当前位置:文档之家› 共形映射的概念

共形映射的概念

共形映射的概念
共形映射的概念

共形映射的概念

映射基础知识

映射基础知识 一、映射 1.映射概念 定义设X、Y是两个非空集合,如果存在一个法则f,使得对X中每个元素 x,按法则f,在Y中有唯一确定的元素y与之对应,么称f为从X到Y的映射, 记作 f:x→y, 其中y称为元素x(在映射/下)的像,并记作f(x),即 y=f(x), 而元素x称为元素y(在映射f下)的一个原像;集合X称为映射f的定义域,记 作D,即D=X;X中所有元素的像所组成的集合称为映射f的值域,记作R或 f(X),即 R=f(X)=f(x)lx∈X 从上述映射的定义中,需要注意的是: (1)构成一个映射必须具备以下三个要素:集合X,即定义域D=X;集合 Y,即值域的范围:R,Cy;对应法则f,使对每个x∈X,有唯一确定的y= f(x)与之对应 (2)对每个x∈X,元素x的像y是唯一的;而对每个y∈R,元素y的原像不 一定是唯一的;映射f的值域R是Y的一个子集,即Rcy,不一定R=y 2.逆映射与复合映射 设f是X到Y的单射,则由定义,对每个y∈R,有唯一的x∈X,适合 f(x)=y.于是,我们可定义一个从R到X的新映射g,即 g:R→X, 对每个y∈R,规定g(y)=x,这x满足f(x)=y个映射g称为f的逆映射,记作f, 其定义域D=R,值域R=X. 按上述定义,只有单射才存在逆映射.所以在例1、例2、例3中,只有例3 中的映射f才存在逆映射f,这个就是反正弦函数的主值 f'(x)=arcsin x, x [-1 1], 其定义域D=[-1,1],值域R=- 设有两个映射 g:X→y1, f:2→z, 其中Y1CY2,则由映射g和f可以定出一个从X到Z的对应法则,它将每个 x∈X映成fg(x)]∈Z.显然,这个对应法则确定了一个从X到Z的映射,这个 映射称为映射g和f构成的复合映射,记作fg,即 fg:→z,(fg)(x)=fg(x)],x∈X. 由复合映射的定义可知,映射g和f构成复合映射的条件是:g的值域R必 须包含在f的定义域内,即RCD否则,不能构成复合映射.由此可以知道,映 射g和f的复合是有顺序的,fg有意义并不表示gf也有意义即使 fg与gf都有意义,复合映射fg与gf也未必相同。

函数的概念和性质

专题讲座 高中数学“函数的概念与性质”教学研究 梁市西城区教育研修学院 函数是中学数学中的重点容,它是描述变量之间依赖关系的重要数学模型. 本专题容由四部分构成:关于函数容的深层理解;函数概念与性质的教学建议;学生学习中常见的错误分析与解决策略;学生学习目标检测分析. 研究函数问题通常有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等. 一、关于函数容的深层理解 (一)函数概念的发展史简述 数学史角度:早期函数概念(Descartes,1596—1650引入坐标系创立解析几 何,已经关注到一个变量对于另一个变量的依赖关系)[几何角度];Newton,1642—1727,用数流来定义流量(fluxion)的变化率,用以表示变量间的关系;Leibniz,1646—1716引入常量、变量、参变量等概念;Euler引入函数符号,并称变量的函数是一个解析表达式[代数角度];Dirichlet,1805—1859提出是与之间的一种对应的观点[对应关系角度];Hausdorff在《集合论纲要》中用“序偶”来定义函数[集合论角度]. Dirichlet:认为怎样去建立与之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的值,都有一个确定的值,那么叫做的函数.”这种函数的定义,避免了以往函数定义中所有的关于依赖关系的描述,简明精确(经典函数定义). Veblen,1880-1960用“集合”和“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的限制,变量可以是数,也可以是其它对象. (二)初高中函数概念的区别与联系 1.初中函数概念:

第2讲函数与映射的概念复习.docx

第2讲函数与映射的概念 ★知识梳理 1.函数的概念 (1)函数的定义:设A、B是两个非空的数集,如果按照某种对应法则于,对于集合A中的每一个数x ,在集合B中都冇唯一确定的数和它对应,那么这样的对应叫做从4到B的一个函数,通常记为y = /(x),x G A (2)函数的定义域、值域 在函数y = /(x),x G A中,x叫做口变量,x的取值范碉A叫做y = /0)的定义域;与x的值和对应的y值叫做函数值,函数值的集介{f(x)卜e A}称为函数y = f(x)的值域。 (2)函数的三要素:定义域、值域和对应法则 2.映射的概念:设A、B是两个集合,如果按照某种对应法则/,对于集合A中的任意元素,在集合B小都有唯-确泄的元素与Z对应,那么这样的单值对应叫做从A到B的映射,通常记为f : A — B ★重、难点突破 重点:掌握映射的概念、函数的概念,会求函数的定义域、值域 难点:求函数的值域和求抽象两数的定义域 重难点:1?关于抽象函数的定义域 求抽象函数的定义域,如果没冇弄清所给函数Z间的关系,求解容易出错误问题1:已知函数y = /(x)的定义域为[a, b],求y = /(x + 2)的定义域. 问题2:己知y = /(x + 2)的定义域是[d, b],求函数y = f (x)的定义域. 1.求值域的几种常用方法 (1 )配方法:对于(可化为)'、二次函数型〃的函数常用配方法,如求函数y = -sin2兀一2cosx + 4, 变为y = - sin? x-2cosx + 4 = (cosx-1)2 + 2解决. (2)基本函数法:一些由基木函数复合而成的函数可以利用基本函数的值域来求,如函数y = log j (-x2 + 2x + 3)就是利用函数y = log丨u和u = -x2 + 2兀+ 3的值域来求. 2 2 2JC + 1 (3)判别式法:通过对二次方程的实根的判别求值域。如求函数/ 的值域 兀'―2兀+ 2 山),=严+1得y/—2(y + i)x + 2y — l = 0,若y = 0 ,则得 % = 所以y = 0 x - 2x + 2 2 是函数值域中的一个值;若y ^0 ,则由△ = [—2(y + l)『—4y(2y —1)? 0得

映射详解(经典)

课题:§1.2.2映射 教学目的:(1)了解映射的概念及表示方法,了解象、原象的概念; (2)结合简单的对应图示,了解一一映射的概念. 教学重点:映射的概念. 教学难点:映射的概念. 教学过程: 一、引入课题 复习初中已经遇到过的对应: 1.对于任何一个实数a,数轴上都有唯一的点P和它对应; 2.对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应; 3.对于任意一个三角形,都有唯一确定的面积和它对应; 4.某影院的某场电影的每一张电影票有唯一确定的座位与它对应; 5.函数的概念. 二、新课教学 1.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射(mapping)(板书课题). 2.先看几个例子,两个集合A、B的元素之间的一些对应关系 (1)开平方; (2)求正弦 (3)求平方; (4)乘以2; 3.什么叫做映射? 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射(mapping). 记作“f:A→B” 说明: (1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其

中f表示具体的对应法则,可以用汉字叙述. (2)“都有唯一”什么意思? 包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。4.例题分析:下列哪些对应是从集合A到集合B的映射? (1)A={P | P是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应; (2)A={ P | P是平面直角体系中的点},B={(x,y)| x∈R,y∈R},对应关系f:平面直角体系中的点与它的坐标对应; (3)A={三角形},B={x | x是圆},对应关系f:每一个三角形都对应它的内切圆; (4)A={x | x是新华中学的班级},B={x | x是新华中学的学生},对应关系f:每一个班级都对应班里的学生. 思考: 将(3)中的对应关系f改为:每一个圆都对应它的内接三角形;(4)中的对应关系f改为:每一个学生都对应他的班级,那么对应f:B A是从集合B到集合A的映射吗? 5.完成课本练习 三、作业布置 补充习题

函数与映射的概念及其表示方法

函数与映射的概念 ★知识梳理 1.函数的概念 (1)函数的定义: 设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的每一个数x ,在集合B 中都有唯一确定的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为A x x f y ∈=),( (2)函数的定义域、值域 在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{} A x x f ∈)(称为函数)(x f y =的值域。 (2)函数的三要素:定义域、值域和对应法则 2.映射的概念 设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做从A 到B 的映射,通常记为 B A f →: ★重、难点突破 重点:掌握映射的概念、函数的概念,会求函数的定义域、值域 难点:求函数的值域和求抽象函数的定义域 重难点:1.关于抽象函数的定义域 求抽象函数的定义域,如果没有弄清所给函数之间的关系,求解容易出错误 问题1:已知函数)(x f y =的定义域为][b a ,,求)2(+=x f y 的定义域 [误解]因为函数)(x f y =的定义域为][b a ,,所以b x a ≤≤,从而222+≤+≤+b x a 故)2(+=x f y 的定义域是]2,2[++b a [正解]因为)(x f y =的定义域为][b a ,,所以在函数)2(+=x f y 中,b x a ≤+≤2, 从而22-≤≤-b x a ,故)2(+=x f y 的定义域是]2,2[--b a 即本题的实质是求b x a ≤+≤2中x 的范围 问题2:已知)2(+=x f y 的定义域是][b a ,,求函数)(x f y =的定义域 [误解]因为函数)2(+=x f y 的定义域是][b a ,,所以得到b x a ≤+≤2,从而

《函数的概念与性质》教案设计.

