当前位置:文档之家› the 荧光聚光太阳能电池高琛guide download

the 荧光聚光太阳能电池高琛guide download

航天器太阳电池阵的研究进展

航天器太阳电池阵的研究进展 摘要:太阳电池阵是在轨航天器主要的电源系统。太阳电池阵由连入一定电路的太阳电池纵横排列而成,利用阳光直接发电而无化学过程。在太阳电池阵的发展历程中,其构型不断演变,变得日趋先进与完善。如今太阳电池阵的设计更多的融入发散思维与创新思维,在向新的台阶跨进,以满足更为复杂的航天任务。在本文中,我们将对太阳电池阵的发展历程进行回顾,并了解其发展现状以及展望未来的前景。 关键词:航天器、电池阵、结构、材料、功率大、质量小、发展过程 1.引言 太阳电池阵简称太阳阵(Solar Array),是航天器上的太阳能电池组成的阵列,由多个带盖片的单体太阳电池按供电要求以串、并联方式组成。①它有着功率大、寿命长、质量小、构造简单、可靠等一系列优点,在宇宙空间中,它能吸收太阳的辐射能并将其转化为电能,为在轨航天器提供动力源。1957年前苏联发射的第一颗人造地球卫星开启了人类的空间探索时代。随着各种航天器的发射运行,太阳电池阵作为航天器的电源不断更新以适应日益严苛的工作条件。20世纪60年代以来,随着载人飞船、空间站以及深空探测计划的进一步实施,对航天器太阳电池阵提出了更高的要求。②如今人类对于宇宙空间的探索不断加深,航天器太阳电池阵所承担的任务也不断加剧,功能方面的不断细致化以及电力方面不断提高的需要等都在促使着航天器太阳电池阵不断地创新与进步。 2 航天器太阳电池阵的发展过程 第一种实用性的太阳电池是1954年研制成功的。然而由于这类早起点吃的价格较高,效率较低,加之顾客对许多新产品通常持有的怀疑态度,因此阻碍了它们的广泛应用。20世纪60年代,日本、法国、苏联等国家通过不同的方法使太阳阵的功能及效益得到改善得以使之投入应用之中。而太阳阵在航空器上的应用则是从人类探索宇宙后不久即开始了。1957年10月4日,苏联把第一颗人造卫星送入地球轨道,意味着空间时代的开始,但是这颗卫星和苏联之后发射的第二颗人造卫星一样都只是使用化学电池作为能源。1958年,苏联第一次将太阳阵用在了卫星上,但是其效率很低,6年多的时间里,该太阳能系统提供的功率不到一瓦。③ 自从1957年以来,太阳阵的尺寸在不断增大,而且越来越复杂。1958 年3 月,美国的Vanguard1星上首次安装了太阳电池板进行飞行实验④。那时的太阳电池阵是体装式,即把太阳能电池直接铺设或安装在航天器本体表面的某些位置上。对于这类太阳电池阵,支承太阳电池的结构(基板)往往就是卫星的外壳结构,或者是固定在外壳表面上的结构。体装式太阳阵分为多面体型与圆柱体型。⑤体装式的太阳阵较好的实现了航天器在空间对于太阳能的收集,很大程度解决了能源的供给问题,使卫星寿命明显延长,但是发电效率较低的问题却仍然没能很好解决,只能供给功率较小的小型卫星。为了解决这一问题,出现了展开式太阳电池阵。太阳桨(solar paddle)是展开式太阳电池阵的初级形式,往往以单块基板与卫星本体相连。但是不久之后,卫星设计提出了大功率太阳电池阵的要求,它们所提供的功率比太阳浆提供的更大,一种方法是采用定向式或半定向式太阳板(图1),另一种方法是在较大直径的飞行器上采用圆柱形或其他形状的本体安装式太阳电池阵(图2)。

聚光条件下太阳能电池性能的理论研究

江西科技师范大学 毕业论文 题目(中文):聚光条件下太阳能电池性能的理论研究(外文):Study of the power characteristic of solar cells in concentration 院(系):xxxxxxxxxxxxxx 专业:xxxxxxxxxxxxxx 学生姓名:xxx 学号:xx xx 指导教师:x x 2016年4月20 日

目录 1.概述........................................................................................................................ - 1 - 2.聚光型太阳能材料及技术.................................................................................... - 1 - 2.1聚光用的太阳能电池原材料...................................................................... - 2 - 2.2产品构成与关键技术.................................................................................. - 2 - 3.聚光条件下太阳能电池发电的理论分析............................................................ - 3 - 3.1非聚光条件下的太阳能电池发电.............................................................. - 3 - 3.2聚光条件下的太阳能电池发电.................................................................. - 5 - 3.3聚光倍数与电池输出功率关系.................................................................. - 6 - 3.3.1 传热分析........................................................................................... - 6 - 3.3.2 聚光倍数与电池输出功率关系....................................................... - 7 - 3.3.3 计算实例......................................................................................... - 10 - 3.4聚光降低光伏发电成本............................................................................ - 11 - 3.4.1 聚光提高电池片转换效率............................................................. - 11 - 3.4.2 聚光减少昂贵的电池片消耗......................................................... - 11 - 4.总结与展望.......................................................................................................... - 12 - 结束语..................................................................................................................... - 14 - 参考文献................................................................................................................. - 15 -

