当前位置:文档之家› 一维纳米氧化锌的研究

一维纳米氧化锌的研究

一维纳米氧化锌的研究
一维纳米氧化锌的研究

摘要:本文分析一维纳米氧化锌的发展现状,并对制备方法进行了简单介绍,总结并讨论了纳米氧化锌当前的任务和前景。

关键词:纳米氧化锌;制备;现状;任务

一、引言

准一维纳米材料由于量子尺寸效应具有许多特异的物理、化学特性,是研究电子传输行为、光学特性和力学性能等物理性质的尺寸的理想系统,在构建纳米电子和光学器件方面具有很大的应用潜力,近年来受到广泛的关注。[1]一维纳米氧化锌特有的量子尺寸效应、界面效应和耦合效应,使其在紫外激光器、光波导器件、发光元件、表面声波元件、太阳能电池窗口材料、压敏电阻及气体传感器等方面有着广泛的用途,被称为“第三代半导体材料”。把锌粉原料加入到高频常压热等离子体弧中,使锌粉加热气化,然后与加入等离子体反应器中的氧气反应,合成出了直径为50nm、长度超过2μm的一维棒状纳米氧化锌。研究了氧分压和锌粉加料速度对合成产物形貌的影响,结果表明,通过控制这些参数,可以调控合成的氧化锌纳米棒长径比。采用xrd、sem、tem和hrtem对产物的形貌和结构进行了表征,并表征了合成的氧化锌纳米棒的光致发光性能。

二、纳米氧化锌的国内外研究与发展

(一)纳米氧化锌的发展情况。zno是ⅱ-ⅵ族半导体,在室温下其能隙为3.36ev,因其具有良好的光学、电学性质及强化学稳定性和高熔点,广泛应用于各种光电学系统,如光散射仪器、光探测器、场致发光仪器、非线性光学仪器、透明传导层、太阳能电池、表面声波仪器、体声波仪器等,因此在信息及军事等领域有重要用途。

纳米材料的制备在当前材料科学研究中占据极为重要的位置,新的制备工艺和过程的研究对纳米材料的微观结构和性能具有重要的影响[2]。纳米zno的制造过程必须解决一些关键技术问题,主要有:尺寸、形貌和分布的控制;团聚体的控制与分散;表面的形态、缺陷、粗糙度、成分的控制,包括表面修饰和包覆;化学组分和微观结构的均匀性控制;纯度的控制;工艺稳定性、质量可重复性的控制;纳米材料的稳定性及保存、运输技术;所需的设备和方法要尽可能结构简单、易于操作。

(二)一维纳米氧化锌的现状与分析。因特殊的量子尺寸效应、界面和量子限制效应,纳米尺度zno具有许多新奇的光、电以及力学特性,更适宜应用于室温紫外发光、激光材料和光电子器件,对新型传感器、存储器件和场效应晶体管等开发研究也有重要的研究价值。纳米zno有很强的自组织生长能力,在稳定的制备条件下,其分子间相互作用相当明显,分子能严格按晶格排列外延生长,形成配比完整、成分单一的结构。利用纳米zno的这种自组织行为可以获得许多形态各异、有特殊用途的功能材料。随着zno制备技术的同趋完善,时常有特殊形态的zno纳米结构及纳米器件的报道,最典型和重要的的几种

zno纳米形态有:纳米线、纳米棒、纳米带、纳米针、螺旋纳米结构和纳米环等。

中科院力学所科研人员利用气相沉积的方法成功合成了多种形貌的微纳米氧化锌材料,比如纳米线、纳米棒、纳米锥、四足纳米氧化锌等,还实现了纳米氧化锌在碳纳米管上的直接生长,并制备出多种独特形貌的氧化锌微纳米材料,通过这种方法合成出来的材料具有很强的发光性能和催化活性。氧化锌分为零维的、一维的。

(1)零维的。用沉淀法制备了纳米zno,通过反应条件和工艺参数的控制得到了几种不同粒径分布范围的纳米级zno粉体,用afm和xrd方法对纳米zno样品进行了表征,并着重研究了这些不同粒径分布的粉体在红外、紫外-可见光波段的吸收性能,且与普通zno进行了对比.结果表明:纳米zno在紫外有强的宽带吸收,对紫外光的吸收能力远远强于普通zno,且随着波长的减小,吸收峰不断增大,随着纳米zno粒径的减小,其吸收带边向短波方向移动产生蓝移现象;在可见光区,纳米zno比普通zno对可见光的吸收较弱,有很好的透过率;

红外吸收能力随着纳米zno粒径的减少而增强,同时红外吸收出现红移和宽化现象。(2)一维的。针对二极式场致发射显示器(field

emission display, fed)驱动电压过高的问题,设计制作了前栅极式三极结构纳米zno场致发射显示器,并进行了场致发射实验,验证这种结构的可行性。前栅极结构采用喷砂工艺结合光刻技术,制作出微细的栅孔结构,实现了较低电压的控制。同时对影响场致发射性能的栅极电压、栅孔开口尺寸和介质层厚度进行了分析讨论。实验结果表明:采用三极结构四针状纳米zno场致发射显示器具有良好的发射性能,是一种有前途的场致发射显示器。

三、一维纳米氧化锌的的制备方法简介

近年来,人们采用许多不同的方法用来生长zno纳米结构:固相化学反应法具有无需溶剂、转化率高、工艺简单、能耗低、反应条件易控制的特点,但反应过程往往进行不完全或过程中可能出现液化现象;气相法在我国目前处于小试阶段,欲达到工业化生产,还要解决一系列工程问题和设备材质问题,难以实现大规模工业化生产;液相法纳米氧化锌生产中,最常用的制备方法为均匀沉淀法,通过采取适当的方法改善其工艺条件,实现氧化锌颗粒的大小、尺寸、形貌等微观结构有目的地进行控制,使之能够定向的生长,从而生产出各种尺寸、形貌的纳米氧化锌,并使制备出的产品具有很好的重复性和可靠性。

四、总结

目前zno纳米材料和纳米结构的研究重点为:1)制备方法的改进和探索,主要是继续探索新方法,低温制备产量高、尺寸和结构形态可控的准一维纳米材料;2)生长模型的建立。通过对单个一维纳米单元的物理化学的研究,找出生长过程与尺寸、形貌的关系,建立普适的生长规律;3)发光特性研究。通过方法的改善、掺杂等手段,得到高效的紫外-蓝绿发光,为制造光电子器件打下基础。因此研究一维纳米材料发光材料,对于扩展其在激光器及其光、电纳米器件领域中的应用研究具有重要的理论意义和应用价值。