《函数的概念与性质》教案设计 2019-02-16 一、学习要求 ①了解映射的概念,理解函数的概念; ②了解函数的单调性和奇偶性的概念,掌握判断一些简单函数单调性奇偶性的方法; ③了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数; ④理解分数指数幂的概念,掌握有理数幂的运算性质,掌握指数函数的概念、图像和性质; ⑤理解对数函数的概念、图象和性质;⑥能够应用函数的性质、指数函数和对数函数性质解决某些简单实际问题. 二、两点解读 重点:①求函数定义域;②求函数的值域或最值;③求函数表达式或函数值;④二次函数与二次方程、二次不等式相结合的有关问题;⑤指数函数与对数函数;⑥求反函数;⑦利用原函数和反函数的定义域值域互换关系解题. 难点:①抽象函数性质的研究;②二次方程根的.分布. 三、课前训练 1.函数的定义域是( D ) (A)(B)(C)(D) 2.函数的反函数为( B ) (A)(B) (C)(D) 3.设则. 4.设,函数是增函数,则不等式的解集为 (2,3) 四、典型例题

例1设,则的定义域为() (A)(B) (C)(D) 解:∵在中,由,得,∴ , ∴在中,. 故选B 例2已知是上的减函数,那么a的取值范围是() (A)(B)(C)(D) 解:∵ 是上的减函数,当时,,∴ ;又当时,,∴ ,∴ ,且,解得:.∴综上,,故选C 例3函数对于任意实数满足条件,若,则 解:∵函数对于任意实数满足条件, ∴ ,即的周期为4, 例4设的反函数为 ,若× ,则 2 解: ∴m+n=3,f(m+n)=log3(3+6)=log39=2 (另解∵ , 例5已知是关于的方程的两个实根,则实数为何值时,大于3且小于3? 解:令,则方程 的两个实根可以看成是抛物线与轴的两个交点(如图所示), 故有:,所以:, 解之得:

同构映射的定义同构映射的定义

§6.8 线性空间的同构一、 同构映射的定义 一、同构映射的定义 二、同构的有关结论

我们知道,在数域P 上的n 维线性空间V 中取定一组基后,V 中每一个向量有唯一确定的坐标向量的坐标是P 上的n 元数组,因此属于P n . 这样一来,取定了V 的一组基对于V 中每一个向量,令在这组基下的坐标与对应,就得到V 到P n 的一个单射 反过来,对于P n 中的任一元素是V 中唯一确定的元素,并且即也是满射.因此, 是V 到P n 的一一对应.引入12(,,,),n a a a L α12,,,,n εεεL αα12(,,,)n a a a L α12:,(,,,) n n V P a a a σα→a L 12(,,,), n a a a L 1122n n a a a αεεε=+++L 12()(,,,), n a a a σα=L σσ

这个对应的重要必性表现在它与运算的关系上.任取设 ,,V αβ∈12()(,,,)n b b b σβ=L 1122,n n a a a αεεε=+++L 1122n n b b b βεεε=+++L 12()(,,),n a a a σα=L 则1122()(,,) n n a b a b a b σαβ+=+++L 12()(,,)n k ka ka ka k P σα=?∈L 归结为它们的坐标的运算. 这就是说,向量用坐标表示后,它们的运算可以1212(,,)(,,,)()()n n a a a b b b σασβ=+=+L L 12(,,)(), n k a a a k σα==L 从而

一、同构映射的定义 设都是数域P 上的线性空间,如果映射,V V ′具有以下性质: V V σ′→:则称的一个同构映射,并称线性空间V V σ′是到同构,记作V V ′与. V V ′?ii) ()()(), ,V σαβσασβαβ+=+?∈iii) ()(),,k k k P V σασαα=?∈?∈i) 为双射 σ