高倍聚光的Ⅲ-Ⅴ太阳电池成本分析

高倍聚光的Ⅲ-Ⅴ太阳电池发电成本分析 Xinghun1201 2009年6月22日星期一 决定CPV发电成本的主要因素是:(1)产量规模;(2)聚光倍数;(3)电池效率 目前和今后,发展类似LEDs制造方法制造多结化合物太阳电池,可以使得多结化合物太阳电池的成本大大降低,具有竞争力的CPV市场需要使用1000倍或更高倍聚光的Ⅲ-Ⅴ太阳电池,因为市场上Si太阳电池已经做到几百倍太阳聚光,虽然效率只有25%。用更高倍聚光来抵消Ⅲ-Ⅴ太阳电池生产成本。 另一个建议使用1000倍聚光的原因来源于CPV实际产业化实验成本分析,以西班牙NFLATCOM 项目为例,2000年完成的第一阶段实验,接近与完全聚光PV模块原型制造过程。使用RXI光学聚光器1000倍聚光,使用GaAs单结电池(25%);使用高效率高倍聚光系统实现了商业光伏系统安装(10MWp)成本为2.8欧元/Wp,另外,如果加上其他不过预期的成本估算为4.8欧元/Wp,由此可见,需要使用1000倍聚光来抵消Ⅲ-Ⅴ太阳电池生产成本。 CPV在产业化实验的第二阶段,取得明显进展,实现了商业光伏系统成本为2.5欧元/Wp,据估算,工作在1000倍聚光,效率为30%的多结化合物太阳电池,光伏系统成本为2.5欧元/Wp,而对于工作在400倍聚光,效率为38%的多结化合物太阳电池,光伏系统成本为3.0欧元/Wp,对于工作在250倍聚光,效率为40%的多结化合物太阳电池,光伏系统成本为3.8欧元/Wp,对于工作在1000倍聚光,效率为26%的多结化合物太阳电池,光伏系统成本为2.8欧元/Wp,下图给出不同聚光条件和不同电池效率的光伏发电成本。 附图1:CPV系统发电成本与产量规模(上曲线10MWp,下曲线1GWp)、聚光倍数、电池效率的关系。(单位:欧元/Wp)

太阳能电池物理学习题答案

1.电子空穴对的产生以及复合:太阳能电池通过吸收光子提供一电子-空穴对的最小的激发能量Eg,把电子从价带碰撞进入导带,这样就产生了电子-空穴对。电子-空穴对能够在半导体中产生,也可以复合在半导体中消失。辐射复合是电子-空穴对产生的反过程(即一个电子从导带到价带中未被占领的状态跃迁,同时释放能量。 2.P_N结伏安特性曲线: 3.异质结:在电子和空穴的分离过程中,电子流向左方N型半导体,空穴流向右方P型半导体。此时,电子的电化学势能以及电子的费米能级朝右方衰减,此时,也存在着向错误方向的传输,即电子流向右方p型层,和空穴流向左方n 行层,于总电流相关的电科电流减少。而要解决这一问题需要一种结构。吸收半 导体位于中间,两侧分别拥有大的能隙,并且具有不同的电子亲和能。这种结构 叫做异质结。 4.非晶硅薄膜太阳能电池:一.优点:制作工艺简单,在制备非晶硅薄膜的同时就 能制作pin结构。可连续大面积自动化批量生产。非晶硅太阳能电池衬底材料可 以是玻璃,不锈钢等,因而成本低。可以设计成各种形式,利用集成型结构,可 获得更高的输出电压和光电转换效率。薄膜材料是用硅烷SiH4等的辉光放电分 解得到的,原材料价格低。缺点:初始光电转换效率较低,稳定性较差。二.a-Si 太阳能电池效率低的原因:1)a-Si材料的带隙较宽,实际可利用主要光谱域是 0.35-0.7Um波长,相对的较窄。2)电池开路电压与预期相差较大。迁移边存 在高密度的尾态。材料多缺陷,载流子扩散长度很短。3)a-Si材料隙态密度较高,载流子复合几率较大,二级管理向因子通常大于二,与n=1的理想情况相差较大。4)电池P区和N区的电阻率较高。TCO/p-a-si或者n-a-si接触电阻较高,甚至存在界面壁垒,带来附加的能量损失。 结构:非晶硅太阳能电池是以玻璃,不锈钢及特种塑料为衬底的电池,结构如图所示。为了焦山串联电阻,通常用激光器将TCO膜,非晶硅(a-Si)和铝电极膜分别切割成条状。非晶硅薄膜的制备:把硅烷(SiH4)等原料气体导入真空度保持在10~1000P 的反应室中,由于射频(RF) 电场的作用,产生辉光放电,原料气体被分解,在玻璃或者不锈钢等衬底上形成非晶硅薄膜材料。 5.影响太阳能转化效率的因素:能隙——半导体能隙在1eV到1.5eV之间对太阳能电池是适合的 6.光生伏打效应:当太阳光或其他光照射到太阳电池上的时候,电池吸收光能,产生电子-空穴对,在电池内建电场的作用下光生电子和空穴被分离,电池两端出现异号电荷的累积,即产生光生电压,这就是光生伏打效应。

太阳能电池板原理(DOC)

随着全球能源日趋紧张,太阳能成为新型能源得到了大力的开发,其中我们在生活中使用最多的就是太阳能电池了。太阳能电池是以半导体材料为主,利用光电材料吸收光能后发生光电转换,使它产生电流,那么太阳能电池的工作原理是怎么样的呢?太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。当太阳光照射到半导体上时,其中一部分被表面反射掉,其余部分被半导体吸收或透过。被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子—空穴对。这样,光能就以产生电子—空穴对的形式转变为电能。 一、太阳能电池的物理基础 当太阳光照射p-n结时,在半导体内的电子由于获得了光能而释放电子,相应地便产生了电子——空穴对,并在势垒电场的作用下,电子被驱向型区,空穴被驱向P型区,从而使凡区有过剩的电子,P区有过剩的空穴。于是,就在p-n结的附近形成了与势垒电场方向相反的光生电场。 如果半导体内存在P—N结,则在P型和N型交界面两边形成势垒电场,能将电子驱向N区,空穴驱向P区,从而使得N区有过剩的电子,P区有过剩的空穴,在P—N结附近形成与势垒电场方向相反光的生电场。