不同基底下生长氧化锌纳米线

不同基底下生长氧化锌纳米线研究 首先在FTO玻璃基底上用水热法制备氧化锌纳米线,发现在配备种子层的基础上0.7437克硝酸锌和0.35克六次甲基四胺在九十五摄氏度的温度下反应三个小时制得的氧化锌纳米线最好。然后以重金属金为基底用水热法制备氧化锌纳米线,以金为催化剂0.7437克硝酸锌和0.35克六次甲基四胺分别在70摄氏度,80摄氏度,90摄氏度反应七个小时,发现在七十摄氏度的条件下氧化锌纳米线排列最为整齐,结果最好。不同基底相对比发现以FTO为基底制备氧化锌纳米线,氧化锌纳米线排列紧密且长径比较大,但是倾斜严重,适合染料敏化太阳能电池等科技的研究。以重金属金为基底制备氧化锌纳米线,氧化锌纳米线排列宽松,但倾斜较小,长径比较小,个体较大。适合于研究单独一根氧化锌纳米线。 关键词:FTO基底,金基底,不同基底制备氧化锌纳米线的特点 最近人们对于碳纳米管的发现引起了制备其它一维纳米材料的极大兴趣。一维纳米结构氧化物具有独特的光学,电学性能。各种氧化物纳米线的制备和性能研究已成为当今的热点。氧化锌是重要的II – VI族直接带隙宽禁带半导体氧化物,具有较大的禁带宽度(3.2eV),激子结合能(60meV)高,能在室温及更高温度产生近紫外的短波激子发光。其中特别是具有较大长径比的氧化锌纳米线所表现出的奇特光学与电学性能,使其在低压和短波长光电子器件方面具有潜在的应用价值,例如透明导电材料,发光二极管,气敏传感器和荧光器件等。一维氧化锌纳米线是一种性能优异的新型功能材料,应用开发前景十分广阔。其制备方法多种多样,制备技术也日趋完善,它在传统材料、微电子、医药等领域的应用日益广泛和重要,对这些领域将会带来革命性的改变,也会影响到人们的日常生活。可以预见,随着氧化锌纳米线的制备方法、生长机理、结构表征等研究的不断深入,其应用研究将会有一个快速发展的阶段。 1.1纳米材料 1.1.1纳米材料简介 纳米材料是在纳米尺度空间内研究电子、原子和分子的内在运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。它的最终目标是人类能够按照自己的意愿直接操纵单个原子,制造具有特定功能的产品。 1.1.2纳米材料四大效应 体积效应 当纳米粒子尺寸比电子的德布罗意波更小时,内压、磁性、化学活性、热阻、光吸收、催化性及熔点等与普通粒子相比发生了很大的变化,周期性边界条件将被破坏。纳米粒子以下几个方面的应用均基于它的体积效应。例如,利用等离子共振频移随颗粒尺寸变化的性质,

氧化锌纳米棒研究进展汇总

氧化锌纳米棒研究进展** 孔祥荣*, 邱晨, 刘强, 刘琳, 郑文君 (南开大学化学学院材料系,天津,300071) Kxr0918@https://www.doczj.com/doc/ae10840974.html, 摘要:氧化锌纳米棒由于具有新奇的物理化学性质而成为研究的热点,本文就近年来氧化锌纳米棒在制备方法和反应机理及应用研究等方面予以综述。 关键词:氧化锌; 纳米棒; 制备; 反应机理 1 引言 近年来,低维纳米结构的半导体材料引起了广泛的关注,尤其是一维(1-D纳米材料在维数和大小物理性质的基础研究中有潜在的优势,同时在光电纳米器件和功能材料中的应用研究成为热点。氧化锌由于在室温下较大的导带宽度和较高的电子激发结合能(60meV 及光增益系数(300 cm 而使之具有独特的催化、电学、光电学、光化学性质,在太阳能电池、表面声波和压电材料、场发射、纳米激光、波导、紫外光探测器、光学开关、逻辑电路 [5,6][1]-1[2][3][4] 等领域潜在的应用等方面均具有广泛的应用前景。本文就氧化锌纳米棒及其阵列的制备、反应机理、应用研究等进行简要的综述。 2 氧化锌纳米棒的制备 2.1 超声波法和微波法 刘秀兰等在低温反应条件下(冰水浴),通过超声的方法,采用醋酸锌和水合肼为原料,[7] 以DBS 作为表面活性剂,制备了ZnO 纳米棒,截面为六方型,直径100nm ,长度1μm。研究表明:与其它制备方法相比,低温与超声技术可以更为方便获得分布均

一、长径比较小的ZnO 纳米棒。Hu等分别用超声和微波辐射两种方法得到了交联(二聚体,三聚体(T形,四聚体(X[8] 形))的ZnO纳米棒。超声辐射法和微波辐射法具有一个共同的特点,反应速度快,设备要求简单。 2.2 水热法 Liu 等用六水合硝酸锌和氢氧化钠为原料配成溶液,180 ℃水热处理20h 得到晶化程度[9] 很高的直径的为50 nm的高长径比的氧化锌纳米棒。Vayssieres [10]用硝酸锌盐和等摩尔的六次甲基四胺在水热条件下95 ℃几小时就可以在底物上得到了直径100~200 nm ,长度为10 μm 氧化锌纳米棒及其阵列。Wang 等[11]报道用Zn 作为底物同时作为反应物水热条件下得到了形貌可控的ZnO 纳米棒。陶新永等[12]采用PEG 辅助水热法合成了ZnO 纳米棒。研究发现,氢 [13]氧化钠浓度和反应时间对产物形貌和尺寸有较大的影响。Tang 等用H 2O 2、NaOH 和Zn 箔为 [14]原料辅助的水热法来合成具有良好光学性质的ZnO 纳米棒阵列。Wu 等用溴化十六烷三甲 基铵(CTAB 表面活性剂作导向剂在水热条件下,通过粒径几十纳米的纳米晶自组装得到了ZnO 单晶纳米棒。Guo 等[15]用氧化铟锡(ITO )底物上用简单的水热法通过改变温度成功的 [16]合成了粒径长度可控的分布较窄的高趋向的ZnO 纳米棒阵列。郭敏等采用廉价低温的水 热法, 在基底上制备高质量、高取向统一、平均直径小于50 nm 并且直径分布很窄的ZnO 纳米棒阵列薄膜。