映射及映射法及例题

映射及映射法及例题 知识、方法、技能 1.映射的定义 设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有惟一的元素和它对应,这样的对应叫做从集合A 到集合B 的映射,记作.:B A f → (1)映射是特殊的对应,映射中的集合A ,B 可以是数集,也可以是点集或其他集合,这两个集合有先后次序,从A 到B 的映射与从B 到A 的映射是截然不同的. (2)原象和象是不能互换的,互换后就不是原来的映射了. (3)映射包括集合A 和集合B ,以及集合A 到B 的对应法则f ,三者缺一不可. (4)对于一个从集合A 到集合B 的映射来说,A 中的每一个元素必有惟一的,但B 中的每一个元素都不一定都有原象.如有,也不一定只有一个. 2.一一映射 一般地,设A 、B 是两个集合,.:B A f →是集合A 到集合B 的映射,如果在这个映射下,对于集合A 中的不同元素,在集合B 中有不同的象,而且B 中每一个元素都有原象,那么个这个映射叫做A 到B 上的一一映射. 3.逆映射 如果f 是A 与B 之间的一一对应,那么可得B 到A 的一个映射g :任给B b ∈,规定 a b g =)(,其中a 是b 在f 下的原象,称这个映射g 是f 的逆映射,并将g 记为f —1. 显然有(f — 1)— 1= f ,即 如果f 是A 与B 之间的一一对应,则f —1是B 与A 之间的一一对应,并且f — 1的逆映射 是f . 事实上,f — 1是B 到A 的映射,对于B 中的不同元素b 1和b 2,由于它们在f 下的原象不 同,所以b 1和b 2在f —1下的像不同,所以f — 1是1-1的. 任给b a f A a =∈)(,设,则a b f =-)(1 .这说明A 中每个元素a 在f —1都有原象.因此, f —1 是映射上的. 这样即得f —1是B 到A 上的1-1映射,即f —1是B 与A 之间一一对应.从而f — 1有逆映 射.:B A h →由于任给b a h A a =∈)(,设,其中b 是a 在f —1 下的原象,即f — 1(b)=a ,所以, f(a)=b ,从而f h a f b a h ===得),()(,这即是f —1 的逆映射是f . 赛题精讲 Ⅰ映射 关映射的高中数学竞赛题是常见题型之一,请看下述试题. 例1:设集合},,,,|),,,{(},,110|{M d c b a d c b a F x x x M ∈=∈≤≤=集合Z 映射f :F →Z.使 得v u y x v x y u y x v u cd ab d c b a f f f ,,,,66),,,(,39),,,(.),,,(求已知→→-→的值. 【思路分析】应从cd ab d c b a f -→),,,(入手,列方程组来解之. 【略解】由f 的定义和已知数据,得

共形映射

第六章共形映射 (The Conformal mapping) 第一讲 授课题目:§6.1共形映射的概念;§6.2共形映射的基本问题教学内容:导数的几何意义、共形映射的概念、解析函数的保域性与边界对应原理、共形映射的存在唯一性. 学时安排:2学时. 教学目标:1、理解导数的几何意义; 2、弄清共形映射的概念; 3、掌握解析函数的保域性与边界对应原理、共形映射的存在唯一性; 教学重点:解析函数的保域性与边界对应原理; 教学难点:解析函数的保域性与边界对应原理; 教学方式:多媒体与板书相结合. P习题六:1-3 作业布置: 164 板书设计:一、导数的几何意义; 二、共形映射的概念; 三、解析函数的保域性与边界对应原理; 四、共形映射的存在唯一性 参考资料:1、《复变函数》,西交大高等数学教研室,高等教育出 版社; 2、《复变函数与积分变换学习辅导与习题全解》,高等 教育出版;

3、《复变函数论》,(钟玉泉编,高等教育出版社,第 二版)2005年5月 4、《复变函数与积分变换》苏变萍陈东立编,高等教 育出版社,2008年4月 课后记事:1、基本掌握共形映射的概念; 2、不能灵活运用解析函数的保域性与边界对应原理;教学过程:

§6.1共形映射的概念 (The conception of conformal mapping) 一、导数的几何意义(Geometric meaning of derivative ) 1、解析变换的保域性(Transform domain of security analysis ) 解析函数所确定的映射是共形映射.它是复变函数论中最重要的概念之一,与物理中的概念有密切的联系,而且对物理学中许多领域有重要的应用.如应用共形映射成功地解决了流体力学与空气动力学、弹性力学、磁场、电场与热场理论以及其他方面的许多实际问题.我们主要研究单叶解析函数的映射性质. 注1:单叶函数是一个单射的解析函数. 例 1 函数α+=z w 及z w α=是z 平面上的单叶解析函数它们把z 平面映射成w 平面,其中α是复常数,并且对于第二个映射0≠α. 例 2 z e w =在每个带形,2Im π+<

共形映射的概念和性质

第一节共形映射的概念 一、两曲线的夹角 二、解析函数导数的几何意义 三、共形映射的概念 四、小结与思考

一、两曲线的夹角 ) (,)(βα≤≤=t t z z 正向: t 增大时, 点z 移动的方向.如果规定: t p p 正向对应于割线0p p 0 , 那么增大的方向. )()( 00同向与t t z t t z Δ?Δ+平面内的有向连续曲线C 可表示为: z y x C ..0 p p )(0t z ) (0t t z Δ+

