当前位置:文档之家› 万有引力与航天 复习教案

万有引力与航天 复习教案

万有引力与航天 复习教案
万有引力与航天 复习教案

第六章 万有引力与航天 复习教案

★新课标要求

1、理解万有引力定律的内容和公式。

2、掌握万有引力定律的适用条件。

3、了解万有引力的“三性”,即:①普遍性②相互性 ③宏观性

4、掌握对天体运动的分析。 ★复习重点

万有引力定律在天体运动问题中的应用 ★教学难点

宇宙速度、人造卫星的运动

★教学方法:复习提问、讲练结合。 ★教学过程

(一)投影全章知识脉络,构建知识体系

(二)本章要点综述 1、开普勒行星运动定律

第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 第二定律:对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。即:

3

2a k T

= 比值k 是一个与行星无关的常量。 2、万有引力定律

(1)开普勒对行星运动规律的描述(开普勒定律)为万有引力定律的发现奠定了基础。 (2)万有引力定律公式:

122

m m F G

r

=,1122

6.6710/G N m kg -=?? (3)万有引力定律适用于一切物体,但用公式计算时,注意有一定的适用条件。 3、万有引力定律在天文学上的应用。 (1)基本方法:

周期定律

开普勒行星运动定律 轨道定律 面积定律 发现 万有引力定律 表述 G 的测定 天体质量的计算 发现未知天体

人造卫星、宇宙速度 应用 万有引力定律

①把天体的运动看成匀速圆周运动,其所需向心力由万有引力提供:2

22Mm v G m

m r r r

ω== ②在忽略天体自转影响时,天体表面的重力加速度:2M

g G R

=,R 为天体半径。

(2)天体质量,密度的估算。

测出环绕天体作匀速圆周运动的半径r ,周期为T ,由2

224Mm G m r r T

π=得被环绕天体的质量

为2324r M GT π=,密度为3

22

3M r V GT R πρ==,R 为被环绕天体的半径。

当环绕天体在被环绕天体的表面运行时,r =R ,则2

3GT π

ρ=。

(3)环绕天体的绕行速度,角速度、周期与半径的关系。

①由2

2Mm v G m r r

=得v =∴r 越大,v 越小

②由2

2

Mm G

m r

r ω=得ω=∴r 越大,ω越小

③由2224Mm G m r r T π=得T =∴r 越大,T 越大

(4)三种宇宙速度

①第一宇宙速度(地面附近的环绕速度):v 1=s ,人造卫星在地面附近环绕地球作匀速圆周运动的速度。

②第二宇宙速度(地面附近的逃逸速度):v 2=s ,使物体挣脱地球束缚,在地面附近的最小发射速度。

③第三宇宙速度:v 3=s ,使物体挣脱太阳引力束缚,在地面附近的最小发射速度。 (三)本章专题剖析

1、测天体的质量及密度:(万有引力全部提供向心力)

由r T m r Mm G 2

22??

? ??=π 得2

324GT r M π= 又ρπ?=3

34R M 得3

233R GT r πρ=

【例1】继神秘的火星之后,今年土星也成了全世界关注的焦点!经过近7年亿公里在太空中

风尘仆仆的穿行后,美航空航天局和欧航空航天局合作研究的“卡西尼”号土星探测器于美国东部时间6月30日(北京时间7月1日)抵达预定轨道,开始“拜访”土星及其卫星家族。这是人类首次针对土星及其31颗已知卫星最详尽的探测!若“卡西尼”号探测器进入绕土星飞行的轨道,在半径为R 的土星上空离土星表面高h 的圆形轨道上绕土星飞行,环绕n 周飞行时间为t 。试计算土星的质量和平均密度。

解析:设“卡西尼”号的质量为m ,土星的质量为M . “卡西尼”号围绕土星的中心做匀速圆周运动,其向心力由万有引力提供.

22

)2)(()(T h R m h R Mm G

π+=+,其中n

t

T =, 所以:2

3

22)(4Gt

h R n M +=π. 又3

3

4R V π=, 3

232)(3R Gt h R n V M +??==πρ 2、行星表面重力加速度、轨道重力加速度问题:(重力近似等于万有引力)

表面重力加速度:2

002R GM

g mg R Mm G

=∴=Θ 轨道重力加速度:()()

2

2h R GM

g mg h R GMm h h +=∴=+Θ 【例2】一卫星绕某行星做匀速圆周运动,已知行星表面的重力加速度为g 0,行星的质量M 与

卫星的质量m 之比M /m=81,行星的半径R 0与卫星的半径R 之比R 0/R =,行星与卫星之间的距离r 与行星的半径R 0之比r /R 0=60。设卫星表面的重力加速度为g ,则在卫星表面有

mg r

GMm =2

……

经过计算得出:卫星表面的重力加速度为行星表面的重力加速度的1/3600。上述结果是否正确?若正确,列式证明;若有错误,求出正确结果。 解析:题中所列关于g 的表达式并不是卫星表面的重力加速度,而是卫星绕行星做匀速圆周运动的向心加速度。正确的解法是 卫星表面

2

R Gm =g 行星表面

2

R GM

=g 0 即20)(R R M m =0g g 即g =。 3、人造卫星、宇宙速度:

宇宙速度:(弄清第一宇宙速度与卫星发射速度的区别)

【例3】将卫星发射至近地圆轨道1(如图所示),然后再次点火,

将卫星送入同步轨道3。轨道1、2相切于Q 点,2、3相切于P

点,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:

A .卫星在轨道3上的速率大于轨道1上的速率。

B .卫星在轨道3上的角速度大于在轨道1上的角速度。

C .卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度。

D .卫星在轨道2上经过P 点的加速度等于它在轨道3上经过P 点时的加速度。

解:由2

2Mm mv G r r

=

得v =

而v r ω=

= 轨道3的半径比1的大,故A 错B 对,

“相切”隐含着切点弯曲程度相同,即卫星在切点时两

P

轨道瞬时运行半径相同,又2

GM

a r =

,故C 错D 对。 4、双星问题:

【例4】两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。现测得两星中心距离为R ,其运动周期为T ,求两星的总质量。

解析:设两星质量分别为M 1和M 2,都绕连线上O 点作周期为T 的圆周运动,星球1和星球2到O 的距离分别为l 1和l 2。由万有引力定律和牛顿第二定律及几何条件可得