纳米氧化锌抗菌性能及机制

中国组织工程研究第16卷第3期 2012–01–15出版 Chinese Journal of Tissue Engineering Research January 15, 2012 Vol.16, No.3 ISSN 1673-8225 CN 21-1581/R CODEN: ZLKHAH 527 纳米氧化锌抗菌性能及机制*★◆ 胡占江1,赵忠1,王雪梅2 Antibacterial properties and mechanism of nano-zinc oxide Hu Zhan-jiang1, Zhao Zhong1, Wang Xue-mei2 Abstract BACKGROUND: The zinc oxide has a good biocompatibility, security and long effectiveness, and can be used as a type of antibacterial material of active oxide category. OBJECTIVE: To summarize the antibacterial properties and mechanism of nano-zinc oxide (nano-ZnO). METHODS: A computer-based online search of related papers from December 1995 to February 2011 was performed in Elsevier (Science Direct) and Web of Science databases using the key words of “antibacterial properties of nano-ZnO” in English, and in CNKI and Wanfang databases using the key words of “antibacterial properties of nano-ZnO” in Chinese. Totally 75 literatures were selected. RESULTS AND CONCLUSION: The nano-ZnO has a strong bactericidal property in many fields. It can replace other materials of active oxide category based on its good biocompatibility, security and long effectiveness. The antibacterial properties and mechanism of nano-ZnO were summarized in this study from the sides of modified antibacterial properties and the effects of morphology and structure of nano-ZnO on antibacterial properties. However, more studies are in need to solve how to improve the utilization and antibacterial properties, and to expand the applications of nano-ZnO in antibacterial and other fields. Hu ZJ, Zhao Z, Wang XM. Antibacterial properties and mechanism of nano-zinc oxide. Zhongguo Zuzhi Gongcheng Yanjiu. 2012;16(3):527-530. [https://www.doczj.com/doc/ae10840974.html, https://www.doczj.com/doc/ae10840974.html,] 摘要 背景:氧化锌作为一种活性氧化物类抗菌材料,拥有良好的生物相容性、安全性以及长效性。 目的:总结纳米氧化锌的抗菌性能及其抗菌机制。 方法:应用计算机检索1995-12/2011-02 Elsevier (ScienceDirect)及Web of Science期刊引文索引数据库相关文章,检索 词为“antibacterial properties of nano-zinc oxide”,并限定文章语言种类为English。同时计算机检索1995-12/2011-02 CNKI 学术总库及万方数据库相关文章,检索词为“纳米氧化锌抗菌性能”,并限定文章语言种类为中文。共检索到文献75篇。 结果与结论:纳米氧化锌在很多方面的杀菌性能都很强,并且由于其良好的生物相容性、安全性以及长效性,可以取代医学 上其他活性氧化物抗菌材料。文章从纳米氧化锌抗菌性能改性,以及形貌与结构对抗菌性的影响等方面,详细总结了纳米氧 化锌的抗菌性能及其抗菌机制,但是如何提高纳米氧化锌的利用率和杀菌性能,如何使纳米氧化锌应用于更多细菌的抑制或 更广阔的领域,都需要人们的继续努力。 关键词:纳米氧化锌;抗菌材料;抗菌机制;生物材料;综述文献 doi:10.3969/j.issn.1673-8225.2012.03.033 胡占江,赵忠,王雪梅.纳米氧化锌抗菌性能及机制[J].中国组织工程研究,2012,16(3):527-530. [https://www.doczj.com/doc/ae10840974.html, https://www.doczj.com/doc/ae10840974.html,] 0 引言 近年来随着资源的过度开发,环境破坏日益严重,由此导致各种致病细菌、真菌和病毒引起的疾病(例如非典,禽流感,猪流感等)严重威胁着人类的健康,因此,各种抗菌材料(也称抗菌剂)成为医学研究的重点。其中无机抗菌材料由于其优良的安全性、耐久性、缓释性和化学稳定性,且使用方便,得到了越来越重要的应用。目前应用比较广泛的无机抗菌材料主要有:银系抗菌材料、金属离子抗菌材料、光催化抗菌材料、活性氧化物类抗菌材料等。活性氧化物类抗菌材料拥有良好的生物相容性、安全性以及长效性,越来越受到青睐。对于活性氧化物抗菌材料的研究,人们最先关注的是以氧 化锌(ZnO)、氧化钙、氧化镁为代表的活性氧化 物,发现它们都具有良好的抗菌性,甚至较低浓 度的氧化物在无光条件下也显示出了优异的抗 菌性能。ZnO是一种宽禁带Ⅱ,Ⅵ族化合物半导 体材料,具有规整的六角形纤锌矿结构,本身为 白色,稳定性好,高温下不变色、不分解、价格 低廉、资源丰富,己成为无机抗菌剂研究的热点 之一。关于ZnO抗菌性能的研究[1],称ZnO的光催 化活性甚至强于二氧化钛,在很多方面,ZnO完 全可以作为二氧化钛的替代材料。二氧化钛在未 进行紫外光照射时是一种生物兼容性很好的材 料,但是经使用UVA进行照射后,又可以显示出 极强的细胞毒性[2-3]。因此,与二氧化钛相比ZnO 更具有实用价值。 1Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, Gansu Province, China; 2School of Stomatology, Lanzhou University, Lanzhou 730000, Gansu Province, China Hu Zhan-jiang★, Master, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, Gansu Province, China huzj2010@ https://www.doczj.com/doc/ae10840974.html, Correspondence to: Wang Xue-mei, Lecturer, School of Stomatology, Lanzhou University, Lanzhou 730000, Gansu Province, China w_xuemei@ https://www.doczj.com/doc/ae10840974.html, Supported by: Natural Science Foundation of Gansu Province, No. 1010RJZA112* Received: 2011-05-13 Accepted: 2011-07-30 1兰州大学物理科 学与技术学院,磁 学与磁性材料教 育部重点实验室, 甘肃省兰州市 730000;2兰州大 学口腔医学院,甘 肃省兰州市 730000 胡占江★,男, 1984年生,河北 省邯郸市人,满 族,2010年邯郸 学院毕业,硕士, 主要从事表面物 理化学的研究。 huzj2010@ https://www.doczj.com/doc/ae10840974.html, 通讯作者:王雪 梅,讲师,兰州大 学口腔医学院,甘 肃省兰州市 730000 w_xuemei@ https://www.doczj.com/doc/ae10840974.html, 中图分类号:R318 文献标识码:A 文章编号: 1673-8225 (2012)03-00527-04 收稿日期:2011-05-13 修回日期:2011-07-30 (20110513019/WL·L)

