当前位置:文档之家› 如何分析拉伸曲线

如何分析拉伸曲线

如何分析拉伸曲线
如何分析拉伸曲线

:

a 从宏观看,力与伸长成直线关系,弹性伸长与力的大小和试样标距长短成正比,与材料弹性模量及试样横截面积成反比。

b 变形是完全可逆的。

加力时产生变形,卸力后变形完全恢复。从微观上看,变形的可逆性与材料原子间作用力有直接关系,施加拉力时,在力的作用下,原子间的平衡力受到破坏,为达到新的平衡,原子的位置必须作新的调整即产生位移,使外力、斥力和引力三者平衡,外力去除后,原子依靠彼此间的作用力又回到平衡位置,使变形恢复,表现出弹性变形的可逆性,即在弹性范围保持力一段时间,卸力后仍沿原轨迹回复。Oa 段变形机理与高温条件下变形机理不同,在高温保持力后会产生蠕变,卸力后表现出不可逆性。

由于在拉伸试验中无论在加力或卸力期间应力和应变都保持单值线性关系,因此试验材料的弹性模量是 oa 段的斜率,用公式求得:

E=σ/ε

oa 线段的 a 点是应力-应变呈直线关系的最高点,这点的应力叫理论比例极限,超过 a 点,应力-应变则不再呈直线关系,即不再符合虎克定律。比例极限的定义在理论上很有意义,它是材料从弹性变形向塑性变形转变的,但很难准确地测定出来,因为从直线向曲线转变的分界点与变形测量仪器的分辨力直接相关,仪器的分辨力越高,对微小变形显示的能力越强,测出的分界点越低,这也是为什麽在最近两版国家标准中取消了这项性能的测定,而用规定塑性(非比例)延伸性能代替的原因。

第 2 阶段:滞弹性阶段(ab)

在此阶段,应力-应变出现了非直线关系,其特点是:当力加到 b 点时然后卸除力,应变仍可回到原点,但不是沿原曲线轨迹回到原点,在不同程度上滞后于应力回到原点,形成一个闭合环,加力和卸力所表现的特性仍为弹性行为,只不过有不同程度的滞后,因此称为滞弹性阶段,这个阶段的过程很短。这个阶段也称理论弹性阶段,当超过 b 点时,就会产生微塑性应变,可以用加力和卸力形成的闭合环确定此点,当加卸力环第 1 此形成开环时所对应的点为 b 点。

第 3 阶段:微塑性应变阶段(bc)

是材料在加力过程中屈服前的微塑性变形部分,从微观结构角度讲,就是多晶体材料中处于应力集中的晶粒内部,低能量易动位错的运动。塑性变形量很小,是不可回复的。大小仍与仪器分辨力有关。

第 4 阶段:屈服阶段(cde)

这个阶段是金属材料的不连续屈服的阶段,也称间断屈服阶段,其现象是当力加至 c 点时,突然产生塑性变形,由于试样变形速度非常快,以致试验机夹头的拉伸速度跟不上试样的变形速度,试验力不能完全有效的施加于试样上,在曲线这个阶段上表现出力不同程度的下降,而试样塑性变形急剧增加,直至达到 e 点结束,当达到 c 点,在试样的外表面能观察到与试样轴线呈 45 度的明显的滑移带,这些带称为吕德斯带,开始是在局部位置产生,逐渐扩展至试样整个标距内,宏观上,一条吕德斯带包含大量滑移面,当作用在滑移面上的切应力达到临界值时,位错沿滑移方向运动。在此期间,应力相对稳定,试样不产生应变硬化。 C 点是拉伸试验的一个重要的性能判据点,范围内的最低点也是重要

的性能判 de 据点,分别称上屈服点和下屈服点。e 点是屈服的结束点,所对应的应变是判定板材成型性能的重要指标。

第 5 阶段:塑性应变硬化阶段(ef)

