率分配,如图所示。包括两个频率低频段包括的频率是697Hz,770Hz,852Hz 和941Hz,称为行频。高频段含的频率 1209Hz,1336Hz,1477Hz,1633Hz,称为列频,它们可频率分配构成16 种频率组合,每一种组合由一对正弦频率信号唯一确定。其中第四列1633Hz 对应的按键目前并没有使用,留待将来扩展使用。

传输线的反射干扰

一.引言 在微机系统中,接口与其它设备之间的连接要通过一定长度的电缆来实现,在计算机内部,印制电路板之间需要通过焊接线来连接。在一些其它的脉冲数字电路中也存在这类事的问题。脉冲信号包含着很多的高频成分,即使脉冲信号本身的重复频率并不十分高,但如果前沿陡峭,在经过传输通道时,将可能发生信号的畸变,严重时将形成振荡,破坏信号的正常传输和电路的正常工作。脉冲信号的频率越高,传输线的长度越长,即便问题越严重。 二.传输线的反射干扰及其造成的危害 任何信号的传输线,对一定频率的信号来说,都存在着一定的非纯电阻性的波阻抗,其数值与集成电路的输出阻抗和输入阻抗的数值各不相同,在他们相互连接时,势必存在着一些阻抗的不连续点。当信号通过这些不连续点时便发生“反射”现象,造成波形畸变,产生反射噪声。另外,较长的传输线必然存在着较大的分布电容和杂散电感,信号传输时将有一个延迟,信号频率越高,延迟越明显,造成的反射越严重,信号波形产生的畸变也就越厉害。这就是所谓的“长线传输的反射干扰”。图1是为了演示这种“长线反射”的实验电路,图2是该电路的各点输出波形。图2(a)是脉冲信号发生器的输出波形,图2(b)是“与非门1”的输出再不连接电缆时的波形,可以看到,该波形同a的输入信号一样,是没有任何畸变的1MHz反向方波。图2(c)是在接入场传输线后门1点波形,可见该波形出现了“振荡”和“台阶”;在传输线的终端,信号不仅有“振荡”,还出现了幅度高达-6V左右的“过冲”图2(d)。实验进一步证明,传输线越长,信号的畸变越严重,当传输线达到10m时,信号波形已面目全非了。 对于TTL器件来说,“过冲”超过6V时,对器件输入端的P-N结就有造成损坏的可能。同时从+3V~-6V的大幅度下降,将会对邻近的平行信号产生严重的串扰,且台阶将造成不必要的延时,给工作电路造成不良的后果。一旦形成震荡,危害就更严重,这种振荡信号将在信号的始端和终端同时直接构成信号噪声,从而形成有效的干扰。 三.信号传输线的主要特性及阻抗匹配 1.信号传输线的特征阻抗 对于计算机及数字系统来说,经常使用的信号传输线主要有单线(含接连线和印制线等)、双绞线、带状平行电缆、同轴电缆和双绞屏蔽电缆等。传输线的特性参数很多,与传输线的反射干扰有关的参数主要有延迟时间和波阻抗。一般说来,反显得信号延迟时间最短,同轴电缆较长,双绞线居中,约为6ns/m。波阻抗为单线最高,约为数百欧,双绞线的波阻抗,双绞线的波阻抗一般在100Ω-200Ω之间,且绞花越短,波阻抗越低。从抗干扰的角度讲,同轴电缆最好,双绞线次之,而带状电缆和单线最差。 2.阻抗的匹配 当传输线终端不匹配时,信号被反射,反射波达到始端时,如始端不匹配,同样产生反射,这就发生了信号在传输线上多次往返反射的情况,产生严重的反射干扰。因此要尽可能做到始端和终端的阻抗匹配,是抑制反射干扰的有效途径。为此,确定“长线”的最佳长度是至关重要的。 在实际实践中,一般以公式的经验来决定实际电路信号传输线的最大允许不匹配长度(也即“长线”界限)。其中,为电路转换边沿的平均宽度,对于常用的中速TTL电路,取15ns,为传输线

实验六 数字信号处理在 双音多频 拨号系

实验六数字信号处理在双音多频拨 号系 10.6实验六数字信号处理在双音多频拨号系统中的应用 10.6.1实验指导 1、引言 双音多频(DualToneMultiFrequency,DTMF)信号是音频电话中的拨号信号,由美国AT&T贝尔公司实验室研制,并用于电话网络中。这种信号制式具有很高的拨号速度,且容易自动监测识别,很快就代替了原有的用脉冲计数方式的拨号制式。这种双音多频信号制式不仅用在电话网络中,还可以用于传输十进制数据的其它通信系统中,用于电子邮件和银行系统中。这些系统中用户可以用电话发送DTMF信号选择语音菜单进行操作。 DTMF信号系统是一个典型的小型信号处理系统,它要用数字方法产生模拟信号并进行传输,其中还用到了D/A变换器;在接收端用A/D变换器将其转换成数字信号,并进行数字信号处理与识别。为了系统的检测速度并降低成本,还开发一种特殊的DFT算法,称为戈泽尔(Goertzel)算法,这种算法既可以用硬件(专用芯片)实现,也可以用软件实现。下面首先介绍双音多频信号的产生方法和检测方法,包括戈泽尔算法,最后进行模拟实验。下面先介绍电话中的DTMF信号的组成。 在电话中,数字0~9的中每一个都用两个不同的单音频传输,所用的8个频率分成高频带和低频带两组,低频带有四个频率:679Hz,770Hz,852Hz和 941Hz;高频带也有四个频率:1209Hz,1336Hz,1477Hz和1633Hz.。每一个数字均由高、低频带中各一个频率构成,例如1用697Hz和1209Hz两个频率,信号用表示,其中,。这样8个频率形成16种不同的双频信号。具体号码以及符号对应的频率如表10.6.1所示。表中最后一列在电话中暂时未用。 表10.6.1双频拨号的频率分配

