当前位置:文档之家› 结构动力学之两自由度体系的自由振动

结构动力学之两自由度体系的自由振动

第1章--单自由度系统的自由振动题解

习 题 1-1一单层房屋结构可简化为题1-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。求该房屋作水平方向振动时的固有频率。 解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。 等效弹簧系数为k 则 mg k δ= 其中δ为两根杆的静形变量,由材料力学易知 δ=3 24mgh EJ = 则 k = 3 24EJ h 设静平衡位置水平向右为正方向,则有 " m x kx =- 所以固有频率3 n 24mh EJ p = 1-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题1-2图所示。试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角θ 2 a θ=h α 2F cos α=mg 由动量矩定理: a h a mg a mg Fa M ml I M I 822cos sin 12 1 2 2-=-≈?-=== =αθ αθ&& 题1-1图 题1-2图 θ F sin α 2 θα h mg θ

其中 12 cos sin ≈≈θ α α h l ga p h a mg ml n 2 2 2 2 2304121==?+θθ&& g h a l ga h l p T n 3π23π2π22 2=== 1-3求题1-3图中系统的固有频率,悬臂梁端点的刚度分别是k 1和k 3,悬臂梁的质量忽略不计。 解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。k 1ˊ与k 3并联,设总刚度为k 2ˊ。k 2ˊ与k 4串联,设总刚度为k 。即为 21211k k k k k += ',212132k k k k k k ++=',4 241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++= ) (42412132314 214324212k k k k k k k k k k m k k k k k k k k k p ++++++= 1-4求题1-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。其中J 1、J 2和J 3是三个轴段截面的极惯性矩,I 是圆盘的转动惯量,各个轴段的转动惯量不计,材料剪切弹性模量为G 。 解: 111/l GJ k = (1) 222/l GJ k = (2) 333/l GJ k = (3) )/(23323223l J l J J GJ k += (4) ) (/)()4)(3)(2(1/)(2332113221332122312l J l J Il l J J l J J l J J G P I k k P n n +++=+=知 )由( 题1-3图 题1-4图

0727第三章 两自由度系统振动(讲)

第三章两自由度系统振动 §3-1 概述 单自由度系统的振动理论是振动理论的基础。在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。 两自由度系统是最简单的多自由度系统。从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。研究两自由度系统是分析和掌握多自由度系统振动特性的基础。 所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。很多生产实际中的问题都可以简化为两自由度的振动系统。例如,车床刀架系统(a)、车床两顶尖间的工件系统(b)、磨床主轴及砂轮架系统(c)。只要将这些系统中的主要结合面(或芯轴)视为弹簧(即只计弹性,忽略质量),将系统中的小刀架、工件、砂轮及砂轮架等视为集中质量,再忽略存在于系统中的阻尼,就可以把这些系统近似简化成图(d)所示的两自由度振动系统的动力学模型。 以图3.1(c)所示的磨床磨头系统为例分析,因为砂轮主轴安装在砂轮架内轴承上,可以近似地认为是刚性很好的,具有集中质量的砂轮主轴系统支承在弹性很好的轴承上,因此可以把它看成是支承在砂轮架内的一个弹簧——质量系统。此外,砂轮架安装在砂轮进刀

拖板上,如果把进刀拖板看成是静止不动的,而把砂轮架与进刀拖板的结合面看成是弹簧,把砂轮架看成是集中的质量,则砂轮架系统又近似地可以看成是支承在进刀拖板上的另一个弹簧——质量系统。这样,磨头系统就可以近似地简化为图示的支承在进刀拖板上的两自由度系统。 在这一系统的动力学模型中,m1是砂轮架的质量,k1是砂轮架支承在进刀拖板上的静刚度,m2是砂轮及其主轴系统的质量,k2是砂轮主轴支承在砂轮架轴承上的静刚度。取每个质量的静平衡位置作为坐标原点,取其铅垂位移x1及x2分别作为各质量的独立坐标。这样x1和x2就是用以确定磨头系统运动的广义坐标。(工程实际中两自由

第2章 单自由度系统的受迫振动题解

习 题 2-1已知系统的弹簧刚度k =800 N/m ,作自由振动时的阻尼振动周期为1.8s ,相邻两振幅的比值 1 2 .41=+i i A A ,若质量块受激振力t t F 3cos 360)(=N 的作用,求系统的稳态响应。 解:由题意,可求出系统的运动微分方程为 t m x n x p x n 3cos 360 22 =++ 得到稳态解 )3cos(α-=t B x 其中 m k B B B 45.0360 4)1(02 2220 == +-= λζλ 222 122tg λζλ ωωα-=-= n p n 由 d nT i i A A e 2.41 === +η 489 .3π 2797 .0ln 8 .1ln ======d d d d d T p T n T nT η η 又 22n p p n d -= 有 579.32 22=+=n d n p n p p 45.51255.1298.0374 .0838 .01838.0223.02tg 103.1408 .045 .0838.0223.04)838.01(45 .0223.0579 .3797.0838.0579 .33 2 222===-??= == ??+-= === == =ααζω λB p n p n n 所以 x =1.103 cos(3t -51?27') 2-2一个无阻尼弹簧质量系统受简谐激振力作用,当激振频率ω1 =6rad/s 时,系统发生共振;给