屈服阶段结束后,试样在塑性变形下产生应变硬化,在 e 点应力不断上升,在这个阶段内试样的变形是均匀和连续的,应变硬化效应是由于位错密度增加而引起的,在此过程中,不同方向的滑移系产生交叉滑移,位错大量增殖,位错密度迅速增加,此时必须不断继续施加力,才能使位错继续滑移运动,直至 f 点。 f 点通常是应力-应变曲线的最高点(特殊材料除外),此点所对应的应力是重要的性能判据。

第 6 阶段:缩颈变形阶段(fg)

力施加至 f 点时,试验材材料的应变硬化与几何形状导致的软化达到平衡,此时力不再增加,试样最薄弱的截面中心部分开始出现微小空洞,然后扩展连接成小裂纹,试样的受力状态由两向变为三向受力状态。裂纹扩展的同时,在试样表面可看到产生缩颈变形,在拉伸曲线上,从 f 点到 g 点力是下降的,但是在试样缩颈处,由于截面积已变小,其真应力要大大高于工程应力。试验达到 g 点试样完全断裂。

从以上典型的拉伸曲线上,可以测定金属材料如下性能:

1 上屈服强度:(c点)试样发生屈服而力首次下降前的最高应力

2 下屈服强度:(e 点)屈服期间的最低应力,要注意这里要排除初始瞬时效应最低应力点所对应的应力。初始瞬时效应是表现于上屈服过后,力的突然降低的现象,其大

小与试验机加力系统的柔度、试样的柔度、拉伸速度、试样屈服特性以及测力系统的惯性守恒各种因素有关。

3 抗拉强度:(f 点)在最大力点所对应的应力。注意:新标准最大力的定义与

GB/T228-87 不同,新标准规定:最大力是指屈服阶段之后的最大力,当材料无明显屈服时,是试验期间的最大力。

4 屈服点延伸率:(ae)对于呈现明显屈服现象的材料,从屈服开始至均匀硬化开始之间的延伸率。要注意起点和终点的判定。

5 最大力总伸长率: F点处作一垂线, f 横座标原点与交点长度对应的伸长率(包括在此条件下的弹性伸长和塑性伸长率)。

6最大力非比例伸长率:f 点处作一平行于弹性段的直线,横座标原点与交点对应的伸长率。

7 断裂总伸长率:(g点)断裂时刻的试样总伸长率(包括弹性伸长和塑性伸长率),这里要注意的是断裂瞬间的判定,根据自动测试系统采样频率作合理测定。当扣除断裂瞬间的弹性伸长率时,则是断后伸长率 A。

许多脆性材料在拉伸过程中不出现明显屈服现象,只有 3~4 阶段: oa-弹性变形阶段 ab-滞弹变形阶段 bf-应变硬化阶段(对淬火钢,到 f 断裂,对中强钢有缩颈)在此情况下,用规定条件强度表示屈服强度

8 规定塑性延伸强度 Rp:规定非比例延伸率对应的应力,即在代表伸长的横坐标上取规定的伸长量,平行于弹性线段作一直线。在与曲线交点处作一水平线与力轴的交点力值所对应的应力为 Rp。一般称平行线法,适用于弹性段为直线的拉伸曲线。

对于弹性段不是直线的拉伸曲线,上述方法无法用,此时要用滞后环法或逐步逼近法进行测定。。

9 规定残余延伸强度 Rr:是对于拉伸过程中不出现明显屈服现象材料,用规定条件强度表示屈服强度另一性能,包括规定残余延伸强度 Rr 的测定和验证。

10 规定总延伸强度 Rt:规定总延伸率对应的应力,即在代表伸长的横坐标上取规定的伸长量,平行于力轴作一直线。在与曲线交点处作一水平线与力轴的交点力值所对应的应力为 Rt。

涤纶织物物理性能测试方案

方案 涤纶织物物理性能测试班级:09纺检二班组别:第七组 一、根据任务中织物类别采样 涤纶:化纤物(机织物) 二、分析织物用途 服装 三、根据用途确定性能及指标 四、根据测试仪器选择工具及其他