微弱信号检测 课程设计

LDO 低输出噪声的分析与优化设计 1 LDO 的典型结构 LDO 的典型结构如下图所示,虚线框内为LDO 芯片内部电路,它是一个闭环系统,由误差放大器(Error amplifier)、调整管(Pass device)、反馈电阻网络(Feedback resistor network)组成,其闭环增益是: OUT REF V Acloseloop V = (1) 此外,带隙基准电压源 ( Bandgap reference)为误差放大器提供参考电压。 LDO 的工作原理是:反馈电阻网络对输出电压进行分压后得到反馈电压,该电压输入到误差放大器的同相输入端。误差放大器放大参考电压和反馈电压之间的差值, 其输出直接驱动调整管,通过控制调整管的导通状态来得到稳定的输出电压。例如,当反馈电压小于基准电压时,误差放大器输出电压下降,控制调整管产生更大的电流使得输出电压上升。当误差放大器增益足够大时,输出电压可以表示为: R1(1+)R2 OUT REF V V = (2) 所谓基准电压源就是能提供高精度和高稳定度基准量的电源,这种基准源与电源、工艺参数和温度的关系很小,其原理是利用PN 结电压的负温度系数和不同电流密度下两个PN 结电压差的正温度系数电压相互补偿,而使输出电压达到很低的温度漂移。传统基准电压源是基 于晶体管或齐纳稳压管的原理而制成的,其αT =10-3/℃~10-4/℃,无法满足现代电子测量之 需要。20世纪70年代初,维德拉(Widlar)首先提出能带间隙基准电压源的概念,简称带隙(Bandgap)电压。所谓能带间隙是指硅半导体材料在0K 温度下的带隙电压,其数值约为 1.205V ,用U go 表示。带隙基准电压源的基本原理是利用电阻压降的正温漂去补偿晶体管发射结正向压降的负温漂,从而实现了零温漂。由于未采用工作在反向击穿状态下的稳压管,因而噪声电压极低。带隙基准电压源的简化电路如下图所示。

实验一、数字信号处理在双音多频拨号系统中的应用

实验一、数字信号处理在双音多频拨号系统中的应用 一、实验目的 1.了解双音多频信号的产生、检测、包括对双音多频信号进行DFT 时的参数选择等。 2.初步了解数字信号处理在是集中的使用方法和重要性。 3.掌握matlab 的开发环境。 二、实验原理 双音多频(Dual Tone Multi Frequency, DTMF )信号是音频电话中的拨号信号,由美国AT&T 贝尔公司实验室研制,并用于电话网络中。这种信号制式具有很高的拨号速度,且容易自动监测识别,很快就代替了原有的用脉冲计数方式的拨号制式。这种双音多频信号制式不仅用在电话网络中,还可以用于传输十进制数据的其它通信系统中,用于电子邮件和银行系统中。这些系统中用户可以用电话发送DTMF 信号选择语音菜单进行操作。 DTMF 信号系统是一个典型的小型信号处理系统,它要用数字方法产生模拟信号并进行传输,其中还用到了D/A 变换器;在接收端用A/D 变换器将其转换成数字信号,并进行数字信号处理与识别。为了系统的检测速度并降低成本,还开发一种特殊的DFT 算法,称为戈泽尔(Goertzel)算法,这种算法既可以用硬件(专用芯片)实现,也可以用软件实现。下面首先介绍双音多频信号的产生方法和检测方法,包括戈泽尔算法,最后进行模拟实验。下面先介绍电话中的DTMF 信号的组成。 在电话中,数字0-9的中每一个都用两个不同的单音频传输,所用的8个频率分成高频带和低频带两组,低频带有四个频率:679Hz,770Hz,852Hz 和941Hz ;高频带也有四个频率:1209Hz,1336Hz,1477Hz 和1633Hz.。每一个数字均由高、低频带中各一个频率构成,例如1用697Hz 和1209Hz 两个频率,信号用)2sin()2sin(21t f t f ππ+表示,其中Hz f 6791=,Hz f 12092=。这样8个频率形成16种不同的双频信号。具体号码以及符号对应的频率如表4.1所示。表中最后一列在电话中暂时未用。 表4.1 双频拨号的频率分配