对M 1:G 22

1R

M M =M 1(T

π2)2 l 1 ∴M 2=21224GT

l R π

对M 2:G

2

21R

M M =M 2(

T

π2)2

l 2 ∴M 1=2

2224GT

l R π

两式相加得M 1+M 2=

2

224GT

R π(l 1+l 2)=

2

324GT

R π。

5、有关航天问题的分析:

【例5】无人飞船“神州二号”曾在离地高度为H =3. 4?105

m 的圆轨道上运行了47小时。求

在这段时间内它绕行地球多少圈?(地球半径R =?,重力加速度g =s 2

解析:用r 表示飞船圆轨道半径r =H + R ==6. 71?106

m 。

M 表示地球质量,m 表示飞船质量,ω表示飞船绕地球运行的角速度,G 表示万有引力常数。由万有引力定律和牛顿定律得r m r GMm 22

ω=

利用G

2R M

=g 得

32

r gR =ω2

由于ω=

T

π

2,T 表示周期。解得 T =R r π2g

r ,又n =T t 代入数值解得绕行圈数为n =31。

(四)针对训练

1.利用下列哪组数据,可以计算出地球质量:( ) A .已知地球半径和地面重力加速度

B .已知卫星绕地球作匀速圆周运动的轨道半径和周期

C .已知月球绕地球作匀速圆周运动的周期和月球质量

D .已知同步卫星离地面高度和地球自转周期 2.“探路者”号宇宙飞船在宇宙深处飞行过程中,发现A 、B 两颗天体各有一颗靠近表面飞行的卫星,并测得两颗卫星的周期相等,以下判断错误的是 A .天体A 、B 表面的重力加速度与它们的半径成正比 B .两颗卫星的线速度一定相等 C .天体A 、B 的质量可能相等 D .天体A 、B 的密度一定相等

3.已知某天体的第一宇宙速度为8 km/s ,则高度为该天体半径的宇宙飞船的运行速度为 A .22km/s B .4 km/s

C .42 km/s

D .8 km/s

4.2002年12月30日凌晨,我国的“神舟”四号飞船在酒泉载人航天发射场发射升空,按预

定计划在太空飞行了6天零18个小时,环绕地球108圈后,在内蒙古中部地区准确着陆,圆满完成了空间科学和技术试验任务,为最终实现载人飞行奠定了坚实基础.若地球的质量、半径和引力常量G均已知,根据以上数据可估算出“神舟”四号飞船的

A.离地高度

B.环绕速度

C.发射速度

D.所受的向心力

5.(1998年全国卷)宇航员站在某一星球表面上的某高处,沿水平方向抛出一小球。经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为L。若抛出时的初速度增大到2

倍,则抛出点与落地点之间的距离为3L。已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G。求该星球的质量M。

6.(2004年全国理综第23题,16分)在勇气号火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来。假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h,速度方向是水平的,速度大小为v0,求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力。已知火星的一个卫星的圆轨道的半径为r,周期为T。火星可视为半径为r0的均匀球体。

第六章万有引力与航天复习教案答案:

1.A B 2.B 3.C 4.AB

5.解析:设抛出点的高度为h,第一次平抛的水平射程为x,则有

x 2+y 2=L 2 (1) 由平抛运动的规律得知,当初速度增大到2倍,其水平射程也增大到2x ,可得

(2x )2+h 2=(3L )2 (2) 由以上两式解得h=

3

L (3)

设该星球上的重力加速度为g ,由平抛运动的规律得h=2

1gt 2

(4) 由万有引力定律与牛顿第二定律得

mg R GMm

=2

(式中m 为小球的质量) (5) 联立以上各式得:2

2

332Gt

LR M =。 点评:显然,在本题的求解过程中,必须将自己置身于该星球上,其实最简单的办法是把地球当作该星球是很容易身临其境的了。

6.以g '表示火星表面附近的重力加速度,M 表示火星的质量,m 表示火星的卫星的质量,m '表示火星表面出某一物体的质量,由万有引力定律和牛顿第二定律,有

g m r m M G

''='

20 ① r T m r Mm G 22)2(π

= ②

设v 表示着陆器第二次落到火星表面时的速度,它的竖直分量为v 1,水平分量仍为v 0,有

h g v '=221 ③

2

021v v v += ④

由以上各式解得

202

2328v r T hr v +=π ⑤

2021-2022年高考物理二轮专题突破专题三力与物体的曲线运动2万有引力与航天导学案

2021年高考物理二轮专题突破专题三力与物体的曲线运动2万有引力与航 天导学案 一、知识梳理 1.在处理天体的运动问题时,通常把天体的运动看成是 运动,其所需要的向心 力由 提供.其基本关系式为G Mm r 2=m v 2r =mω2r =m (2π T )2r =m (2πf )2r . 在天体表面,忽略自转的情况下有G Mm R 2=mg . 2.卫星的绕行速度v 、角速度ω、周期T 与轨道半径r 的关系 (1)由G Mm r 2=m v 2 r ,得v = ,则r 越大,v 越小. (2)由G Mm r 2=mω2r ,得ω= ,则r 越大,ω越小. (3)由G Mm r 2=m 4π2 T 2r ,得T = ,则r 越大,T 越大. 3.卫星变轨 (1)由低轨变高轨,需增大速度,稳定在高轨道上时速度比在低轨道 . (2)由高轨变低轨,需减小速度,稳定在低轨道上时速度比在高轨道 . 4.宇宙速度 (1)第一宇宙速度: 推导过程为:由mg =mv 21 R =GMm R 2得: v 1= = = km/s. 第一宇宙速度是人造卫星的 速度,也是人造地球卫星的 速度. (2)第二宇宙速度:v 2= km/s ,使物体挣脱 引力束缚的最小发射速度.