纳米氧化锌的奇妙颜色

纳米氧化锌的奇妙颜色 --作者冯铸(高级工程师,工程硕士宝鸡天鑫工业添加剂有限公司销售经理) 纳米级活性氧化锌有多种生产方式,而每种生产方式及各个生产方式的工艺差别的不同,使得最终产品的颜色不同,即呈现微黄色的程度不同。 一、物质颜色的由来 物质的颜色都是其反光的结果。白光是混合光,由各种色光按一定的比例混合而成。如果某物质在白光的环境中呈现黄色(比如纳米氧化锌),那是因为此物体吸收了部分或者全部的蓝色光。物质的颜色是由于其对不同波长的光具有选择性吸收作用而产生的。 不同颜色的光线具有不同的波长,而不同的物质会吸收不同波长的色光。物质也只能选择性的吸收那些能量相当于该物质分子振动能变化、转动能变化及电子运动能量变化的总和的辐射光。换句话说,即使是同一物质,若其内能处在不同的能级,其颜色也会不同。比如氧化锌,不论是普通形式的,还是纳米形式的,高温时颜色均很黄,温度降低时颜色变浅。原因在于在不同温度时,氧化锌的分子能及电子能的跃迁能量不同,因此,对各种色光的吸收不同。 二、粗颗粒的氧化锌与纳米氧化锌的结构区别,及由此导致的分子内能差异 粗颗粒的直接法或间接法氧化锌是离子晶体。通常来说,锌原子与氧原子以离子键形式存在。由于其颗粒较粗,每个颗粒中氧原子与锌原子的数量相当多,而且两种原子的数量是一样的(按分子式ZnO看,是1:1)。但对于纳米氧化锌,其颗粒相当细,使得颗粒表面的未成键的原子数目大增。也就是说,纳米氧化锌不能再看成具有无限多理想晶面的理想晶体,在其表面,会有无序的晶间结构及晶体缺陷存在。表面这些与中心部分不同的原子的存在,使得其具有很强的与其他物质反应的能力,也就是我们通常所说的活性。 研究表明:在纳米氧化锌中,至少存在三种状态的氧,他们是晶格氧(位于颗粒内部)、表面吸附氧及羟基氧(--OH),而且,颗粒中锌的数量大于氧的数量,不是1:1的状况。这一点与普通氧化锌完全不同。纳米氧化锌的表面存在氧空缺,有许多悬空键,易于与其他原子结合而发生反应,这也是纳米氧化锌在橡胶中、催化剂中作为活性剂应用的基本原理。 由于纳米氧化锌与普通氧化锌的上述不同。使得其颗粒中分子能及电子能的跃迁变化能级不同,因此,其颜色也不同。普通氧化锌是白色,而纳米氧化锌是微黄色。 三、纳米氧化锌随时间及环境湿度变化,其颜色的变化 对于纳米氧化锌,由于其颗粒表面存在吸附氧及羟基氧,而这两种氧的数量会随着时间的变化而发生变化,比如水分的吸附及空气中氧气的再吸附与剥离等。这两种氧的数量的变化,必然会引起颗粒中分子及电子能级的变化,对光的吸收也不相同,因此,纳米氧化锌的颜色变浅。 四、纳米氧化锌的颜色与纯度的关系 纯的纳米氧化锌,其颜色是纯微黄的,显得色泽很亮。 当纳米氧化锌含杂质,如铁、锰、铜、镉等到了一定程度,会使氧化锌的颜色在微黄色中带有土色的感觉,那是因为铁、锰、铜、镉等的氧化物均为有色物质,相互混合后,几种色光交混,显出土白色。而纳米氧化锌(或者活性氧化锌,轻质氧化锌)随着时间变化而发生的颜色变化,会被土色所掩盖,而使颜色显得变化极小;当纳米氧化锌中含杂质再高时,其颜色会变得很深,更无法观测到其颜色随时间变化的情况。 如前所述,物质的颜色是其对外界光线选择性的吸收引起的。因此,在我们比较氧化锌的颜色时,最好在户外光亮的地方观察比较确切。选择不同的环境做比较,会得到不同的比较结果,这也体现了光反射的趣味性。 五、关于纳米氧化锌颜色的另外一种解释 纳米氧化锌是经碱式碳酸锌煅烧而得。在此过程中,如果碱式碳酸锌未能完全分解,纳米氧化锌的颜色就会显得白一些,因为碱式碳酸锌为纯白色。此外,在南方与北方生产,或在潮湿的雨天与干燥的天气下生产,也会影响颜色。因为纳米氧化锌可与湿空气及二氧化碳反应生成碱式碳酸锌,发生了煅烧过程的逆反应。这种变化对产品质量的影响有多大,现在尚难断定,因为碱式碳酸锌本身也是具有催化作用的,适于在脱硫剂及橡胶行业使用;而在饲料行业,碱式碳酸锌具有与氧化锌同样的功能,它也是一种饲料添加剂,同时,在饲料行业,我们关心的问题主要是重金属的含量是否达到标准要求。