信号反射与振铃产生

信号完整性:信号反射 时间:2009-04-17 21:12来源:未知作者:于博士点击: 12021次 信号沿传输线向前传播时,每时每刻都会感受到一个瞬态阻抗,这个阻抗可能是传输线本身的,也可能是中途或末端其他元件的。对于信号来说,它不会区分到底是什么,信号所感受到的只有阻抗。如果信号感受到的阻抗是恒定的,那么他就会正常向前传播,只要感受到的阻抗发生变化,不论是什么引起的(可能是中途遇到的电阻,电容,电感,过孔,PCB转角,接插件),信号都会发生反射。 那么有多少被反射回传输线的起点?衡量信号反射量的重要指标是反射系数,表示反射电压和原传输信号电压的比值。反射系数定义为:。 其中:为变化前的阻抗,为变化后的阻抗。假设PCB线条的特性阻抗为50欧姆,传输过程中遇到一个100欧姆的贴片电阻,暂时不考虑寄生电容电感 的影响,把电阻看成理想的纯电阻,那么反射系数为:,信号 有1/3被反射回源端。如果传输信号的电压是3.3V电压,反射电压就是1.1V。 纯电阻性负载的反射是研究反射现象的基础,阻性负载的变化无非是以下四种情况:阻抗增加有限值、减小有限值、开路(阻抗变为无穷大)、短路(阻抗突然变为0)。 阻抗增加有限值: 反射电压上面的例子已经计算过了。这时,信号反射点处就会有两个电压成分,一部分是从源端传来的3.3V电压,另一部分是在反射电压1.1V,那么反射点处的电压为二者之和,即4.4V。 阻抗减小有限值: 仍按上面的例子,PCB线条的特性阻抗为50欧姆,如果遇到的电阻是30欧姆,则反射系数为,反射系数为负值,说明反射电压为负电 压,值为。此时反射点电压为3.3V+(-0.825V)=2.475V。 开路: 开路相当于阻抗无穷大,反射系数按公式计算为1。即反射电压3.3V。反射点处电压为6.6V。可见,在这种极端情况下,反射点处电压翻倍了。 短路: 短路时阻抗为0,电压一定为0。按公式计算反射系数为-1,说明反射电压为-3.3V,因此反射点电压为0。 计算非常简单,重要的是必须知道,由于反射现象的存在,信号传播路径中阻抗发生变化的点,其电压不再是原来传输的电压。这种反射电压会改变信号的

实验3 双音多频信号的合成与检测.

实验三双音多频信号的合成与检测 一实验目的 1.理解电话拨号音的合成与检测的基本原理; 2.深入理解信号频谱分析理论中相关参数的作用和意义; 3.了解频谱分析在实际工程中的应用实例。 二实验基础 双音多频(dual-tone multifrequency, DTMF信号的产生及检测在现代通信系统中有着广泛的应用,家用电话、移动电话以及公共程控交换机(PBX都采用DTMF 信号发送和接收电话拨号号码。本实验要求利用信号的时域分析和频域分析的基本理论实现DTMF 的合成和检测。 1. DTMF信号合成 DTMF 信号由低频组和高频组两组频率信号构成。按键电话上每个按键都由对应的两个频率组成,如表4.1。当按下某个键时,所得到的按键信号是由相应两个频率的正弦信号叠加而成。设x(n为DTMF 信号,产生方式为: x (n =sin (ωH n +sin (ωH n 式中:ωH = f s DTMF 信号的标准是:在传送过程中每个按键字占用100ms ,其中信号必须持续至少40ms ,且不得多于55ms ,100ms 里的其余时间为静音(无信号)。 表4.1按键频率对应表

2. DTMF信号检测 ,ωL = f s f s =8KHz 。 DTMF 信号的检测是将信号的两个频率提取出来,从而确定接收到的DTMF 对应的按键。利用DFT 对DTMF 信号进行N 点的频谱分析,N 的选取决定了频率分辨率以及捕捉N 个样值所需要的时间。根据谱峰出现的频率点位置m 就可以确定DTMF 信号的频率f k: f k =kf s /N 这样计算出的DTMF 信号频率可能与实际的DTMF 信号频率有一定的差别,但可以通过加大N 的选取来减小这种频率差异。然而从另外一方面来考虑,虽然加大N 值会减小检测频率误差,但这势必会带来捕捉N 个样值所需要的时间增加,从而会对检测的效果造成一定影响。 由DTMF 信号频率所具有的特性不难发现要选取一定的N 值使得计算出的频率和真实的DTMF 信号的频率相一致几乎不可能,而实际中也并不需要计算出来的频率值与其真实频率相一致,只需偏差保持在±1.5%即可认为是DTMF 信号的真实频率。国际上通用N=205点或N=106点。当N=205点时,各个频率所对应的DFT 结果X[k]中的序号k 如表4.2。N=106时对应表4.3。

双音多频

这是一种技术,就是现在的电话机和交换机之间通讯时采用的,简称DTMF,就是电话机上的一个按键按下去时,电话机向交换机同时发送两个频率的信号,告诉交换机按的是哪个按键,以前采用脉冲方式,速度慢,一共有8个频率的音频信号,分为2组,每组4个,两两组合共可以代表16个按键,分别代表0-9 、#、*等按键 双音多频DTMF(Dual Tone Multi Frequency)信令,逐渐在全世界范围内使用在按键式电话机上,因其提供更高的拨号速率,迅速取代了传统转盘式电话机使用的拨号脉冲信令。近年来DTMF也应用在交互式控制中,诸如语言菜单、语言邮件、电话银行和ATM终端等。通过软件产生与检测DTMF信令,是一项较有价值的工程应用。 DTMF编解码器在编码时将击键或数字信息转换成双音信号并发送,解码时在收到的DTMF信号中检测击键或数字信息的存在性。电话机键盘上每一个键通过如图所示的行频与列频唯一确定。DTMF 的编解码方案无需过多的计算量,以目前计算机的运算速度,可以很轻松地实现。 由图可知,一个DTMF信号由两个频率的音频信号叠加构成。这两个音频信号的频率来自两组预分配的频率组:行频组或列频组。每一对这样的音频信号唯一表示一个数字或符号。为了产生DTMF 信号,可以通过软件产生两个正弦波叠加在一起后发送,解码时软件可以采用改进的Goertzel算法,从频域搜索两个正弦波的存在,从而解调出DTMF信号。 dtmf的主张双音多频。 双音多频音调的是铃声,您听到了,当你按下按键就标准的电话键盘。 语气每个按钮,是指用一栏,并连续铃声。这就是为什么它被称为"双音" 。的 abcd键是不存在的标准电话。