质量块增加1 kg 的质量后重新试验,测得共振频率ω2 =5.86rad/s ,试求系统原来的质量及弹簧刚度。 解:设原系统的质量为m ,弹簧常数为k 由 m k p n = ,共振时m k p n ==1ω 所以 m k =6 ① 又由 当 86.51 2=+= =m k p n ω ② ①与②联立解出 m =20.69 kg ,k =744.84 N/m 2-3总质量为W 的电机装在弹性梁上,使梁产生静挠度st δ,转子重Q ,重心偏离轴线e ,梁重及阻尼可以不计,求转速为ω时电机在垂直方向上稳态强迫振动的振幅。 解:列出平衡方程可得: 222()sin sin()sin()st Q W W k x w e wt x g g W Q x kx w e wt g g kg Q x x w e wt W W ππ-σ+- =+=++=+ 所以:2n kg P W Q h w e W ==, 又因为st st W W k k =σ=σ即 22() st st B w e B W g w =σ-σ将结果代入Q = 即为所求的振幅 2-4如题2-4图所示,作用在质量块上的激振力t F t F ωsin )(0=,弹簧支承端有运动 t a x s ωco s =,写出系统的运动微分方程,并求稳态振动。 题2-4图

第三章两自由度系统振动

1α,小车与斜面之间摩擦力 gk P T π 2=, ?? ? ??+= α2sin 2k P h k P A 2 m 。 ()2 2 34mr a r k n +=ω 3.确定图2-3系统的固有频率。

() r R g n -= 32ω 图2-3 第三章 两自由度系统振动 §3-1 概述 单自由度系统的振动理论是振动理论的基础。在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。 两自由度系统是最简单的多自由度系统。从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。研究两自由度系统是分析和掌握多自由度系统振动特性的基础。 所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。很多生产实际中的问题都可以简化为两自由度的振动系统。例如,车床刀架系统(a )、车床两顶尖间的工件系统(b )、磨床主轴及砂轮架系统(c )。只要将这些系统中的主要结合面(或芯轴)视为弹簧(即只计弹性,忽略质量),将系统中的小刀架、工件、砂轮及砂轮架等视为集中质量,再忽略存在

于系统中的阻尼,就可以把这些系统近似简化成图(d)所示的两自由度振动系统的动力学模型。 以图3.1(c)所示的磨床磨头系统为例分析,因为砂轮主轴安装在砂轮架内轴承上,可以近似地认为是刚性很好的,具有集中质量的砂轮主轴系统支承在弹性很好的轴承上,因此可以把它看成是支承在砂轮架内的一个弹簧——质量系统。此外,砂轮架安装在砂轮进刀拖板上,如果把进刀拖板看成是静止不动的,而把砂轮架与进刀拖板的结合面看成是弹簧,把砂轮架看成是集中的质量,则砂轮架系统又近似地可以看成是支承在进刀拖板上的另一个弹簧——质量系统。这样,磨头系统就可以近似地简化为图示的支承在进刀拖板上的两自由度系统。

结构动力学复习 新

结构动力学与稳定复习 1.1 结构动力计算与静力计算的主要区别是什么? 答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力; (2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。 1.2 什么是动力自由度,确定体系动力自由度的目的是什么? 答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。 确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。 1.3 结构动力自由度与体系几何分析中的自由度有何区别? 答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。1.4 结构的动力特性一般指什么? 答:结构的动力特性是指:频率(周期)、振型和阻尼。动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。动力特性不同,在振动中的响应特点亦不同。 1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼? 答:振动过程的能量耗散称为阻尼。 产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。当然,也包括结构中安装的各种阻尼器、耗能器。 阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假

13结构动力学习题

1.1 不计轴向变形,图示体系的振动自由度为2。 1.2 不计轴向变形,图示体系的振动自由度为1。 1.3 不计轴向变形,图示体系的振动自由度为2。 1.4 结构的自振频率不仅与质量和刚度有关,还与干扰力有关。 1.5 单自由度体系,考虑阻尼时,频率变小。 1.6 弹性力与位移反向,惯性力与加速度反向,阻尼力与速度反向。 1.7 如简谐荷载作用在单自由度体系的质点上且沿着振动方向,体系各截面的内力和位移动力系数相同。 1.8 在建立质点振动微分方程时,考虑不考虑质点的重力,对动位移无影响。 1.9 图示体系在简谐荷载作用下,不论频率比如何,动位移y(t) 总是与荷载P(t) 同向。 1.10 多自由度体系自由振动过程中,某一主振型的惯性力不会在其它主振型上做功。 二、单项选择题 2.1 在单自由度体系受迫振动的动位移幅值计算公式中,yst是 A 质量的重力所引起的静位移 B 动荷载的幅值所引起的静位移 C 动荷载引起的动位移 D 质量的重力和动荷载复制所引起的静位移 2.2 无阻尼单自由度体系的自由振动方程:。则质点的振幅y max= 2.3 多自由度振动体系的刚度矩阵和柔度矩阵的关系是 2.4 图示四结构,柱子的刚度、高度相同,横梁刚度为无穷大,质量相同,集中在横梁上。它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,那么它们的关系是

