当前位置:文档之家› 电子线路课程设计-信号发生器综述

电子线路课程设计-信号发生器综述

电子线路课程设计-信号发生器综述
电子线路课程设计-信号发生器综述

电子线路课程设计

设计题目:信号发生器设计

班级:2012级电子信息科学与技术(3)班

学号:080212095、080212104、080212103

姓名:韦胜斌、张飞、宋亮

指导教师:丁蕾

设计时间:2014年11月

摘要

信号发生器是一种能够产生多种波形,如锯齿波、三角波、方波、正弦波的电路。信号发生器在电路实验和设备检测中具有十分广泛的用途。本设计通过对信号发生器的原理以及构成进行分析,设计了信号发生器,能够输出稳定的正弦波和方波,实现占空比50%,并且能够实现频率和输出幅度可调。设计中采用常用器件NE555为核心,通过比较获得最佳电路方案,并对电路各部分工作原理进行了分析,确定其能够稳定工作,利用相关仪器多次试验,测试达到了设计要求。

关键词:振荡器;RC电路;射极输出器;方波;三角波;正弦波。

目录

摘要.............................................................. I

1 概述 (1)

2 课程设计任务及要求 (1)

2.1 设计任务 (1)

2.2 设计要求 (1)

3 理论设计 (1)

3.1方案论证 (1)

3.2 系统设计 (2)

3.2.1结构框图及说明 (2)

3.2.2 系统原理图及工作原理 (3)

3.3 单元电路设计 (4)

3.3.1单元电路工作原理 (4)

3.3.2 元件参数选择 (7)

4. 安装调试 (7)

4.1安装调试过程 (7)

4.2 故障分析 (10)

5. 结论 (10)

6. 使用仪器设备清单 (10)

7. 收获、体会和建议 (11)

8. 参考文献 (12)

1 概述

信号发生器应用广泛,种类繁多,性能各异,分类也不尽一致。按照频率范围分类可以分为:超低频信号发生器、低频信号发生器、视频信号发生器、高频波形发生器、甚高频波形发生器和超高频信号发生器。按照输出波形分类可以分为:正弦信号发生器和非正弦信号发生器,非正弦信号发生器又包括:脉冲信号发生器,信号发生器、扫频信号发生器、数字序列波形发生器、图形信号发生器、噪声信号发生器等。按照信号发生器性能指标可以分为一般信号发生器和标准信号发生器。前者指对输出信号的频率、幅度的准确度和稳定度以及波形失真等要求不高的一类信号发生器。后者是指其输出信号的频率、幅度、调制系数等在一定范围内连续可调,并且读数准确、稳定、屏蔽良好的中、高档信号发生器。

2 课程设计任务及要求

2.1 设计任务

设计一信号发生器。

2.2设计要求

设计一信号发生器,至少能产生一定频率和幅值的方波、三角波。可拓展产生更多其他波形。

3 理论设计

3.1方案论证

方案一:通过RC震荡电路产生正弦波,然后经过过零比较器,产生三角波,在通过积分电路产生方波。其中,RC震荡电路为RC桥式正弦振荡电路,然后通过放大器构成过零比较器来实现方波的转换,在通过反向积分电路来实现方波到三角波的转化。

方案二:可以由晶体管、运放IC等通用器件制作,更多的则是用专门的函数信号发生器IC产生。早期的函数信号发生器IC,如L8038、BA205、XR2207/2209等,它们的功能较少,精度不高,频率上限只有300kHz,无法产生更高频率的信号,调节方式也不够灵活,频率和占空比不能独立调节,二者互相影响。

方案三:可以按照方波——三角波——正弦波的顺序来设计电路,其中,方

波可以通过模电中的方波发生电路来产生,也可以通过数电中的555多谐振荡电路来产生,方波到三角波为积分的过程,三角波到正弦波可以通过低通滤波来实现,也可以利用差分放大器的传输非线性来实现或者通过折现法来实现。可行性分析:纵观以上N种方案,对比如下,本着自己动手的观念,首先排除第二种用集成芯片的方法,因为这种方法对设计的要求太低;其次分析方案一可得其RC桥式正弦震荡电路的占空比受R和C共同影响,调节频率时需要调节的元器件参数太多,比较繁琐,并且此震荡电路的频率也不是很好的满足设计的要求。所以综上所述,选择方案三来实现本次的课程设计:555多谐振荡器的频率很好计算和调节,并且输出的波形比较准确;波到三角波的转化可通过简单RC积分电路来实现;角波到正弦波可通过简单RC低通滤波器来实现也可通过折现法或者差分法来实现。分析方案后最终选择方案三。

3.2系统设计

3.2.1 结构框图及说明

首先,将555定时器接成多谐震荡电路,多谐震荡电路的输出便是方波,接着接一个RC积分电路,从而产生三角波,最后接一个无源低通滤波器,从而产生正弦波。如框图1所示。

555多谐振荡器积分电路低通滤波电路

图1

首先由555定时器组成的多谐振荡器产生方波,然后由积分电路将方波转化为三角波,如图2,最后用低通滤波器将方波转化为正弦波,如图3。

图2

图3

3.2.2 系统原理图及工作原理

NE555功能分析NE555是电子设计中常用元器件,在这个元件中既有模拟电路电压渐变、电位比较的特点,又具有数字电路中输出高电平或低电平的特点。在下表1功能表中“L”表示低电平,“H”表示高电平,“x”可以理解为不管是什么状态。在555中复位管脚4决定了 555输入和输出的关系,复位管脚是低电平时,不管2、6管脚如何变化都不会影响输出状态,此时3管脚保持低电平。只有复位4为高电平时,2、6管脚才会决定输出状态。通用NE555的管脚图如下图4所示。

表1 图4 NE555引脚图

根据对NE555的分析,设计如初图如图5,工作过程为:4管脚一直接高电平,因此2、6管脚电平会直接影响输出管脚3的电平。首先电源通过R1、Rp1对C1充电,2、6管脚电位随着时间逐渐升高,达到阈值后,管脚3输出低电平,7管脚放电端开启,此时C1通过Rp1经7管脚放电,2、6管脚电位逐渐降低,低至阈值后,管脚3由低电平变为高电平,7脚放电端截止。再次重复初始过程,即电源通过R1、Rp1对C1充电,如此周而复始,管脚3即可输出方波。

图5

方波经过积分电路、滤波电路以及射极输出电路,最终得到合适的三角波与正弦波,考虑到设计的要求,是频率与波形幅度可调,可采用电位器Rp1与Rp2来实现,但在这里要注意2个问题,第一:接入积分电路后,积分电路对前级存在一定影响,因此后级将信号分为2部分;第二:由于后级电路的衰减后导致输出信号比较弱,因此在最后引入射极输出器,以便于信号发生器具有带负载的能力。总体设计原理图如图6:

图6

3.3 单元电路设计

3.3.1单元电路工作原理

1.电源极性保护电路,如图7。

该部分电路的主要功能是保护电路以及电源探测电路,电源接入通电时,发光二极管D2(LDE灯)被点亮,而保护电路则是消除电源极性接法对电路的影响。其中,D1(1N4007)作为整流二极管,具有单向导电性,具有较强的正向浪涌承受能力。电解电容C9对电流具有缓冲作用。

2.方波产生电路,如图8。

图8

4管脚一直接高电平,因此2、6管脚电平会直接影响输出管脚3的电平。首先电源通过R1、Rp1对C1充电,2、6管脚电位随着时间逐渐升高,达到阈值后,管脚3输出低电平,7管脚放电端开启,此时C1通过Rp1经7管脚放电,2、6管脚电位逐渐降低,低至阈值后,管脚3由低电平变为高电平,7脚放电端截止。再次重复初始过程,即电源通过R1、Rp1对C1充电,如此周而复始,管脚3即可输出方波,通过对电位器Rp1的调节从而调节输出频率。

3.三角波产生电路---积分电路,如图9。

图9

电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的宽度。 Uo=Uc=(1/C)∫icdt,因Ui=UR+Uo,当t=to时,Uc=Oo.随后C充电,由于RC≥Tk,充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R,故Uo=(1/c)∫icdt=(1/RC)∫Uidt 这就是输出Uo正比于输入Ui的积分(∫Uidt)RC 电路的积分条件:RC≥Tk 当输入信号为方波时,积分电路的输出为三角波。4.正弦波产生电路——低通滤波电路,如图10。

所谓的低通滤波器就是允许低频

信号通过,而将高频信号衰减的电路,

RC低通滤波器电路的组成如图所示。

三角波可以分解成由无数不同频率的

正弦波组成的复合波。当输入信号为

三角波时,用低通滤波器将其高频成

分滤掉后,波形将不再有尖顶部分,

波形变得圆滑,从而变成类正弦波。

图10 图中正弦波是通过二次滤波得到的。

5.后级信号放大电路,如图11。

由于后级电路的衰减后导致输出信号比较弱,因此在最后引入射极输出器,以便于信号发生器具有带负载的能力。图11(R:+,H:-)

3.3.2元件参数选择

参数计算:改进型多谐振荡电路主要改进了电容充电和放电的回路,使得回路的时间常数相同即可。

充电时间:T1=(R1+Rp1)C1ln2=0.7(R1+Rp1)C1

放电时间:T2=0.7Rp1C1

振荡周期:T=T1+T2=0.7(R1+2Rp1)C1

振荡频率:f=1/T=1.43/(0.7(R1+2Rp1)C1)

通过分析计算后,电阻R1取值1千欧姆,电位器Rp1取值10千欧姆,电容C1取值0.047微法。

其他各元件依据分析计算取值如下:

1.电源:9V直流电源。

2.电阻(单位;欧姆):R3=510、R4=R5=R6=R10=10K、R7=1M、R8=4.7K、R9=1K、R11=R12=100K。

3.电容(单位:微法):C2=C5=C7=0.01、C3=0.1、C4=C6=0.047、C8=C9=1。

4.安装调试

4.1安装调试过程

在绘制电路的原理图时,我分别采用了multisim和Altium Designer软件,multisim用于仿真分析结果,Altium Designer则用于原理图绘制和PCB板图的绘制为后面制作PCB板做准备。

multisim仿真及调试过程:首先设置好实验相关参数,接着画原理图,最后运行(用示波器观察波形)。一开始运行的时候示波器上并未出现预期的波形,示波器上出现了不规则的波形。接下来便是反复地修改参数。最后根据波形选择了合理的参数。各波形如下。

方波:

三角波:

正弦波:

根据NE555振荡频率计算公式,带入元件参数计算得:波形的频率大约为1.4K—20KHz可调。

波形幅度这是通过电位器Rp2输出可调,各种波的幅度范围为:方波:0—800MV,三角波:0—850MV,正弦波:0—810MV。三种波的最大幅度大致想等,电路设计合理。

Altium designer制板过程:首先新建工程(在工程下建原理图和PCB图),接着画原理图,最后是绘制PCB板。该过程的主要问题是PCB板的绘制。其中连线比较复杂,同一层的线不能交叉,因此需要在适当的时候打孔将两层的线连接起来。自动布置的线很乱并且有尖角效应,因此最好己动手布置。连完线后就开

始铺铜,铺完铜就是打印制版的过程了。该过程的相关图片PCB连线图如图12,PCB板子如图13,做出的板子实物图如图14。

图12

图13

4.2故障分析

在最后实际测试电路时,波形有一些误差,特别是方波存在明显跳变。对其进行分析为:第一,多谐振荡器输出频率决定于电阻和电容,其中电阻值和电容值的稳定性容易受到外界温度影响。故555振荡器输出的振荡频率会不稳定。第二:普通的电阻、电容参数的稳定性低,有一定误差,误差在5%以上。而方波的跳变则是由于电容C1的充放电所引起的。

5.结论

通过测试各器件的电压与信号得出的数据中了解实际电路跟原理图电路的数据是有一定误差的、各电容、电阻的数据要跟实物电路的数据还是有区别的,由于实际中器件的特性及差异最后的成品实现功能却不一定与仿真时完全一样,因为,在实际接线中有着各种各样的条件制约着。而且,在仿真中无法成功电路接法,在实际中因为器件本身的特性而能够成功,所以在设计时应该考虑两者的差异,从中找到最合适的设计方法。