微弱信号检测技术概述

1213225 王聪 微弱信号检测技术概述 在自然现象和规律的科学研究和工程实践中, 经常会遇到需要检测毫微伏量级信号的问题, 比如测定地震的波形和波速、材料分析时测量荧光光强、卫星信号的接收、红外探测以及电信号测量等, 这些问题都归结为噪声中微弱信号的检测。在物理、化学、生物医学、遥感和材料学等领域有广泛应用。微弱信号检测技术是采用电子学、信息论、计算机和物理学的方法, 分析噪声产生的原因和规律, 研究被测信号的特点和相关性, 检测被噪声淹没的微弱有用信号。微弱信号检测的宗旨是研究如何从强噪声中提取有用信号, 任务是研究微弱信号检测的理论、探索新方法和新技术, 从而将其应用于各个学科领域当中。微弱信号检测的不同方法 ( 1) 生物芯片扫描微弱信号检测方法 微弱信号检测是生物芯片扫描仪的重要组成部分, 也是生物芯片技术前进过程中面临的主要困难之一, 特别是在高精度快速扫描中, 其检测灵敏度及响应速度对整个扫描仪的性能将产生重大影响。 随着生物芯片制造技术的蓬勃发展, 与之相应的信号检测方法也迅速发展起来。根据生物芯片相对激光器及探测器是否移动来对生物芯片进行扫读, 有扫描检测和固定检测之分。扫描检测法是将激光器及共聚焦显微镜固定, 生物芯片置于承片台上并随着承片台在X 方向正反线扫描和r 方向步进向前运动, 通过光电倍增管检测激发荧光并收集数据对芯片进行分析。激光共聚焦生物芯片扫描仪就是这种检测方法的典型应用, 这种检测方法灵敏度高, 缺点是扫描时间较长。 固定检测法是将激光器及探测器固定, 激光束从生物芯片侧向照射, 以此解决固定检测系统的荧光激发问题, 激发所有电泳荧光染料通道, 由CCD捕获荧光信号并成像, 从而完成对生物芯片的扫读。CCD 生物芯片扫描仪即由此原理制成。这种方法制成的扫描仪由于其可移动, 部件少, 可大大减少仪器生产中的失误, 使仪器坚固耐用; 但缺点是分辨率及灵敏度较低。根据生物芯片所使用的标记物不同, 相应的信号检测方法有放射性同位素标记法、生物素标记法、荧光染料标记法等。其中放射性同位素由于会损害研究者身体, 所以这种方法基本已被淘汰; 生物素标记样品分子则多用在尼龙膜作载体的生物芯片上, 因为在尼龙膜上荧光标记信号的信噪比较低, 用生物素标记可提高杂交信号的信噪比。目前使用最多的是荧光标记物, 相应的检测方法也最多、最成熟, 主要有激光共聚焦显微镜、CCD 相机、激光扫描荧光显微镜及光纤传感器等。 ( 2) 锁相放大器微弱信号检测 常规的微弱信号检测方法根据信号本身的特点不同, 一般有三条途径: 一是降低传感器与放大器的固有噪声, 尽量提高其信噪比; 二是研制适合微弱检测原理并能满足特殊需要的器件( 如锁相放大器) ;三是利用微弱信号检测技术, 通过各种手段提取信号, 锁相放大器由于具有中心频率稳定, 通频带窄,品质因数高等优点得到广泛应用。常用的模拟锁相放大器虽然速度快, 但是参数稳定性和灵活性差, 而且在与微处理器通信时需要转换电路; 传统数字锁相放大器一般使用高速APDC 对信号进行高速采样, 然后使用比较复杂的算法进行锁相运算, 这对微处理器的速度要求很高。现在提出的新型锁相检测电路是模拟和数字处理方法的有机结合, 这种电路将待测信号和参考信号相乘的结果通过高精度型APDC 采样,