制造太阳电池的半导体材料已知的有十几种,因此太阳电池的种类也很多。目前,技术最成熟,并具有商业价值的太阳电池要算硅太阳电池。下面我们以硅太阳能电池为例,详细介绍太阳能电池的工作原理。 1、本征半导体 物质的导电性能决定于原子结构。导体一般为低价元素,它们的最外层电子极易挣脱原子核的束缚成为自由电子,在外电场的作用下产生定向移动,形成电流。高价元素(如惰性气体)或高分子物质(如橡胶),它们的最外层电子受原子核束缚力很强,很难成为自由电子,所以导电性极差,成为绝缘体。常用的半导体材料硅(Si)和锗(Ge)均为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚的那么紧,因而其导电性介于二者之间。 将纯净的半导体经过一定的工艺过程制成单晶体,即为本征半导体。晶体中的原子在空间形成排列整齐的点阵,相邻的原子形成共价键。

聚光型太阳能电池技术及现状

摘要 近年来,多晶硅原材料的紧缺,已制约了单晶硅或多晶硅的硅级电池的规模生产。由于高昂的上游原料的成本导致光伏发电成本居高不下,与传统的电力价差悬殊是光伏并网发电市场尚不能全面启动的主要因素之一。高倍聚光电池及系统的规模应用,将在缓解太阳能电池对硅原料的依赖和降低成本方面有很大的改进和创新。 关键词:硅级电池高倍聚光电池低成本新型技术

绪言 (4) 一.聚光型太阳能材料及技术 (5) 1.1聚光用的太阳能电池原材料 (5) 1.2产品构成与关键技术 (5) 二.产品与技术发展模式 (5) 三.产品核心优势 (6) 3.1 光电转换效率高 (6) 3.2 单位面积输出功率高 (7) 3.3 市场应用现状 (7) 四.未来太阳能电池市场前景展望 (7) 4.1 聚光电池应用前景 (8) 五.行业重点技术和公司关注 (9) 参考文献13

聚光电池是降低太阳电池利用总成本的一种措施,通过聚光器使较大面积的阳光聚在一个较小的范围内,形成“焦斑”或“焦带”,并将太阳电池置于“焦斑”或“焦带”上,以增加光强克服太阳辐射能流密度低的缺陷,从而获得更多的电能输出。通常聚光器的倍率大于几十,其结构可采用反射式或透镜式。聚光器的跟踪一般用光电自动跟踪,散热方式可以是气冷或水冷,有的与热水器结合,既获得电能,又得到热水。用于聚光太阳电池的单体,与普通太阳电池略有不同,因需耐高倍率的太阳辐射,特别是在较高温度下的光电转换性能要得到保证,故在半导体材料选择、电池结构和栅线设计等方面都比较特殊。最理想的材料是砷化镓,其次是单晶硅材料。在电池结构方面,普通太阳电池多用平面结构,而聚光太阳电池常采用垂直结构,以减少串联电阻的影响。同时,聚光电池的栅线也较密,典型的聚光电池的栅线约占电池面积的1O%,以适应大电流密度需要。