6.使用仪器设备清单

仪器设备:9V直流电源、示波器、万用表、镊子、电烙铁、剪钳等。

元件清单:如表2。

表2 元件清单表

元件编号元件名称规格数量

U1 芯片NE555P 1

R1、R9、R10 电阻1K 3

R3 电阻510 1

Rp1、Rp2 电位器10K 2

R4、R5、R6 电阻10K 3

R7 电阻1M 1

R8 电阻 4.7K 1

R11、R12 电阻100K 2

VCC 直流电源9V 1

D1 整流二极管1N4007 1

D2 发光二极管LED 1

VT1、VT2 三极管8050 2

C1、C4、C6 瓷片电容473 3

C2、C5、C7 瓷片电容103 3

C3 瓷片电容104 1

C8、C9 电解电容1uf 2

J1、J2、J3 排针2*2 3

OUT(R)、OUT(H) 排针2*2 2

7.收获、体会和建议

经过这些天的课程设计,让我明白课程设计不仅是对前面所学知识的一种检验,更是对自己综合实践能力及团队协作能力的一种锻炼。通过这次课程设计让我明白了自己原来知识还比较欠缺。通过这次课程设计,我才明白学习是一个长期积累的过程,在以后的工作、生活中都应该不断的学习,努力提高自己知识和综合素质。总之,在这次设计中我学到了不少新知识,了解了很多的设计思想与方法,我也将继续努力,不断地完善和充实自己。在本次课程设计中,我作为组长,组织并和大家一起努力完成这次设计,让我学会了如何增加团队之间的沟通,如何让大家更紧密的联系在一起。也学习到了怎样调动组员的积极性。在整个过程中统一调配,也参加了PBC 图的绘制以及电路板的制作。让我明白所学运用到实际当中还比较欠缺。在这次的设计中虽然遇到了很多的问题,认识了一些以前不了解或者不知道的元件,有些虽然没有用到,但是学习是无限的,虽然做课程设计有很多困难,但是,当自己完成的时候有无比的喜悦。我感觉设计是对学习知识的运用和自己的能力的全面体现,体现了一个人学以致用的能力。只有在真正的运用中才能更好的掌握知识,这样的学习才会有效率,才能长久的记忆。在设计过程中,我们通过查阅大量有关资料,团队之间交流经验,并向老师请教。通过对多种方案的分析讨论让我们明白在对于不同的环境和要求相应的要作出最合适的选择的合理性和重要性。在整个设计中我懂得了许多东西,对自我水平有了进一步的了解,相信会对今后的学习工作生活有非常重要的影响。虽然,这个设计做的也不太好,但是在设计过程中所学到的东西是这次课程设计的最大收获和财富,使我终身受益。本次课程设计是在老师细心指导下开展的,整个过程中给了我莫大的支持,关心和指导;同时在制作过程中也得到了许多同学的支持和帮助,在此一并致以诚挚的谢意,感谢他们的帮助。

8.参考文献

[1] 余孟尝?《数字电子技术基础简明教程(第三版)》?高等教育出版社

[2] 杨素行?《模拟电子技术基础简明教程(第三版)》?高等教育出版社

[3] 李建兵?《EDA技术基础教程—Multisim与Protel的应用》?国防工业出版社

多功能信号发生器设计报告.doc

重庆大学城市科技学院电气学院EDA课程设计报告 题目:多功能信号发生器 专业:电子信息工程 班级:2006级03班 小组:第12组 学号及姓名:20060075蒋春 20060071冯志磊 20060070冯浩真 指导教师:戴琦琦 设计日期:2009-6-19

多功能信号发生器设计报告 一、设计题目 运用所掌握的VHDL语言,设计一个信号发生器,要求能输出正弦波、方波、三角波、锯齿波,并且能改变其输出频率以及波形幅度,能在示波器上有相应波形显示。 二、课题分析 (1).要能够实现四种波形的输出,就要有四个ROM(64*8bit)存放正弦波、方波、三角波、锯齿波的一个周期的波形数据,并且要有一个地址发生器来给ROM提供地址,ROM给出对应的幅度值。 (2).因为要设计的是个时序电路,所以要实现输出波形能够改变频率,就必须对输入的信号进行分频,以实现整体的频率的改变。 (3).设计要求实现调幅,必须对ROM输出的幅度信息进行处理。最简单易行的方法是对输出的8位的幅度进行左移(每移移位相当于对幅度值行除以二取整的计算),从而达到幅度可以调节的目的。同时为了方便观察,应再引出个未经调幅的信号作为对比。 三、设计的具体实现 1、系统概述 系统应该由五个部分组成:分频器(DVF)、地址发生器(CNT6B)、四个ROM 模块(data_rom_sin、data_rom_sqr、data_rom_tri、data_rom_c)、四输入多路选择器mux、幅度调节单元w。 2、单元电路设计与分析 外部时钟信号经过分频器分频后提供给地址发生器和ROM,四个ROM的输出接在多路选择器上,用于选择哪路信号作为输出信号,被选择的信号经过幅度调节单元的幅度调节后连接到外部的D/A转换器输出模拟信号。 (1)分频器(DVF) 分频器(DVF)的RTL截图

09电信电子线路课程设计题目

电子线路课程设计题目 (模电、数电部分) 一、锯齿波发生器 二、语音放大电路 三、可编程放大器 四、数字频率计 五、可调电源 六、汽车尾灯控制电路 2011.09

一、设计一高线性度的锯齿波发生器 要求: (1)利用555定时器和结型场效应管构成的恒流源设计一高线性度的锯齿波发生器;参考电路如图所示; (2)在EWB中对该电路进行仿真; (3)焊接电路并进行调试;调试过程中思考: a、电路中两个三极管的作用是什么?其工作状态是怎么样的? b、R3阻值的大小会对锯齿波的线性度产生什么影响? c、输出锯齿波的幅值范围多大? d、调节电路中的可调电阻对波形有什么影响? e、LM324的作用是什么? (4)参考电路图中采用的是结型场效应管设计的,若采用N沟道增强型VMOS管和555定时器来设计一高线性度的锯齿波发生器,该如何设计? LM324 图2 高线性度锯齿波发生器的设计

二、语音放大电路的设计 通常语音信号非常微弱,需要经过放大、滤波、功率放大后驱动扬声器。 要求: (1)采用集成运算放大器LM324和集成功放LM386N-4设计一个语音放大电路;假设语音信号的为一正弦波信号,峰峰值为5mV,频率范围为100Hz~1KHz,电路总体原理图如下所示; 图4 语音放大电路 (2)仔细分析以上电路,弄清电路构成,指出前置放大器的增益为多少dB?通带滤波器的增益为多少dB? (3)参照以上电路,焊接电路并进行调试。 a、将输入信号的峰峰值固定在5mV,分别在频率为100Hz和1KHz的条件下测试前 置放大的输出和通带滤波器的输出电压值,计算其增益,将计算结果同上面分析 的理论值进行比较。 b、能过改变10K殴的可调电阻,得到不同的输出,在波形不失真的条件下,测试集 成功放LM386在如图接法时的增益; c、将与LM386的工作电源引脚即6引脚相连的10uF电容断开,观察对波形的影响, 其作用是什么? d、扬声器前面1000uF电容的作用是什么?