)() ()(lim 0000t z t t z t t z t ′=Δ?Δ+→Δ当p , 0时p p p 0处切线 上 0p C ,,0)( 00βα<<≠′t t z 如果的向量那么表示)(0t z ′). ( 0t z z C =相切于点与方向与C 一致.C ..0 p p ) (0t z ) (0 t t z Δ+)(0t z ′y x C 沿

00)()(z C z t z 上点为起点为的方向若规定′处切线的正向, 则有 x 轴正向之间的夹角. 处的切线的正向与 上点就是00)( Arg .1z C t z ′C . z y x ) (0t z ′) (Arg 0t z ′

2 C 1 C 正向之间与相交于一点的两条曲线21 .2C C 之间的夹角.)(Arg )(Arg 0102 t z t z ′?′. z ),(:11t z z C =; )(:22t z z C =). ()(02010t z t z z ==向 在交点处的两条切线正与就是的夹角21 ,C C

第一节映射与极限

第一章 教学内容与基本要求: 1、理解函数的概念。了解函数奇偶性、周期性、单调性和有界性。理解复合函数的概念、了解反函数概念。熟练掌握基本初等函数的性质及其图形。会建立简单实际问题中的函数关系式。 2、理解极限的概念(对极限ε─N ,ε─δ定义可在学习过程中逐步加深理解,对于给出ε求N 或δ不作过高要求),了解极限的性质。 3、掌握极限四则运算法则。 4、了解极限存在的两个准则(夹逼准则和单调有界准则),会用两个重要极限求极限。 5、了解无穷小、无穷大的概念,会讨论无穷小的比较,会用等价无穷小求极限。 6、理解函数在一点连续的概念,了解函数在区间上连续的概念。了解间断点的概念,并会判别间断点的类型。了解初等函数的连续性和闭区间上连续函数的性质(介值定理和最大最小值定理)。 第一节 映射与函数 ㈠.本课的基本要求 理解函数的概念。了解函数的基本性态。理解复合函数的概念、了解反函数概念。熟练掌握基本初等函数的性质及其图形。会建立简单实际问题中的函数关系式。 ㈡.本课的重点、难点 重点是复合函数的概念,难点是函数的基本性态。 ㈢.教学内容 引言──微积分的主要内容和思想方法 微积分是现代数学的第一个伟大成就,不仅对于数学本身的发展具有十分巨大的影响,而且作为强有力的工具,在几乎所有的科学(自然科学、社会科学和人文科学)领域里得到了广泛的应用。 微积分诞生于17世纪下半叶,但其思想的萌芽可追溯到2500多年关的古希腊人,我国古代也有一些精妙的思想和做法。在对由直线围成的图形面积计算的同时,人们一直试图计算由曲线围成的图形的面积,计算圆的周长、圆的面积等这样一些著名问题一直吸引着许许多多的智者。在两千多年不屈不挠的努力过程中,人们对许多具体问题建立了一些富有创见的解法。经过反复认识和不断积累,人类对运动、变化、弯曲、连续等客观世界模式终于有了比较清晰的认识。随着生产的发展和科学的进步,到17世纪时,求运动物体的速度和位移、求曲线的切线和曲线的长度、求由曲线所围的平面图形的面积和由曲面所围的空间立体的体积、求物体之间的引力等问题成为当时迫切需要解决的一些主要科学问题。伟大的物理学家Newton 和哲学家Leibniz 由于本身科学工作的需要(例如Newton 计算瞬时速度和万有引力,Leibniz 计算曲线的切线等),在前人思想方法和计算方法的基础上,分别独立地建立了用于解决一类广泛问题的普遍方法和计算法则──微积分,极大地影响了数学以及整个科学的发展。微积分的建立是人类头脑最伟大的创造之一。 现今,微积分已成为现代科学技术必备的一块“敲门砖”,是大学数学基础教育最基本的组成部分之一。微积分的学习,不应该仅仅局限于学会一些计算方法,其间的思想方法将更有益于我们去认识客观世界。 一.介绍函数、极限、连续在本课程的地位 集合与映射我们在中学已经学过,以后也不用,这里就不再介绍。 二.邻域 邻域是一个经常用到的概念。以点0x 为中心的任何开区间称为点0x 的邻域,记为)(0x U 。