五、设置参数

六、试样规格及数量 ? 1、断裂强力:规格:抽取样品数量10块,每段长度至少1m ,全幅,每组试样是五经五纬 长度≥200mm 宽达50mm ;数量:10段。 ? 2、单位重量:规格:0.01㎡圆形或矩形;数量:5块。 ? 3、撕破强力:规格: 如下图;数量:四块。 ? ? 4、顶破强力:规格:直径为60mm 试样;数量三块。 ? 5、悬垂性:规格:240mm 直径圆;数量20块。 ? 6、平挺性:规格320mm ×380mm ;数量:2块。 ? 7、耐摩擦色牢度:规格:200mm ×50mm ;数量:经向纬向各两块。 七、设计检查仪器和操作内容 1、涤纶撕裂强力测试 加持试样,将上夹钳锁紧,准备好的试样一端由上夹钳下方插如已开启的夹持口内,试样与钳口平齐,将试样夹紧,松开上夹钳,将试样另一端从松开的下夹钳钳口穿过,夹住已穿过下夹钳口的试样下端。使之伸直,夹紧试样,取下张力压。 2、理论单位面积重量测试 先将小样品在试验用标准大气中调湿,然后裁取尺寸0.1m ×0.1m 圆形或矩形试样,称重计算单位面积重量。 100m m 75mm 50mm 43mm

3、涤纶撕破强力 先将扇形锤沿顺时针方向转动,抬高到试样开始的位置,将指针拨至销针挡板处。此时,定头与扇形锤上动夹头的两个工作平面正好对齐。然后讲试样左右两半边分别夹入两夹头内,并在长边正中用仪器上的开剪器画出一条规定长度的切口,松掉扇形挡板,动夹头即随同扇形锤迅速沿逆时针方向摆落,与定夹头分离,使试样对撕,直至全部撕破,由拨针在强力读数标尺上独处撕破强力。 4、涤纶顶破强力测试 讲试样装入圆环夹钳中,试样平整无张力,缝边朝向弹子方向,并通过夹钳孔圆心,夹紧试样,圆环夹钳放在支架中。启动仪器,直至涤纶破裂活缝纫线断裂而使接缝处裂开,试验终止,记录最长接缝强力值和顶破扩张度。记录试样最终破裂原因:织物破裂、缝纫线断裂:其他破裂情况。 5、涤纶悬垂性测试 将试样(如图)放在夹持盘上,使OA 线与一支架吻合,加上盖,轻轻向下按三次,禁止3min ,在夹持盘下方装有抛物反光镜,反光镜的焦点上有一光源,由反光镜射出一束平行光线,照射在试样上,未被遮挡的光线被位于上方的另一抛物面反光镜反射,在该反光镜的焦点上装有一光敏原件,把反射聚焦光线的强弱变成电流的大小,仪器显示熟为悬垂系数,经调零后,依次测出OB 、OC 、OD 三个读数。 6、涤纶硬挺度测试 选择一种洗涤和干燥的方法,将每块试样进行洗涤和干燥共循环操作五次,以长度方向为垂直方向,将试样无折叠的悬挂起来,以避免其变形,在标准大气条件下将试样调湿2H ,将试样夹在支架上,固定在双侧板上,以长度方向为垂 A C