通信课程设计——双音多频信号检测

通信技术方向课程设计题目:双音多频信号检测 物联网工程学院电子信息工程专业 学号0703070106 学生姓名时雅茹 二〇一〇年六月

一、原理介绍 双音多频(Dual Tone Multi Frequency, DTMF )信号是音频电话中的拨号信号,由美国AT&T 贝尔公司实验室研制,并用于电话网络中。这种信号制式具有很高的拨号速度,且容易自动监测识别,很快就代替了原有的用脉冲计数方式的拨号制式。这种双音多频信号制式不仅用在电话网络中,还可以用于传输十进制数据的其它通信系统中,用于电子邮件和银行系统中。这些系统中用户可以用电话发送DTMF 信号选择语音菜单进行操作。 DTMF 信号系统是一个典型的小型信号处理系统,它要用数字方法产生模拟信号并进行传输,其中还用到了D/A 变换器;在接收端用A/D 变换器将其转换成数字信号,并进行数字信号处理与识别。为了系统的检测速度并降低成本,还开发一种特殊的DFT 算法,称为戈泽尔(Goertzel)算法,这种算法既可以用硬件(专用芯片)实现,也可以用软件实现。下面首先介绍双音多频信号的产生方法和检测方法,包括戈泽尔算法,最后进行模拟实验。 二、内容及结论 1、双音多频(DTMF )信号的组成 在电话中,数字0~9的中每一个都用两个不同的单音频传输,所用的8个频率分成高频带和低频带两组,低频带有四个频率:679Hz,770Hz,852Hz 和941Hz ;高频带也有四个频率:1209Hz,1336Hz,1477Hz 和1633Hz.。每一个数字均由高、低频带中各一个频率构成,例如1用697Hz 和1209Hz 两个频率,信号用 )2sin()2sin(21t f t f ππ+表示,其中Hz f 6791=,Hz f 12092=。这样8个频率形成 16种不同的双频信号。具体号码以及符号对应的频率如表1所示。表中最后一列在电话中暂时未用。 表1 双频拨号的频率分配 列 行 1209Hz 1336Hz 1477Hz 633Hz 697Hz 1 2 3 A 770Hz 4 5 6 B 852Hz 7 8 9 C 942Hz * # D DTMF 信号在电话中有两种作用,一个是用拨号信号去控制交换机接通被叫的用户电话机,另一个作用是控制电话机的各种动作,如播放留言、语音信箱等。

基于DSP的微弱信号检测采集系统设计

基于DSP的微弱信号检测采集系统设计 通常所用的数据采集系统,其采样对象都为大信号,即有用信号幅值大于噪声信号。但在一些特殊的场合,采集的信号很微弱,其幅值只有几个μV,并且淹没在大量的随机噪声中。此种情况下,一般的采集系统和测量方法无法检测该信号。本采集系统硬件电路针对微弱小信号,优化设计前端调理电路,利用测量放大器有效抑制共模信号(包括直流信号和交流信号),保证采集数据的精度要求。针对被背景噪声覆盖的微弱小信号特性,采用简单的时域信号的取样积累平均方法,有利于减少算法实现难度。 DSP芯片因其具有哈佛结构、流水线操作、专用的硬件乘法器、特殊的DSP指令、快速的指令周期等特点,使其适合复杂的数字信号处理算法。本系统采用TI公司的TMS320C542作为处理器,通过外部中断读取ADC数据,并实现取样累加平均算法。 1. 取样积累平均理论 微弱信号检测(Weak Signal Detection)是研究从微弱信号中提取有用信息的方法。通过分析噪声产生的原因和规律,利用被测信号的特点和相干性,检测被背景噪声覆盖的有用信号。常用的微弱信号检测方法有频域信号的相干检测、时域信号的积累平均、离散信号的计数技术、并行检测方法。其中时域信号积累平均是常用的一种小信号检测方法。 取样是一种频率压缩技术,将一个高重复频率信号通过逐点取样将随时间变化的模拟量,转变成对时间变化的离散量的集合,从而可以测量低频信号的幅值、相位或波形。时域信号的取样积累方法是在信号周期内将时间分成若干间隔,在这些时间间隔内对信号进行多次测量累加。时间间隔的大小取决于要求恢复信号的精度。某一点的取样值都是信号和噪声

信号振铃的产生

Boyi?电子产品世界 千里之行,始于足下。 信号完整性之信号振铃的产生 在电源完整性设计一文中,推荐了一种基于目标阻抗(target impedance)的去耦电容设计方法。在这种方法中,从频域的角度说明了电容选择方法。把瞬态电流看成阶跃信号,因而有很宽的频谱,去耦电容必须在这个很宽的频谱内使电源系统阻抗低于目标阻抗(target impedance)。电容的选择是分频段设计的,每一种容值的电容负责一段频谱范围,超出这个范围的,由其他电容负责构成低阻抗路径。 有些人可能对这种频域方法有些困惑,本文从另外一个更直观的角度来说明去耦电容的这种特性,即电容的去耦时间。 构成电源系统的两个重要部分:稳压电源、去耦电容。首先说说稳压电源的反应时间。负载芯片的电流需求变化是极快的,尤其是一些高速处理器。内部晶体管开关速度极快,假设处理器内部有1000个晶体管同时发生状态翻转,转台转换时间是1ns,总电流需求是500mA。那么此时电源系统必须在1ns时间内迅速补充上500mA瞬态电流。遗憾的是,稳压源在这么短的时间内反应不过来,相对于电流的变化,稳压源显得很迟钝,有点像个傻子,呵呵。通常说的稳压源的频率响应范围在直流到几百k之间,什么意思?这从时域角度可能更好理解。假设稳压源的频率响应范围是直流到100kHz,100kHz对应时域的10us时间间隔。也就是稳压源最快的响应速度是10us,如果负载芯片要求在20 us 内提供所需的电流,那么稳压电源有足够的反应时间,因此可以提供负载所需要的电流。但是如果负载电流要求的时间是1ns的话,对稳压电