纳米氧化锌综述

纳米氧化锌综述 概述 纳米氧化锌是一种多功能性的新型无机材料,晶体为六方结构,其颗粒大小约在1~100纳米。纳米氧化锌由于颗粒小、比表面积大而具有许多其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的特殊的性质,呈现表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点[1]。近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使其在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。由于纳米氧化锌一系列的优异性和十分诱人的应用前景,因此研发纳米氧化锌已成为许多科技人员关注的焦点。 纳米氧化锌的性质 纳米氧化锌是一种半导体催化剂的电子结构,在光照射下,当一个具有一定能量的光子或者具有超过这个半导体带隙能量Eg的光子射入半导体时,一个电子从价带NB激发到导带CB,而留下了一个空穴。激发态的导带电子和价带空穴能够重新结合消除输入的能量和热,电子在材料的表面态被捕捉,价态电子跃迁到导带,价带的孔穴把周围环境中的羟基电子抢夺过来使羟基变成自由基,作为强氧化剂而完成对有机物(或含氯)的降解,将病菌和病毒杀死[2]。 纳米氧化锌的制备 1.纳米氧化锌的液相化学制备技术 除了能够准确控制粒子的化学组成外,液相法与其它化学制备技术相比还具有设备简单、批量大、原料易得、相对来说粒子大小集中、晶相结构及形状容易控制、产物活性好、成本低等特点。液相法可以分为沉淀法、溶胶-凝胶法、微乳液法、水热合成法、溶剂蒸发法等。 1.1化学沉淀法 1.1.1直接沉淀法 直接沉淀法是直接混合制备氧化锌的锌盐与沉淀剂溶液的方法,特点是条件易于控制,操作简单,适于大批量制备粉体材料,其缺点是副产物离子的洗涤较困难,且产物粒径分布较宽,干燥过程中粒子易于团聚。郭志峰等[3]向乙酸锌溶液滴加草酸,同时搅拌,伴有草酸锌沉淀生成。将沉淀物送入烘箱烘干,烘干的草酸锌粉末置洗净坩埚中,在箱式电阻炉中反应,制得氧化锌晶体。 1.1.2 均匀沉淀法 均匀沉淀法是将反应物之一通过化学反应缓慢释放出来并导致沉淀反应发生的技术,因此混合反应物溶液沉淀反应并不立即发生。其特点是避免了直接沉淀法中的局部过浓,从而大大降低沉淀反应的过饱和度。洪若瑜等[4]采用连续微波加热用硫酸锌和尿素制备了粒径为8~30nm的纳米氧化锌。 1.2溶胶-凝胶法 溶胶-凝胶法是以无机盐或金属醇盐为前驱物,经水解缩聚过程逐渐胶化,然后作相应处理得到所需纳米粉体,方法多采用有机溶剂。该方法合成的粉体纯度高,化学成分均匀,颗粒度小且分布范围窄。溶液的pH值、浓度、反应时间及温度均是影响溶胶-凝胶质量的主要因素。 Tianbao Du等[5]采用溶胶-凝胶浸渍涂布技术制备了氧化锌半导体薄膜,他 们以耐热玻璃为模板,在不断搅拌中把模板加入Zn( CH 3C00) 2 /乙醇溶液中,取出

实验7--沉淀法制备纳米氧化锌粉体

实验七 沉淀法制备纳米氧化锌粉体 一、实验目的 1、了解沉淀法制备纳米粉体的实验原理。 2、掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3、了解反应条件对实验产物形貌的影响,并对实验产物会表征分析。 二、实验原理 氧化锌是一种重要的宽带隙(3.37 eV)半导体氧化物,常温下激发键能为60 meV 。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。氧化锌纳米材料已经应用在纳米发电机、紫外激光器、传感器和燃料电池等方面。通常的制备方法有蒸发法、液相法。我们在这里主要讨论沉淀法。 沉淀法是指包含一种或多种离子的可溶性盐溶液,当加入沉淀剂(如OH --,CO 32-等)后,或在一定温度下使溶液发生水解,形成不溶性的氢氧化物、氧化物或盐类从溶液中析出,并将溶剂和溶液中原有的阴离子洗去,得到所需的化合物粉料。 均匀沉淀法是利用化学反应使溶液中的构晶离子由溶液中缓慢均匀地释放出来。而加入的沉淀剂不是立即在溶液中发生沉淀反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO 3)2、氯化锌ZnCl 2、醋酸锌。常用的沉淀剂有氢氧化钠(NaOH )、氨水(NH 3. H 2O )、尿素(CO(NH 2)2)。一般情况下,锌盐在碱性条件下只能生产Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体通常需要进行煅烧高温。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH 3 H 2O 与锌离子反应产生沉淀。反应如下: O H NH CO O H NH CO 23222223)(?+→+ (1) OH -的生成: -+ +→?OH NH O H NH 423 (2) CO 32-的生成: O H CO NH CO O H NH 223422322++→+?-+ (3)

纳米氧化锌的研究进展

学号:201140600113 纳米氧化锌的制备方法综述 姓名:范丽娜 学号: 201140600113 年级: 2011级 院系:应用化学系 专业:化学类

纳米氧化锌的制备方法综述 姓名:范丽娜学号: 201140600113 内容摘要:介绍了纳米氧化锌的应用前景及国内外的研究现状,对制 备纳米氧化锌的化学沉淀法、溶胶凝胶法、微乳液法、水热合成法、 化学气相法的基本原理、影响因素、产物粒径大小,操作过程等进行 了详细的分析讨论;提出了每种创造工艺的优缺点,指出其未来的研 究方向是生产具有新性能、粒径更小、大小均一、形貌均可调控、生 产成本低廉的纳米氧化锌。同时也有纳米氧化锌应用前景的研究。 Describes the application of zinc oxide prospects and research status, on the preparation of ZnO chemical precipitation, sol-gel method, microemulsion, hydrothermal synthesis method, chemical vapor of the basic principles, factors, product particle size, operating procedure, carried out a detailed analysis and discussion; presents the advantages and disadvantages of each creation process, pointing out its future research direction is the production of new properties, particle size is smaller, uniform size, morphology can be regulated, production cost of zinc oxide. There is also promising research ZnO. 关键字:纳米氧化锌制备方法影响研究展望 正文:纳米氧化锌是一种多功能性的新型无机材料,其颗粒大小约在1~100纳米。由于晶粒的细微化,其表面电子结构和晶体结构发生 变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效 应和宏观隧道效应以及高透明度、高分散性等特点。近年来发现它在

氧化锌纳米材料简介

目录 摘要 (1) 1.ZnO材料简介 (1) 2.ZnO材料的制备 (1) 2.1 ZnO晶体材料的制备 (1) 2.2 ZnO纳米材料的制备 (2) 3. ZnO材料的应用 (3) 3.1 ZnO晶体材料的应用 (3) 3.2 ZnO纳米材料的应用 (5) 4.结论 (7) 参考文献 (9)