织物性能测试

织物及其分类 织物:由纺织纤维和纱线制成的、柔软而具有一定力学性质和厚度的制品,即纺织品。 机织物:由相互垂直的一组经纱和纬纱在织机上按照一定规律纵横交错织成的制品。 针织物:由一组或者多组纱线在针织机上弯曲成圈并按一定规律彼此相互串套成圈连接而成的织物。 簇绒:在基布上‘载’上圈状纱线或绒状纤维的织物。 非织造布:由纤维、纱线或者长丝,用机械、化学或物理的方法使之粘结或结合而成的薄片状或毡状的结构物。 编结物:由两组或两组以上的条状物,相互错位、卡位交织、串套、扭辫、打结在一起的编织物。 纯纺织物:由单一纤维原料纯纺纱线所构成的织物。 混纺织物:以单一混纺纱线织成的织物。 交织织物:经纱或纬纱采用不同纤维原料的纱线织成的机织物,或是以两种或者两种以上不同原料的纱线并和(或间隔)制织而成的针织物。 纱织物:完全采用单纱织成的机织物或针织物或编结物。 线织物:完全采用股线织成的机织物、针织物或编结物。 半纱线织物:经纬向分别采用股线和单纱织成的机织物或单纱和股线并和或间隔制织而成的针织物。 花式线织物:采用各种花式线制织而成的织物。 长丝织物:采用天然丝或化纤丝织成的织物。 织物的紧度:纱线投影面积占织物面积的百分比,本质是纱线的覆盖率或覆盖系数。经向紧度Et,纬向紧度Ew,总紧度Ez。 为经,纬纱线的直径(mm),a,b为两根相邻经纬纱间的平均中心距离 织造缩率:织造时所用纱线长度与所织成织物长(宽)度l的差值与织造时所用纱线长度的比值,以a表示

织物的分类:(1)按成形方法分为:机织物、针织物、非织造布、和编结物。(2)按原料构成分1按纤维原料分为纯纺、混纺、交织织物。2按纱线的类别分为纱线、半线、花式线和长丝织物。(3)按织物的规格分为1按织物的幅宽分为带织物(幅宽为0.3-30cm的纺织品)小幅织物(40cm左右)窄幅织物(90cm以下)宽幅织物(大于90cm)双幅织物(150cm左右)2按织物的厚度(织物在一定压力下的稳定厚度)分为轻薄型、中厚型和厚重型织物。3按单位面积的质量(每平方米克重)分为轻薄型、中厚型和厚重型织物。(4)按织物印染整理加工工艺分1按织前纱线漂染加工工艺分为本色坯布和色织物。2按织物的染色加工工艺分为漂白、染色和印花织物。3按织物的后整理分仿旧整理、磨毛整理、丝光整理、折皱整理、模仿整理和功能整理。 一般织物及其名称 机织物:1按纺织加工体系分类:棉及棉型织物,毛及毛型织物、丝及丝型织物和麻及麻型织物。2按织物组织分:原组织织物(平纹斜纹缎纹)变化组织织物(重平、方平及变化重平和变化方平组织,加强斜纹、复合斜纹和斜纹变化组织织物,加点缎纹织物和変则缎纹织物)3联合组织织物(由两种或两种以上组织构成的新组织)4复杂组织织物(至少由一种或者两种以上系统纱线组成)5纹织物(又称大提花组织,分为简单和复杂两类) 针织物:1按成形方法分:纬编针织物和经编针织物。2按织物成品形式分为:针织坯布、针织成形或半成形产品。 非织造布:1按纤网的形成方法分:干法成网非织造布、聚合物挤出成网非织造布和湿法非织造布2按纤网加固方法分为机械加固法、化学粘合法和热粘合法。 特种织物:按织物结构分为平面型结构和立体型结构。 平面型结构织物分为:1机织物(二轴向斜交机织物,三轴向机织物)2编结物(按编结形状分为圆形编结和方形编结,按编结织物厚度分有二维平面编结和三维立体编结)3复合针织物 立体型结构织物分为:1立体型结构机织物(三向正交立体织物)2立体型结构针织物(多轴向经编织物)3立体型结构编结物4立体型结构非织造布