3.映射函数的定义

映射函数的定义 1.设是集合A 到集合B 的映射,且集合B 中的每一个元素都有原象,若,则等于( ) A .{0} B .{2} C .{0,2} D .{-2,0} 2.下列各对应中,构成映射的是 ( ) 3.设集合A =B ={(,),}x y x R y R ∈∈,从A 到B 的映射在映射下,B 中的元素为(4,2)对应的A 中元素为 ( ) A .(4,2) B .(1,3) C . (3,1) D .(6,2) 4.设集合和集合都是自然数集合,映射,把集合中的元素映射到集合中的元素 ,则在映射下,象20的原象是( ) A.2 B.3 C.4 D.5 5.设A={|02x x ≤≤}, B={y | 0≤y ≤3 }, 下列各图中不能表示从集合A 到B 的映射是( ) A . B . C . D . :||f x x →{2,0,2}A =-A B ) ,(),(:y x y x y x f -+→

6.下列图像表示函数图像的是() y x y x y x y x A B C D 7.下列图像中,是函数图像的是() A. (1) (2) B.(2) (3) C.(2)(4) D.(1) (3) 8.下列各图像中,不可能 ...是函数 ()x f y=的图像的有几个() A.1个 B.2个 C.3个 D.4个 9.集合A 中含有2个元素,集合A到集合A可构成个不同的映射. 10.已知集合A={1,2,3,4},B={-1,-2},设映射f:A→B, 如果集合B中的元素都是A中元素在f下的象,那么这样的映射有 _________________________个. o x y ① o y x ② o y x ③ o y x ④ 试卷第2页,总2页

SDH映射、定位和复用的概念

SDH映射、定位和复用的概念 在将低速支路信号复用成STM-N信号时,要经过3个步骤:映射、定位、复用。 1. 定位是指通过指针调整,使指针的值时刻指向低阶VC帧的起点在TU净负荷中或高阶VC帧的起点在AU净负荷中的具体位置,使收端能据此正确地分离相应的VC,这部分内容在下一节中将详细论述。 2.复用的概念比较简单,复用是一种使多个低阶通道层的信号适配进高阶通道层(例如TU12(×3)→TUG2(×7)→TUG3(×3)→VC4)或把多个高阶通道层信号适配进复用层的过程(例如AU-4(×1)→AUG(×N)→STM-N)。复用也就是通过字节间插方式把TU组织进高阶VC或把AU组织进STM-N的过程。由于经过TU和AU指针处理后的各VC支路信号已相位同步,因此该复用过程是同步复用,复用原理与数据的串并变换相类似。 PDH140Mbit/s、34Mbit/s、2Mbit/s信号适配进标准容器的方式是什么装入方式? 一般都属于异步装入方式,因为要经过相应的塞入比特进行码速调整才能装入。例如, 在将2Mbit/s的信号适配进C12时,不能保证每个C12正好装入的是一个E1帧。 3.映射是一种在SDH网络边界处(例如SDH/PDH边界处),将支路信号适配进虚容器的过程。象我们经常使用的将各种速率(140Mbit/s、34Mbit/s、2Mbit/s)信号先经过码速调整,分别装入到各自相应的标准容器中,再加上相应的低阶或高阶的通道开销,形成各自相对应的虚容器的过程。 为了适应各种不同的网络应用情况,有异步、比特同步、字节同步三种映射方法与浮动VC和锁定TU两种模式。 1)异步映射 异步映射对映射信号的结构无任何限制(信号有无帧结构均可),也无需与网络同步(例如PDH信号与SDH网不完全同步)。利用码速调整将信号适配进VC的映射方法。在映射时通过比特塞入将其打包成与SDH网络同步的VC信息包,在解映射时,去除这些塞入比特,恢复出原信号的速率,也就是恢复出原信号的定时。因此说低速信号在SDH网中传输有定时透明性,即在SDH网边界处收发两端的此信号速率相一致(定时信号相一致)。 此种映射方法可从高速信号中(STM-N)中直接分/插出一定速率级别的低速信号(例如2Mbit/s、34Mbit/s、140Mbit/s)。因为映射的最基本的不可分割单位是这些低速信号,所以分/插出来的低速信号的最低级别也就是相应的这些数率级别的低速信号。 2)比特同步映射 此种映射是对支路信号的结构无任何限制,但要求低速支路信号与网同步(例如E1信号保证8000帧/秒),无需通过码速调整即可将低速支路信号打包成相应的VC的映射方法,注意:VC时刻都是与网同步的。原则上讲此种映射方法可从高速信号中直接分/插出任意速率的低速信号,因为在STM-N信号中可精确定位到VC,由于此种映射是以比特为单位的同步映射,那么在VC中可以精确的定位到你所要分/插的低速信号具体的那一个比特的位置上,这样理论上就可以分/插出所需的那些比特,由此根据所需分/插的比特不同,可上/下不同速率的低速支路信号。异步映射将低速支路信号定位到VC一级后就不能再深入细化的定位了,所以拆包后只能分出VC相应速率级别的低速支路信号。比特同步映射类似于将以比特为单位的低速信号(与网同步)进行比特间插复用进VC中,在VC中每个比特的位置是可预见的。