2.5 图示四结构,柱子的刚度、高度相同,横梁刚度为无穷大,质量相同,集中在横梁上。它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,那么它们的关系是 2.6 已知两个自由度体系的质量矩阵为,Y22等于 A -0.5 B 0. 5 C 1 D -0.25 2.7 不计阻尼,不计自重,不考虑杆件的轴向变形,图示体系的自振频率为 2.8 图示四个相同的桁架,只是集中质量m的位置不同,,它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,(忽略阻尼及竖向振动作用,各杆EA为常数),那么它们的关系是 2.9 设ω为结构的自振频率,θ为荷载频率,β为动力系数下列论述正确的是 A ω越大β也越大 B θ越大β也越大 C θ/ω越接近1,β绝对值越大Dθ/ω越大β也越大 2.10 当简谐荷载作用于有阻尼的单自由度体系时,若荷载频率远远大于体系的自振频率时,则此时与动荷载相平衡的主要是

单自由度振动分析

结构动力学三级项目 班级:冶金五班 小组成员:邱林凯李海洋 张富张富增 指导老师:王健 2017年4月18日

目录 摘要 (2) 单自由度系统的振动 (3) 单自由度振动系统数学模型的建立 (3) 参数设定与求解 (5) 单自由度系统的强迫振动 (8) 本章小结 (17) 总结与心得 (17)

摘要 振动系统问题是个比较虚拟的问题,比较抽象的理论分析,对于问题的分析可以实体化建立数学模型,通过MATLAB可以转化成为图像。单自由度频率、阻尼、振型的分析,我们可以建立数学模型,最后通过利用MATLAB编程实现数据图形;多自由度主要研究矩阵的迭代求解,我们在分析抽象的理论的同时根据MATLAB编程实现数据的迭代最后可以得到所要的数据,使我们的计算更加简便。 关键词:振动系统;单自由度;MATLAB;多自由度 前言 振动系统是研究机械振动的运动学和动力学,研究单自由系统的振动有着实际意义,因为工程上有许多问题通过简化,用单自由度系统的振动理论就能得到满意的结果。模态是振动系统的一种固有振动特性,模态一般包含频率、振型、阻尼。 利用MATLAB编程并验证程序的正确性。通过程序的运行,能快速获得多自由度振动系统的固有频率以及主振型,为设计人员提供了防止系统共振的理论依据,也为初步分析各构件的振动情况以及解耦分析系统响应奠定了基础。 在结构动力学中,单自由度系统的振动是最简单的运动,但这部分又十分重要。因为从中可得到有关振动理论的一些基本的概念和解决问题的方法,同时它也适用于更为复杂的振动问题,是分析多自由度体系振动问题的基础。因此,搞清楚了单自由度系统的振动,将有助于我们提高分析和解决其他各种振动问题的能力。另外在实际工程中,确实有许多振动问题,可简化为单自由度问题,或近似地用单自由度理论去分析解决。

武汉理工大学《结构动力学》2013年期末试卷及标准答案

武汉理工大学《结构动力学》2013年期末试卷 一、填空题。(11分) 1、右图所示振动体系不计杆件的轴向变形,则 动力自由度数目是 。(3分) 2、单自由度体系只有当阻尼比ξ 1时才会产生振动现象。( 3、已知结构的自振周期s T 3.0=,阻尼比04.0=ξ,质量m 在0,300==v mm y 的初始条件下开始振动,则至少经过 个周期后振幅可以衰减到mm 1.0以下。(3分) 4、多自由度框架结构顶部刚度和质量突然变 时,自由振动中顶部位移很大的现象称 。(3分) 二、判断以下说法是否正确,对错误的说法加以改正。(6×3分=18分) 1、凡是大小、方向、作用点位置随时间变化的荷载,在结构动力计算中都必须看作动力荷载。( ) 2、超静定结构体系的动力自由度数目一定等于其超静定次数。( ) 3、为了避免共振,要错开激励频率和结构固有频率,一般通过改变激励频率来实现。( ) 4、求冲击荷载作用下结构的反应谱曲线时一般不计阻尼的影响。( ) 5、求静定的多自由度体系的频率和振型,一般采用刚度法比采用柔度法方便。( ) 6、用瑞利法时若取重量作用下的静变形曲线为试函数,求得的基频的精度不高。( ) 三、选择题。(6×3分=18分) 1、对单自由度体系的自由振动,下列说法正确的是( ) A C 、振幅和初相角仅与初始条件有关 2、图示(a )、(b A 、b a ωω< B 、∞→EA 时b a ωω≈ C 、0→EA 时b a ωω≈ D 、b a ωω= 3、(1)无阻尼的自由振动 (2)不计阻尼,零初始条件下t P θsin 产生的过渡阶段的振动 (3)有阻尼的自由振动 (4)突加荷载引起的无阻尼强迫振动 A 、(1)(2)(3) B 、(1)(2)(4) C 、(2)(3) D 、(1)(4)

[整理]matlab二自由度系统振动.