信号发生器的设计方案综述【文献综述】

文献综述 电子信息工程 信号发生器的设计方案综述 摘要:本文首先介绍了信号发生器的背景与应用,然后提出了基于直接数字频率合成(DDS)技术的信号发生器实现,概述了DDS的概念及基本结构,介绍了基于FPGA、单片机及专用芯片的信号发生器实现方案,最后对这些方案给出笔者的评价。 关键词:DSP BUILDER;数字移相信号发生器;DDS 1引言 在当今社会,信号发生器作为电子领域中的最基本、最普通、最广泛的仪器之一,是工科类电子工程师进行信号仿真实验的最佳工具。而信号发生器是指能产生测试信号的仪器,它主要用于产生被测电路所需特定参数的电测试信号。 本文设计的数字移相信号发生器通过移相技术在数控、数字信号处理机、工业控翻、自动控制等各个领域得以应用[1]。 2 DDS概述 直接数字频率合成DDS(Direct Digital Frequency Synthesizer)是一种采用数字化技术、通过控制相位的变化速度、直接产生各种不同频率信号的新型频率合成技术,标志着第三代频率合成技术的出现。它是把一系列数字量形式的信号通过数模转换器(DAC)转换成模拟量形式的信号[2]。目前使用的最广的一种DDS方式是利用高速存储器作查找表。然后通过高速DAC输出已经用数字形式存入的正弦波。具有频率切换时间短,频率分辨率高,频率稳定度高。输出信号的频率和相位可快速程控交换、输出相位连续、容易实现频率、相位和幅度的数控调制等优点[3]。 图1 DDS基本结构 DDS是以数控的方式产生频率、相位和幅度可以控制的正弦波,如图1所示为基本DDS结构,由

相位累加器、相位调制器、正弦ROM查找表、D/A构成[4]。相位累加器是整个DDS的核心,它由一个累加器和一个N位相位寄存器组成,每来一个时钟脉冲,相位寄存器以相位步长M增加,相位寄存器的输出与相位控制字相加,完成相位累加运算,其结果作为正弦查找表的地址,正弦ROM查找表内部存有一个完整周期正弦波数字幅度信息,每个查找表地址对应正弦波中o。~360。范围的一个相位点,查找表把输入的地址信息映射成正弦波幅度信号,通过D/A输出,经低通滤波器后,即可得一纯净的正弦波。 而所谓的移相,就是指两路同频的信号,以其中的一路为参考,另一路相对于该参考作超前或滞后的移动,即称为相位的移动。两路信号的相位不同,便存在相位差,简称相差[5]。两路信号的相位差用相位字来控制,只要相位字不同,就可得到两路不同相位的移相信号。 3 基于DDS的数字移相系统设计 3.1基于FPGA的实现 传统使用FPGA的数字信号处理系统的设计,首先需要用仿真软件进行建模仿真,得到预想中的仿真结果后。再根据仿真过程和结果,使用硬件描述语言创建硬件工程,最后完成硬件仿真。整个过程漫长而繁杂,尤其困难的是仿真过程不够直观.一旦遇到问题无法及时准确地确定问题所在。而DSP Builder作为一个面向DSP开发的系统级(或算法级)设计工具,它架构在多个软件工具之上,并把系统级和RTL 级两个设计领域的设计工具连接起来,最大程度地发挥了两种工具的优势[5]。DSP Builder依赖于MathWorks 公司的数学分析工具Matlab/ Simulink ,DSP Builder允许设计者在Matlab 中完成算法设计,在Simulink 软件中完成系统集成,通过SignalCompiler模块生成Q uart usII 软件中可以使用的硬件描述语言(V HDL) 文件,它提供了QuartusII软件和MA TLAB/ Simulink工具之间的接口,通过DSP Builder 、SOPC Builder 、Quart usII 软件构筑的一套从系统算法分析到FPGA 芯片实现的完整设计平台[6]。 3.2基于单片机的实现 基于单片机的信号发生器其核心内容是单片机的主程序,主程序对整个设计起着总控作用[7]。设计方案如图2所示.系统在程序控制下,先读取P3口决定波形信号类别,然后由Po口输出数据,经D/A转换后放大、滤波输出.波形频率在线调整是通过读取P2口上的拨码开关的编码,并根据该编码产生的数字量,在PO口输出一个数据后立即产生一个对应时长的延时时间来实现.幅度调整是通过接在DAC上的滑动变阻器来改变D/A转换的参考电压来实现[8]。

电子技术课程设计题目

电子技术课程设计一、课程设计目的: 1.电子技术课程设计是机电专业学生一个重要实践环节,主要让学生通过自己设计并制作一个实用电子产品,巩固加深并运用在“模拟电子技术”课程中所学的理论知识; 2.经过查资料、选方案、设计电路、撰写设计报告、答辩等,加强在电子技术方面解决实际问题的能力,基本掌握常用模拟电子线路的一般设计方法、设计步骤和设计工具,提高模拟电子线路的设计、制作、调试和测试能力; 3.课程设计是为理论联系实际,培养学生动手能力,提高和培养创新能力,通过熟悉并学会选用电子元器件,为后续课程的学习、毕业设计、毕业后从事生产和科研工作打下基础。 二、课程设计收获: 1.学习电路的基本设计方法;加深对课堂知识的理解和应用。 2.完成指定的设计任务,理论联系实际,实现书本知识到工程实践的过渡; 3.学会设计报告的撰写方法。 三、课程设计教学方式: 以学生独立设计为主,教师指导为辅。 四、课程设计一般方法 1. 淡化分立电路设计,强调集成电路的应用 一个实用的电子系统通常是由多个单元电路组成的,在进行电子系统设计时,既要考虑总体电路的设计,同时还要考虑各个单元电路的选择、设计以及它们之间的相互连接。由于各种通用、专用的模拟、数字集成电路的出现,所以实现一个电子系统时,根据电子系统框图,多数情况下只有少量的电子电路的参数计算,更多的是系统框图中各部分电子电路要正确采用集成电路芯片来实现。 2. 电子系统内容步骤: 总体方案框图---单元电路设计与参数计算---电子元件选择---单元电路之间连接---电路搭接调试---电路修改---绘制总体电路---撰写设计报告(课程设计说明书) (1)总体方案框图: 反映设计电路要求,按一定信息流向,由单元电路组成的合理框图。 比如一个函数发生器电路的框图: (2)单元电路设计与参数计算---电子元件选择: 基本模拟单元电路有:稳压电源电路,信号放大电路,信号产生电路,信号处理 电路(电压比较器,积分电路,微分电路,滤波电路等),集成功放电路等。 基本数字单元电路有:脉冲波形产生与整形电路(包括振荡器,单稳态触发器,施密特触发器),编码器,译码器,数据选择器,数据比较器,计数器,寄存器,存储器等。 为了保证单元电路达到设计要求,必须对某些单元电路进行参数计算和电子元件 选择,比如:放大电路中各个电阻值、放大倍数计算;振荡电路中的电阻、电容、振荡频率、振荡幅值的计算;单稳态触发器中的电阻、电容、输出脉冲宽度的计 算等;单元电路中电子元件的工作电压、电流等容量选择。

函数信号发生器课程设计报告书

信号发生器 一、设计目的 1.进一步掌握模拟电子技术的理论知识,培养工程设计能力 和综合分析问题、解决问题的能力。 2.基本掌握常用电子电路的一般设计方法,提高电子电路的 设计和实验能力。 3.学会运用Multisim10仿真软件对所作出的理论设计进行 仿真测试,并能进一步完善设计。 4.掌握常用元器件的识别和测试,熟悉常用仪表,了解电路 调试的基本方法。 二、设计容与要求 1.设计、组装、调试函数信号发生器 2.输出波形:正弦波、三角波、方波 3.频率围:10Hz-10KHz围可调 4.输出电压:方波V PP<20V, 三角波V PP=6V, 正弦波V PP>1V 三、设计方案仿真结果 1.正弦波—矩形波—三角波电路 原理图:

首先产生正弦波,再由过零比较器产生方波,最后由积分电路产生三角波。正弦波通过RC串并联振荡电路(文氏桥振荡电路)产生,利用集成运放工作在非线性区的特点,由最简单的过零比较器将正弦波转换为方波,然后将方波经过积分运算变换成三角波。 正弦—矩形波—三角波产生电路: 总电路中,R5用来使电路起振;R1和R7用来调节振荡的频率,R6、R9、R8分别用来调节正弦波、方波、三角波的幅值。左边第一个运放与RC串并联电路产生正弦波,中间部分为过零比较器,用来输出方波,最好一个运放与电容组成积分电路,用来输出三角波。

仿真波形: 调频和调幅原理 调频原理:根据RC 振荡电路的频率计算公式 RC f o π21 = 可知,只需改变R 或C 的值即可,本方案中采用两个可变电阻R1和R7同时调节来改变频率。 调幅原理:本方案选用了最简单有效的电阻分压的方式调幅,在输出端通过电阻接地,输出信号的幅值取决于电阻分得的电压多少。其最大幅值为电路的输出电压峰值,最小值为0。 RC 串并联网络的频率特性可以表示为 ) 1(311112 1 2 RC RC j RC j R C j R RC j R f Z Z Z U U F ωωωωω-+=++++=+= = ? ? ? 令,1 RC o =ω则上式可简化为) ( 31 ω ωωωO O j F -+ = ? ,以上频率特性可 分别用幅频特性和相频特性的表达式表示如下:

南京理工大学电子线路课程设计(优秀)

南京理工大学 电子线路课程设计 实验报告

摘要 本次实验利用QuartusII7.0软件并采用DDS技术、FPGA芯片和D/A转换器,设计了一个直接数字频率信号合成器,具有频率控制、相位控制、测频、显示多种波形等功能。 并利用QuartusII7.0软件对电路进行了详细的仿真,同时通过SMART SOPC实验箱和示波器对电路的实验结果进行验证。 报告分析了整个电路的工作原理,还分别说明了设计各子模块的方案和编辑、以及仿真的过程。并且介绍了如何将各子模块联系起来,合并为总电路。最后对实验过程中产生的问题提出自己的解决方法。并叙述了本次实验的实验感受与收获。 关键词数字频率信号合成器频率控制相位控制测频示波器 Abstract This experient introduces using QuartusII7.0software, DDS technology,FPGA chip and D/A converter to design a multi—output waveform signal generator in which the frequency and phase are controllable and test frequency,display waveform. It also make the use of software QuartusII7.0 a detailed circuit simulation, and verify the circuit experimental results through SMART SOPC experiment box and the oscilloscope. The report analyzes the electric circuit principle of work,and also illustrates the design of each module and editing, simulation, and the process of using the waveform to testing each Sub module. Meanwhile,it describes how the modules together, combined for a total circuit. Finally the experimental problems arising in the process of present their solutions. And describes the experience and result of this experiment. Keywords multi—output waveform signal- generator frequency controllable phase controllable test frequency oscilloscope 目录

基于AD9850的信号发生器设计_毕业设计

基于AD9850的信号发生器设计 摘要 介绍ADI 公司出品的AD9850 芯片,给出芯片的引脚图和功能。并以单片机 AT89S52 为控制核心设计了一个串行控制方式的正弦信号发生器的可行性方案,给出了单片机AT89S52 与AD9850 连接电路图和调试通过的源程序以供参考。直接数字合成(DDS)是一种重要的频率合成技术,具有分辨率高、频率变换快等优点,在雷达及通讯等领域有着广泛的应用前景。系统采用AD9850为频率合成器,以单片机为进程控制和任务调度的核心,设计了一个信号发生器。实现了输出频率在10Hz~1MHz范围可调,输出信号频率稳定度优于10-3的正弦波、方波和三角波信号。正弦波信号的电压峰峰值V opp能在0~5V范围内步进调节,步进间隔达0.1v,所有输出信号无明显失真,且带负载能力强。该电路设计方案正确可行,频率容易控制,操作简单灵活,且具有广阔的应用前景。 关键词:信号发生器;直接数字频率合成;AD9850芯片;AT89S52单片机

Abstract On the basis of direct digital synthesis(DDS)principle, a signal generator was designed , using AT89S52 single chip machine as control device and adopting AD9850 type DDS device .Hardware design parameters were given .The system can output sine wave ,square wave with wide frequency stability and good waveform .The signal generator has stronger market competitiveness , with wide development prospect ,in frequency modulation technology and radio communication technology fields. Key words: signal generator ;direct digital synthsis;AD9850;AT89S52

函数信号发生器设计报告

函数信号发生器设计报告 一、 设计要求 设计制作能产生正弦波、方波、三角波等多种波形信号输出的波形发生器,具体要求: (1) 输出波形工作频率范围为2HZ ~200KHZ ,且连续可调; (2) 输出频率分五档:低频档:2HZ ~20HZ ;中低频档:20HZ ~200HZ ; 中频档:200HZ ~2KHZ ;中高频档:2KHZ ~20KHZ ;高频档:20KHZ ~200KHZ 。 (3) 输出带LED 指示。 二、 设计的作用、目的 1. 掌握函数信号发生器工作原理。 2. 熟悉集成运放的使用。 3. 熟悉Multisim 软件。 三、 设计的具体实现 3.1函数发生器总方案 采用分立元件,设计出能够产生正弦波、方波、三角波信号的各个单元电路,利用Multisim 仿真软件模拟,调试各个参数,完成单元电路的调试后连接起来,在正弦波产生电路中加入开关控制,选择不同档位的元件,达到输出频率可调的目的。 总原理图:

3.2单元电路设计、仿真 Ⅰ、RC桥式正弦波振荡电路 图1:正弦波发生电路 正弦波振荡器是在只有直流供电、不加外加输入信号的条件下产生正弦波信号的电路。 正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。因此,正弦波产生电路一般包括:放大电路、反馈网络、选频网络、稳幅电路四个部分。根据选频电路回路的不同,正弦波振荡器可分为RC正弦波振荡器、LC正弦波振荡器和石英晶体振荡器。其中,RC正弦波振荡器主要用于产生中低频正弦波,振荡频率一般小于1MHz,满足本次设计要求,故选用RC 正弦波振荡器。