(3)第三宇宙速度:v3= km/s,使物体挣脱引力束缚的最小发射速度. (二)规律方法 1.分析天体运动类问题的一条主线就是F万=F向,抓住黄金代换公式GM= . 2.确定天体表面重力加速度的方法有: (1)测重力法; (2)单摆法; (3) (或竖直上抛)物体法; (4)近地卫星法. 二、题型、技巧归纳 高考题型一万有引力定律及天体质量和密度的求解 【例1】过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51pegb”的发现拉开了研究太阳系外行星的序幕,“51pegb”绕其中心恒星做匀速圆周运动,周期约为4天, 轨道半径约为地球绕太阳运动半径的1 20 ,该中心恒星与太阳的质量比约为( ) A.1 10 B.1 C.5 D.10 高考预测1 到目前为止,火星是除了地球以外人类了解最多的行星,已经有超过30枚探测器到达过火星,并发回了大量数据.如果已知万有引力常量为G,根据下列测量数据,能够得出火星密度的是( ) A.发射一颗绕火星做匀速圆周运动的卫星,测出卫星的轨道半径r和卫星的周期T B.测出火星绕太阳做匀速圆周运动的周期T和轨道半径r

高一物理新教材新习题专题六:万有引力与宇宙航行

高一物理复习专题六:万有引力与宇宙航行 【行星的运动】 1. 地球公转轨道的半径在天文学上常用来作为长度单位,叫作天文单位,用来量度太阳系内天体与太阳的距离。(这只是个粗略的说法。在天文学中,“天文单位”有严格的定义,用符号AU表示。)已知火星公转的轨道半径是1.5 AU,根据开普勒第三定律,火星公转的周期是多少个地球日? 2. 开普勒行星运动定律不仅适用于行星绕太阳的运动,也适用于卫星绕行星的运动。如果一颗人造地球卫星沿椭圆轨道运动,它在离地球最近的位置(近地点)和最远的位置(远地点),哪点的速度比较大? 3. 在力学中,有的问题是根据物体的运动探究它受的力,有的问题则是根据物体所受的力推测它的运动。这一节的讨论属于哪一种情况?你能从过去学过的内容或做过的练习中各找出一个例子吗? 4. 对于这三个等式来说,有的可以在实验室中验证,有的则不能,这个无法在实验室验证的规律是怎么得到的? 【万有引力定律】 1.既然任何物体间都存在着引力,为什么当两个人接近时他们不会吸在一起?我们通常分析物体的受力时是否需要考虑物体间的万有引力?请你根据实际情况,应用合理的数据,通过计算说明以上两个问题。 2. 你在读书时,与课桌之间有万有引力吗?如果有,试估算一下这个力的大小,它的方向如何? 3.大麦哲伦云和小麦哲伦云是银河系外离地球最近的星系(很遗憾,在北半球看不见)。大麦哲伦云的质量为太阳质量的1010倍,即2.0×1040 kg,小麦哲伦云的质量为太阳质量的109倍,两者相距5×104光年,求它们之间的引力。 4.太阳质量大约是月球质量的2.7×107倍,太阳到地球的距离大约是月球到地球距离的3.9×102倍,试比较太阳和月球对地球的引力。 5. 木星有4颗卫星是伽利略发现的,称为伽利略卫星,其中三颗卫星的周期之比为1∶2∶4。小华同学打算根据万有引力的知识计算木卫二绕木星运动的周期,她收集到了如下一些数据。木卫二的数据:质量4.8×1022 kg、绕木星做匀速圆周运动的轨道半径 6.7×108 m。 木星的数据:质量1.9×1027 kg、半径7.1×107 m、自转周期9.8 h。 但她不知道应该怎样做,请你帮助她完成木卫二运动周期的计算。

(完整版)万有引力与航天重点知识归纳及经典例题练习

第五讲 万有引力定律重点归纳讲练 知识梳理 考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 (3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式: k T a =23 。其中k 值与太阳有关,与行星无关。 (4) 推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星旋转时,k T a =2 3 ,但k 值不同,k 与行星有关,与卫星无关。 (5) 中学阶段对天体运动的处理办法: ①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k T R =2 3 ,R ——轨道半径。 2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。 (2) 公式:2 21r m m G F =,G 叫万有引力常量,2211 /10 67.6kg m N G ??=-。 (3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。 (4) 两个物体间的万有引力也遵循牛顿第三定律。 3. 万有引力与重力的关系 (1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。 ①在赤道上,F=F 向+mg ,即R m R Mm G mg 22 ω-=; ②在两极F=mg ,即mg R Mm G =2 ;故纬度越大,重力加速度越大。 由以上分析可知,重力和重力加速度都随纬度的增加而增大。 (2) 物体受到的重力随地面高度的变化而变化。在地面上,2 2 R GM g mg R Mm G =?=;在地球表面高度为h 处: 22)()(h R GM g mg h R Mm G h h +=?=+,所以g h R R g h 2 2 ) (+=,随高度的增加,重力加速度减小。 考点二、万有引力定律的应用——求天体质量及密度 1.T 、r 法:2 3 2224)2(GT r M T mr r Mm G ππ=?=,再根据3 23 33,34R GT r V M R V πρρπ=?== ,当r=R 时,2 3GT πρ= 2.g 、R 法:G g R M mg R Mm G 22 = ?=,再根据GR g V M R V πρρπ43,3 43=?== 3.v 、r 法:G rv M r v m r Mm G 2 22 =?=

万有引力与航天试题附答案

万有引力与航天单元测试题 一、选择题 1.关于日心说被人们接受的原因是( ) A.太阳总是从东面升起,从西面落下 B.若以地球为中心来研究的运动有很多无法解决的问题 C.若以太阳为中心许多问题都可以解决,对行星的描述也变得简单 D.地球是围绕太阳运转的 2.有关开普勒关于行星运动的描述,下列说法中正确的是( ) A.所有的行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上 B.所有的行星绕太阳运动的轨道都是圆,太阳处在圆心上 C.所有的行星轨道的半长轴的三次方跟公转周期的二次方的比值都相等 D.不同的行星绕太阳运动的椭圆轨道是不同的 3.关于万有引力定律的适用范围,下列说法中正确的是( ) A.只适用于天体,不适用于地面物体 B.只适用于球形物体,不适用于其他形状的物体 C.只适用于质点,不适用于实际物体D.适用于自然界中任意两个物体之间 4.已知万有引力常量G,要计算地球的质量还需要知道某些数据,现在给出下列各组数据,可以计算出地球质量的是( ) A.地球公转的周期及半径B.月球绕地球运行的周期和运行的半径 C.人造卫星绕地球运行的周期和速率D.地球半径和同步卫星离地面的高度 5.人造地球卫星由于受大气阻力,轨道半径逐渐变小,则线速度和周期变化情况是( ) A.速度减小,周期增大,动能减小B.速度减小,周期减小,动能减小 C.速度增大,周期增大,动能增大D.速度增大,周期减小,动能增大 6.一个行星,其半径比地球的半径大2倍,质量是地球的25倍,则它表面的重力加速度是地球表面重力加速度的( ) A.6倍B.4倍C.25/9倍D.12倍 7.假如一个做圆周运动的人造卫星的轨道半径增大到原来的2倍仍做圆周运动,则( )