织物透气性及其测试方法

织物透气性及其测试方法 摘要:本文从织物的透气性能出发,简单介绍了织物透气性的影响因素、透气性的测试标准和方法。并结合GELLOWEN透气性测试仪,对织物透气性测试的步骤进行了详细说明。 1、织物的透气性能 透气性是气体对薄膜、涂层、织物等高分子材料的渗透性,是聚合物重要的物理性能之一,与聚合物的结构、相态及分子运动情况有关。而织物的透气性是指在一定的压差下,单位时间内流过织物单位面积的空气体积。一般气体通过织物有交织空隙和纤维间缝隙两条途径,而以交织空隙为主要途径。 空气透过织物的能力即织物的透气性,它直接影响到织物的服用性能。如夏季用的织物希望有较好的透气性,而冬天用的织物外衣透气性应该较小,以保证衣服具有良好的防风性能,防止热量的大量发散。对于国防及工业上某些用途的织物,透气性具有十分重要的意义。如降落伞的透气性要适中,过大下降速度太大;过小下降速度过慢。所以织物的透气性的好坏与织物的服用性能有密切的关系,随着人们对穿着舒适性要求越来越高,透气性织物的研究越来越受到重视。例如,CoolMaX 面料,杜邦公司研制的、专利技术的四管道纤维材料,具有强大的透气性和良好的湿气控制性,能将人体所产生的过多热量及汗水抽离皮肤,传输到面料表面,从而迅速蒸发;再如,戈尔特斯(GORE-TEX)面料,突破一般防水面料不能透气的缺点,通过一种轻、薄、坚固和耐用的薄膜,使其具有防水、透气和防风功能,广泛应用于宇航、军事及医疗等方面,被誉为“世纪之布”。

2、织物透气性的影响因素 2.1织物材料对透气性的影响 有试验表明(如下表),对组织结构和厚度相似的棉、麻、羊毛、涤纶五类织物进行透气性测试,结果发现,棉、麻、羊毛等天然纤维和蛋白质纤维织物的透气性好于尼龙和涤纶等合成纤维织物,这说明,不同的织物材料对其透气性有着重要的影响。 2.2 织物组织结构对透气性的影响 织物组织结构也是影响织物透气性的一个重要因素。一般来说,不同组织结构的织物,其透气性关系为:透孔织物>缎纹织物>斜纹织物>平纹织物。这是因为平纹织物经纬线交织次数最多,纱线间孔隙较小,透气性也较小;透孔织物纱线间空隙较大,透气性也较大。由于织物组织结构与密度的变化,引起浮长增时织物的透气率也随之增加。当织物的经纬纱纱支不变,经密或纬密增加,织物的透气性下降;织物密度不变,而经纬纱细度减小,织物的透气性增加。一定范围内,纱线的捻度增加,纱线单位体积重量增加,纱线直径和织物紧度降低,织物的透气性提高。 2.3 加工方式对透气性的影响 织物染色之后一般都要经过后整理,而不同的后整理工艺对织物的透气性也有影响。比如,液氨整理 织物后,纤维变细,中空腔管和孔洞空隙变小,使织物透气性增加;而经三防整理的织物,因为将整理剂涂

织物的拉伸断裂强力试验

实验25 织物的拉伸断裂强力试验 织物在使用过程中,受到各种不同的物理、机械、化学而逐渐遭到破坏。在一般情况下,机械力的作用是主要的。织物的耐久性通常就是在各种机械力作用下织物的坚牢度。织物的耐久试验,包括拉伸断裂试验、顶破坏强力试验以及耐磨性试验等。 拉伸断裂强力试验一般适用于机械性质具有各向异性。拉伸变形能力较小的制品。对于容易产生变形的针织物、编织物以及非织造布的强申特性,一般采用顶破强度,(包括顶破申长)为宜。织物的磨损是造成织物损坏的重要原因。织物的耐磨性试验对评定织物的服用牢度具有重要意义。 织物强力与耐磨性测定包括实验25—实验28,共4个实验。 一、织物的拉伸断裂强力试验的目的要求 按照国家标准规定的方法测定织物的拉伸断裂强力,在附有伸长装置的织物强力机上,同时测定织物的伸长率。通过试验,掌握织物拉伸断裂强力和断裂伸长率的试验方法,并了解影响试验结果的各种因素。 二、试验仪器和试样 试验仪器为摆锤式织物强力试验机。试样为织物一种。并需准备直尺、挑针、张力重锤等用具。 三、基本知识 拉伸断裂强力试验一般适用于机械性质具有各向异性、拉伸变形