氧化锌材料的研究进展 摘要介绍了氧化锌(ZnO)材料的性质,简单综述一下近几年ZnO周期性晶体材料和ZnO纳米材料的新进展。 关键词:ZnO;晶体材料;纳米材料 1.ZnO材料简介 氧化锌材料是一种优秀的半导体材料。难溶于水,可溶于酸和强碱。作为一种常用的化学添加剂,ZnO广泛地应用于塑料、硅酸盐制品、合成橡胶、润滑油、油漆涂料、药膏、粘合剂、食品、电池、阻燃剂等产品的制作中。ZnO的能带隙和激子束缚能较大,透明度高,有优异的常温发光性能,在半导体领域的液晶显示器、薄膜晶体管、发光二极管等产品中均有应用。此外,微颗粒的氧化锌作为一种纳米材料也开始在相关领域发挥作用。纳米ZnO粒径介于1-100nm之间,是一种面向21世纪的新型高功能精细无机产品,表现出许多特殊的性质,如非迁移性、荧光性、压电性、吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能,可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等[1–5]。下面我们简单综述一下,近几年ZnO周期性晶体材料和ZnO纳米材料的新进展。 2.ZnO材料的制备 2.1 ZnO晶体材料的制备 生长大面积、高质量的ZnO晶体材料对于材料科学和器件应用都具有重要意义。尽管蓝宝石一向被用作ZnO薄膜生长的衬底,但它们之间存在较大的晶格失配,从而导致ZnO外延层的位错密度较高,这会导致器件性能退化。由于同质外延潜在的优势,高质量大尺寸的ZnO晶体材料会有利于紫外及蓝光发射器件的制作。由于具有完整的晶格匹配,ZnO同质外延在许多方面具有很大的潜力:能够实现无应变、没有高缺陷的衬底-层界面、低的缺陷密度、容易控制材料的极性等。除了用于同质外延,ZnO晶体

纳米氧化锌的研究进展

收稿日期:2002209212;修回日期:2002211205 3通讯联系人 文章编号:100421656(2003)0520601206 纳米氧化锌的研究进展 辛显双,周百斌3,肖芝燕,徐学勤,吕树臣 (哈尔滨师范大学理化学院,黑龙江哈尔滨 150080) 摘要:本文对纳米氧化锌的制备技术进行了全面介绍并客观地指出其优缺点,概括了常用的表征方法,着重对纳米氧化锌的应用与研究前沿作了系统的阐述,并展望了纳米氧化锌的应用前景。关键词:纳米氧化锌;制备;表征;应用;展望中图分类号:O6141241 文献标识码:A 纳米ZnO 是当前应用前景较为广泛的高功 能无机材料。由于其颗粒尺寸的细微化,比表面积急剧增加,表面分子排布、电子结构和晶体结构都发生变化,具有表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应等。从而使纳米ZnO 具有一系列优异的物理、化学、表面和界面性质,在磁、光、电、催化等方面具有一般ZnO 所无法比拟的特殊性能和用途,由它构成的二维薄膜和三维固体也不同于常规薄膜和块状固体材料[1~5]。本文对ZnO 的制备方法、结构的表征及用途进行了综述,并对纳米氧化锌的应用前景进行了展望。 1 纳米ZnO 的制备方法 纳米ZnO 的制备方法有物理方法和化学方法。物理方法是将常规的粉体经机械粉碎、球磨而制得。其特点是方法简单,但产品纯度较低,颗粒分布不均匀。化学方法是从原子或分子成核,生成纳米级的超微细粒子,这里主要介绍制备纳米ZnO 的化学方法。111 固相反应法 以Na 2C O 3和ZnS O 4?7H 2O 为原材料,分别研磨,再混合研磨,进行室温固相反应[6],首先合成前驱体ZnC O 3,然后于200℃热分解,用去离子水和无水乙醇洗涤,过滤,干燥后制得纯净的ZnO 产品,粒径介于610~1217nm 。石晓波[7]等以草酸和醋酸锌为原料,用室温固相反应首先制备前驱物二水合草酸锌,然后在微波场辐射分解得到 纳米氧化锌,平均粒径约为8nm 。室温固相反应法成本低,实验设备简单,工艺流程短,操作方便。且粒度分布均匀,无团聚现象,工业化生产前景乐观。112 气相反应法 激光技术气相沉积法 这种技术的主要工艺[8]是利用激光蒸发和在扩散云室中的可控凝聚相结合,从而控制粒子的尺寸分布和化学组成。E L -shall M Samy [9]等采用激光蒸发、凝聚技术,在极短时间内使金属产生高密度蒸气,形成定向高速金属蒸气流。然后用金属蒸气与氧气反应而制备出粒径为10~20nm 的ZnO 。此种方法具有能量转换效率高、可精确控制的优点。但成本较高,产率低,难以实现工业化生产。 喷雾热解法 喷雾热解法是将锌盐的水溶液经雾化为气溶胶液滴,再经蒸发、干燥、热解、烧结等过程得到产物粒子。Y un Chankang [10]等用此技术合成了纯度较高的纳米ZnO 。该法过程简单,粒度和组成均匀,但粒径较大。113 液相反应法 直接沉淀法 直接沉淀法是以可溶性锌盐与沉淀剂(如NH 3?H 2O ,(NH 4)2C O 3,NaOH 等)直接沉淀后,经过滤、洗涤、干燥、焙烧得纳米ZnO 。靳建华[11]等用直接沉淀法在无水介质所得的纳米ZnO 粒径为6~17nm 。直接沉淀法操作简单易行,对设备、技术要求不高,且成本低,产品纯度高。但由于此反应是沉淀剂与反应物直接接触而沉淀,因此会造成局部浓度不均匀、分散性较差及 第15卷第5期2003年10月 化学研究与应用Chemical Research and Application V ol.15,N o.5 Oct.,2003