电子线路课程设计am调幅发射机设计报告

电子线路课程设计 总结报告 学生姓名: 可行性,选择适合设计方案,并对设计方案进行必要的论证。本课题以小功率调幅发射机为设计对象,并对其主振级、低频电压放大级、调制级、高频功率放大级进行了详细的设计、论证、调试及仿真,并进行了整机的调试与仿真。设计具体包括以下几个步骤:一般性理论设计、具体电路的选择、根据指标选定合适器件并计算详细的器件参数、用multisim进行设计的仿真、根据仿真结果检验设计指标并进行调整。最后对整个设计出现的问题,和心得体会进行总结。 关键词调幅发射机;振荡器;multisim仿真设计

一、设计内容及要求 (一)设计内容:小功率调幅AM发射机设计 1.确定小功率调幅发射机的设计方案,根据设计指标对既定方案进行理论设计分析, 并给出各单元电路的理论设计方法和实用电路设计细节,其中包括元器件的具体选择、参数调整。 根据设计要求,要求工作频率为10MHz,输出功率为1W,单音调幅系数 m。由于载波频率为10Mhz,大多数振荡器皆可满足,提供了较多的选择且不需要 8.0 = a 倍频。由于输出功率小,因此总体电路具有结构简单,体积较小的特点。其总体电路结构 可分为主振荡电路(载波振荡电路)、缓冲隔离电路、音频放大电路、振幅调制电路、功

(二)单元电路方案论证 1.主振荡电路 主振荡电路是调幅发射机的核心部件,载波的频率稳定度和波形的稳定度直接影响到发射信号的质量,因此,主振荡电路产生的载波信号必须有较高的频率稳定度和较小的波形失真度,主振荡电路可以有四种设计方案:RC正弦波振荡电路、石英晶体振荡电路、三点振荡电路、改进三点式(克拉泼)振荡电路。 2.振幅调制电路 振幅调制电路是小信号调幅发射机的核心组成部分,该单元实现将音频信号加载到载波上以调幅波形式发送出去,振幅调制电路要能保证输出的信号为载波信号的振幅随调制信号线性变化。

基于51单片机的信号发生器设计报告

基于51单片机的信号发生器设计报告 二零一四年十二月十一日

摘要 根据题目要求以及结合实际情况,本文采用一种以AT89C51单片机为核心所构成的波形发生器,可产生方波、三角波、正弦波、锯齿波等多种波形,波形的频率可用程序改变,并可根据需要选择单极性输出或双极性输出,具有线路简单、结构紧凑、性能优越等特点。本设计经过测试,性能和各项指标基本满足题目要求。 关键词:信号发生器 DAC0832芯片 LM358运放 89C51芯片

目录 摘要...................................................................... 目录...................................................................... 第一章绪论................................................................. 1.1单片机概述........................................................... 1.2信号发生器的概述和分类.............................................. 1.3问题重述及要求....................................................... 第二章方案的设计与选择................................................... 2.1方案的比较........................................................... 2.2设计原理 ............................................................. 2.3设计思想 ............................................................. 2.4实际功能 ............................................................. 第三章硬件设计............................................................ 3.1硬件原理框图......................................................... 3.2主控电路 ............................................................. 3.3数、模转换电路....................................................... 3.4按键接口电路......................................................... 3.5时钟电路 ............................................................. 3.6显示电路 ............................................................. 第四章软件设计............................................................ 4.1程序流程图........................................................... 参考文献.................................................................... 附录1 电路原理图 .......................................................... 附录2 源程序............................................................... 附录3 器件清单......................................................

电子线路课程设计报告

石英晶体好坏检测电路设计 设计要求 1. 利用高频电子线路及其先修课程模拟电路的知识设计一个电子线路2.利用该电子线路的要求是要求能够检测石英晶体的好坏 3. 要求设计的该电子线路能够进行仿真 4. 从仿真的结果能够直接判断出该石英晶体的好坏 5. 能够理解该电子线路检测的原理 6. 能够了解该电子线路的应用 成果简介设计的该电子线路能够检测不同频率石英晶体的好坏。当有该石英晶体(又称晶振)的时候,在输出端接上一个示波器能够有正弦波形输出,而当没有 该晶振的时候,输出的是直流,波形是一条直线。所以利用该电路可以在使 用晶振之前对其进行检测。 报告正文 (1)引言: 在高频电子线路中,石英晶体谐振器(也称石英振子)是一个重要的高频部件,它广泛应用于频率稳定性高的振荡器中,也用作高性能的窄带滤波 器和鉴频器。其中石英晶体振荡器就是利用石英晶体谐振器作滤波元件构成 的振荡器,其振荡频率由石英晶体谐振器决定。与LC谐振回路相比,石英晶 体谐振器有很高的标准性,采用品质因数,因此石英晶体振荡器具有较高的 频率稳定度,采用高精度和稳频措施后,石英晶体振荡器可以达到很高的频 率稳定度。正是因为石英晶体谐振器的这一广泛的应用和重要性,所以在选 择石英晶体谐振器的时候,应该选择质量好的。在选择的时候要对该晶振检 测才能够知道它的好坏,所以要设计一个检测石英晶体好坏的电路。 (2)设计内容: 设计该电路的原理如下:

如下图所示,BX为待测石英晶体(又名晶振),插入插座X1、X2,按下按钮SB,如果BX是好的,则由三极管VT1、电容器C1、C2等构成的振荡器工作,振荡信号从VT1发射极输出,经C3耦合到VD2进行检波、C4滤波,变成直流信号电压,送至VT2基极,使VT2导通,发光二极管H发光,指示被测石英晶体是好的。若H不亮,则表明石英晶体是坏的。适当改变C1、C2的容值,即可用于测试不同频率的石英晶体。 图一石英晶体好坏检测电路检测原理图 在上面的电路中,晶振等效于电感的功能,与C1和C2构成电容三点式振荡电路,振荡频率主要由C1、C2和C3以及晶振构成的回路决定。即由晶振电 抗X e 与外部电容相等的条件决定,设外部电容为C L ,则=0,其中C l 是C1、 C2和C3的串联值。 (3)电路调试过程: 首先是电路的仿真过程,该电路的仿真是在EWB软件下进行的,下面是将原图画到该软件后的截图:

信号发生器的设计实现

电子电路综合设计 总结报告 设计选题 ——信号发生器的设计实现 姓名:*** 学号:*** 班级:*** 指导老师:*** 2012

摘要 本综合实验利用555芯片、CD4518、MF10和LM324等集成电路来产生各种信号的数据,利用555芯片与电阻、电容组成无稳态多谐振荡电路,其产生脉冲信号由CD4518做分频实现方波信号,再经低通滤波成为正弦信号,再有积分电路变为锯齿波。此所形成的信号发生器,信号产生的种类、频率、幅值均为可调,信号的种类、频率可通过按键来改变,幅度可以通过电位器来调节。信号的最高频率应该达到500Hz以上,可用的频率应三个以上,T,2T,3T或T,2T,4T均可。信号的种类应三种以上,必须产生正弦波、方波,幅度可在1~5V之间调节。在此过程中,综合的运用多科学相关知识进行了初步工程设计。