能力较小的制品。作拉伸断裂强力试验时,试条的尺寸及其夹持方法对试验结果影响较大。常用的试验条及其夹持方法有:(a)扯边条样法、(b)剪切条样法及(c)抓样法。这三种试条形状如图25-1所示。 扯边纱条样法试验结果不匀率较小,用布节约。抓样法试样准备较易,快速,试验状态比较接近实际情况,但所得强力伸长值略高。剪切条样法一般用于不易抽边纱条样法。如果试样是针织物,由于拉伸过程中线圈的转移,变形较大,往往导致非拉伸方向的显著收缩,使试样在钳口处所产生的剪切力特别集中,造成多数试条在钳口附近断裂,影响了实验结果的准确性。为了改善这种情况,可采用梯形试条或环形试条。如图25-2所示。 试条的工作长度对实验结果有显著影响,一般随着试样工作长度的增加,断裂强 力与断裂伸长率有所下降。标准中规定:一般织物为20cm,针织物和毛织物为10cm. 特别需要时可自行规定,但所以试样必须统一。 织物的拉伸断裂性能长采用断裂强度,断裂伸长率表示。如果实验是在有绘图 装置的织物强力上进行时,可得到织物的拉伸曲线,在拉伸曲线上,不仅可以求得 断裂强度和断裂伸长率两项指标,而且还可以断裂功、织物的充满系数,同时还可 了解到织物在整个受力过程中拉伸强度的变化和断裂过程。

织物拉伸性能测试

织物拉伸性能实验 一、实验目的与要求 按照国家标准规定的方法测定织物的拉伸断裂强力,在附有伸长装置的织物强力机上,同时测定织物的伸长率。通过实验,掌握织物拉伸断裂强力和断裂伸长率的实验方法,并了解影响织物实验结果的各种因素。 二、基本知识 织物在使用过程中,受到各种不同的物理、机械、化学等作用而逐渐遭到破坏。在一般情况下,机械力的作用是主要的。 拉伸断裂强力实验一般适用于机械性质具有各项异性、拉伸变形能力较小的制品。主要指标有:断裂强度、断裂伸长率、断裂伸长、断裂功等。 断裂强度是评定织物内在质量的重要指标之一,是指织物在单位面积上所受到的力。国家标准规定:本色棉布经、纬向断裂强度的允许下公差为8%,超过8%者将降为二等品。断裂强度指标还常用来评定织物经过日晒、洗涤、磨损以及多种整理后对织物内在质量的影响。 断裂伸长率是指织物拉伸到断裂时的伸长率。断裂伸长率同样也是作为评定织物内在质量的重要指标之一。 断裂长度是指织物在强力实验机上进行拉伸断裂实验时,当实验布条的重量等于它的断裂负荷时的实验布条长度。单位面积重量不同的织物的断裂强度,应以断裂长度来进行比较。 断裂功是指织物在强力实验机上进行拉伸断裂实验时,外力对织物所做的功。断裂功相当于织物拉伸至断裂时所吸取的能量,也即织物所具有的抵抗外力破坏的内能。在一定程度上可以认为,织物的这种能量越大,织物越坚牢。应该指出,断裂功是一次性的拉伸,而实际服用中的织物并不是受一次外力作用,而是小负荷或小变形下反复多次的结果。 作拉伸断裂实验时,试条的尺寸及其夹持方法对实验结果影响较大。常用的试条及其夹持方法有:扯边纱条样法、剪切条样法及抓样法。扯边纱条样法实验结果不匀率较小,用布节约。抓样法试样准备较容易,快速,实验状态比较接近实际情况,但所得强度,伸长值略高。剪切条样法一般用于不易抽边纱的织物,