函数与映射的概念主要知识梳理

函数与映射的概念知识梳理第 1 页 共 1 页 函数与映射的概念主要知识梳理 ●函数的基本概念: 1、函数的定义:设B A ,是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的数)(x f 和它对应,则称B A f →:为从A 到B 的一个函数。 ①关键词:非空的数集、任意性、唯一性 ②作用:判断一个对应是否是函数 2、函数的三要素: 定义域A 、值域(?B)、对应法则f (定义域和对应法则最为关键) 作用:判断两函数是否是同一函数的依据(只要判断定义域和对应法则是否相同即可) ●函数的表示方法: 解析式法,列表法,图像法 ●分段函数与复合函数 分段函数:? ??∈∈=)()()()()(21D x x h D x x g x f ,复合函数:))((x g f y = ●映射的概念 1、定义:设设B A ,是非空集合,如果按某个确定的对应关系f ,使对于集合A 中的任意一个元素x , 在集合B 中都有唯一确定的数)(x f 和它对应,则称B A f →:为从A 到B 的一个映射。 ①关键词:非空集合、任意性、唯一性 ②作用:判断一个对应是否是映射 2、映射的三要素: 原象集A 、象集(?B)、对应法则f 作用:判断两映射是否是同一映射的依据(只要判断原象集和对应法则是否相同即可) 3、函数是特殊的映射; ●反函数 1、概念; 设函数()y f x =的定义域为A ,值域为C ,由()y f x =求出()x y ?=.如果对于C 中 每个y 值,在A 中都有唯一的值和它对应,那么()x y ?=为以y 为自变量的函数,叫做()y f x =的反函数,记作1()y f x -=,(x C ∈) 2、存在反函数的条件:函数()y f x =在定义域内单调(一 一映射) 3、求反函数的一般步骤: (1)求原函数的值域; (2)反解,由()y f x =解出)(y x ?=; (3)写出反函数的解析式1()y f x -=(互换,x y ),并注明反函数的定义域(即原函数的值域). 4、互为反函数的两个函数具有如下性质: (1)反函数的定义域、值域上分别是原函数的值域、定义域; (2)互为反函数的两个函数在各自的定义域内具有相同的单调性;它们的图象关于x y = 对称; (3)?=b a f )(a b f =-)(1 ●常见的思想方法 1、主要思想: ①数形结合:-------树形图 ②分类讨论:①按象的个数分类;②按原象个数分类; ③按对应关系(一对一、多对一,不能一对多)分类. 2、易错易混点 ①映射B A f →:与函数的定义).(x f y =-----A 中元素的任意性和B 中元素的唯一性? ②一个映射与某一对应的值. ③定义域与原象集以及与集合A 的关系. 值域与象集以及集合B 的关系. 3、主要题型: ①判断映射与函数; ②知原象、象、对应法则三者中的任意二个求余下一个; ③求映射与函数的个数.(注意分类讨论、注意和排列组合知识的综合应用)

压缩映射原理的性质和应用

压缩映射原理的性质和应用 摘要 本文较有系统的研究了压缩映射原理及其一些应用,由于压缩映射原理是属于不动点理论中的一类原理,所以有许多不同的形式,本文主要利用在常规度量空间中讨论压缩映射原理的方法,在概率度量空间中讨论压缩映射原理。主要内容如下: 第一章,是绪论部分,首先讲了我之所以写这篇文章的原因,然后是本文所研究问题的历史背景和发展情况。 第二章,介绍压缩映射原理的最基本的形式,即Banach压缩映射原理,通过对其定理内容和证明方法的分析,深刻认识了Picard迭代方法在证明中起到的重要作用,总结出了一套通用的方法证明这类定理,还找了一个例子,用总结出的方法进行了证明。 第三章,用第一章总结出的方法研究了压缩映射原理更复杂的形式,随着研究问题的复杂,也使第一章总结出的方法变得更加完善。 第四章,把前几章得到的结论和方法应用到了微分方程和微分方程组的解的存在唯一性上。虽然只有两个例子,但是获得方法和思想可以用到许多其他的例子上。 第五章,引入概率度量空间的概念,和其中一系列与压缩映射原理有关的概念,结合概率度量空间的一些特殊性质,用前几章的讨论方法,在概率度量空间上讨论压缩映射原理,依次讨论了含随机数的压缩映射原理,在概率度量空间上添加一些条件后的基本压缩映射原理,非线性的压缩映射原理及应用等。 关键词:压缩映射;不动点;概率度量空间;非线性微分方程