ZnO及其纳米结构的性质与应用

ZnO及其纳米结构的性质与应用 本文将综述ZnO及其纳米结构的性质与应用等方面的内容。 1.ZnO的形貌与晶体结构 按形貌来分,有单晶ZnO,薄膜ZnO、纳米结构ZnO,纳米结构又分为纳米点、纳米颗粒、纳米线、纳米棒(纳米柱)、纳米管、纳米花、纳米片(纳米带)、纳米弹簧、纳米环、纳米梳、纳米钉(纳米针)、纳米笼、纳米四足体、塔状纳米结构、盘状纳米结构、星状纳米结构、支状纳米结构、中空纳米微球、纳米阵列等。 按晶体结构来分,ZnO又有六方对称铅锌矿结构、四方岩盐矿结构和闪锌矿结构,其中六方对称铅锌矿结构为稳定相结构。 在不同的环境下制备出的ZnO的结构与形貌都不尽相同,而不同的结构与形貌又表现出不同的性质,有不同的应用。 2.ZnO的性质及应用 纳米氧化锌材料具有诸多优良的性质,总的来说,可分为三个方面,一是作为半导体材料所具有的性质,二是作为纳米材料而具有的性质,三是其自身独有的性质。 2.1作为半导体材料的ZnO 在半导体产业中,一般将Si、Ge称为第一代半导体材料;将GaAs(砷化镓) 、InP(磷化铟) 、GaP(磷化镓)等称为第二代半导体材料;而将宽禁带( Eg >2. 3eV) 的SiC(碳化硅) 、GaN(氮化镓)和金刚石等称为第三代半导体材料。[1]通常状态下,ZnO是直接宽带隙n型半导体材料,室温下的禁带宽度是3.3eV,是第三代半导体材料中的典型代表。因而其具有第三代半导体材料所具有的诸多优良性质,比如发光特性、光电特性、电学性质、压阻特性、铁磁性质等。 2.1.1发光特性 在半导体中,处于激发态的电子可以向较低的能级跃迁,以光辐射的形式释放出能量,这就是半导体的发光现象。[2]LED产业中比较有代表性的半导体材料是GaN、SiC、ZnO和金刚石,虽然GaN 与SiC的工艺已经比较成熟,但SiC发光效率低,而ZnO在某些方面具有比GaN更优越的性能,如:熔点、激子束缚能和激子增益更高、外延生长温度低、成本低、易刻蚀而使后继工艺加工更方便等。[1]此外,ZnO还具有紫外激光发射行为,因而可用作紫外激光器,由于其波长比GaN所发蓝光更短,因而更受青睐。 2.1.2光电特性 ZnO 薄膜中掺Al使其禁带宽度显著增大,具有较高的光透过率。在可见光区,光透过率达90%。高的光透过率和大的禁带宽度使其可作为太阳能电池窗口材料、低损耗光波导器件及紫外光探测器。[3] 2.1.3电学性质 目前已经可以合成质量好的ZnO单晶,在这种单晶中一般存在较低的本底杂质、点缺陷及位错浓度,从而显示出较好的电学性质。[4]此外,尽管ZnO的迁移率低于GaN,但ZnO的饱和速率却高于GaN,这表明ZnO适于高频器件。[5] 2.1.4压阻特性 对半导体施加应力时,除产生形变外,能带结构也要相应地发生变化,因而材料的电阻率就要改变。[2]ZnO压敏材料受到外加电压时,存在一个阈值电压,当外加电压高于该值时即进入击穿区,此时电压的微小变化即会引起电流的迅速增大。由于具有这种特征,ZnO压敏材料在各种电器设备的电压保护、稳压和浪涌电压吸收等方面都起着重要作用。[3] 2.1.5铁磁性质 Dietl预言在p型ZnO通过Mn掺杂将可以实现室温下载流子控制的铁磁性,通过控制半导体中自旋可以生产相关的器件:如自旋光发射二极管、自旋场效应管及量子计算机的自旋量子位等。[4]

纳米氧化锌的部分特性

纳米氧化锌的部分特性 薛元凤051002231 摘要:纳米材料的物理化学性能与其颗粒的形状、尺寸有着密切的关系。因此,单分散纳米材料的制备及其与尺寸相关的性能研究成为近几年人们研究的热点之一。ZnO作为一种宽禁带半导体具有独特的性质,在纳米光电器件、光催化剂、橡胶、陶瓷及化妆品领域有着广阔的应用前景,随着对不同形状的纳米ZnO的制备及其相关的性能研究不断升温,对其应用方面的研究进展不断深入,单分散纳米ZnO材料已经引起了人们越来越广泛的关注。ZnO作为一种宽禁带,高激子结合能的氧化物半导体,以其优越的磁、光、电以及环境敏感等特性而广泛地应用于透明电子元件、UV 光发射器、压电器件、气敏元件以及传感器等领域。ZnO 本身晶格结 构特点决定了在众多的氧化物半导体中是一种晶粒形态最丰富的材料。本文主讲纳米氧化锌紫外屏蔽、光电催化、气敏、磁性等特性,及纳米氧化锌在生活中、工厂作业中的用途。 关键词:紫外屏蔽光电催化气敏导电性磁性 1 引言 随着纳米科学的发展,人类对自然的认识进入到一个新的层次。材料的新性质被逐渐发掘!认识,新的理论模型被提出"著名学者钱学森院士预言:“纳米左右和纳米以下的结构将是下一阶段科技发展的特点,会是一次技术革命,从而将是二十一世纪的又一次产业革命”。 纳米ZnO具有优异的光、电、磁性能,在当今一些材料研究热点领域表现活跃。与普通ZnO相比,纳米ZnO颗粒尺寸小,微观量子效应显著,展现出许多材料科学家渴望的优异性质,如压电性,荧光性,非迁移性,吸收和散射电磁波能力等。大量科研工作集中于纳米ZnO材料的制备、掺杂和应用等方面。制备均匀、稳定的纳米ZnO是首要任务,获得不同形貌的纳米结构,如纳米球、纳米棒、纳米线、纳米笼、纳米螺旋、纳米环等,将这些新颖的纳米结构材料所具有的独特性能,应用到光电、传导、传感,以及生化等领域,取得了可喜的成绩。世界各国相继大量投入,开发和利用纳米ZnO材料,使其在国防,电子,化工,冶金,航空,生物,医学和环境等方面具发挥更大的作用。 2简介 纳米氧化锌(ZnO)问世于20世纪80年代,其晶体结构为六方晶系P63mc空间群,纤锌矿结构,白色或浅黄色的晶体或粉末,无毒,无臭,系两性氧化物,不溶于水和乙醇,溶解于强酸和强碱,在空气中易吸收二氧化碳和水,尤其是活性氧化锌。

纳米氧化锌的综述

纳米ZnO的制备综述 纳米ZnO的制备综述 引言:纳米ZnO是一种面向21世纪的新型高功能精细无机产品,其粒径介于 1~100纳米,又称为超微细ZnO。由于颗粒尺寸的细微化,比表面积急剧增加,使得纳米ZnO产生了其本体块状材料所不具备的表面效应、小尺寸效应和宏观量子隧道效应等。因而,纳米ZnO在磁、光、电、化学、物理学、敏感性等方面具有一般ZnO产品无法比拟的特殊性能和新用途,在橡胶、涂料、油墨、颜填料、催化剂、高档化妆品以及医药等领域展示出广阔的应用前景。 关键字:纳米ZnO 性质制备应用 一.纳米ZnO的性能表征 纳米级ZnO的突出特点在于产品粒子为纳米级,同时具有纳米材料和传统ZnO的双重特性。与传统ZnO产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%;同时,它还具有抗菌抑菌、祛味防酶等