2021高考物理一轮复习第4章曲线运动万有引力与宇宙航行第3讲圆周运动及其应用学案.doc

第3讲圆周运动及其应用 知识点匀速圆周运动、角速度、线速度、向心加速度Ⅰ 匀速圆周运动的向心力Ⅱ1.匀速圆周运动 (1)定义:线速度大小01不变的圆周运动。 (2)性质:加速度大小02不变,方向总是指向03圆心的变加速曲线运动。 (3)04垂直且指向圆心的合外力。 2.描述圆周运动的物理量 描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,具体如下: 定义、意义公式、单位 线速度①描述做圆周运动的物体沿圆弧运动05快 慢的物理量(v) ②是矢量,方向和半径垂直,沿切线方向 ①v= Δl Δt =06 2πr T ②单位:07m/s 角速度描述物体绕圆心08转动快慢的物理量(ω)①ω= Δθ Δt =09 2π T ②单位:10rad/s 周期和转速①周期是物体沿圆周运动11一周的时间 (T) ②转速是物体单位时间转过的12圈数(n), 也叫频率(f) ①T= 2πr v =13 2π ω ,单位:s ②f=14 1 T ,单位:15Hz ③n的单位:16r/s、 17r/min 向心加速度①描述速度18方向变化19快慢的物理量 (a n) ②方向20指向圆心,时刻在变 ①a n=21 v2 r =22rω2 ②单位:23m/s2 向心力①作用效果是产生向心加速度,只改变线速 度的24方向,不改变线速度的25大小(F n) ②方向指向26圆心,时刻在变 ③来源:某个力,或某几个力的合力,或某 ①F n=27mω2r= 28m v2 r ②单位:29N

个力的分力 相互关 系 ①v=rω= 2πr T =2πrf ②a n= v2 r =rω2=ωv= 4π2r T2 =4π2f2r ③F n=m v2 r =mrω2=mωv=m 4π2r T2 =4mπ2f2r 3.探究向心力大小与半径、角速度、质量的关系 (1)实验仪器:向心力演示器(如图),三个金属球(半径相同,其中两个为质量相同的钢球,另一个为质量是钢球一半的铝球)。 (2)实验原理 如图所示,匀速转动手柄,可以使塔轮、长槽和短槽匀速转动,槽内的小球也就随之做匀速圆周运动。这时,小球向外挤压挡板,挡板对小球的反作用力提供了小球做匀速圆周运动的向心力。同时,小球压挡板的力使挡板另一端横臂压缩弹簧测力套筒里的弹簧,弹簧被压缩的格数可以从标尺上读出,格数比显示了两金属球向心力大小之比。 (3)实验过程 控制变量探究内容 m、r相同,改变ω探究向心力F与30角速度ω的关系 m、ω相同,改变r 探究向心力F与31半径r的关系 ω、r相同,改变m 探究向心力F与32质量m的关系 知识点匀速圆周运动与非匀速圆周运动Ⅰ 匀速圆周运动非匀速圆周运动 运动 特点 线速度的大小01不变,角速度、周期和频 率都02不变,向心加速度的大小03不变 线速度的大小、方向都04变,角速度 05变,向心加速度的大小、方向都变, 周期可能变也06可能不变

2017-2018学年高中物理第六章万有引力与航天习题课2变轨问题双星问题教学案新人教版必修2

习题课2 变轨问题双星问题 [学习目标] 1.理解赤道物体、同步卫星和近地卫星的区别.2.会分析卫星(或飞船)的变轨问题.3.掌握双星的运动特点及其问题的分析方法. 一、“赤道上物体”“同步卫星”和“近地卫星”的比较 例1如图1所示,A为地面上的待发射卫星,B为近地圆轨道卫星,C为地球同步卫星.三颗卫星质量相同,三颗卫星的线速度大小分别为v A、v B、v C,角速度大小分别为ωA、ωB、ωC,周期分别为T A、T B、T C,向心加速度分别为a A、a B、a C,则( ) 图1 A.ωA=ωC<ωB B.T A=T Ca B 答案 A 解析同步卫星与地球自转同步,故T A=T C,ωA=ωC,由v=ωr及a=ω2r得 v C>v A,a C>a A 同步卫星和近地卫星,根据GMm r2 =m v2 r =mω2r=m 4π2 T2 r=ma,知v B>v C,ωB>ωC,T Ba C. 故可知v B>v C>v A,ωB>ωC=ωA,T B

a B >a C >a A .选项A 正确,B 、C 、D 错误. 同步卫星、近地卫星、赤道上物体的比较 1.同步卫星和近地卫星 相同点:都是万有引力提供向心力 即都满足GMm r 2=m v 2r =mω2 r =m 4π2 T 2r =ma n . 由上式比较各运动量的大小关系,即r 越大,v 、ω、a n 越小,T 越大. 2.同步卫星和赤道上物体 相同点:周期和角速度相同 不同点:向心力来源不同 对于同步卫星,有 GMm r 2=ma n =mω2 r 对于赤道上物体,有 GMm r 2=mg +mω2 r , 因此要通过v =ωr ,a n =ω2 r 比较两者的线速度和向心加速度的大小. 针对训练1 (多选)关于近地卫星、同步卫星、赤道上的物体,以下说法正确的是( ) A.都是万有引力等于向心力 B.赤道上的物体和同步卫星的周期、线速度、角速度都相等 C.赤道上的物体和近地卫星的线速度、周期不同 D.同步卫星的周期大于近地卫星的周期 答案 CD 解析 赤道上的物体是由万有引力的一个分力提供向心力,A 项错误;赤道上的物体和同步卫星有相同周期和角速度,但线速度不同,B 项错误;同步卫星和近地卫星有相同的中心天 体,根据GMm r 2=m v 2r =m 4π2 T 2r 得v = GM r ,T =2π r 3 GM ,由于r 同>r 近,故v 同T 近,D 项正确;赤道上物体、近地卫星、同步卫星三者间的周期关系为T 赤=T 同>T 近,根据v =ωr 可知v 赤