ABSTRACT In this paper, a systematic study of the compression mapping principle and some applications, because of the contraction mapping theory is one of the principle in belong to the theory of fixed point, so there are many different forms, this paper mainly discussed used in conventional metric space compression mapping principle, the method of contractive mapping principle in probabilistic metric space. The main contents are as follows: The first chapter is the introduction part, first of all tell the reason why I write this article, and then this paper studies the historical background and development of the problem. The second chapter, this paper introduces the basic form of compression mapping principle, namely the contraction mapping theory, through the analysis of its proof content and methods, understanding the iteration method plays an important role in proof, summarizes a set of generic methods to prove this theorem, still looking for an example, summarizes the way has carried on the proof. The third chapter, in the first chapter summarizes the method of compression mapping principle is studied in the form of more complex, as the research problem of complex, also made the first chapter summarizes the methods become more perfect. The fourth chapter, in the previous chapter conclusion and method is applied to the existence and uniqueness of solution of differential equation and differential equations. Although only two examples, methods and thoughts can be used on many other examples. The fifth chapter, the introduction of the concept of probabilistic metric Spaces, and a series of concepts related to the contraction mapping theory, combined with some special properties of the probabilistic metric Spaces, the use of the previous chapters discuss method, compression mappings in probabilistic metric space principle, in order to discuss the compression mapping principle, containing the random number after adding some conditions in probabilistic metric space basic compression mapping principle, the principle and application of the compression of nonlinear mapping, etc. Key words: compression mapping; The fixed point. Probabilistic metric space; The nonlinear differential equation

映射的概念

明目标、知重点 1.了解映射的概念,能够判定一些简单的对应是不是映射.2.通过对映射特殊化的分析,揭示出映射与函数之间的内在联系. 1.映射的概念 一般地,设A、B是两个非空集合,如果按某种对应法则f,对于A中的每一个元素,在B 中都有唯一的元素与之对应,那么,这样的单值对应叫做从集合A到集合B的映射,记作:f:A→B. 2.映射与函数的关系 由映射的概念可以看出,映射是函数概念的推广,特殊在函数概念中,A、B为两个非空数集. [情境导学] 大家想一想,如果我们都没有名字,这个世界将会怎样?一个人可以有小名,有笔名,有外号,有学名,是一人多名,也可能是多人一名,但为了便于管理,政府部门规定,每人只能有一个法定的名字,这样,每个人都有了唯一确定的身份证上的名字,人与名字的关系是集合到集合的一种确定的对应. 在数学里,把这种集合到集合的确定性的对应说成映射. 探究点一映射的概念 思考1在初中我们已经学过对应法则,生活中还有很多在两个集合之间建立单值对应的例子,你能举出几个? 答对于任何一个实数a,数轴上都有唯一的点P和它对应; 对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应; 对于任意一个三角形,都有唯一确定的面积和它对应;

某影院的某场电影的每一张电影票有唯一确定的座位和它对应. 思考2 两变量的函数关系实质上是一种对应法则,其对应有何特点? 答 函数是建立在两个非空数集间的一种对应. 思考3 函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的两集合中的元素之间的对应法则,即映射.那么,你能给映射下个定义吗? 答 一般地,设A 、B 是两个非空集合,如果按某种对应法则f ,对于A 中的每一个元素,在B 中都有唯一的元素与之对应,那么,这样的单值对应叫做从集合A 到集合B 的映射.记作f :A →B . 思考4 映射与函数有什么区别与联系? 答 映射是函数的推广,函数是一种特殊的映射,函数是映射,但映射不一定是函数. 例1 下图所示的对应中,哪些是从A 到B 的映射? 解 根据映射的定义,可以知道上述图中,(4)的对应是A 到B 的映射,(1)、(2)、(3)的对应不是A 到B 的映射. 反思与感悟 对于映射f :A →B ,A 中元素与B 中元素的对应法则,可以是:一对一,多对一,但不能一对多. 跟踪训练1 下图表示集合A 到集合B 的映射的是______. 答案 (1)(4) 探究点二 映射概念的应用 例2 已知(x ,y )在映射f 的作用下的象是(x +y ,xy ). (1)求(1,-2)在f 作用下的象; (2)若在f 作用下的象是(2,1),求它的原象. 解 (1)因为1-2=-1,1×(-2)=-2,所以,(1,-2)在f 作用下的象是(-1,-2). (2)设它的原象是(x ,y ),则有:????? x +y =2xy =1,解得:????? x =1 y =1.

相关主题
文本预览
相关文档 最新文档