一系列独特性能。 纳米ZnO粒子为球形,粒径分布均匀,平均粒径20~30纳米,所有粒子的粒径均在50纳米以下。纳米ZnO粉体的BET比表面积在35m2/g以上。此外,通过调整制备工艺参数,还可以生产出棒状纳米ZnO。本产品经中国科学院微生物研究所检测鉴定,结果表明,在丰富细菌培养基中,加入0.5%~1%的纳米ZnO,可有效抑制大肠杆菌的生长,抑菌率达99.9%以上。 由于纳米ZnO具有比表面积大和比表面能大等特点,自身易团聚;另一方面,纳米ZnO表面极性较强,在有机介质中不易均匀分散,这就极大地限制了其纳米效应的发挥。因此对纳米ZnO粉体进行分散和表面改性成为纳米材料在基体中应用前必要的处理手段。 二、纳米ZnO的制备方法 制备纳米ZnO材料的方法按物质的原始状态分为固相法、液相法、气相法3类。 2.1 固相法: 固相法是按照一定比例混合金属盐或金属氧化物,并研磨煅烧,使其发生固相反应而直接得到纳米粉末。 (1)将摩尔比1:1的Zn(NO 3) 2 ·6H 2 O和Na 2 CO 3 分别研磨10min,然后再混合研磨 20min,分别用去离子水和乙醇洗涤,80℃下干燥4h,待冷却后研细再置于马弗炉中,加热升温至400℃并保温3h,得到浅黄色纳米ZnO。或将硫酸锌和氢氧化钠按照摩尔比1:2的量置于研钵中,并向其中加入NaCl,研磨40min,完全反应后分别使用蒸馏水和乙醇洗涤2~3次,室温下干燥,得到纳米ZnO样品。 (2)沉淀法 将ZnSO 4 配制成浓度为1.5mol/L的溶液,加热至30~80℃,然后在搅拌下慢 慢滴加l:lNH 3·H 2 O使之生成Zn(OH) 2 胶体,搅拌、陈化。将配制好的(NH 3 ) 2 CO 3 , (0.5mol/L)溶液慢慢加人到Zn(OH) 2 胶体中不断搅拌,滴加完后继续搅拌反应, 过滤,用去离子水洗涤至无SO 42-(0.1mol/L 的BaCl 2 溶液检定无白色BaSO 4 沉 淀).将滤饼于100℃下烘干即得到前驱体。将前驱体置于马福炉中,以2℃·min-1的升温速率分别在300℃、400℃、500℃条件下分解,自然冷却,即得到ZnO样品。 2.2 气相法: 气相法是指用气体或将初始原料气态化,从而使其在气态条件下直接产生物理或化学反应,然后经冷却而凝聚为纳米微粒。气相法又可以分为化学气相氧化法、气相反应合成法、化学气相沉积法以及喷雾热分解法等。 (1)化学气相氧化法 化学气相氧化法是指将金属单质或金属化合物蒸发,在气相中被氧化而产生金属氧化物,经冷却后金属氧化物蒸气凝聚为纳米微粒。纳米ZnO粉体的合成是通过单质Zn蒸气在O 2 氛围中被氧化而得到。以高化学纯Zn粉作为原材料,在真空室内采用感应加热的方法将Zn粉原材料融化,原子化的Zn将在水冷壁上凝结为Zn 纳米颗粒,用2kW 级连续CO 2 激光器以输出功率600W进行照射,同时在激光照射过程中,向真空室内引入0.8~1.2kP的空气即可得到ZnO纳米颗粒。

ZnO纳米线纳米片及其应用

ZnO 纳米结构及其应用 ZnO 是一种II-VI 族宽带隙的半导体材料,相对分子质量为81.37,密度为5.67g/cm 3。ZnO 为纤锌矿的六方晶体结构,晶格点阵常数为a=0.32nm ,c=0.52nm 。直接禁带宽度E g =3.37eV ,激子结合能E b =60meV 。 ZnO 纳米结构很多,有纳米线(棒),纳米片,纳米带,纳米环等。以一维纳米线(棒)最为常见。 ZnO 纳米线(棒)[1][1]M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P . D. Yang, Nat. Mater., 4, 455–9 (2005). [2]Zhihong Jing;Jinhua Zhan. Adv. Mater. 2008, 20, 4547–4551 [3]J.G. Wen et al. / Chemical Physics Letters 372 (2003) 717–722 ZnO 纳米片 [2]ZnO 纳米带[3]

ZnO 纳米线的应用 ?光电探测器 ?发光二极管 ?场效应晶体管 ?染料敏化太阳能电池(DSSC)?纳米电动机

光电探测器 光电探测器是指能把光辐射能量转换为一种便于测量的物理量的器件。主要性能参数: a.响应度:单位入射光功率与所产生的平均光电流比,单位为A/W。 S =I ph /P opt b.光开关比(on/off ratio): on-off ratio=(I light -I dark )/I dark 其中,I light 和I dark 分别为光照射时产生的电流和无光照射时的电流(暗电流) c.恢复时间(recovery time):撤掉光源时,电流降到暗电流所用的时间。 几种ZnO纳米线基光电探测器及其性能参数: 1.ZnO纳米线担载Au颗粒型[1]: on/off ratio:5×106,recovery time:10 s(λ=350 nm, Power density=1.3 mW/cm2) 2.ZnO 纳米线两端与金属形成肖特基势垒型[2]: on/off ratio:4×105, sensitivity:2.6×103A/W,recovery time:0.28 s(365 nm UV light with intensity 7.6 mW/cm2) 3.graphene/ZnO NW/graphene结构型[3]: on/off ratio:8×102, recovery time:0.5 s(325 nm UV laser with a power density of 100μW/μm2 and at a bias of 2V) [1]Liu et al.,J. Phys. Chem. C 2010, 114, 19835–19839 [2]Cheng et al.,Appl. Phys. Lett. 99, 203105 (2011) [3]Fu et al.,Appl. Phys. Lett. 100, 223114 (2012)

相关主题
文本预览
相关文档 最新文档