织物的力学性能测试

织物的力学性能测试 (拉伸性能、撕裂性能、顶破性能、耐磨性能) 织物的力学性能是指织物在各种机械外力作用下所呈现的性能。它是织物的基本性能。 织物抵抗因外力引起损坏的性质称为织物的耐久性或坚牢度,大多是通过测试织物的拉伸断裂、顶裂、撕裂以及耐磨性等来反映这一性能的。织物在小负荷作用下呈现的性质近年来备受人们的关注,如织物手感、视觉风格、起毛起球、勾丝等。这里主要介绍织物的坚牢度试验。 织物的拉伸断裂试验 织物拉伸断裂试验目前主要采用单向(受力)拉伸,即测试织物试条的经(纵) 向强力、纬(横)向强力,或与经纬向呈某一角度的强力。它适用于机械性能具有各向异性、拉伸变形能力较小的制品。对于容易产生变形的针织物(特别是易卷边的单面针织物)、编织物以及非织造布一般采用顶破试验为宜。 一、试验原理 将一定尺寸的试样,按等速伸长方式拉伸至断裂,测其承受的最大力——断裂强力及产生对应的长度增量——断裂伸长。必要时,还可画出织物的强力——伸长曲线,算出多种拉伸指标。 二、试验参数选择 1、试样形状 根据织物的品种不同,试样的形状有以下3种形式,见图。 图织物拉伸断裂试验的试条形状和夹持方法 (1)拆边纱法条样:用于一般机织物试样。裁剪的试样宽度应比规定的有效试验宽度宽5mm或lOmm(按织物紧密程度而定),然后通过拆边纱法从试样宽度两侧拆去数量大致相等的纱线,直至试样宽度符合规定要求,以确保试验过程中纱线不会从毛边中脱出。 (2)剪切法条样:适用于针织物、涂层织物、非织造布和不易拆边纱的机织物试样。

(3)抓样法条样:试样宽度大于夹持宽度。适用于机织物,特别是经过重浆整理的,不易抽边纱的和高密度的织物。 比较3种形态试样的试验结果,拆边法的强力不匀较小,而强力值略低于抓样法。 2、试验参数 织物拉伸断裂的试验参数见表。 注:拆边纱法条样应先裁剪成6 mm宽或7 mm宽(疏松织物),然后两边抽去等量边纱,使试样的有效宽度为5 mm。 为便于施加张力,试样长度宜放长30~50 mm。 3、预加张力 按以下原则确定预张力: (1)按试样的单位面积质量来决定,见表。 (2)当断裂强力低于20N时,按概率断裂强力的(1±0.25)%确定预加张力。 (3)抓样法的预张力,采用织物试样的自重即可。 (4)当试样在预张力作用下产生的伸长大于2%时,应采用无张力夹持法(即松式夹持)。这对伸长变形较大的针织物和弹力织物更合适。 4、大气条件 试样的调湿、测试的标准大气条件为三级标准大气条件。 三、试验步骤 (1)准备试样。根据织物品种,选择试条形状,按规定的试样尺寸裁剪试样,长度方向应平行于织物的经向(纵行)或横向(或横列)。每份样品的经纬向试样至少5块,并在标准大气条件下调湿4h。 (2)按规定要求,调整上下夹钳的隔距(夹持长度)、拉伸速度。 (3)夹装试样。先将试样一端夹紧在上夹钳中心位置,然后将试样另一端放