源来说太快了,稳压源还在那发呆呢,瞬态电流的需求已经过去了。负载可不会等着稳压源来做出反应,不能给它及时提供电流,他就把电压拉下来,想想,功率一定,电流大了,电压必然减小。哦,这就产生了轨道塌陷,噪声产生了。因此,所说的频率响应范围,在时域对应的是一个响应时间问题。 电容也同样存在响应时间。电源要10us才能反应过来,那从0到10us 之间这段时间怎么办?这就是电容要干的事。按电源完整性设计一文中,加入一个31.831uF电容,能提供100kHz到1.6MHz频段的去耦。从时域来说,这个电容的最快反应时间是1/1.6MHz=0.625us。也就是说从0.625us到10us这段时间,这个电容就可以提供所需电流。稳压电源发呆就发呆吧,别指望它了,电容先顶上,过10us后再让稳压源把活接过来。从0.625us到10us这段时间就是电容的有效去耦时间。 加一个电容后,电源系统的反应时间还是很长,625ns,还是不能满足要求,那就再加电容,放一些很小的电容,比如13个0.22uF电容,提供1.6MHz到100MHz的去耦,那么这13个小电容最快反应时间为1/100MHz=1ns。如果有电流需求,1ns后这些小电容就做出反应了。 通常这个反应时间还不够,那就在加一些更小的电容,把去耦频率提到500MHz,反应时间可以加快到200ps,一般来说足够了。不同电容产生去耦作用,都需要一定的时间,这就是去耦时间。不同的去耦时间对应不同的有效去耦频率段,这就是为什么去耦电容要分频段设计的原因。 这里给出的是一个直观的解释,目的是让你有一个感性的理解。

双音多频

09级(一)班 郭玲芳2008302580068 双音多频 双音多频:dual-tone multifrequency 双音多频DTMF(Dual Tone Multi Frequency),双音多频,由高频群和低频群组成,高低频群各包含4个频率。一个高频信号和一个低频信号叠加组成一个组合信号,代表一个数字。DTMF信号有16个编码。利用DTMF信令可选择呼叫相应的对讲机双音多频信号(DTMF),电话系统中电话机与交换机之间的一种用户信令,通常用于发送被叫号码。在使用双音多频信号之前,电话系统中使用一连串的断续脉冲来传送被叫号码,称为脉冲拨号。脉冲拨号需要电信局中的操作员手工完成长途接续(早期方法,很老很古董)。双音多频信号是贝尔实验室发明的,其目的是为了自动完成长途呼叫。双音多频的拨号键盘是4×4的矩阵,每一行代表一个低频,每一列代表一个高频。每按一个键就发送一个高频和低频的正弦信号组合,比如'1'相当于697和1209赫兹(Hz)。交换机可以解码这些频率组合并确定所对应的按键。 电子工程术语定义 双音多频(DTMF)是由贝尔实验室开发的信令方式,通过承载语音的模拟电话线传送电话拨号信息。每个数字利用两个不同频率突发模式的正弦波编码,选择双音方式是由于它能够可靠地将拨号信息从语音中区分出来。一般情况下,声音信号很难造成对DTMF接收器的错误触发。DTMF是“TouchTone” (早期AT&T的商标)的基础, 替代机械式拨号转盘的按键。 双音多频 双音多频(DTMF)是一种在话音信道用音调来表示数字的方法,它可以用来在模拟话音信道传输信令,因此在通信中有广泛的应用。基于928个网页-相关网页 双音频 所谓双音频(DTMF)是指用一频率较高的信号与一频率较低的信号叠加,“4”是770HZ 和1209HZ信号的叠加,“3”是697HZ和1477HZ信号的叠加等。基于235个网页-相关网页 双音多频功能 在附加功能上,这款显卡支持双音多频功能(DTMF),支持短信息服务功能附加服务来电显示,还支持电话簿管理。 双音多频信号 (1)指令信号传输方式考虑到本系统的信号传输是加载到电力系统上进行传输的,所以本系统采用双音多频信号(DTMF)作为传输信号,DTMF是由一组低音频信号和一组高音频

微弱信号检测

微弱信号检测电路实验报告 课程名称:微弱信号检测电路 专业名称:电子与通信工程___年级:_______ 学生姓名:______ 学号:_____ 任课教师:_______

微弱信号检测装置 摘要:本系统是基于锁相放大器的微弱信号检测装置,用来检测在强噪声背景下,识别出已知频率的微弱正弦波信号,并将其放大。该系统由加法器、纯电阻分压网络、微弱信号检测电路组成。其中加法器和纯电阻分压网络生成微小信号,微弱信号检测电路完成微小信号的检测。本系统是以相敏检波器为核心,将参考信号经过移相器后,接着通过比较器产生方波去驱动开关乘法器CD4066,最后通过低通滤波器输出直流信号检测出微弱信号。经最终的测试,本系统能较好地完成微小信号的检测。 关键词:微弱信号检测锁相放大器相敏检测强噪声

1系统设计 1.1设计要求 设计并制作一套微弱信号检测装置,用以检测在强噪声背景下已知频率的微弱正弦波信号的幅度值。整个系统的示意图如图1所示。正弦波信号源可以由函数信号发生器来代替。噪声源采用给定的标准噪声(wav文件)来产生,通过PC 机的音频播放器或MP3播放噪声文件,从音频输出端口获得噪声源,噪声幅度通过调节播放器的音量来进行控制。图中A、B、C、D和E分别为五个测试端点。 图1 微弱信号检测装置示意 (1)基本要求 ①噪声源输出V N的均方根电压值固定为1V±0.1V;加法器的输出V C =V S+V N,带宽大于1MHz;纯电阻分压网络的衰减系数不低于100。 ②微弱信号检测电路的输入阻抗R i≥1 MΩ。 ③当输入正弦波信号V S 的频率为1 kHz、幅度峰峰值在200mV ~ 2V范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。 (2)发挥部分 ①当输入正弦波信号V S 的幅度峰峰值在20mV ~ 2V范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。 ②扩展被测信号V S的频率范围,当信号的频率在500Hz ~ 2kHz范围内,检测并显示正弦波信号的幅度值,要求误差不超过5%。 ③进一步提高检测精度,使检测误差不超过2%。 ④其它(例如,进一步降低V S 的幅度等)。