利用Adams 和Matlab 对二自由度系统振动进行仿真与分析 一、实验思想 Adams 是一种可以对一些典型运动进行高效仿真的软件,本实验是利用Adams 对二自由度系统振动进行仿真及分析,再和理论公式对比,并用另外一种常见的仿真软件Matlab 的仿真结果进行对比,观察两者的差异,分析软件仿真产生差异的原因,加深对二自由度系统振动的理解。 二、二自由度系统振动分析 固有频率取决于系统本身物理性质,而与初始条件无关。对于二 自由度的振动系统是有两种频率的简谐波组成的复合运动,这两个频率都是系统的固有频率。 主振型是当系统按固有频率作自由振动时,称为主振动。系统作 主振动时,任何瞬时各个运动坐标之间具有一定的相对比值,即整个系统具有确定的振动形态,称为主振型。 强迫振动是振动系统在周期性的外力作用下,其所发生的振动称 为强迫振动,这个周期性的外力称为驱动力。 三、二自由度系统自由振动 1.建立二自由度系统振动模型 1)创建底座:先生成一个尺寸合适的长方体基体,再使用add to part 指令创建底座的侧壁。 2)使用new part 指令分别创建两个滑块,创建滑块时应注意滑

块与滑块、滑块与侧壁之间的尺寸适当。 3)弹簧连接:分别用弹簧链接滑块、侧壁的中心点。弹簧生成后,依次选中弹簧,在modify 选项中的stiffness and damping 下拉菜单中将damping coefficient 设置成no damping,即弹簧无阻尼。 添加约束:底座和地面固定,滑块和底座用滑动副连接。 弹簧刚度分别改为1、1、2(newton/mm) 滑块质量分别为1.0 2.0 滑块与机体滑动副的阻尼改为1.0E-007 2.模型展示 3.运动仿真结果 设置x10=12 经过Adams 运算后,滑块1、2 运动状态如图所示:

结构动力学习题分析

第九章 结构动力计算 一、是非题 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、忽略直杆的轴向变形,图示结构的动力自由度为4个。 3、仅在恢复力作用下的振动称为自由振动。 4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。 l /2 l /2 l /2 l /2 (a)(b) 6、单 自 由 度 体 系 如 图 ,W =98 .kN ,欲 使 顶 端 产 生 水 平 位 移 ?=001 .m ,需 加 水 平 力 P =16kN ,则 体 系 的 自 振 频 率 ω=-40s 1 。 ? 7、结构在动力荷载作用下,其动内力 与动位移仅与动力荷载的变化规律有关。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 , EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。 A C 10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 : m m X X h EI EI EI EI X X P t 00148242424012312????????????+--????????????=?????? () 二、选择题 1、图 示 体 系 ,质 点 的 运 动 方 程 为 :

A .()()()y l P s in m y EI =-77683θ t /; B .()()m y EI y l P s in /+=19273 θ t ; C .()()m y EI y l P s in /+=38473θ t ; D .()()()y l P s in m y EI =-7963θ t / 。 l l 0.50.5 2、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以 A .增 大 P ; B .增 大 m ; C .增 大 E I ; D .增 大 l 。 l t ) 3、单 自 由 度 体 系 自 由 振 动 的 振 幅 取 决 于 : A .初 位 移 ; B .初 速 度 ; C .初 位 移 、初 速 度 与 质 量 ; D .初 位 移 、初 速 度 与 结 构 自 振 频 率 。 4、考 虑 阻 尼 比 不 考 虑 阻 尼 时 结 构 的 自 振 频 率 : A .大 ; B .小 ; C .相 同 ; D .不 定 ,取 决 于 阻 尼 性 质 。 5、已 知 一 单 自 由 度 体 系 的 阻 尼 比 ξ=12.,则 该 体 系 自 由 振 动 时 的 位 移 时 程 曲 线 的 形 状 可 能 为 : D. C. B. A. 6、图 a 所 示 梁 ,梁 重 不 计 ,其 自 振 频 率 () ω=76873 EI ml /;今 在 集 中 质 量 处 添 加 弹 性 支 承 ,如 图 b 所 示 ,则 该 体 系 的 自 振 频 率 ω为 : A .() 76873 EI ml k m //+; B . ()76873EI ml k m //-; C .()76873 EI ml k m //-; D . () 76873 EI ml k m //+ 。 l l /2 /2 l l /2 /2(a)(b) 7、图 示 结 构 ,不 计 阻 尼 与 杆 件 质 量 ,若 要 其 发 生 共 振 ,θ 应 等 于 A . 23k m ; B .k m 3;