高倍聚光光伏电池作为第三代太阳能发电技术

高倍聚光光伏(HCPV)电池作为第三代太阳能发电技术正逐渐成 为太阳能领域的新焦点 经过30多年的发展,高倍聚光光伏(HCPV)电池作为第三代太阳能发电技术正逐渐成为太阳能领域的新焦点,引起了行业内企业的追逐。在日光照射较好的几个欧美国家,已通过了优惠的上网电价法,随着具有40%转换效率的Ⅲ-V 族半导体多结太阳能电池的普及和成本下降,高倍聚光光伏电池市场进入快速增长期。与前两代电池相比,HCPV采用多结的砷化镓电池,具有宽光谱吸收、高转换效率、良好的温度特性、低耗能的制造过程等优点,使它能在高倍聚焦的高温环境下仍保持较高的光电转换效率。高倍聚光光伏系统技术门槛较高且行业跨度大,涵盖半导体材料及工艺制造、半导体封装、光学设计制造、自动化控制、机械设计制造、金属加工等领域。HCPV行业的产品包括了多结电池片外延材料、光电转换芯片、光接收器组件、聚光器、光伏模组、双轴跟踪器等。 电池芯片采用多结技术大幅提高光电转换效率 与硅基材料相比,基于III-V族半导体多结太阳能电池具有最高的光电转换效率,大致要比硅太阳能电池高50%左右。III-V族半导体具有比硅高得多的耐高温特性,在高照度下仍具有高的光电转换效率,因此可以采用高倍聚光技术,这意味着产生同样多的电能只需要很少的太阳电池芯片。多结技术一个独特的方面就是材料——可选择不同的材料进行组合使它们的吸收光谱和太阳光光谱接 近一致,相对晶硅,这是巨大的优势。后者的转换效率已近极限(25%),而多结器件理论上的转换效率可达68%。目前最多使用的是由锗、砷化镓、镓铟磷3种不同的半导体材料形成3个p-n结,在这种多结太阳能电池中,不但这3种材料的晶格常数基本匹配,而且每一种半导体材料具有不同的禁带宽度,分别吸收不同波段的太阳光光谱,从而可以对太阳光进行全谱线吸收。 HCPV芯片的生产过程如下,首先利用MOCVD技术在4英寸锗衬底上外延砷化镓和铟镓磷形成3结电池片的材料,然后在外延片上利用光刻、PECVD、蒸镀等技术,制备减反膜以及主要成份为银的金属电极,再经划片清洗等工艺,生产出HCPV芯片。HCPV芯片的主要生产商有美国的Spectrolab、Emcore,德国的Azurspace,加拿大Cyrium,中国台湾Arima、Epistar等。衬底剥离的芯片和量子点技术是目前HCPV芯片领域的新热点。 接收器要安全可靠稳定地应用于系统 聚光太阳能电池芯片被封装到光接收器中,接收器封装对太阳能电池进行保护,对会聚光均匀化,同时起到散热的作用。接收器组件还包括旁路二极管和引线端子。芯片的主要焊接工艺有回流焊和共晶焊,二者最主要的区别在于前者使用助焊剂焊接,在焊接后需要清洗去除残留助焊剂,而共晶焊使用无助焊剂的焊片焊接。为了将电从芯片导出,需要进行金带键合将芯片和外围电路连接起来。接收器组件的检验指标主要包括空洞率和电性能测试,空洞率是检验焊接良好与否的标准。电性能方面,5.5mm×5.5mm接收器组件在500倍太阳光下的光电 转换率高达38.5%以上。在实际使用中,还需要将接收器组件与二次光学器件、散热器封装在一起,组成完整的接收器。二次光学器件可以降低对跟踪器高精准度的要求,并使通过涅尔透镜聚焦后的光斑更加均匀地照射到电池芯片上。 二次光学元件通常是光学玻璃棱镜或中空的倒金字塔金属反射器。为了最大限度地利用太阳能资源,节省芯片材料以降低成本,可以提高电池的聚光倍数,

【精选】沪科版物理高二上7C《能的转化的方向性 能源开发》 D 太阳能的利用 教案-物理知识点总结

第七章 C 能的转化的方向性能源开发 D 太阳能的利用 (2课时) 知识和技能 1. 知道能的转化具有方向性; 2. 知道开发利用新能源的必要性与可行性; 3. 了解太阳能利用的原理与现状。 过程和方法 1、通过问题讨论经历有关能量转化方向性的认知过程。 2、通过对常规能源与新能源的分类和比较,提高分析问题的能力。 情感、态度和价值观 建立珍惜能源,努力开发新能源的思想,树立自觉学习科学技术的决心。 一、能的转化具有方向性 1、大家谈------生活中的“不可逆过程” 水往低处流、覆水难收、破镜不能重圆、人死不能复生、光阴似箭等。 热传递、摩擦生热、气体自由膨胀是物理学中典型的不可逆过程。 汽油机的效率为20 %~30%等说明机械能和内能的转化过程具有方向性:机械能可以全部转化为内能,但内能却不能全部转化成机械能。 2、热力学第二定律:不可能使热量由低温物体传递到高温物体,而不引起其他变化。 自然界中任何的过程都不可能自动地复原,要使系统从终态回到初态必需借助外界的作用,由此可见,热力学系统所进行的不可逆过程的初态和终态之间有着重大的差异,这种差异决定了过程的方向,(详见[附]) 3、能量的耗散与退化 二、能源开发 1、能源及分类 (a)常规能源与新能源 像煤、石油、天然气等矿产燃料以及水能资源,是目前人类广泛应用的能源,在技术上也比较成熟,我们称之为常规能源。 人类正在积极研制或很有利用前途的其他能源(核能、太阳能、潮汐、地热、生物能等)称之为新能源。 (b)可再生能源和不可再生能源 可再生能源是清洁能源,是指在自然界中可以不断再生、永续利用、取之不尽、用之不竭的资源,它对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用。主要包括太阳能、风能、水能、生物质能、地热能和海洋能等。 (c)一次能源和二次能源 由一次能源经过加工转换以后得到的能源产品,称为二次能源,例如:电力、蒸汽、煤气、汽油、柴油、重油、液化石油气、酒精、沼气、氢气和焦炭等等。 三、主要新能源介绍 1.核能 2.风能:荷兰风车,风力发电装置。 陆地上能够利用风能的地方,主要是在常年风力较强的沿海和内陆高原。我国一些高原牧区和海岛已利用风力发电,满足照明、看电视等用电需要。 3.生物能:沼气池。 沼气池原理是利用植物体或粪便,经密封发酵后产生出可燃气体。在农村特别适用。 4.可燃冰