万有引力定律与航天练习题

万有引力定律与航天 练习题 Revised on November 25, 2020

万有引力定律与航天章节练习题 一、选择题 1.如图所示,火星和地球都在围绕太阳旋转,其运行轨道是椭圆,根据开普 勒行星运动定律可知( ) A. 火星绕太阳运动过程中,速率不变 B. 火星绕太阳运行一周的时间比地球的长 C. 地球靠近太阳的过程中,运行速率将减小 D. 火星远离太阳的过程中,它与太阳的连线在相等时间内扫过的面积逐渐增大 2.经国际小行星命名委员会命名的“神舟星”和“杨利伟星”的轨道均处在 火星和木星轨道之间,它们绕太阳沿椭圆轨道运行,其轨道参数如下表。 注:AU 是天文学中的长度单位,1AU=149 597 870 700m (大约是地球到太阳的平均距离)。“神舟星”和“杨利伟星”绕太阳运行的周期分别为T 1和T 2,它们在近日点的加速度分别为a 1和a 2。则下列说法正确的是( ) A. 1212,T T a a >< B. 1212,T T a a << C. 1212,T T a a >> D. 1212,T T a a 3.过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“31peg b” 的发现拉开了研究太阳系外行星的序幕。“31peg b”绕其中心恒星做匀速圆周运 动,周期大约为4天,轨道半径约为地球绕太阳运动半径的1 20,该中心恒星 与太阳的质量比约为( ) A. 1 10 B. 1 C. 5 D. 10 4.2013年6月13日,“神舟十号”与“天空一号”成功实施手控交会对接,下列关于“神舟十号”与“天空一号”的分析错误的是( ) A .“天空一号”的发射速度应介于第一宇宙速度与第二宇宙速度之间

曲线运动万有引力与航天测试题带答案

第4章曲线运动万有引力与航天 一、选择题(本大题共15小题) 1.一个物体受到恒定的合力作用而做曲线运动,则下列说法正确的是 A.物体的速率可能不变 B.物体一定做匀变速曲线运动,且速率一定增大 C.物体可能做匀速圆周运动 D.物体受到的合力与速度的夹角一定越来越小,但总不可能为零 2.一物体在光滑的水平桌面上运动,在相互垂直的x方向和y方向上的分运动速度随时间变化的规律如图1所示.关于物体的运动,下列说法正确的是 图1 A.物体做曲线运动 B.物体做直线运动 C.物体运动的初速度大小是50 m/s D.物体运动的初速度大小是10 m/s 3.小船过河时,船头偏向上游与水流方向成α角,船相对静水的速度为v,其航线恰好垂直于河岸.现水流速度稍有增大,为保持航线不变,且准时到达对岸,下列措施中可行的是 A.增大α角,增大船速v B.减小α角,增大船速v C.减小α角,保持船速v不变 D.增大α角,保持船速v不变 4.(2011·上海市闸北调研)质量为2 kg的质点在x-y平面上做曲线运动,在x方向的速度图象和y方向的位移图象如图2所示,下列说法正确的是

图2 A .质点的初速度为5 m/s B .质点所受的合外力为3 N C .质点初速度的方向与合外力方向垂直 D .2 s 末质点速度大小为6 m/s 5.如图3所示,甲、乙、丙三个轮子依靠摩擦转动,相互之间不打滑,其半径分别为r 1、r 2、r 3.若甲轮的角速度为ω1,则丙轮的角速度为 图3 A.r 1ω1r 3 B.r 3ω1 r 1 C. r 3ω1r 2 D.r 1ω1 r 2 6.如图4所示,轻杆的一端有一个小球,另一端有光滑的固定轴O.现给球一初速度,使球和杆一起绕O 轴在竖直面内转动,不计空气阻力,用F 表示球到达最高点时杆对小球的作用力.则F 图4 A .一定是拉力 B .一定是推力 C .一定等于0 D .可能是拉力,可能是推力,也可能等于0

万有引力与航天(复习学案)

万有引力与航天(复习学案) 知识梳理 一、开普勒运动定律 1.开普勒第一定律:所有行星绕太阳运动的轨道都是,太阳处在椭圆的一个上. 2.开普勒第二定律:对任意一个行星来说,它和太阳的在相等的时间内扫过相等的. 3.开普勒第三定律:所有行星的轨道的的三次方跟它的的二次方的比值都相等,表达式: . 二、万有引力定律 1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小跟物体的质量m1和m2的成正比,与它们之间距离r的成反比. 2.公式:F=其中G=6.67×10-11 N·m2/kg2叫引力常数.3.适用条件:万有引力定律只适用的相互作用 4.特殊情况 (1)两质量分布均匀的球体间的相互作用,也可用本定律来计算,其中r为两球心间的距离. (2)一个质量分布均匀的球体和球外一个质点间的万有引力也适用,其中r为质点到球心间的距离. 三、三种宇宙速度 1.第一宇宙速度(环绕速度):v1=,是人造地球卫星的最小速度,也是人造地球卫星绕地球做圆周运动的速度. 2.第二宇宙速度(脱离速度):v2=,是使物体挣脱引力束缚的最小发射速度. 3.第三宇宙速度(逃逸速度):v3=,是使物体挣脱引力束缚的最小发射速度. 四.同步卫星 同步卫星就是与地球同步运转,相对地球静止的卫星,因此可用来作为通讯卫星.同步卫星有以下几个特点: (1)轨道一定:所有同步卫星的轨道赤道平面共面. (2)周期一定:与地球自转自转的周期相同,T=24h。 (3)角速度一定:与地球自转的角速度相同。 (4)由r=知,所有同步卫星的轨道半径都相同,即在同一轨道上运动,其确定的高度约为3.6×104 km. (5)运行速度大小一定:所有同步卫星绕地球运动的线速度的大小是一定的,都是3.08 km/s,运行方向与地球自转相同.