双音多频信号检测在DSP中的实现

第27卷 第3期 吉首大学学报(自然科学版) V ol.27 N o.3 2006年5月 Journal of Jishou University (Natural Science Edition ) M ay.2006 文章编号:1007-2985(2006)03-0043-05 双音多频信号检测在DSP 中的实现 Ξ 李义府,彭卫韶 (中南大学信息科学与工程学院,湖南长沙 410083) 摘 要:双音多频DT MF 信号是音频电话中的拨号信号,将DT MF 信号的检测集成到含有数字信号处理器(DSP )的系统中,是一项较有价值的研究课题.笔者设计出TI 公司浮点DSP 芯片C6711中的实现方案,通过20个并行的哥兹柔信号滤波器能成功地使双音多频信号的检测变得迅速和简单,采用谐音检测可以显著地提高检测系统的准确性. 关键词:哥兹柔滤波器;双音多频;浮点DSP ;Bellcore 标准中图分类号:T N914.3;T N911.7 文献标识码:A 按键式电话拨号广泛采用双音多频信号,近年来双音多频信号(DT MF )逐渐应用于工程信号发生与检 测系统中,并与DSP 、FPG A 相互促进,具有广泛的应用前景[1-2] .一个有效的音频信号由一个行频信号和一个列频信号叠加而成.例如,要表示“4”这个音频信号,可由一个770H z 的行频信号和一个1209H z 的列频信号叠加而成.电话音频拨号使用的正弦音频叠加信号如表1所示: 表1 电话机键盘的频率矩阵 行频组ΠH z 列频组ΠH z 1209136614771633697123A 770456B 8527 89C 941 3 # D 1 算法与滤波器 1.1算法 图1 离散通频带的分布 由于在实现DT MF 解码时,采用哥兹柔算法(G o 2 ertzel Alg orithm Theory )要比FFT 更快,因为通过FFT 可以计算得到信号所有频谱线,但处理DT MF 信号只考虑其中的8个频率及其二次谐波信息,运用G A T 能更加快速的从输入信号中提取频谱信息,所以使用C6177浮点DSP 进行信号检测不失为一种可行的技 术解决方案[3-4] .通过对信号作离散傅立叶变换得到其离散通频带.离散通频带的数目用字母N 表示,这些通频带段在频域中均匀分布如图1所示. Ξ 收稿日期:2006-02-26 基金项目:国家自然科学基金资助项目(69974043);湖南省自然科学基金资助项目(99JJ Y 20062) 作者简介:李义府(1946-),男,湖南省长沙市人,中南大学信息科学与工程学院教授,主要从事电子线路和故障诊断应用研究.

微弱信号检测技术练习思考题DOC

《微弱信号检测技术》练习题 1、证明下列式子: (1)R xx(τ)=R xx(-τ) (2)∣ R xx(τ)∣≤R xx(0) (3)R xy(-τ)=R yx(τ) (4)| R xy(τ)|≤[R xx(0)R yy(0)] 2、设x(t)是雷达的发射信号,遇目标后返回接收机的微弱信号是αx(t-τo),其中α?1,τo是信号返回的时间。但实际接收机接收的全信号为y(t)= αx(t-τo)+n(t)。 (1)若x(t)和y(t)是联合平稳随机过程,求Rxy(τ); (2)在(1)条件下,假设噪声分量n(t)的均值为零且与x(t)独立,求Rxy(τ)。 3、已知某一放大器的噪声模型如图所示,工作频率f o=10KHz,其中E n=1μV,I n=2nA,γ=0,源通过电容C与之耦合。请问:(1)作为低噪声放大器,对源有何要求?(2)为达到低噪声目的,C为多少? 4、如图所示,其中F1=2dB,K p1=12dB,F2=6dB,K p2=10dB,且K p1、K p2与频率无关,B=3KHz,工作在To=290K,求总噪声系数和总输出噪声功率。 5、已知某一LIA的FS=10nV,满刻度指示为1V,每小时的直流输出电平漂移为5?10-4FS;对白噪声信号和不相干信号的过载电平分别为100FS和1000FS。若不考虑前置BPF的作用,分别求在对上述两种信号情况下的Ds、Do和Di。 6、下图是差分放大器的噪声等效模型,试分析总的输出噪声功率。

7、下图是结型场效应管的噪声等效电路,试分析它的En-In模型。 8、R1和R2为导线电阻,R s为信号源内阻,R G为地线电阻,R i为放大器输入电阻,试分析干扰电压u G在放大器的输入端产生的噪声。 9、如图所示窄带测试系统,工作频率f o=10KHz,放大器噪声模型中的E n=μV,I n=2nA,γ=0,源阻抗中R s=50Ω,C s=5μF。请设法进行噪声匹配。(有多种答案) 10、如图所示为电子开关形式的PSD,当后接RC低通滤波器时,构成了锁定放大器的相关器。K为电子开关,由参考通道输出Vr的方波脉冲控制:若Vr正半周时,K接向A;若Vr 负半周时,K接向B。请说明其相敏检波的工作原理,并画出下列图(b)、(c)和(d)所示的已知Vs和Vr波形条件下的Vo和V d的波形图。