单自由度系统自由衰减振动及固有频率、阻尼比

:单自由度系统自由衰减振动及固有频率、阻尼比的测定实验指导书 陈安远 (武汉大学力学实验教学中心) 1.实验目的 1、了解单自由度系统模型的自由衰减振动的有关概念; 2、学习用频谱分析信号的频率; 3、学习测试单自由度系统模型阻尼比的方法。 2.实验仪器及安装示意图 实验仪器:INV1601B型振动教学实验仪、INV1601T型振动教学实验台、加速度传感器、MSC-1力锤(橡胶头)、重块。 软件:INV1601型DASP软件。 图1实验系统示意图 3实验原理 单自由度系统的阻尼计算,在结构和测振仪器的分析中是很重要的。阻尼的计算常常通过衰减振动的过程曲线(波形)振幅的衰减比例来进行计算。衰减振动波形示于图2。用衰减波形求阻尼可以通过半个周期的相邻两个振幅绝对值之比,或经过一个周期的两个同方向

振幅之比,这两种基本方式进行计算。通常以一个周期的相邻两个振幅值之比为基准来计算的较多。两个相邻振幅绝对值之比,称为波形衰减系数。 图2衰减振动波形 1、对经过一个周期为基准的阻尼计算 每经过一个周期的振幅的比值为一常量: η=d nT i i e A A =+1 这个比例系数η表示阻尼振动的振幅(最大位移)按几何级数递减。衰减系数η常用来表示振幅的减小速率。叫做振幅减缩率或减幅系数。 如果用减幅系数η的自然对数来表示振幅的衰减则更加方便。 δ=ln (η)=ln d i i nT A A =+1=21ξπξ- δ称为振动的对数衰减率或对数减幅系数。可以利用δ来求得阻尼比ξ。 2、在小阻尼时,由于η很小;这样读数和计算误差较大,所以一般地取相隔若干个波峰序号的振幅比来计算对数衰减率和阻尼比。 4.实验步骤 1、仪器安装 参照仪器安装示意图安装好配重质量块,加速度传感器。 2、开机进入INV1601型DASP 软件的主界面, 进入单通道示波状态进行波形和频谱同时示波,见图2。 3400Hz 、采样点数为2K,标定值和工程单位等参数(按实际

结构动力学多自由度线性体系Wilson-θ法程序编写

多自由度线性体系Wilson -θ法程序编写 【摘要】本文主要介绍了通过使用Matlab 软件,Wilson-θ法编写多自由度线性 体系的程序的原理、流程图、具体算例以及使用注意事项。通过该程序可以得到剪切型结构在任意函数荷载作用下各质点的位移函数。 【关键词】Matlab ;多自由度;Wilson-θ法 1.wilson-θ法原理 wilson-θ法中最主要的步骤就是推导由t 时刻的状态求t t ?+时刻的状态的递推公 式,现推导如下: 对τ积分 解出 代入 整理,得 其中 本程序的核心就是对以上公式的循环使用。 {}{}{}{})(t t t t t y y t y y -?+=?++θτθτ t ?=θτ{}{}{}{}{})(22 t t t t t t y y t y y y -?++=?++θτθττ{}{}{}{}{}{})(623 2t t t t t t t y y t y y y y -?+++=?++θτ θτττ{}{}{}{}{})(21 t t t t t t t y y t y t y y -?+?+=?+?+θθθθ{}{}{}{}{})2(6 )(2 t t t t t t t y y t y t y y +?+?+=?+?+θθθθ{}{}{}{}{}t t t t t t t y y t y y t y 26 )()(62 -?--?=?+?+θθθθ{}{}{}{}{}t t t t t t t y t y y y t y 2 2)(3?---?=?+?+θθθθ[]{}[]{}[]{}{}t t t t t t t t P y k y C y m ?+?+?+?+=++θθθθ []{}[]{}[]{}{}P y k y C y m =++ []{}[] R y k t t =?+θ[] [][][] c t m t k k ?+?+ =θθ3 )(6 2 []{}{}{}[]{}{}{}[]{}{}{})223()26)(6()(2t t t t t t t t t t y t y y t c y y t y t m P P P R ?++?++?+?+-+=?+θθθθθ{}{}{}{}) (t t t t t t P P P P -+=?+?+θθ

单自由度系统(自由振动)