第六章-万有引力与航天(学案)

第六章万有引力与航天 §6.1 行星的运动 [要点导学] 1.开普勒第一定律又称轨道定律,它指出:所有行星绕太阳运动的轨道是椭圆,太阳位于椭圆轨道的一个焦点上。远日点是指__________,近日点是指_________。不同行星的椭圆轨道是不同的,太阳处在这些椭圆的一个公共焦点上。 2.开普勒第二定律又称面积定律。对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。所以行星在离太阳比较近时,运动速度________。行星在离太阳较远时,运动速度_________。 3.开普勒第三定律又称周期定律,内容是:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。该定律的数学表达式是:_________。4.对于多数大行星来说,它们的运动轨道很接近圆,因此在中学阶段,可以把开普勒定律简化,认为行星绕太阳做匀速圆周运动。行星的轨道半径的三次方跟它的公转周期的二次方的比值都相等。这样做使处理问题的方法大为简化,而得到的结果与行星的实际运动情况相差并不大。 5.开普勒行星运动定律,不仅适用于行星,也适用于其它卫星的运动。研究行星运动时,开普勒第三定律中的常量k与________有关,研究月球、人造地球卫星运动时,k与____________有关。 6.地心说是指____________________________________,日心说是指_______________________________________________。以现在的目光来看地心说与日心说不过是参考系的改变,但这是一次真正的科学革命,日心说的产生不仅仅是人们追求描绘自然的简洁美,更是使得人们的世界观发生了重大的变革,意大利科学家布鲁诺曾为此付出生命的代价!两种观点的斗争反映了科学与反科学意识形态及宗教神学的角逐。也能反映科学发展与社会文化发展的相互关系。 基础巩固 1.揭示行星运动规律的天文学家是( ) A.第谷B.哥白尼C.牛顿D.开普勒 2.关于天体运动,下列说法正确的是( ) A.天体的运动与地面上的运动所遵循的规律是不同的 B.天体的运动是最完美、最和谐的匀速圆周运动 C.太阳东升西落,所以太阳绕地球运动 D.太阳系的所有行星都围绕太阳运动 3.关于行星绕太阳运动的下列说法中正确的是( ) A.所有行星都在同一椭圆轨道上绕太阳运动 B.行星绕太阳运动时太阳位于行星轨道的中心处 C.离太阳越近的行星运动周期越长 D.所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等 4.关于开普勒行星运动的公式 3 2 R k T ,理解正确的是( ) A.k是一个与行星无关的常量B.R是代表行星运动的轨道半径C.T代表行星运动的自转周期D.T代表行星绕太阳运动的公转周期

第六章《万有引力与航天》测试题(含详细解答)

《万有引力与航天》测试题 一、选择题(每小题4分,全对得4分,部分对的得2分,有错的得0分,共48分。) 1.第一次通过实验比较准确的测出引力常量的科学家是( ) A . 牛顿 B . 伽利略 C .胡克 D . 卡文迪许 2.如图1所示a 、b 、c 是在地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是( ) A .b 、c 的线速度大小相等,且大于a 的线速度; B .b 、c 的向心加速度大小相等,且大于a 的向心加速度; C .c 加速可追上同一轨道上的b ,b 减速可等候同一轨道上的c ; D .a 卫星由于某种原因,轨道半径变小,其线速度将变大 3.宇宙飞船为了要与“和平号“轨道空间站对接,应该:( ) A.在离地球较低的轨道上加速 B.在离地球较高的轨道上加速 C.在与空间站同一高度轨道上加速 D.不论什么轨道,只要加速就行 4、 发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火, 使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q 点,轨道2、3相切于P 点,如图2所示。则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:( ) A .卫星在轨道3上的速率大于在轨道1上的速率。 B .卫星在轨道3上的角速度小于在轨道1上的角速度。 C .卫星在轨道1上经过Q 点时的速度大于它在轨道2 上经过Q 点时的速度。 D .卫星在轨道2上经过P 点时的加速度等于它在轨道3 b a c 地球 图1

上经过P 点时的加速度 5、 宇航员在围绕地球做匀速圆周运动的空间站中会处于完全失重中,下列说法中正确的是 ( ) A.宇航员仍受重力的作用 B.宇航员受力平衡 C.宇航员受的重力正好充当向心力 D.宇航员不受任何作用力 6.某星球质量为地球质量的9倍,半径为地球半径的一半,在该星球表面从某一高度以10 m/s 的初 速度竖直向上抛出一物体,从抛出到落回原地需要的时间为(g 地=10 m/s 2 )( ) A .1s B . 91s C .18 1 s D . 36 1 s 7.假如地球自转速度增大,关于物体重力,下列说法正确的是( ) A 放在赤道地面上的万有引力不变 B 放在两极地面上的物体的重力不变 C 放在赤道地面上物体的重力减小 D 放在两极地面上的物体的重力增加 8、设想把质量为m 的物体放在地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是( ) A.零 B.无穷大 C.2 GMm R D.无法确定 9.对于质量m 1和质量为m 2的两个物体间的万有引力的表达式12 2m m F G r ,下列说法正确的是 ( ) 和m 2所受引力总是大小相等的 B 当两物体间的距离r 趋于零时,万有引力无穷大 C.当有第三个物体m 3放入之间时,m 1和m 2间的万有引力将增大 D.所受的引力性质可能相同,也可能不同 10地球赤道上的重力加速度为g ,物体在赤道上随地球自转的向心加速度为a ,要使赤道上物 体“飘” 起来,则地球的转速应为原来转速的( )

2020高中物理第六章万有引力与航天7同步卫星近地卫星赤道物体的异同点分析学案新人教版必修22020

同步卫星、近地卫星、赤道物体的异同点分析 知识点考纲要求题型分值 万有引力 和航天 会分析同步卫星、近地卫星、赤道上的物体 的动力学和运行上的区别和联系 选择题6分 一、区别和联系 相同点运行轨道半径相同。 不同点 ①受力情况不同,近地卫星只受地球引力的作用,地球引力等于卫星做圆 周运动所需的向心力,而赤道上随地球自转的物体受到地球引力和地面支持力 的作用,其合力提供物体做圆周运动所需的向心力。 ②运行情况不同,角速度、线速度、向心加速度、周期等均不同。如近地 卫星的向心加速度为g,而赤道上随地球自转的物体的向心加速度为 2 2 2 4 0.034/ a r m s T π =≈。 相同点都是地球的卫星,地球的引力提供向心力 不同点 由于近地卫星轨道半径较小,由人造卫星的运行规律可知,近地卫星的线速度、角速度、向心加速度均比同步卫星大。 相同点角速度都等于地球自转的角速度,周期等于地球自转周期。 不同点 ①轨道半径不同:同步卫星的轨道半径比赤道物体的轨道半径大得多。 ②受力情况不同:赤道上物体受万有引力和支持力的共同作用,同步卫星 只受地球引力作用。 ③运动情况不同:由2 v r a r ωω == 、可知,同步卫星的线速度、向心加速度均比赤道物体大。 二、求解此类题的关键 1. 在求解“同步卫星”与“赤道上的物体”的向心加速度的比例关系时应依据二者角速 度相同的特点,运用公式a=ω2r而不能运用公式a= 2 r GM 。 2. 在求解“同步卫星”与“赤道上的物体”的线速度比例关系时,仍要依据二者角速度