设计选题: 信号发生器的设计实现 设计任务要求: 信号发生器形成的信号产生的种类、频率、幅值均为可调,信号的种类、频率可通过按键来改变,幅度可以通过电位器来调节。信号的最高频率应该达到500Hz以上,可用的频率应三个以上,T,2T,3T 或T,2T,4T均可。信号的种类应三种以上,必须产生正弦波、方波,幅度可在1~5V之间调节。 正文 方案设计与论证 做本设计时考虑了三种设计方案,具体如下: 方案一 实现首先由单片机通过I/O输出波形的数字信号,之后DA变换器接受数字信号后将其变换为模拟信号,再由运算放大器将DA输出的信号进行放大。利用单片机的I/O接收按键信号,实现波形变换、频率转换功能。

基本设计原理框图(图1) 时钟电路 系统的时钟采用内部时钟产生的方式。单片机内部有一个用于构成振荡器的高增益反相放大器,该高增益反相放大器的输入端为芯片引脚XTAL1,输出端为引脚XTAL2。这两个引脚跨接石英晶体振荡器和微调电容,就构成一个稳定的自激振荡器。晶振频率为11.0592MHz,两个配合晶振的电容为33pF。 复位电路 复位电路通常采用上电自动复位的方式。上电自动复位是通过外部复位电路的电容充电来实现的。 程序下载电路 STC89C51系列单片机支持ISP程序下载,为此,需要为系统设计ISP下载电路。系统采用MAX232来实现单片机的I/O口电平与RS232接口电平之间的转换,从而使系统与计算机串行接口直接通信,实现程序下载。 方案一的特点: 方案一实现系统既涉及到单片机及DA、运放的硬件系统设计,

湖北大学物电学院电子线路课程设计题目

电子线路课程设计选题列表 一、步进电机控制器的设计..................... 2刘 二、V-I变换电路与I-V变换电路的设计.......... 4周 三、路灯控制器的设计......................... 5田 四、多点温度监控系统的设计................... 6田 五、采用BOOST电路设计一款DC-DC变换器 (7) 六、高精度智能电阻测量仪 (8) 七、高效LED灯驱动电源 (9) 八、小功率数控直流电压源的设计.............. 10余 九、小功率数控电流源的设计.................. 11余 十、程控正弦波小信号放大器.................. 12周十一、音频功率放大器.. (13) 十二、调频无线话筒设计...................... 14周十三简易无线遥控系统设计.. (15) 十四 RC有源滤波器的设计.................... 16刘十五宽带功率放大器的设计.. (17)

一、步进电机控制器的设计 设计说明: 定子上绕制了A 、B 、C 三相线圈。 产生磁场吸引转子转动,每次转动的 角度称为步距。根据三相绕组所加脉 冲的方式不同而产生不同的步距,其 中三相三拍方式的步距为3 °,三相 六拍方式为1.5°。根据不同的信号 频率形成不同的转速。由三相脉冲加 入的不同相序形成正转或反转。 步进电机几个工作方式和对应的 脉冲序列: 三相三拍正转(步距3°) A B C 三相三拍反转(步距3°) A B C A B C → A → AB → B → BC → C → CA → 三相六拍正转(步距1.5°) ← A ← AB ← B ← BC ← C ← CA ← 三相六拍反转(步距1.5°) A B C

信号发生器课程设计报告

目录 一、课题名称 (2) 二、内容摘要 (2) 三、设计目的 (2) 四、设计内容及要求 (2) 五、系统方案设计 (3) 六、电路设计及原理分析 (4) 七、电路仿真结果 (7) 八、硬件设计及焊接测试 (8) 九、故障的原因分析及解决方案 (11) 十、课程设计总结及心得体会 (12)

一、课题名称:函数信号发生器的设计 二、内容摘要: 函数信号发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。它可以产生多种波形信号,如正弦波,三角波,方波等,因而此次课程设计旨在运用模拟电子技术知识来制作一个能同时输出正弦波、方波、三角波的信号发生器。 三、设计目的: 1、进一步掌握模拟电子技术知识的理论知识,培养工程设计能力和综合分析能力、解决问题的能力。 2、基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力。 3、学会运用Multisim仿真软件对所做出来的理论设计进行仿真测试,并能进一步解决出现的基本问题,不断完善设计。 4、掌握常用元器件的识别和测试,熟悉万用表等常用仪表,了解电路调试的基本方法,提高实际电路的分析操作能力。 5、在仿真结果的基础上,实现实际电路。 四、设计内容及要求: 1、要求完成原理设计并通过Multisim软件仿真部分 (1)RC桥式正弦波产生电路,频率分别为300Hz、1KHz、10KHz、500KHz,输出幅值300mV~5V可调、负载1KΩ。 (2)占空比可调的矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。 (3)占空比可调的三角波电路,频率1KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。 (4)多用信号源产生电路,分别产生正弦波、方波、三角波,频率范围

电子线路课程设计

电子线路课程设计总结报告 学生姓名: 学号: 专业:电子信息工程 班级:电子112班 报告成绩: 评阅时间: 教师签字: 河北工业大学信息学院 2014年2月

课题名称:小功率调幅AM发射机设计 内容摘要:小功率调幅发射机调幅简便,调制所占的频带窄,并且与之对应的调幅接收设备简单常用于通信系统和其它无线电系统中,特别是在中短波广播通信的领域里更是得到了广泛应用。本课程设计的目的即设计一个小功率调幅发射机并使之满足相应的技术指标。让学生综合运用高频电子线路知识,进行实际高频系统的设计、安装和调测,利用相关软件进行电路设计,提高综合应用知识的能力、分析解决问题的能力和电子技术实践技能,让学生了解高频电子通信技术在工业生产领域的应用现状和发展趋势。为今后从事电子技术领域的工程设计打好基础。通过设计主振器,缓冲器,音频放大器,调幅电路最终组成小功率调幅发射机。主振器是用来产生频率稳定的高频载波信号。高频放大器是将高频振荡载波信号放大到足够大得强度。高频功率放大器及调制器是将低频放大器输出的信号调制到载波上,同时完成末级功放。 一、设计内容及要求 1、内容:设计一个小功率调幅AM发射机 2、要求: 发射机工作频率f0=10MHz;发射功率Po大于等于200mW;负载电阻Ra=50Ω;输出信号带宽9kHz平均调幅系数ma大于等于30%,单音调幅系数ma=0.8;发射效率η大于等于50%;残波辐射小于等于40dB; 二、方案选择及系统框图 1、方案选择 低频小功率调幅发射机是将待传送的音频信号通过一定的方式调制到高频载波信号上,放大到额定的功率,然后利用天线以电磁波的方式发射出去,覆盖一定的范围。可选用最基本的发射机结构,系统框图如下图所示,由主振级、高频放大器、音频放大器、高电平调幅电路、缓冲电路结构组成。 (1)主振器 主振器就是高频振荡器,根据载波频率的高低、频率稳定度来确定电路型式。电容三点式振荡器的输出波形比电感三点式振荡器的输出波形好。这是因为电容三点式振荡器中,反馈是由电容产生的,高次谐波在电容上产生的反馈压降较小,输出中高频谐波小;而在电感三点式振荡器中,反馈是由电感产生的,高次谐波在电感上产生的反馈压降较大。另外,电容三点式振荡器最高工作频率一般比电感三点式振荡器的高。 主要原因是在电感三点式振荡器中,晶体管的极间电容与回路电感相并联,在频率高时可能改变电抗的性质;在电容三点式振荡器中,极间电容与电容并联,频率变化不改变电抗的性质。因此振荡器的电路型式一般采用电容三点式。在频率稳定度要求不高的情况下,可以采用普通三点式电路、克拉泼电路、西勒电路。频率稳定度要求高的情况下,可以采用晶体振荡器,也可以采用单片集成振荡电路。本电路采用克拉拨振荡器;