过冲及振铃现象实验分析

过冲及振铃实验现象分析 1.测试电路及过冲、振铃现象 测试电路如下图所示,A点为电压输出口,B点为为了接入电阻而切开的口,C点为同轴电压监测点。 B A C 在B点出用导线连接时,在C点引同轴线到示波器(示波器内阻1M),观察到上升沿有过冲及振铃现象,如下图所示。

1.2 振铃产生的原因分析 1.2.1 振铃现象的产生 那么信号振铃是怎么产生的呢? 前面讲过,如果信号传输过程中感受到阻抗的变化,就会发生信号的反射。这个信号可能是驱动端发出的信号,也可能是远端反射回来的反射信号。根据反射系数的公式,当信号感受到阻抗变小,就会发生负反射,反射的负电压会使信号产生下冲。信号在驱动端和远端负载之间多次反射,其结果就是信号振铃。大多数芯片的输出阻抗都很低,如果输出阻抗小于PCB走线的特性阻抗,那么在没有源端端接的情况下,必然产生信号振铃。 信号振铃的过程可以用反弹图来直观的解释。假设驱动端的输出阻抗是10欧姆,PCB走线的特性阻抗为50欧姆(可以通过改变PCB走线宽度,PCB走线和内层参考平面间介质厚度来调整),为了分析方便,假设远端开路,即远端阻抗无穷大。驱动端传输3.3V电压信号。我们跟着信号在这条传输线中跑一次,看看到底发生了什么?为分析方便,忽略传输线寄生电容和寄生电感的影响,只考虑阻性负载。下图为反射示意图。 第1次反射:信号从芯片内部发出,经过10欧姆输出阻抗和50欧姆PCB 特性阻抗的分压,实际加到PCB走线上的信号为A点电压3.3*50/(10+50)=2.75V。传输到远端B点,由于B点开路,阻抗无穷大,反射系数为1,即信号全部反射,反射信号也是2.75V。此时B点测量电压是2.75+2.75=5.5V。 第2次反射:2.75V反射电压回到A点,阻抗由50欧姆变为10欧姆,发生

双音多频

《专业基础综合训 练》 综合报告 学生班级:通信工程09-1 学生姓名:孟凡荣 学生学号:0902040119 任课教师:李桂林张丽艳 提交日期:2011 年1月12日

目录 绪论 (1) 实验一双音多频 (4) 实验二51单片机最小系统设计............................................................................................................. 实验三方波发生器设计................................................................................................................................. 实验四流水灯................................................................................................................................................. 心得总结 、

绪论 电子技术和微型计算机的迅速发展,促进了微型计算机测量和控制技术的迅速发展和广泛应用。微机测控技术的应用已渗透到国民经济的各个部门。可以说,微机测控技术的应用是产品提高档次和推陈出新的有效途径。创新精神和实践能力是对新时期高素质人才的基本要求。通过本实习不但可以掌握单片机软、硬件的综合调试方法,而且可以熟练掌握电路原理图,激发对单片机智能性的探索精神,提高我们的综合素质,培养应用单片机实现对工业控制系统的设计、开发与调试的能力。在制作学习过程中,不但可以掌握软、硬件的综合调试方法,而且可以使我们对单片机智能性产生强烈的欲望。达到最大限度地掌握微机应用技术,软件及接口设计和数据采集与处理的技能,培养电综合实践素质的目。本次实习以单片机最小系统为核心,结合了稳压电源,键盘,数码管等单片机外围电路。通过一些简单的程序设计,了解了单片机的实际应用。其中,我负责制作了稳压电源,51单片机最小系统以及方波发生器,键盘采集程序和DAC0832的程序编写。 实验一双音多频 简介:双音多频信号(DTMF),电话系统中电话机与交换机之间的一种用户信令,通常用于发送被叫号码。 在使用双音多频信号之前,电话系统中使用一连串的断续脉冲来传送被叫号码,称为脉冲拨号。脉冲拨号需要电信局中的操作员手工完成长途接续。 双音多频信号是贝尔实验室发明的,其目的是为了自动完成长途呼叫。 双音多频的拨号键盘是4×4的矩阵,每一行代表一个低频,每一列代表一个高频。每按一个键就发送一个高频和低频的正弦信号组合,比如'1'相当于697和1209赫兹(Hz)。交换机可以解码这些频率组合并确定所对应的按键。 频率表: 低频区 1 2 3 A 697Hz 4 5 6 B 770Hz 7 8 9 C 852Hz * 0 # D 941Hz 频区 1209Hz 1336Hz 1477Hz 1633Hz 双音多频作用:通话过程中输出数字信号 二双音多频的应用: 由于DTMF信号抗干扰能力强,对电话线路要求质量低,且几乎不出现错号现象,所以适合远距离通信,已被广泛应用于通信系统,家庭自动化,电话线远程控制,安全系统等。采用话音频率发数字可以避免占用额外的信道,而且比脉冲的方式节省时间。

相关主题
文本预览
相关文档 最新文档