相同的特点,运用公式v =ωr 而不能运用公式GM v r =。 3. 在求解“同步卫星”运行速度与第一宇宙速度的比例关系时,因都是由万有引力提供的向心力,故要运用公式GM v r =,而不能运用公式v =ωr 或v =gr 。 例题1 (广东高考)已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G 。有关同步卫星,下列表述正确的是( ) A. 卫星距地面的高度为232 4GMT π B. 卫星的运行速度小于第一宇宙速度 C. 卫星运行时受到的向心力大小为2 Mm G R D. 卫星运行的向心加速度小于地球表面的重力加速度 思路分析:天体运动的基本原理为万有引力提供向心力,地球的引力使卫星绕地球做匀 速圆周运动,即F 引=F 向=m 2224T mr r v π=。当卫星在地表运行时,F 引=2R GMm =mg (此时R 为地球半径),设同步卫星离地面高度为h ,则F 引=2 )(h R GMm +=F 向=ma 向

必修二万有引力与航天知识点总结完整版

第六章 万有引力与航天知识点总结 一. 万有引力定律: ①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们 之间的距离r 的二次方成反比。即: 其中G =6. 67×10 -11N ·m 2/kg 2 ②适用条件 (Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。 (Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。 ③运用 (1)万有引力与重力的关系: 重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。 忽略地球自转可得: 二. 重力和地球的万有引力: 1. 地球对其表面物体的万有引力产生两个效果: (1)物体随地球自转的向心力: F 向=m ·R ·(2π/T 0)2,很小。 由于纬度的变化,物体做圆周运动的向心力不断变化,因而表面物体的重力随纬度的变化而变化。 (2)重力约等于万有引力: 在赤道处:mg F F +=向,所以R m R GMm F F mg 22自向ω-=-=,因地球自转角速度很小,R m R GMm 22自ω>>,所以2R GM g =。 地球表面的物体所受到的向心力f 的大小不超过重力的0. 35%,因此在计算中可以认为万有引力和重 力大小相等。如果有些星球的自转角速度非常大,那么万有引力的向心力分力就会很大,重力就相应减小, 就不能再认为重力等于万有引力了。如果星球自转速度相当大,使得在它赤道上的物体所受的万有引力恰 好等于该物体随星球自转所需要的向心力,那么这个星球就处于自行崩溃的临界状态了。 在地球的同一纬度处,g 随物体离地面高度的增大而减小,即21)('h R Gm g += 。 强调:g =G ·M /R 2不仅适用于地球表面,还适用于其它星球表面。 2. 绕地球运动的物体所受地球的万有引力充当圆周运动的向心力,万有引力、向心力、重力三力合一。 即:G ·M ·m /R 2=m ·a 向=mg ∴g =a 向=G ·M /R 2 122 m m F G r =2 R Mm G mg =

《宇宙航行》导学案(带答案)

§5.宇宙航行 §6.经典力学的局限性——问题导读 (命制教师:张宇强) §5.宇宙航行 §6.经典力学的局限性——问题导读 使用时间: 月 日—— 月 日 姓名 班级 【学习目标】 1、知道人造地球卫星的运行原理,会运用万有引力定律和圆周运动公式分析解答有关卫星运行的原因; 2、掌握三个宇宙速度,会推导第一宇宙速度; 3、简单了解航天发展史。 4、能用所学知识求解卫星基本问题。 【问题导读】认真阅读《课本》P44—P51内容,并完成以下导读问题: 一、人造地球卫星 如图所示,当物体的 足够大 时,它将会围绕 旋转 而不再落回地面,成为一颗绕地球转动的 。一般情况下可认为 人造地球卫星绕地球做 运动,向心力由地球对它的 提供,即G Mm r 2 = ,则卫星在轨道上运行的线速度v = 二、三个宇宙速度的比较 三、经典力学的成就和局限性 1、经典力学的成就 牛顿运动定律和万有引力定律在宏观、低速、弱引力的广阔领域,包括天体力学的研究中,

§5.宇宙航行§6.经典力学的局限性——问题导读(命制教师:张宇强) 经受了实践的检验,取得了巨大的成就. 2、经典力学的局限性 (1)牛顿力学即经典力学,它只适用于、的物体,不适用于 和的物体。 (2)狭义相对论阐述了物体以接近光速运动时遵从的规律,得出了一些不同于经典力学的结论,如质量要随物体运动速度的增大而。 (3)20世纪20年代,建立了量子力学,它正确描述了粒子的运动规律,并在现代科学技术中发挥了重要作用. (4)爱因斯坦的广义相对论说明在的作用下,牛顿的引力理论将不再适用. 预习检测: 1.两颗卫星A、B的质量相等,距地面的高度分别为H A、H B,且H A

2018高中物理第六章万有引力与航天4万有引力定律的拓展应用学案新人教版必修2

万有引力定律的拓展应用 知识点考纲要求题型分值万有引力 万有引力定律的拓展,并会证明 会利用割补法的思想计算空腔中的万有引力问题 选择题6分 二、重难点提示 重点:会用割补法转换研究对象解决疑难问题。 难点:匀质球层对球内任意位置的物体的引力为0。 应用万有引力定律 2 Mm F G R =求物体间的引力时,因注意其适用条件,只有当两物体可视为质点时,才能认为R为两物体间的距离。对于球壳类则不能视为质点,则必须采取其他的解决办法。 这里我们给出结论:一质点在均匀球壳空腔内任意一点受到球壳的万有引力为零。 如图所示,一个匀质球层可以等效为由许多厚度足够小的匀质球壳组成,任取一个球壳,设球壳内有一个质量为m的质点,某时刻质点在P位置(任意位置)处,以质点(m)所在位置P为顶点,作两个底面面积足够小的对顶圆锥,这时,两个圆锥底面不仅可以视为平面,还可以视为质点。 设空腔内质点m到两圆锥底面中心的距离分别为 12 r r 、,两圆锥底面的半径为 12 R R 、,底面面密度为ρ。根据万有引力定律,两圆锥点面对质点的引力可以表示为: 2 11 122 11 m m R m F G G r r πρ ? ?==, 2 22 222 22 m m R m F G G r r πρ ? ?==,根据相似三角形对应边成比例,有12 12 R R r r =, 则两个万有引力之比 2 1 2 11 2 2 2 2 2 1 R F r R F r ? == ? ,因为两万有引力方向相反,所以引力的合力 1 F ? 2 F ? 1 r 2 r P m 2 11 m R πρ ?= 22