太阳能电池的工作原理

太阳电池吸收太阳光就能产生一般电池的功能。但是和传统的电池不一样,传统电池的输出电压和最大输出功率是固定的,而太阳电池的输出电压、电流,功率则是和光照条件及负载的工作点关。正因如此,要应用太阳电池来产生电力,必须了解太阳电池的电流-电压关系,及工作原理。 太阳光的频谱照度: 太阳电池的能量来源是太阳光,因此入射太阳光的强度(intensity)与频谱 (spectrum)就决定了太阳电池输出的电流与电压。我们知道,物体置放于于阳光下,其接受太阳光有二种形式,一为直接(direct)接受阳光,另一为经过地表其它物体散射后的散射(diffuse)阳光。一般情况下,直接入射光约占太阳电池接受光的80%。因此,我们下面的讨论也以直接着实阳光为主。 太阳光的强度与频谱,可以用频谱照度(spectrum irradiance)来表达,也就是单位面积单位波长的光照功率(W/㎡um)。而太阳光的强度(W/㎡),则是频谱照度的所有波长之总和。太阳光的频谱照度则和测量的位置与太阳相对于地表的角度有关,这是因为太阳光到达地表前,会经过大气层的吸收与散射。位置与角度这二项因素,一般就用所谓的空气质量(air mass, AM)来表示。对太阳光照度而言,AMO是指在外太空中,太阳正射的情况,其光强度约为1353 W/㎡,约等同于温度5800K的黑体辐射产生的光源。AMI是指在地表上,太阳正射的情况,光强度约为925 W/m2〇 AMI.5足指在地表上,太阳以45度角入射的情况,光强度约为844 W/㎡。一般也使用AM 1.5来代表地表上太阳光的平均照度。 太阳电池的电路模型: 一个太阳电池没有光照时,它的特性就是一个p-n结二极管。而一个理想的二极管其电流-电压关系可表为 其中I代表电流,V代表电压,Is是饱和电流,和VT=KBT/q0, 其中KB代表BoItzmann常数,q0是单位电量,T是温度。在室温下,VT=0.026v。需注意的是,P-n二极管电流的方向是定义在器件内从P型流向n型,而电压的正负值,则是定义为P 型端电势减去n型端电势。因此若遵循此定义,太阳电池工作时,其电压值为正,电流值为负,I-V曲线在第四象限。这里必须提醒读者的是,所谓的理想二极管是建立在许多物理条件上,而'实际的二极管自然会有一些非理想(nonideal)的因素影响器件的电流-电压关系,例如产生-复合电流,这里我们不多做讨论。 当太阳电池受到光照时,p-n二极管内就会有光电流。因为p-n结的内建电场方向是从n型指向p型,光子被吸收产生的电子-空穴对,电子会往n型端跑,而空穴会往p型端跑,则电子和空穴二者形成的光电流会由n型流到p 型。一般二极管的正电流方向是定义为由p型流到n型。这样,相对于理想二极管,太阳电池光照时产生的光电流乃一负向电流。而太阳电池的电流-电压关系就是理想二极管加上一个负向的光电流IL,其大小为: 也就是说,没有光照的情况,IL=0,太阳电池就是一个普通的二极管。当太阳电池短路时,也就是V=0,其短路电流则为Isc=-IL.也就是说当太阳电池短路,短路电流就是入射光产生光电流。若太阳电池开路,也就是你I=0,其开路电压则为:

槽式聚光太阳能系统太阳电池阵列

第29卷 第12期2008年12月 半 导 体 学 报 J OU RNAL O F S EM ICOND U C TO RS Vol.29 No.12 Dec.,2008 3国家高技术研究发展计划(批准号:2006AA 05Z 410),国家基础研究发展规划计划前期研究专项(批准号:2007CB 216405),云南省自然科学基金重点资 助项目(批准号:2007C 0016Z ,2005E 0031M )及教育部出国留学回国人员基金资助项目 通信作者.Email :l mdocyn @p https://www.doczj.com/doc/ab16835933.html, 2008206214收到,2008207215定稿Ζ2008中国电子学会 槽式聚光太阳能系统太阳电池阵列3 徐永锋1 李 明1,2, 王六玲1 何建华1 张兴华1 王云峰1 项 明1 (1云南师范大学物理与电子信息学院,昆明 650092) (2云南师范大学太阳能研究所,昆明 650092) 摘要:基于槽式聚光太阳能系统分别对单晶硅电池阵列、多晶硅电池阵列、空间太阳电池阵列和砷化镓电池阵列进行测试 实验.结果表明,聚光后,前3种电池阵列的I 2V 曲线都趋于直线,输出功率急剧减少,系统效率下降较快.而砷化镓电池阵列有较好的I 2V 曲线,其效率由聚光前的23166%增加到26150%,理论聚光比为16192时,输出功率放大1112倍,聚光光伏系统中可采用砷化镓电池阵列以提高效率.砷化镓电池阵列P m 、F F 和η的温度系数分别为-0112W/K 、-0110%/K 和-0121%/K ,为避免温度的影响须采用强制冷却方式保证电池效率,同时对外供热.研究表明,10片单晶硅电池串联阵列最佳工作时的理论聚光比为4123;16片空间太阳电池串联阵列最佳工作时的理论聚光比为8146.研究工作对提高槽式聚光系统效率和大规模利用聚光光伏发电提供了依据. 关键词:聚光太阳能系统;输出功率;填充因子;温度系数EEACC :8230G ;8250;8420中图分类号:TN 304 文献标识码:A 文章编号:025324177(2008)1222421206 1 引言 目前,开发利用太阳能已成为世界各国可持续发展的主要战略决策,但是,太阳能量的分散性却成为利用太阳能的主要障碍[1].采用聚光方法,几倍乃至几百倍地提高太阳能辐射功率密度,以提高单位面积太阳电池的输出功率,降低光伏发电成本,具有较好的应用前景[2].国际上,20世纪70年代末至80年代初,美国M I T 的Hendire 及美国B r ow n 大学的Russell 教授最先涉及光伏与光热的研究[3,4];1995年挪威学者对PV/ T 系统进行了实验研究[5,6] ;而希腊学者于2002年对 PV/T 系统进行了实验研究[7,8] ,较为详细地报道了用水或用空气作为太阳电池板冷却工质时,系统的供电与供热特性;澳大利亚国立大学可再生能源研究中心采用80个槽式抛物面跟踪太阳反射镜系统,聚22倍光作用于太阳电池板,此时电池的效率达到22%以上,在同等功率输出条件下,采用槽式抛物面聚光太阳能光伏发电的成本仅为非聚光平板太阳能光伏发电成本的60%,该大学在2004年对槽式聚光系统在热电联供方面做了较系统的研究[9].目前国内只是对单片常规电池进行实验和模拟计算研究,并没有相关的实验研究.因此本文基于槽式聚光太阳能系统,汇集高密度太阳能对单晶硅电池阵列、多晶硅电池阵列、空间太阳电池阵列、砷化镓电池阵列进行实验研究,根据太阳电池阵列的特性曲线分析电池性能,找出影响电池阵列输出特性的因素,并分析了不同光照情况下的I 2V 曲线. 为保证电池效率及防止电池温度过高,采用冷却方法,控制冷却流体的流速来调节电池的温度,同时得到热能.研究工作对槽式聚光太阳能系统进一步优化提供依据. 2 实验 槽式聚光太阳能系统集热装置如图1所示,采用结构简单、跟踪方便、应用最广泛的槽式抛物面反射聚光器,集热器内腔体为纯铝型材,内腔体与外腔体之间用保温层隔开,太阳电池由导热绝缘胶贴在集热器下表面.太阳光由镜面反射汇集在电池上,成倍增加单位面积电池的输出功率,通过背面圆形管道中的水强制冷却电池温度,热水流出导管后被存储起来对外供热.在聚光条件下,太阳电池阵列输出电功率,同时得到热能,系统可实现热电联供 . 图1 槽式聚光太阳能系统集热装置图 Fig.1 Diagra m of collect or of t he t rough conce nt rating solar e negy syste m