函数信号发生器设计方案

函数信号发生器的设 计与制作 目录 一.设计任务概述 二.方案论证与比较 三.系统工作原理与分析 四.函数信号发生器各组成部分的工作原理 五.元器件清单 六.总结 七.参考文献

函数信号发生器的设计与制 一.设计任务概述 (1)该发生器能自动产生正弦波、三角波、方波。 (2)函数发生器以集成运放和晶体管为核心进行设计 (3)指标: 输出波形:正弦波、三角波、方波 频率范围:1Hz~10Hz,10Hz~100Hz 输出电压:方波VP-P≤24V,三角波VP-P=8V,正弦波VP-P>1V; 二、方案论证与比较 2.1·系统功能分析 本设计的核心问题是信号的控制问题,其中包括信号频率、信号种类以及信号强度的控制。在设计的过程中,我们综合考虑了以下三种实现方案: 2.2·方案论证 方案一∶采用传统的直接频率合成器。这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。 方案二∶采用锁相环式频率合成器。利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需要频率上。这种频率合成器具有很好的窄带跟踪特性,可以很好地选择所需要频率信号,抑制杂散分量,并且避免了量的滤波器,有利于集成化和小型化。但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。而且,由模拟方法合成的正弦波的参数,如幅度、频率相信都很难控制。 方案三:采用8038单片压控函数发生器,8038可同时产生正弦波、方波和三角波。改变8038的调制电压,可以实现数控调节,其振荡范围为0.001Hz~300K 方案四:采用分立元件设计出能够产生3种常用实验波形的信号发生器,并确定了各元件的参数,通过调整和模拟输出,该电路可产生频率低于1-10Hz的3种信号输出,具有原理简单、结构清晰、费用低廉的优点。该电路已经用于实际电路的实验操作。 三、系统工作原理与分析 采用由集成运算放大器与场效应管共同组成的方波—三角波—正弦波函数发生器的设计方法,先通过比较器产生方波,再通过积分器产生三角波,最后通过场效应管正弦波转换电路形成正弦波,波形转换原理图如下:

电子线路课程设计报告

《电子线路课程设计报告》 系别:自动化 专业班级:电气专1001 学生姓名:龙仁涛 指导教师:梁宗善 (课程设计时间:2012 年1 月4 日——2012 年1 月10 日) 华中科技大学武昌分校

目录 1. 课程设计目的 (3) 2. 课程设计题目描述和要求 (3) 3. 比较和选定设计的系统方案 (4) 4. 单元电路设计及工作原理 (5) 5. 调试过程及分析 (13) 6. 课程设计总结 (14) 7.参考文献 (15) 8.附件一:系统完整电路图 (16) 9. 附件二:各单元电路关键点实测波形图 (17) 10. 附件二:系统所需元器件清单 (18) (要求:目录题头用三号黑体字居中,隔行书写目录内容。目录中各级题序及标题用小四号黑体)

一.课程设计目的 《电子线路课程设计》主要目的是培养学生理论联系实际,综合运用模拟电路、数字电路、电子测试与实验等课程知识,掌握电路设计、组装、调试的综合能力,受到一次比较全面的训练。同时通过独立完成课程设计使学生拓宽知识面,进一步加强电路设计、计算、熟练使用仪器测试分析故障以及编写设计报告的能力,为全面提高学生的工程设计能力与创新精神打下良好基础。 二.课程设计题目描述和要求 1.课程设计题目描述 数字频率计的设计 采用专用集成电路和多片中小规模集成电路及数码显示器件等,设计一个测量频率范围1H Z~9999H Z,以及可将频率范围扩大10倍、扩大100倍的数字频率计。设计出逻辑电路图,在实验板上完成组装、调试。 主要内容: ①振荡器电路设计。 ②分频器电路设计。 ③计数、锁存、译码显示电路的设计。 ④计数锁存控制电路的设计。 ⑤门控、闸门电路的设计。 ⑥波形整形电路的设计。 ⑦频率范围扩展电路设计。 2.课程设计要求 ①明确学习目的,端正学习态度,提高对课程设计重要性的认识,以积极认真的态度参加课程设计工作,按要求完成规定的设计任务。 ②端正设计思想,严肃工作作风,提高对所学知识的应用和分析能力、解决问题的能力,培养独立思考、刻苦钻研和创新的精神。 ③严格遵守纪律,必须按规定的时间完成设计。

函数信号发生器设计报告

函数信号发生器设计报告 目录 一、设计要求 .......................................................................................... - 2 - 二、设计的作用、目的 .......................................................................... - 2 - 三、性能指标 .......................................................................................... - 2 - 四、设计方案的选择及论证 .................................................................. - 3 - 五、函数发生器的具体方案 .................................................................. - 4 - 1. 总的原理框图及总方案 ................................................................. - 4 - 2.各组成部分的工作原理 ................................................................... - 5 - 2.1 方波发生电路 .......................................................................... - 5 - 2.2三角波发生电路 .................................................................... - 6 - 2.3正弦波发生电路 .................................................................. - 7 - 2.4方波---三角波转换电路的工作原理 ................................ - 10 - 2.5三角波—正弦波转换电路工作原理 .................................. - 13 - 3. 总电路图 ....................................................................................... - 15 - 六、实验结果分析 ................................................................................ - 16 - 七、实验总结 ........................................................................................ - 17 - 八、参考资料 ........................................................................................ - 18 - 九、附录:元器件列表 ........................................................................ - 19 -

相关主题
文本预览
相关文档 最新文档