织物服用性能测试

织物服用性能测试 摘要:介绍了织物风格评定发展历史,分析了织物风格的主观以及客观评定方法,重点分析了KES川端风格仪、FAST系统和国产YG-821型织物风格仪的特点、测量的物理指标及系统存在的不足。 关键词:织物风格;主观评定;客观评定;KES -F系统;FAST系统 1、引言 织物风格是织物所固有的物理机械性能作用于人的感官所产生的效应。可分为两类,一类是触觉风格即手感,包括手感是否柔韧,有弹性,有无身骨,是否挺括、滑爽、厚实、丰满等;另一类为视觉风格,包括外观和光泽等。由于织物的触觉风格和视觉风格都是织物的物理性能作用于人的不同感官的结果,因此二者又统称为广义风格。对织物的广义风格有分为三类的:视觉风格,主要是表现在外观、花型和色泽上;听觉风格,如丝鸣等;触觉风格即手感等。有的还甚至将嗅觉(如香味)等风格也包括在织物的广义风格内。总之,织物的广义风格是人体感官感受的综合性反映。对织物风格的综合评价就是人的触觉(视觉、听觉、嗅觉等)和心理综合作用的结果。 2、织物风格评定发展历史 长期以来,对织物风格的评定一直用的是主观评价法。而对织物风格客观评价法的研究,从20世纪30年代开始,涌现出了诸多的织物手感客观评定的方法。如皮尔斯使用悬臂梁法评定织物的刚柔性;20世纪50年代,许多学者利用instron电子强力试验仪对织物进行弯曲、剪切试验测定织物的风格;20世纪的七八十年代日本KES川端风格仪以及澳大利亚的FAST风格仪的出现,使织物手感风格的客观评价达到了一个新的高度,大大地促进和提高了织物风格客观评价水平和研究水平。在这一时期,我国纺织科技工作者也开始了这方面的研究,如上海纺织科学研究院开发成功的YG821型织物风格仪,中国纺织大学研制出了FG -100型织物风格仪,以及北京毛麻纺织研究所开发的电子强力织物风格仪等。我国纺织工业部还颁布了FJ552.4 -85《织物风格试验方法》,推动了国内织物风格测试和评价方法研究的发展。 3、织物风格的评价 3.1、织物风格的主观评定

实验 织物的拉伸断裂测试

实验4 织物的拉伸断裂测试 织物拉伸断裂试验目前主要采用单向(受力) 拉伸, 即测试织物试条的经( 纵)向强力、纬(横)向强力, 或与经纬向呈某一角度的强力。它适用于机械性能具有各向异性、拉伸变形能力较小的制品。对于容易产生变形的针织物(特别是易卷边的单面针织物)、编织物以及非织造布一般采用顶破试验为宜。 一、试验原理 将一定尺寸的试样, 按等速伸长方式拉伸至断裂, 测其承受的最大力—断裂强力及产生对应的长度增量—断裂伸长。必要时, 还可画出织物的强力—伸长曲线, 算出多种拉伸指标。 二、试验参数选择 1 .试样形状 根据织物的品种不同, 试样的形状有以下3 种形式(见图1)。 (1 ) 拆边纱法条样: 用于一般机织物试样。裁剪的试样宽度应比规定的有效试验宽度宽5mm 或10mm(按织物紧密程度而定) , 然后通过拆边纱法从试样宽度两侧拆去数量大致相等的纱线, 直至试样宽度符合规定要求, 以确保试验过程中纱线不会从毛边中脱出。 图1 织物拉伸断裂试验的试条形状和夹持方法 (2 ) 剪切法条样: 适用于针织物、涂层织物、非织造布和不易拆边纱的机织物试样。 (3) 抓样法条样: 试样宽度大于夹持宽度。适用于机织物, 特别是经过重浆整理的、不易抽边纱的和高密度的织物。比较3 种形态试样的试验结果, 拆边法的强力不匀率较小, 而强力值略低于抓样法。

2 .试验参数 织物拉伸断裂的试验参数见表1。 注:拆边纱条样试样应先裁剪成6mm 宽或7mm 宽(疏松织物) , 然后两边抽去等量边纱, 使试样的有效宽度为5mm。为便于施加张力, 试样长度宜放长30~50mm。 3 预加张力 按以下原则确定预张力: (1 ) 按试样的单位面积质量来决定(见表2)。 (2 ) 当断裂强力低于20N 时, 按概率断裂强力的(1±0 .25) %确定预加张力。 (3 ) 抓样法的预张力, 采用织物试样的自重即可。 (4 ) 当试样在预张力作用下产生的伸长大于2%时, 应采用无张力夹持法(即松式夹持)。这对伸长变形较大的针织物和弹力织物更合适。 4 大气条件 试样的调湿、测试的标准大气条件为三级标准大气条件。

相关主题
文本预览
相关文档 最新文档