聚光太阳能发电

聚光太阳能发电?聚光太阳能发电(CONcentrating Solar Power)简称CSP是采用反射镜把太阳光反射并聚集到接收器,该接收器能够聚集太阳能并将其转换为热能,利用这种热能生产的热蒸汽,推动涡轮发动机,从而驱动发电机发电,满足电力需求。太阳能到电能的高效率转换特性,使CSP技术成为具有吸引力的可再生能源项目。 目录 ?聚光太阳能发电的几种主要形式 ?聚光太阳能发电的基本原理 ?聚光太阳能发电系统的组成 ?聚光太阳能发电的发展现状 ?聚光太阳能发电的发展优势 聚光太阳能发电的几种主要形式 ?一、线性聚光系统 线性聚光太阳能发电采用线聚焦技术,线性聚光器包括抛物面槽式系统和线性菲涅耳反射系统2种,利用很大的反射镜来捕获太阳的能量,并把太阳光反射和对焦集中到焦线上,在这条焦线上安装有线性管状集热器,集热器吸收聚焦后的太阳辐射能,把吸热管内的流体加热,然后产生过热蒸汽,驱动涡轮发电机产生电力。线性集中聚光器系统通常由按南北向平行排列的大量聚光器组成,这样保证最大限度地聚集太阳能。 1.抛物面槽式系统 目前,在美国太阳能热发电领域中占主导地位的是抛物面槽式线性聚光系统,槽式太阳能发电系统由太阳能聚光器,以及吸热配件或接收器和跟踪机构组成。其中太阳能聚光器由许多弯曲的反射镜组合装配而成,安装在支架上。吸热管或接收

器管沿着每个抛物形反射镜的焦线固定安装,用以吸收太阳辐射能,传热工质(不管是传热流体还是水/蒸汽)都要从太阳能集热管中流过,从而产生过热蒸汽,直接输送到涡轮机用以发电。 2.线性菲涅尔反射器系统 第二种线性聚光技术是线性菲涅尔反射器系统,该系统由反射镜。聚光器和跟踪机构组成。把平坦的或略有弯曲的反射镜安装配置在跟踪器上,在反射镜上方的空间安装吸热管,反射镜把阳光反射到吸热管。有时在聚光器的顶部加装小型抛物面反射镜,以加强阳光的聚焦。 二、碟式引擎系统 与其他聚光太阳能发电技术相比,碟式引擎系统产生的电力功率相对较少,通常在3~25万kW的范围内,很适合分布式应用,如果将多个这样分布安装的单元碟式。引擎系统整合成一簇,可以实现集中向电网供电,不但能缓解电力能源需求,还可以提高整个电网的运行安全性。整个发电系统安装在一个双轴跟踪支撑机构上,实现定日跟踪,连续发电,发电效率高达30%,在相同的运行温度下,发电效率明显高于槽式和塔式,是所有太阳能热发电系统中效率最高的。缺点是碟式太阳能热发电系统的单元发电容量较小。 三、塔式系统 塔式太阳能热发电系统主要由日光反射镜子系统。接收器组成,见图。其中日光反射镜子系统由大量大型。平坦的太阳跟踪反射镜构成,对太阳进行实时跟踪,把太阳光聚焦到塔顶的接收器。在接收器中对传热流体进行加热,产生高温过热蒸汽,过热蒸汽推动常规涡轮发电机组发电。一些电力塔利用水。蒸汽作为传热流体。由于其卓越的传热和能量存储能力,在其他先进的设计中,对其进行了熔融硝酸盐试验。具有商业规模的工厂可以生产200MW的电力造价十分昂贵,建设电站的投资很高