第二章 单自由度系统的自由振动 本章以阻尼弹簧质量系统为模型,讨论单自由度系统的自由振动。 §2-1 无阻尼系统的自由振动 无阻尼单自由度系统的动力学模型如图1.1所示。设质量为m ,单位是kg 。弹簧刚度为K ,单位是N /m ,即弹簧单位变形所需的外力。弹簧在自由状态位置如图中虚线所示。当联接质量块后,弹簧受重力W=mg 作用而产生拉伸变形?:,同时也产生弹簧恢复力K ?,当其等于重力W 时,则处于静平衡位置,即 W=K ?? 若系统受到外界某种初始干扰,使系统静平衡状态遭到破坏.则弹簧力不等于重力,这种不平衡的弹性恢复力,便使系统产生自由振动。首先建立座标,为简便起见,可选静平衡位置为座标原点,建立铅垂方向的座标x ,从原点算起,向下为正,向上为负,表示振动过程中质量块的位置。现设质量m 向下运动 到x ,此时弹簧恢复力为K(?+x),显然大于重力W , 由于力不平衡,质量块在合力作用下,将产生加速度运动,故可按牛顿运动定律(作用于一个质点上所有力的合力,等于该质点的质量和沿合力方向的加速度的乘 积),建立运动方程,取与x 正方向一致的力、加速度、速度为正,可列如下方程 改写为 0=+kx x m (1-1-1 令 m k p = 2 (1-1-2) 单自由度无阻尼系统自由振动运动方程为 02=+x p x (1-1-3) 设方程的特解为 st e x = 将上式代入(1-1-3)处特征方程及特征根为 ip s p s ±==+2,1220 则(1-1-3)的通解为 pt D pt C e C e C x ipt ipt sin cos 11+=+=- (1-1-4) C 、 D 为任意积分常数,由运动的初始条件确定,设t=0时 00,x x x x == (1-1-5) ()x m x k W F =+?-= ∑量位静平衡位置 一自由度弹簧—质量系统 ? ==k mg W x x )

两自由度系统的振动

5-1 如图所示的系统,若运动的初始条件:,0,mm 5,0201010====x x x t 试求系统对初始条件的响应。 解: 112211222112102,,22,0,202020cos(),cos()cos()005,k k k k k x x k k x k k x mx kx kx mx kx kx x x A t t kA t t x mm ω?ωω?ω?ω-?? =??-?? -??????????+=??????????-??????????+-=+-===++++== ==2带入可得运动微分方程:m,00,m 令代入原方程可得 -mA 有 时,1020120, cos 5,sin 0,5,0 ().x x A A A mm x x mm ?ω??===-=====有可得 ω有两个值 12p p = = 15522x =+ 255c o c 22x =- 5-2 图示为一带有附于质量m 1和m 2上的约束弹簧的双摆,采用质量的微小水平平移 x 1和x 2为坐标,设m m m ==21,l l l ==21,021==k k ,试求系统的固有频率和主振型。

解:设1m 沿1x 方向移动1个单位,保持 2m 不动,对2m ,1m 进行受力分析,可得: 212 2()0, m A k l m g =--=∑2212m g k l =- 11 12111212122 111211112()()()0 m B k k k l m m g m m m m m g k g k k g k l l l =-+-+=++= +-=++∑ 同理使2m 沿2x 方向移动一个单位,保持1m 不变,对2m 受力分析可得: 22 222()()*0m C k k l m g =--=∑, 22222m g k k l =+ ; 刚度矩阵为 11211222,,k k k k ??=????k ,质量距阵12,00,m m ??=????m , 带入可得运动的微分方程为:mx kx F += 12,00,m m ?? ???? 12x x ??????+11211222,,k k k k ?? ????12x x ???? ??=F ; 综上解得:????? ????=???? ??++-=-???? ??++++)()(222221222212221 2212111t F x l g m k x l g m x m t F x l g m x g l m g l m m k x m 利用刚度影响系数法求刚度矩阵k 。 设0,121==x x ,分别画出1m 与2m 的受力图,并施加二物块力2111,k k ,列平衡方程, 对1m : ∑=0X ,0sin sin 1221111 =---k T T k θθ ∑=0Y ,0cos cos 1 2 2 1 1 =--g m T T θθ 对2 m : ∑ =0X , 0sin 2 2 21 =+θT k ∑ =0Y , 0cos 2 22=-g m T θ

2016结构动力学(硕)答案

《结构动力学》试题(硕) 一、名词解释:(每题3分,共15分) 约束动力系数广义力虚功原理达朗贝原理 二、简答:(每题5分,共20分) 1. 为什么说自振周期是结构的固有性质?它与结构哪些固有量有关? 2. 阻尼对自由振动有什么影响?减幅系数的物理意义是什么? 3. 简述用振型叠加法求解多自由度体系动力响应的基本原理及适用条件分别是什么? 答:振型叠加法的基本原理是利用了振型的正交性,既对于多自由度体系,必有: 0T m n m φφ=,0T m n k φφ= (式中m φ、n φ为结构的第m 、n 阶振型,m 、k 为结构的质量矩阵和刚度矩阵)。 利用正交性和正规坐标,将质量与刚度矩阵有非对角项耦合的N 个联立运动微分方程转换成为N 个独立的正规坐标方程(解耦)。分别求解每一个正规坐标的反应,然后根据叠加V=ΦY 即得出用原始坐标表示的反应。 由于在计算中应用了叠加原理,所以振型叠加法只适用于线性体系的动力分析。若体系为非线性,可采用逐步积分法进行反应分析。 4. 什么是结构的动力自由度?动力自由度与静力自由度的区别何在? 答:动力自由度是指结构体系在任意瞬时的一切可能变形中,决定全部质量位置所需的独立参数的数目。 静力自由度是指确定体系在空间中的位置所需的独立参数的数目。前者是由于系统的弹性变形而引起各质点的位移分量;而后者则是指结构中的刚体由于约束不够而产生的刚体运动。 三、计算(每题13分,共65分) 1.图1所示两质点动力体系,用D ’Alembert 原理求运动方程。 图1