120F F ?+ ?=。依此类推,球壳上其他任意两对应部分对质点的合引力为零,整个球壳对 质点的合力为零,故由多个球壳组成的球层对质点的合引力为零,即 0F =∑ 例题1 证明:在匀质实心球体内部距离球心r 处,质点受到该球体的万有引力就等于半径为r 的球体对其的引力,即2M m F G r ''=,其中M '表示同样材质、半径为r 的匀质球体的质量。 O R r M' M 思路分析:如图所示,设匀质球体的质量为M ,半径为R ;其内部半径为r 的匀质球体的质量为M ',与球心相距r 处的质点m 受到的万有引力,可以视为厚度为(R -r )的匀质球层和半径为r 的匀质球体的引力的合力,根据匀质球层对质点的引力为零,所以质点受到 的万有引力就等于半径为r 的匀质球体的引力,即2M m F G r ''=。 若已知匀质球体的总质量为M ,则33M r M R '=,3 3r M M R '=, 故23M m Mm F G G r r R ''== 当r =0时,有0M '=,0F '=;当r =R 时,有2Mm F G R '=。 答案:见思路分析。 点拨:本题得到的结论为万有引力定律拓展的推论,可作为结论使用。 例题2 假设地球是一半径为R 、质量分布均匀的球体,一矿井深度为d 。已知质量分布均匀的球壳对壳内物体的引力为零,矿井底部和地面处的重力加速度大小之比为( ) A. 1d R - B. 1d R + C. 2()R d R - D. 2 ()R R d - 思路分析:令地球的密度为ρ,则在地球表面,重力和地球的万有引力大小相等, 有2 M g G R = 由于地球的质量为:M=ρ?3 3 4R π,所以重力加速度的表达式可写成: g=2 3 234R R G R GM πρ?==34πGρR。

万有引力与航天公式总结

万有引力与航天重点规律方法总结 一.三种模型 1.匀速圆周运动模型: 无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动 2.双星模型: 将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自转动的向心力。 3.“天体相遇”模型: 两天体相遇,实际上是指两天体相距最近。 二. 1.2/三.1. 2.1687⑴.⑵.⑶.a. b.当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算 c.认为当0→r 时,引力∞→F 的说法是错误的 ⑷.对定律的理解 a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力 b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。 c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物 体间,它的存在才有实际意义. d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在空间的 性质无关,与周期及有无其它物体无关. (5)引力常数G :

①大小:kg m N G 2 2 11 /67.610??=-,由英国科学家卡文迪许利用扭秤测出 ②意义: 表示两个质量均为1kg 的物体,相距为1米时相互作用力为:N 1011 67.6-? 四.两条思路:即解决天体运动的两种方法 1.万有引力提供向心力:F F 向万=即:22 2224n Mm v F G ma m mr mr r r T πω=====万 2.天体对其表面物体的万有引力近似等于重力: 即2gR GM =(又叫黄金代换式) 注意: 五.1.a.c. 2.3.方法一:根据转动天体运动周期T 、转动半径r 和中心天体半径R 计算: R T r G 3 2 33πρ= (适合于有行星、卫星转动的中心天体) 方法二:根据中心天体半径R 和其表面的重力加速度g 计算: GR g πρ43=(适合于没有行星、卫星转动的天体) 4.计算第一宇宙速度(环绕速度) 简单说就是卫星或行星贴近中心天体表面的飞行速度,这时卫星或行星高度忽略r ≈R 方法一。根据中心天体质量M 和半径R 计算: 由→=R m Mm G v R 2 2 R GM v =

万有引力与航天重点知识归纳

r G Mm = mg ? g = GM ;在地球表面高度为 h 处: (R + h) 2 (R + h) 2 Mm = mg ? g = = 4 , r 万有引力与航天重点知识归纳 考点一、万有引力定律 1. 开普勒行星运动定律 (1)第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2)第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 (3)第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式: a 3 T 2 = k 。其中 k 值与太阳有关,与行星无关。 (4)推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星 旋转时, a 3 = k ,但 k 值不同,k 与行星有关,与卫星无关。 T 2 (5) 中学阶段对天体运动的处理办法: ①把椭圆近似为园,太阳在圆心;②认为 v 与ω不变,行星或卫星做匀速圆周运动; ③ R 3 = k ,R ——轨道半径。 T 2 2. 万有引力定律 (1)内容:万有引力 F 与 m 1m 2 成正比,与 r 2 成反比。 (2)公式: F = G m 1m 2 ,G 叫万有引力常量, G = 6.67 ? 10 -11 N ? m 2 / k g 2 。 r 2 (3)适用条件:①严格条件为两个质点;②两个质量分布均匀的球体, 指两球心间的距离;③一个均匀 球体和球外一个质点,r 指质点到球心间的距离。 (4)两个物体间的万有引力也遵循牛顿第三定律。 3. 万有引力与重力的关系 (1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力 mg ,另一个是 物体随地球自转所需的向心力 f ,如图所示。 ①在赤道上,F=F 向+mg ,即 mg = G Mm - m ω 2 R ; R 2 ②在两极 F=mg ,即 G Mm = mg ;故纬度越大,重力加速度越大。 R 2 由以上分析可知,重力和重力加速度都随纬度的增加而增大。 (2) 物体受到的重力随地面高度的变化而变化。在地面上, R 2 R 2 G GM ,所以 g = h h h R 2 (R + h ) 2 g ,随高度的增加,重力加速度减小。 考点二、万有引力定律的应用——求天体质量及密度 1.T 、r 法: G Mm = mr ( 2π ) 2 ? M = 4π 2 r 3 ,再根据 r 2 T GT 2 V M 3πr 3 π R 3 , ρ = ? ρ = 3 V GT 2 R 3 ,当 r=R 时, ρ = 3π GT 2 2.g 、R 法: G Mm = mg ? M = R 2 g R 2 G ,再根据V = 4 πR 3 ρ = M ? ρ = 3g 3 V 4πGR 3.v 、r 法: G Mm = m v 2 ? M = rv 2 r 2 r G 4.v 、T 法: G Mm = m v 2 , G Mm = mr ( 2π ) 2 ? M = v 3 T r 2 r 2 T 2πG

相关主题
文本预览
相关文档 最新文档