聚光型太阳能电池技术及现状

太阳能光电工程学院 《太阳能电池及其应用》 课程设计报告书 题目:聚光型太阳能电池技术及现状 姓名: 设计成绩: 指导教师: 摘要 本文概述了目前全球能源现状,以及聚光型太阳能电池的市场背景,表明了太阳能发电的重要性和前景,详细介绍了聚光型太阳能电池的技术、现状以及与普通太阳能电池的区别,并对普通太阳能电池与聚光型太阳能电池发电所需发电成本进行比较。详细介绍了塔式、槽式、碟式太阳能发电的原理及优缺点。

指出电池冷却技术的必要性和冷却技术。同时指出聚光型太阳能电池发展面临的困难和解决措施,以及今后的发展方向。通过改造电池制造工艺、提高转换效率、聚焦技术的应用等手段,可以有效降低光伏发电成本,也是国内外本领域研究的热点。其中采用聚焦技术是一个有效地方法。对常规太阳能电池进行聚光,使太阳电池工作在几倍乃至几百倍的光强条件下,一定程度上克服了太阳能量的分散性,可以提高单位面积太阳电池的输出功率,大大降低光伏发电成本,具有很好应用前景。 关键词:聚光型太阳能电池技术措施 目录 绪言 (2) 1.聚光型太阳能原理及技术 (3)

1.1聚光型太阳能电池的原理 (3) 1.2聚光型太阳能电池的关键技术 (4) 1.3塔式太阳能发电技术 (5) 1.4槽式太阳能发电 (6) 1.5碟式太阳能发电 (7) 1.6电池的冷却技术 (7) 2.产品的的核心优势 (10) 2.1光电转换效率高 (10) 2.2单位面积输出功率高 (10) 3.现状与展望 (10) 3.1我国聚光型太阳能电池的现状 (10) 3.2展望 (11) 参考文献 (12) 绪言 随着经济的发展,社会的进步,人们对能源提出了越来越高的要求,由于全球气候变迁、空气污染问题以及资源的日趋短缺之故,传统的燃料能源正在一天天减少,与此同时全球还有约20亿人得不到正常的能源供应。寻找新能源成

非富勒烯受体ITIC及其改性材料的有机太阳能电池的器件物理研究

非富勒烯受体ITIC及其改性材料的有机太阳能电池的器件物理 研究 目前,电压损失成为进一步提高光伏性能的明显阻碍之一,因此本文利用变光强、变温以及电致发光等方法系统研究了电荷转移、能量无序度和电荷转移态(ECT)对于光电转换效率超过11%的高性能非富勒烯本体异质结太阳能电池的影响。并且通过系统的优化路线对另一种代表性的非富勒烯受体太阳能电池进行优化和性能提升,主要通过变光强和其表面形貌的变化来考察不同给受体比例和不同添加剂对器件的影响,并进行了系统研究。 (1)利用Voc随温度变化来探究太阳能电池器件的电压上限,通过实验证实了器件的Voc与能量无序有关。我们发现最优太阳能电池基于PBDB-T:IT-M与ITIC,PC71BM作为受体的器件相比,具有最低能量无序度。 确定的能量无序度可以调节不同能带器件的Voc,基于EQE和EL 光谱对能量的计算,我们发现PBDB-T:IT-M器件ΔVnonrad随ECT增加而减小,Voc辐射限制结合非辐射损失获得的数值和实验Voc数值相符。结论表明,传输和CTS的能量无序度最小化与是减少Voc损失改善器件性能的关键,通过精确调节BHJs的能量和传输性能,可以减少非辐射电压损失。 (2)基于聚合物给体PBDB-T和一种非富勒烯受体m-ITIC组合,制备本体异质结有机太阳能电池器件,并基于添加剂来调控电池的光伏性能和电荷复合,我们发现PBDB-T:m-ITIC体系和不同添加剂(DIO,CN,DPE和NMP)均表现出优异性能。通过进一步调节优化可获得光电转换效率超过11%的出色性能。

高倍聚光光伏电站

中国首座高倍聚光光伏电站投入运营 source:中国工控网 中国首座商业化运营的并网高倍聚光光伏电站近日正式启动,该电站由上海聚恒太阳能有限公司在哈尔滨工业大学(威海)校园内建设。据悉,国家金太阳认证中心-国家计量科学院鉴衡认证中心也在此挂牌"金太阳高倍聚光光伏示范电站"。 该光伏列阵由48个聚光光伏组件组成, 不同于大家熟悉的通常呈蓝色或黑色的晶体硅平板太阳能电池板,聚光光伏组件是由透明的平板玻璃光学系统和太阳能电池组成的 被称之为第三代光伏技术的高倍聚光光伏发电技术使用高效率的多结三五族太阳能电池,光电转换效率已达41%,理论上可达70%。多结三五族太阳能电池也被称为砷化镓电池,是目前光电转换效率最高,达到晶体硅技术的两倍,同时也是效率增长潜力最大的太阳能电池。由于其价格非常昂贵,最早使用在太空领域为卫星和空间站提供能源,地面使用难以普及。但由于这种电池的转化效率可随着聚光倍数的增加而提高,因此利用低成本的聚光光学系统和此电池结合在一起,就能以低廉的成本获得高效率的发电系统。由于聚光太阳能电池转化效率高,一方面可以降低光伏发电成本,同时也可以大幅减少光伏电站的建设用地;因此,它也是最有希望在大型光伏电站中使用,将发电成本降低到可以和煤电成本相竞争的光伏技术。 由于高倍聚光光伏发电技术在国内才起步,在太阳能光伏几种技术中,参与的企业和影响力还很小。而在欧美聚光光伏已逐步成为主流技术,尤其是2010年以来,高倍聚光光伏已获得数个10MW及以上级别的光伏电站项目,此前,美国加州曾批准建造1GW聚光型太阳能电站。哈工大太阳能研究所的成立,利用哈工大在航 空航天技术领域的优势,及威海光照资源好、地处经济发达区域的特点,将聚光光伏技术的综合应用作为重点,优先开展聚光发电、聚光海水淡化等课题研究,促进高倍聚光光伏技术在中国的快速发展。 在哈尔滨工业大学威海校区建设的峰值功率11KW高倍聚光光伏电站(576倍聚光),是国内第一个按照商业化系统建设且并网发电、投入运营的高倍聚光光伏电站, 也是目前已报道的国内转换效率最高的并网光伏电站(直流效率25%)。据哈工大威海校区马校长透露,接下来会在威海建设1MW的聚光光伏电站,并在此基础上进行聚光太阳能海水淡化等能源综合利用。年内聚恒太阳能会在北京、内蒙古、新疆、吉林、四川、广东等地建设类似规模的聚光光伏试点电站,为在国内各类地区建设大规模聚光光伏电站做储备。