2.图2所示,一长为l,弯曲刚度为EI的悬臂梁自由端有一质量为m的小球,小球又被支承 在刚度为k2的弹簧上,忽略梁的质量,求系统的固有频率。 图2 3.图3所示,一重mg的圆柱体,其半径为r,在一半径为R的弧表面上作无滑动的滚动,求在平衡位置(最低点)附近作微振动的固有频率。

单自由度系统的振动

第2章 单自由度(SDOF)系统振动 (Single Degree of freedom) 如果振动系统任意时刻的空间位置只需要一个独立参数来表达,则称为单自由度系统。本章介绍单自由度系统运动方程的建立,以及自由振动的特点和动力响应的计算问题。 2.1 运动方程的建立 此处分别应用基于达朗贝尔原理的直接平衡法、虚位移原理和哈密顿原理建立振动微分方程。 2.1.1 直接平衡法 承受动力荷载作用的任何单自由度系统均可以由图2—1所示的模型来代表。图2—1(a)中,m 为质量块的质量(kg ),是为弹簧的刚度(m N /),c 为粘滞阻尼系数(m s N /?),)(t P 为干扰力(N )。 将坐标原点设在质量块的静平衡位置处, 坐标y 即为相对于静平衡位置产生的质量块的 动位移。在任意瞬时取质量块的隔离体,如图 2—1(b)所示,作用于质量块上的力有下列四 种: (1)弹性恢复力(它等于弹簧刚度k 与位 移y 的乘积),ky f s =,与位移的方向相反; (2)阻尼力(假设为粘滞阻尼机理,它 等于阻尼常数c 与速度y 的乘积),y c f D =,与速度的方向相反; (3)惯性力(根据d ’Alembert 原理,它等于质量m 与加速度y 的乘积), y m f I =,与加速度的方向相反; (4)干扰力,)(t P .(根据竖向力的动平衡条件即直接平衡法得出) )(t P ky y c y m =++ (2—1) 在振动的任意时刻,这四种力都保持着平衡,只是各个力所占的比例不同而

已。由方程(2—1)可知,相对于动力系统的静力平衡位置所建立的运动方程是不受重力影响的。换言之,此类情况可以不考虑重力影响建立方程。由于这个原因,建立方程时,位移都以静力平衡位置作为坐标原点,由此方程仅能得到系统的动位移,而总的位移应该是动力位移响应和静力位移值的叠加。 2.1.2 虚位移原理 以图2—1所示的结构系统说明如何应用虚位移原理建立方程。令质量m 发生虚位移y δ,则作用在质量m 上的四个力所作的总虚功应该等于零,即 0)(=+---y t P y f y f y f s D I δδδδ 式中的负号是因为力的方向和虚位移的方向相反。因为上式中的虚位移不等于零,很容易得到式(2—1)所示的振动方程。 0)(=+---y t P y f y f y f s D I δδδδ, ?0)]([=+---y t P f f f s D I δ, 因为0≠y δ,将四种力的表达式代入前式可推出)12(-?式 在结构系统中某些结构具有这样的特点:弹性变形完全限定于局部的弹簧元件中发生,而结构本身没有弹性变形, 称此为刚体集合系统。现在介绍采用虚 位移原理建立这类振动系统的运动方 程。 例2.1 图2—2所示的系统由两根 刚性杆组成,两根杆用铰连接在一起。在O 点和D 点分别受到阻尼器和弹簧的约束,AD 杆的单位长度的质量m 是均匀的,在无重刚杆DB 中点有一个质量m ,并且m 上作用一个集中力)(t P ,现用虚位移原理建立该系统的振动方程。 解 因为两个杆都是刚性的,所以整个系统仅一个自由度,故其动力响应可以用一个方程来表达。该体系可以用直接平衡法建立方程,但是用虚位移原理更简便。 选择铰的垂向位移)(t y 为基本自由度,而其他的一切位移均可以通过它来表达。例如阻尼器处的位移为2y ,质量m 处的位移为2 y ,作用于结构上的全部力为:

1 单自由度体系的自由振动

y s y(t) s=-k(y+y s )w=mg F(t)=-m y §1 单自由度体系的自由振动 一、无阻尼的自由振动: 如下图,以单自由度体系为例,设此梁上的集中质量为m ,其重量为W mg =, 梁由于质量的重力引起的质量处的静力位移用s y 表示,与s y 相 应的质量位置称为质量的静力平衡位置。若此质量受到扰动离开了静力平衡位置,当扰动除去后,则体系将发生振动,这样的振动称为体系的自由振动。由于振动的方向与梁轴垂直,故称为横向振动。在此,只讨论微小振幅的振动,由振动引起的内力限于材料的弹性极限以内,用以表示质量运动的方程将为线性微分方程。 1、建立运动方程 建立运动方程常用的基本原理是达朗伯原理(亦称惯性力法或动静法)。 今考虑在振动过程的某一瞬时t ,设质量在此瞬时离开其平衡位置的位移为y ,取质量为隔离体,则在质量上作用有三种力:质量的重量W ,杆件对质量的弹性恢复力S 和惯性力F(t)。根据达朗伯原理,这三个力应成平衡,即 W+S+F(t)=0 (1) 在弹性体系中,弹性恢复力S 为 ()s k y y s =-+

上式中的K 为一常数,称为刚度系数,代表简支梁上使质量在运动方向产生单位位移时需要加在质量上的沿质量运动方向的集中力的量值。式中负号表示s 的指向和位移的方向相反。 而 1y s W k =? 即 y s W k =? 因此,将()s k y y s =-+和y s W k =?代入式(1)得 ()0 F t ky =-+ (2) 上式表明,如果以静力平衡位置作为计算位移的起点,则建立体系的运动方程时,可以不考虑重力W 的影响。这对其他体系的振动(包括受迫振动)也同样适用。 将2 2 ()d y F t m dt =-代入式(2)得: 2 2()0d y m ky t dt += 令2 k m ω= dy y dt = (速度) 2 2 d y y dt = (加速度) 则 2 2 ()0d y m ky t dt += 可变为 2 y y ω+= (3) 此为单自由度体系无阻尼自由振动的运动方程,它反映了这种振动的一般规律。 若采用柔度法建立运动方程(建立位移方程),以静力平衡位置作为计算位移的起点,则梁在质量m 处除惯性力2 2()d y F t m dt =-这个假想的 外荷载作用外,再无其他外力作用。所以由达朗伯原理可知,梁在集中质量m 处任一运动瞬时的位移为

第5章两自由度系统的振动

第5章 两自由度系统的振动 应用单自由度系统的振动理论,可以解决机械振动中的一些问题。但是,工程中有很多实际问题必须简化成两个或两个以上自由度,即多自由度的系统,才能描述其机械振动的主要特征。多自由度系统的振动特性与单自由度系统的振动特性有较大的差别,例如,有多个固有频率、主振型、 主振动和多个共振频率等。本章主要介绍研究两自由度系统机械振动的基本方法。 如图5-1所示。平板代表车身,它的位置可以由质心C 偏离其平衡位置的铅直位移z 及平板的转角θ 来确定。这样,车辆在铅直面内的振动问题就被简化为一个两自由度的系统。 5.1 双质量弹簧系统的自由振动 5.1.1 运动微分方程 图5-2(a)表示两自由度的弹簧质量系统。略去摩擦力及其它阻尼,以它们各自的静平衡位置为坐标x 1、x 2的原点,物体离开其平衡位置的位移用x 1、 x 2表示。两物体在水平方向的受力图如图5-2(b)所 示,由牛顿第二定律得 ? ? ? =+-=-++00)(2212222212111x k x k x m x k x k k x m &&&& (5-1) 这就是两自由度系统的自由振动微分方程。习惯上写成下列形式 ??? =+-=-+00212211dx cx x bx ax x &&&& (5-2) 显然此时 2 2 1 2 1 2 1,,m k d c m k b m k k a = == += 但对不同的系统, 式(5-2)中各系数的意义并不相同。 图5-2两自由度的弹簧质量系统

5.1.2 固有频率和主振型 根据微分方程的理论,设方程(5-2)的解,即两自由度无阻尼自由振动系统的解为 ?? ? ??+=+=)sin()sin(2211ααpt A x pt A x (5-3) 或写成以下的矩阵形式 )sin(2121α+?? ? ???????=??????????pt A A x x (5-4) 将式(5-4)代入式(5-2),可得代数齐次方程组 ? ?? ???=????????????----002122 A A p d c b p a (5-5) 保证式(5-5)具有非零解的充分必要条件是式(5-5)的系数行列式等于零,即 0)(2 2 2 =----= ?p d c b p a p 展开后为 0)(24=-++-bc ad p d a p (5-6) 式(5-6)唯一确定了频率p 满足的条件,通常称为频率分程或特征方程。它是2p 的二次代数方程,它的两个特征根为 )(222 22 ,1bc ad d a d a p --?? ? ??++=μ bc d a d a +?? ? ??-+=2 22μ (5-7) 由于式(5-7)确定的2p 的两个正实根仅取决于系统本身的物理性质,与运动的初始条件无关,因此p 称为系统的固有频率。较小的一个称为第一阶固有频率,较大的一个称为第二阶固有频率。 5.2.2 主振型 将固有频率p 1和p 2分别代入式(5-5)的任一式,可得到对应于它们的振幅比

相关主题
文本预览
相关文档 最新文档