太阳能光伏电池的设计与制作

河南工程学院 《光伏材料设计》 实习实训报告书 太阳能光伏电池的设计与制作2016 -2017学年第二学期 学院:赵博 学生姓名:理学院 学号:201411004215 学生班级:应用物理1442 指导教师:牛金钟赵瑞锋 日期:2017 年6 月14日

摘要:太阳能光伏电池的设计与制造是我们本专业的最主要内容之一,本次实训的目的是让我们更加深刻了解太阳能光伏电池的发电原理,了解太阳能电池组件的生产流程和生产工艺,了解太阳能光伏电池的应用,并且制作一件太阳能光伏电池板。本文主要讲的是本次的太阳能光伏太阳能电池制作过程,包括选择制作材料,电池板的设计,焊接太阳能电池片,组装太阳能电池,以及对电池组件进行测试。 关键词:电池组件设计组装测试

目录 一、简介 (1) 二、材料及其性质 (1) 1.黏结剂 (1) 2.玻璃-上盖板材料 (1) 3.背面材料 (1) 4.边框 (1) 5.接线盒 (2) 6.硅胶 (2) 7.电池片 (2) 三、设计原理及组装 (2) 1.设计原理 (2) 2.太阳能电池组件设计 (3) 3.电池组件的制作 (3)

一、简介 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能电池又称为“太阳能芯片”或“光电池”,是一种利用太阳光直接发电的光电半导体薄片。通常采用硅半导体 二、材料及其性质 真空层压封装太阳能电池,主要使用的材料有黏结剂、玻璃、复合模、连接条、铝框等。合理地选用封装材料和采取正确的封装工艺能保证太阳能电池的高效利用并延长使用寿命。优良的太阳能电池组件,除了要求太阳能电池本身效率高外,优良的封装材料和合理的封装工艺也是不可缺少的。 1.黏结剂 黏结剂是固定和保证电池与上、下盖板密合的关键材料,要求可见光范围内具有高透光性,抗紫外线老化;具有一定弹性,可缓冲不同材料见的热胀冷缩;具有良好的电绝缘性能和化学稳定性,不产生有害电池的气体和液体;具有优良的气密性,适用于自动化的组件封装。本次实训中采用的是EVA膜。 2.玻璃-上盖板材料 玻璃是覆盖在电池板正面的上盖板材料,构成组件最外层,既要求透光高,又要坚固,耐风霜雨雪,经受沙砾冰雹冲击,起到长期保护电池作用。 普通玻璃体内含铁量过高及玻璃表面的光反射过大是降低太阳能利用率的主要原因。目前在商业化生产中标准太阳能电池组件的上盖板材料通常采用低铁钢化玻璃,其特点是:透光率高、抗冲击能力强、使用寿命长。厚度一般为3.2mm,透光率达90%以上,对于波长大于1200nm的红外线有较高的反射率,同时能耐太阳紫外线的辐射。 3.背面材料 组件底板对电池既有保护作用又有支撑作用。对底板的一般要求为:具有良好的耐气候性能,能隔绝从背面进来的潮气和其他有害气体:在层压温度下不起任何变化:与黏结材料结合牢固。一般所用的底板材料为玻璃、铝合金、有机玻璃以及PVF复合膜等。目前生产上较多应用的是PVF复合膜。 4.边框 平板式组件应有边框,以保护组件和便于组件与方阵支架的连接固定。边框

太阳能电池基本特性测定实验

太阳能电池基本特性测定实验 太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。 太阳能电池根据所用材料的不同,可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池四大类,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为23%,规模生产时的效率为15%。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为10%。因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。 太阳能的利用和太阳能电池的特性研究是21 世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。我们开设此太阳能电池的特性研究实验,通过实验了解太阳能电池的电学性质和光学性质,并对两种性质进行测量。该实验作为一个综合设计性的物理实验,联系科技开发实际,有一定的新颖性和实用价值。 【实验目的】 1. 无光照时,测量太阳能电池的伏安特性曲线; 2. 有光照时,测量电池在不同负载电阻下,I 对U 变化关系,画出U I 曲线图;并测量太阳能电池的短路电流SC I 、开路电压OC U 、最大输出功率max P 及填充因子FF ; 3. 测量太阳能电池的短路电流SC I 、开路电压OC U 与光照度L 的关系,求出它们的近似函数关系。 【实验仪器】 白炽灯源、太阳能电池板、光照度计、电压表、电流表、滑线变阻器、稳压电源、单刀开关 连接导线若干

相关主题
文本预览
相关文档 最新文档